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Abstract

Natural Language Processing (NLP) for low-
resource languages, which lack large annotated
datasets, faces significant challenges due to lim-
ited high-quality data and linguistic resources.
The selection of embeddings plays a critical
role in achieving strong performance in NLP
tasks. While contextual BERT embeddings re-
quire a full forward pass, non-contextual BERT
embeddings rely only on table lookup. Existing
research has primarily focused on contextual
BERT embeddings, leaving non-contextual em-
beddings largely unexplored. In this study, we
analyze the effectiveness of non-contextual em-
beddings from BERT models (MuRIL and Ma-
haBERT) and FastText models (IndicFT and
MahaFT) for tasks such as news classification,
sentiment analysis, and hate speech detection in
one such low-resource language—Marathi. We
compare these embeddings with their contex-
tual and compressed variants. Our findings indi-
cate that non-contextual BERT embeddings ex-
tracted from the model’s first embedding layer
outperform FastText embeddings, presenting a
promising alternative for low-resource NLP.

1 Introduction

Word embedding is a way of representing words
into dense vectors in a continuous space such that
the vectors capture the semantic relationship be-
tween the words for the models to understand
the context and meaning of the text. FastText,
a context-independent method, basically captures
the subword information, enabling it to learn rare
words, misspelled words, and out-of-vocabulary
words. It is recognized in the NLP community
for its efficient performance in tasks like text clas-
sification and sentiment analysis. Despite being
relatively old, it still remains one of the most
effective alternatives when performing tasks on
large datasets across various languages due to its
subword-based approach.

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) word em-
beddings understand the meaning of a word based
on its context in a sentence. The embeddings ex-
tracted just before the first embedding layer of the
BERT architecture are referred to as non-contextual
embeddings, while those obtained from the last hid-
den layer of BERT are known as contextual em-
beddings (Refer Figure 1). Numerous variations
of BERT like IndicBERT (Kakwani et al., 2020),
MuRIL (Khanuja et al., 2021), AfriBERT (Ralethe,
2020), and mBERT (Devlin et al., 2018) to name a
few, are available for experiments.

Recent studies have experimented with both Fast-
Text and BERT for various tasks; however, most of
them focus on exploring contextual BERT embed-
dings. Experiments of D’Sa et al. (2020) demon-
strated that BERT embeddings outperformed Fast-
Text for classifying English text into toxic and non-
toxic. Findings of Ahmed et al. (2024) suggested
that BERT embeddings outperformed those of Fast-
Text with an F1 score of 84% when evaluated for
depressive post-detection in Bangla.

While BERT consistently outperforms other
word embeddings in various tasks for high-resource
languages (HRLs) like English (Malik et al.
(2021)), its effectiveness in low-resource languages
(LRLs) remains relatively underexplored. This gap
is particularly pronounced when balancing model
performance with computational efficiency, which
becomes a critical factor in low-resource settings.

Previous studies (D’Sa et al. (2020)) have fo-
cused on contextual BERT embeddings, which
outperform FastText due to their ability to cap-
ture contextual information. However, the use of
non-contextual BERT embeddings for classifica-
tion tasks in low-resource languages like Marathi
remains unexplored. Unlike contextual embed-
dings, which require a full forward pass through the
model, non-contextual embeddings can be obtained
through a simple table lookup. To our knowledge,
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no prior work has examined the effectiveness of
non-contextual BERT embeddings. We investigate
how these embeddings, extracted from the model’s
first layer, compare to FastText embeddings for
tasks such as news classification, sentiment analy-
sis, and hate speech detection in Marathi.

Additionally, past comparisons often used
BERT’s 768-dimensional embeddings against Fast-
Text’s 300-dimensional ones, which is unfair since
higher dimensions naturally provide better feature
extraction. To address this, we ensure a fair com-
parison by reducing the BERT embeddings to 300
dimensions.

This paper focuses on utilizing FastText and
non-contextual BERT for the Marathi language
for the following tasks: Sentiment Classification,
2-Class and 4-Class Hate Speech Detection, and
News Article Classification for headlines, long
paragraphs, and long documents. We construct
a comprehensive analysis of FastText embeddings,
IndicFT (Kakwani et al., 2020) and MahaFT (Joshi,
2022) embeddings, and BERT embeddings, includ-
ing muril-base-cased (Khanuja et al., 2021) and
marathi-bert-v2 (Joshi, 2022). To enhance the com-
parison, we replicate the experiments using widely
utilized contextual BERT embeddings. We also
evaluate the impact of compression on both contex-
tual and non-contextual BERT-based embeddings.
Our analysis shows that non-contextual BERT em-
beddings generally perform better than FastText
in most tasks. Furthermore, contextual BERT em-
beddings consistently outperform FastText across
all evaluated tasks. However, compressing non-
contextual embeddings reduces their performance,
making FastText more effective than compressed
non-contextual BERT.

The key contributions of this work are as fol-
lows:

• We conduct a detailed study comparing non-
contextual BERT embeddings and FastText em-
beddings for Marathi, a low-resource language.
The evaluation covers multiple classification
tasks, including sentiment analysis, news clas-
sification, and hate speech detection.

• To ensure a fair comparison, we compress BERT
embeddings from 768 to 300 dimensions using
Singular Value Decomposition (SVD). This al-
lows us to analyze how dimensionality reduction
impacts BERT’s performance compared to its
uncompressed version and FastText.

• We explore the differences between contextual
and non-contextual BERT embeddings, examin-
ing their impact on classification performance in
low-resource settings.

The paper is organized as follows: Section 2
provides a concise review of prior research on Fast-
Text and BERT. Section 3 includes the datasets
and model embeddings that are utilized for the
experiments. Section 4 presents the methodology
used. Section 5 presents the results and key insights
drawn from the findings along with a comparative
analysis of FastText embeddings and BERT. In Sec-
tion 6, we analyze our results and explain the rea-
sons behind them. In Section 7, we conclude our
discussion.

2 Literature Review

The existing literature emphasizes the superior-
ity of contextual BERT embeddings over tradi-
tional word embedding techniques like Word2Vec
(Mikolov et al., 2013) , GloVe (Pennington et al.,
2014), and FastText across various natural language
processing (NLP) tasks. For instance, Khaled
et al. (2023) compare four popular pre-trained
word embeddings—Word2Vec (via Aravec (Mo-
hammad et al., 2017)), GloVe, FastText, and con-
textual BERT (via ARBERTv2)—on Arabic news
datasets. They highlight BERT’s superior perfor-
mance, achieving over 95% accuracy due to its
contextual interpretation.

Similarly, Kabullar and Türker (2022) analyzes
the performance of embeddings on the AG News
dataset, which includes 120K instances across four
classes. They conclude that contextual BERT out-
performs other methods, achieving 90.88% accu-
racy. FastText, Skip-Gram, CBOW, and GloVe
achieve 86.91%, 85.82%, 86.15%, and 80.86%,
respectively.

While traditional embeddings perform reason-
ably well, the consistent dominance of contex-
tual BERT in complex tasks is also noted in sen-
timent analysis. For instance, Xie et al. (2024)
explores how combining BERT and FastText em-
beddings enhances sentiment analysis in education,
demonstrating that BERT’s contextual understand-
ing, along with FastText’s ability to handle out-of-
vocabulary words, improves generalization over
unseen text.

In the domain of toxic speech classification,
D’Sa et al. (2020) utilize both contextual BERT and
FastText embeddings to classify toxic comments
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Figure 1: Embedding extraction workflow for contextual and non-contextual representations

Figure 2: SVD compression of BERT embeddings

in English, with BERT embeddings outperform-
ing FastText. This trend continues in hate speech
detection, where Rajput et al. (2021) find that neu-
ral network classifiers using contextual BERT em-
beddings perform better than those with FastText
embeddings alone, further supporting BERT’s ef-
fectiveness.

Additionally, Chanda (2021) assess contextual
BERT embeddings against traditional context-free
methods (GloVe, Skip-Gram, and FastText) for dis-
aster prediction, demonstrating BERT’s superior
performance in combination with traditional ma-
chine learning and deep learning methods.

For low-resource languages (LRLs), Ahmed
et al. (2024) examine methods like traditional TF-
IDF, contextual BERT, and FastText embeddings
within a CNN-BiLSTM architecture for detecting
depressive texts in Bangla. Their results show
that BERT embeddings yield the highest F1 score
(84%), indicating their dominance over other meth-
ods. This suggests that BERT’s efficacy extends
even to LRLs.

In medical applications, Khan et al. (2024) pro-
poses integrating contextual BERT embeddings
with SVM for prostate cancer prediction. By incor-
porating both numerical data and contextual infor-
mation from clinical text, they achieve 95% accu-
racy, far outperforming the 86% accuracy achieved
with numerical data alone.

Moreover, Malik et al. (2021) uses both contex-
tual BERT and FastText embeddings to preprocess
a dataset of conversations from Twitter and Face-
book. Applying various machine learning and deep
learning algorithms, they find that CNN yields the

best results, further demonstrating BERT’s capabil-
ities.

Finally, while Asudani et al. (2023) offers a com-
prehensive analysis of traditional word embeddings
alongside more advanced techniques like ELMo
and contextual BERT, providing insight into com-
monly used datasets and models for benchmark-
ing, Umer et al. (2022) highlights the versatility
of FastText in various domains, despite BERT’s
consistently superior performance.

We note that the reviewed literature highlights
the consistent superiority of BERT embeddings
across various NLP tasks and domains. How-
ever, most existing studies focus mainly on contex-
tual BERT embeddings, but not on non-contextual
embeddings. Moreover, these studies predomi-
nantly address high-resource languages, leaving
low-resource languages like Marathi largely un-
explored. In particular, there is a lack of research
assessing the effectiveness of non-contextual BERT
embeddings for Marathi. Additionally, the im-
pact of dimensionality leveling, i.e. the efficacy
of BERT embedding compression, has not been
explored.

3 Datasets and Models Used

In our research work, we used 3 Marathi datasets,
MahaSent: A 3-class sentiment analysis dataset
(Pingle et al., 2023), MahaHate: A 2-class as
well as a 4-class hate classification dataset (Patil
et al., 2022) and MahaNews is a news catego-
rization dataset consisting of three sub-datasets,
each with 12 classes: Short Headline Classification
(SHC), Long Document Classification (LDC), and
Long Paragraph Classification (LPC) (Mittal et al.,
2023).

We used two types of embeddings in our ex-
periments: FastText and BERT embeddings. For
FastText, we utilized both IndicFT (Kakwani et al.,
2020) and MahaFT (Joshi, 2022) embeddings. This
was because both models included a Marathi cor-
pus as part of their training data. MahaFT, in par-

https://github.com/l3cube-pune/MarathiNLP/tree/main/L3CubeMahaSent%20Dataset
https://github.com/l3cube-pune/MarathiNLP/tree/main/L3Cube-MahaHate
https://github.com/l3cube-pune/MarathiNLP/tree/main/L3Cube-MahaNews
https://indicnlp.ai4bharat.org/FastText/#downloads
https://huggingface.co/l3cube-pune/marathi-fast-text-embedding
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Type Model MahaSent MahaHate MahaNews
3-class 4-class 2-class SHC LDC LPC

Contextual MahaBERT 82.27 66.8 85.57 89.83 93.87 87.78
MahaBERT (Compressed) 82.89 66.15 84.37 89.61 93.53 87.82

Muril 81.64 64.55 84.00 89.54 93.64 87.33
Muril (Compressed) 81.91 63.2 83.36 88.38 93.48 87.45

FastText IndicFT 76.4 58.25 80.13 85.57 92.15 79.19
MahaFT 78.62 62.75 81.76 85.89 92.62 80.32

Non-Contextual MahaBERT 77.56 66.5 82.64 86.45 91.69 81.76
MahaBERT (Compressed) 76.31 63.9 81.57 83.85 91.25 80.08

Muril 76.58 65.77 81.79 85.95 91.61 81.36
Muril (Compressed) 75.16 63.25 81.44 82.72 90.39 79.00

Table 1: Performance of model embeddings on MahaSent, MahaHate, and MahaNews datasets using Multiple
Logistic Regression. Key: SHC = Short Headline Classification, LPC = Long Paragraph Classification, LDC =
Long Document Classification

Figure 3: T-SNE Plot For BERT and FastText Embeddings (c stands for compressed) .

ticular, was specifically trained on a Marathi cor-
pus, making it especially relevant for our experi-
ments. For BERT embeddings, we primarily used
two BERT-based models: MahaBERT (Joshi, 2022)
and MuRIL (Khanuja et al., 2021). Since both mod-
els were trained on Marathi data, we selected them
to compare with the FastText embeddings.

4 Methodology

For each sentence, corresponding embeddings were
generated and the corresponding categorical labels
were encoded into numerical labels. The creation
of BERT embeddings was done by first tokeniz-
ing the text using the BERT tokenizer, along with
padding and truncation. The tokenized input was
then passed to the model and the output of the
last hidden layer of BERT was taken, which was
then averaged to get contextual embeddings for
every sentence. Whereas for non-contextual em-
beddings, the output of the first embedding layer
was used. Refer Figure 1 for the embedding extrac-
tion workflow for contextual and non-contextual
representations.

However, for FastText, which is a non-contextual
embedding by default, the process was slightly dif-
ferent due to the lack of a predefined vocabulary.
Unlike BERT, which employs a tokenizer capable
of processing entire Marathi sentences, FastText

necessitates the creation of a custom vocabulary.
To achieve this, the training and validation datasets
were concatenated and passed through a text vec-
torizer, which generated vectors for every word in
the dataset. The vectorizer returned the vocabulary
as a list of words in decreasing order of their fre-
quency. The FastText model was then loaded using
the FastText library, and for each word in the vocab-
ulary, a word vector was retrieved to construct the
embedding matrix. For each sentence, the text was
split into individual words, and the corresponding
embeddings were retrieved from the embedding
matrix. These embeddings were then averaged to
produce the final sentence embeddings.
Additionally, we experimented with compressed
embeddings by reducing the dimensionality from
768 (the traditional BERT embedding dimension)
to 300. This compression was performed using
Singular Value Decomposition (SVD) to select the
most relevant features, extracting the top 300 com-
ponents for all the combinations of contextual as
well as non-contextual for MahaBERT as well as
Muril. Refer Figure 2 for SVD compression of
BERT embeddings.
Feature scaling was also applied to the outputs. All
embeddings were then passed to a multiple logistic
regression (MLR) classifier for classification into
target labels.

https://github.com/l3cube-pune/MarathiNLP/tree/main/L3CubeMahaSent%20Dataset
https://github.com/l3cube-pune/MarathiNLP/tree/main/L3Cube-MahaHate/4-class
https://github.com/l3cube-pune/MarathiNLP/tree/main/L3Cube-MahaHate/2-class
https://github.com/l3cube-pune/MarathiNLP/tree/main/L3Cube-MahaNews/SHC
https://github.com/l3cube-pune/MarathiNLP/tree/main/L3Cube-MahaNews/LDC
https://github.com/l3cube-pune/MarathiNLP/tree/main/L3Cube-MahaNews/LPC
https://huggingface.co/l3cube-pune/marathi-bert-v2
https://huggingface.co/l3cube-pune/marathi-bert-v2
https://huggingface.co/google/muril-base-cased
https://huggingface.co/google/muril-base-cased
https://storage.googleapis.com/ai4bharat-public-indic-nlp-corpora/data/monolingual/indicnlp_v1/sentence/mr.txt.gz
https://huggingface.co/l3cube-pune/marathi-fast-text-embedding
https://huggingface.co/l3cube-pune/marathi-bert-v2
https://huggingface.co/l3cube-pune/marathi-bert-v2
https://huggingface.co/google/muril-base-cased
https://huggingface.co/google/muril-base-cased
https://huggingface.co/l3cube-pune/marathi-bert-v2
https://huggingface.co/google/muril-base-cased
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Dataset Subdataset Model Avg Variance Std Test
MahaSent 3 Class MahaBERT 76.56 0.39843 0.6312 78.01

MahaBERT-Compressed 74.42 0.8498 0.9218 75.51
Muril 75.53 0.75268 0.8676 76.53
Muril-Compressed 72.97 0.48963 0.6997 75.2
MahaFT 77.28 0.38282 0.6187 78.58

MahaHate 4 Class MahaBERT 64.92 0.25203 0.5020 66.1
MahaBERT-Compressed 62.77 0.53875 0.7340 64.1
Muril 63.51 0.35307 0.5942 65.15
Muril-Compressed 61.22 0.52378 0.7237 62.9
MahaFT 62.48 0.22608 0.4755 62.55

2 Class MahaBERT 84.23 0.37633 0.6135 82.53
MahaBERT-Compressed 82.3 0.10312 0.3211 81.41
Muril 83.69 0.39397 0.6277 81.63
Muril-Compressed 81.67 0.20943 0.4576 81.41
MahaFT 83.75 0.52153 0.7222 82.61

MahaNews SHC MahaBERT 86.66 0.27687 0.5262 86.64
MahaBERT-Compressed 84.13 0.36002 0.6000 83.81
Muril 85.7 0.06973 0.2641 85.66
Muril-Compressed 82.89 0.11612 0.3408 82.01
MahaFT 87.25 0.17873 0.4228 85.97

LDC MahaBERT 92.47 0.32565 0.5707 91.69
MahaBERT-Compressed 91.41 0.01637 0.1279 91.57
Muril 92.03 0.19055 0.4365 91.69
Muril-Compressed 91.04 0.07753 0.2784 90.39
MahaFT 92.79 0.15667 0.3958 92.71

LPC MahaBERT 81.71 0.18503 0.4302 81.27
MahaBERT-Compressed 80.03 0.1779 0.4218 80.51
Muril 81.19 0.17597 0.4195 81.4
Muril-Compressed 78.82 0.14497 0.3807 79.11
MahaFT 80.15 1.25257 1.1192 80.32

Table 2: The values were obtained by performing 5-fold cross-validation on the training dataset for Non-contextual
embedding. The Avg, Variance and Std represent the average, variance and standard deviation respectively
performance across the five test subsets (from training) of the 5-fold splits, while the Test column reflects the
performance on the actual test dataset. Key: SHC = Short Headline Classification, LPC = Long Paragraph
Classification, LDC = Long Document Classification

4.1 Experimental Setup

The experiments were conducted on Kaggle note-
books equipped with a P100 GPU accelerator, uti-
lizing 16 GB of GPU memory, 20 GB of storage,
and 32 GB of RAM. Accuracy was chosen as the
evaluation metric, given the balanced nature of the
datasets. For classification, the results obtained
from the embeddings were mapped to final labels
using a multinomial logistic regression model to
maintain methodological simplicity. To determine
the validity of the results obtained, 5-fold cross-
validation was performed for all tasks, and the re-
sults are presented in Table 2.

4.2 Visualisation of Embeddings

To visualize how BERT and FastText embedding
can separate the classes, we plotted T-SNE (van der
Maaten and Hinton, 2008) graphs for the LDC
dataset. We have 5 plots, with 4 plots for Ma-
haBERT and 1 for MahaFT. Refer Figure 3.

5 Results

Table 1 presents the results for various embeddings,
including MahaBERT, MuRIL, MahaFT, and In-
dicFT, across multiple datasets and tasks. It in-
cludes both contextual and non-contextual embed-
dings, as well as the compressed variants of Ma-
haBERT and MuRIL.

In sections 5.1 and 5.2, we have considered the
uncompressed versions of Muril and MahaBERT.
Further, in section 5.3, we specifically show the
effect of compression on Muril and MahaBERT.

5.1 Contextual vs FastText

From Table 1, we observe the following trend when
comparing contextual embeddings with FastText
embeddings: MahaBERT > MuRIL > MahaFT >
IndicFT.

5.2 Non-Contextual vs FastText

The trend of comparing non-contextual embed-
dings with FastText typically follows this order:

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://github.com/l3cube-pune/MarathiNLP/tree/main/L3Cube-MahaNews/LDC
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MahaBERT > MuRIL > MahaFT > IndicFT. How-
ever, there are exceptions for the MahaSent and
LDC datasets.

For these two datasets, FastText tends to perform
slightly better. However, the difference is minimal,
so we refer to Table 2 to determine whether this
deviation is significant or simply random noise. We
observe a high variance in MahaSent, suggesting
that its deviation from the usual trend when com-
paring non-contextual embeddings with FastText
may be attributed to noise and is unlikely to be
significant.

In contrast, the LDC dataset also deviates from
the trend but exhibits relatively low variance. As a
result, for the LDC dataset, the performance trend
when comparing non-contextual embeddings with
FastText is as follows: MahaFT > IndicFT > Ma-
haBERT > MuRIL.

5.3 Effect of Compression

From Table 1, it can be inferred that compression
negatively impacts non-contextual embeddings, as
uncompressed versions generally perform better.
This is evident from MahaFT outperforming the
compressed non-contextual MahaBERT embed-
dings in all datasets except MahaHate-4c, suggest-
ing that compression lowers the performance of
non-contextual BERT embeddings.

However, the effect of compression on contex-
tual embeddings varies across datasets, making it
challenging to derive a consistent conclusion.

6 Inference

In this section, we explain why the non-contextual
MahaBERT embeddings outperform FastText (Ma-
haFT and IndicFT) embeddings. Both MahaBERT
and MahaFT embeddings have been trained on the
same corpus of 752 million tokens Joshi (2022).
The superior performance of non-contextual Ma-
haBERT embeddings can be attributed to its larger
embedding size, training data size, and contextual
training objective. Specifically, the embedding size
for Marathi-BERT-v2 is 152M (197,285 × 768),
compared to MahaFT, which is 132M (439,247 ×
300).

IndicFT performs worse than MahaFT, likely
due to its smaller dataset size of 551 million to-
kens (Kakwani et al., 2020). On the other hand,
contextual BERT achieves better results because
its hidden layers are effectively utilized.

Additionally, we observe a negative impact when

compressing MahaBERT non-contextual embed-
dings. Reducing the embedding size from 152M
(197,285 × 768) to 59M (197,285 × 300) leads to a
decrease in performance, likely due to the loss of
representational capacity.

7 Conclusion

In our research, we analyzed the effectiveness of
various BERT and FastText-based embeddings on
three key NLP tasks for Marathi: news classifica-
tion, hate speech classification, and sentiment clas-
sification focusing primarily on non-contextualised
BERT embeddings.

Our results show that contextual BERT embed-
dings perform better than non-contextual ones, in-
cluding both non-contextual BERT embeddings
and FastText. Among non-contextual embeddings,
BERT generally outperforms FastText in most
tasks. However, when non-contextual BERT em-
beddings are compressed, their performance drops,
and FastText performs better than compressed non-
contextual BERT.
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