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Abstract

The pervasive spread of hate speech on online
platforms poses a significant threat to social har-
mony, necessitating not only high-performing
classifiers but also models capable of transpar-
ent, fine-grained interpretability. Existing meth-
ods often neglect the identification of influential
contextual words that drive hate speech classi-
fication, limiting their reliability in high-stakes
applications. To address this, we propose LLM-
BiMACNet (Large Language Model-based
Bidirectional Multi-Channel Attention Classi-
fication Network), an explainability-focused
architecture that leverages pretrained language
models and supervised attention to highlight
key lexical indicators of hateful and offensive
intent. Trained and evaluated on the HateX-
plain benchmark—comprising class labels, tar-
get community annotations, and human-labeled
rationales—LLM-BiMACNet is optimized to
simultaneously enhance both predictive perfor-
mance and rationale alignment. Experimental
results demonstrate that our model outperforms
existing state-of-the-art approaches, achieving
an accuracy of 87.3%, AUROC of 0.881, token-
level F1 of 0.553, IOU-F1 of 0.261, AUPRC
of 0.874, and comprehensiveness of 0.524,
thereby offering highly interpretable and ac-
curate hate speech detection.

1 Introduction

Hate speech on social media has surged dramati-
cally in recent years, posing serious challenges to
social cohesion, public safety, and digital platform
governance. The contextual and nuanced nature of
hate speech—often encoded in subtle phrasing or
idiomatic expressions—makes it difficult for auto-
mated systems to distinguish between benign and
harmful content (Vijayaraghavan and Vosoughi,
2021; Kodati, 2020; Das et al., 2025a). Further-
more, users frequently manipulate hateful content
(e.g., via typos or benign interjections like “love”)
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to evade detection, underscoring the need for mod-
els that understand the semantic intent rather than
simply relying on surface-level features (Garg et al.,
2023; Kodati and Tene, 2024a,b). Recent studies
have emphasized the importance of interpretable
and explainable hate speech detectors, which not
only classify content but also identify the specific
tokens that drive the decision (Kim et al., 2022;
Yang et al., 2023; Kodati and Dasari, 2025b; Das
et al., 2024, 2025b). The HateXplain dataset repre-
sents a notable advancement in this direction, pro-
viding human-annotated rationales at token level,
alongside class labels and target community anno-
tations (Mathew et al., 2021). While supervised-
attention methods like Masked Rationale Predic-
tion attempt to align model decisions with human
reasoning, there remains substantial room for im-
provement in rationale plausibility and faithfulness
(Kim et al., 2022), (Das et al., 2022). More recently,
studies such as HARE (Yang et al., 2023) and LLM-
based explanation models (Nirmal et al., 2024; Ko-
dati and Dasari, 2025a) have demonstrated that
integrating large language models (LLMs) with
supervised rationale alignment can significantly
enhance the interpretability and generalization of
hate speech classifiers. Key contributions of our
work include: identification of contextual words
responsible for hate and offensive content using
explainable attention mechanisms; integration of
LLM-guided rationale alignment to improve in-
terpretability without compromising classification
performance; and comprehensive evaluation on the
HateXplain dataset, demonstrating superior accu-
racy and explanation quality compared to state-of-
the-art models.

2 Related Work

Detecting hate speech has evolved from rule-
based and keyword-matching systems to deep
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neural architectures, driven by the increasing
need for both accuracy and transparency. Early
transformer-based models such as BERT and
RoBERTza achieved strong performance in offen-
sive language classification, yet lacked the capabil-
ity to explain why certain messages were flagged
as hateful. To address this, models incorporating
attention visualization and rationale supervision
have emerged. Vijayaraghavan et al. (Vijayaragha-
van and Vosoughi, 2021) proposed a multi-modal
framework that combines textual content and social
metadata for interpretable hate speech detection,
leveraging attention weights to identify influential
components in the input. Similarly, Kim et al. (Kim
et al., 2022) introduced the Masked Rationale Pre-
diction (MRP) method, which masks annotated ra-
tionales during training to encourage the model to
attend to human-identified evidential spans. These
approaches laid the groundwork for integrating ex-
plainability with detection but remain limited in
generalization and token-level faithfulness. More
recent studies have begun LLMs for explanation-
aware classification (Kodati and Ramakrishnudu,
2023, 2021). Yang et al. (Yang et al., 2023) intro-
duced the HARE framework, which uses step-by-
step explanations generated by an LLM to provide
hierarchical and interpretable decisions for hate
speech detection. In a similar vein, Nirmal et al.
(Nirmal et al., 2024) proposed a framework where
rationales are extracted from LLMs and used as su-
pervised signals to guide model attention, resulting
in more aligned token-level predictions with human
rationales. These models demonstrated improve-
ments not only in classification metrics but also in
explainability scores such as comprehensiveness
and sufficiency. Bock et al. (Bock et al., 2024)
further evaluated several interpretability methods
(gradient-based, perturbation-based, and attention-
based) and concluded that perturbation-based meth-
ods yield the most plausible explanations, although
they are computationally expensive. To understand
broader challenges in hate speech detection, re-
cent surveys provide comprehensive overviews of
current approaches. Kapil and Ekbal (Kapil and Ek-
bal, 2024) reviewed over 60 models, highlighting
trends in explainable Al and the need for robust ra-
tionale supervision. The work (Kodati and Dasari,
2024) emphasized limitations such as benchmark
inconsistency, algorithmic bias, and the lack of ex-
plainable metrics in evaluation protocols. Liu et al.
(Jahan and Oussalah, 2023) examined hybrid archi-
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tectures combining handcrafted features and deep
representations, identifying a clear shift toward su-
pervised explanation mechanisms using annotated
datasets like HateXplain. Despite these efforts,
existing methods often face a trade-off between
performance and transparency. Our work builds
on these foundations by integrating LL.M-derived
rationales within a supervised attention pipeline to
achieve both faithful interpretability and compet-
itive performance on standard hate speech bench-
marks.

3 Preliminaries

3.1 Problem Statement

Let D = {(z,y® r)}N bea labeled dataset

where each () = {w (@) wé), . wT } is a to-
kenized input text sequence of length T,y ¢
Y is the class label (e.g., Hate, Offensive,

Normal), and (") € {0,1}7 is a binary rationale

vector where rt( ) = 1 if token wg " is annotated

as a rationale (i.e., contributes to the label y(i)),
and 0 otherwise. The goal is to learn a classifi-
cation model fyp(x) that satisfies two objectives:
(1) accurate prediction of y given z, and (2) faith-
ful alignment of the model’s explanation with the
human-provided rationale r.

More formally, we seek to optimize the follow-
ing composite objective:

ﬁcls(f@(x)v

where L is the supervised classification loss
(e.g., cross-entropy), Lexp is the rationale alignment
loss (e.g., binary cross-entropy between model ex-
planation and r), e () is the explanation generated
by the model (e.g., attention or importance scores),
and A controls the trade-off between accuracy and
interpretability.

Liotal = y) +A- Lexp(ee(m)a T) (1)

3.2 Input Representation via LLM Encoding

Given the input sequence x = {wy, ws, ..., wr},
we pass it through a pretrained large language
model (LLM), such as RoBERTa, to obtain con-
textualized token representations. Denote the LLM
encoder as ¢(-), then:

H = ¢(x) ={h1,ha,....hr}, h €R? (2)

where H € R7*4 is the sequence of contextual
embeddings and d is the hidden dimension. These



embeddings form the base input to the downstream
model components for classification and explana-
tion.

3.3 Rationale Supervision and Token-level
Alignment

To incorporate human-annotated rationales, we
introduce an attention-like mechanism eg(x) =
{ai,a,...,ar} where oy € [0,1] denotes the
importance score of token w;. These scores are
trained to align with the ground-truth rationale vec-
tor r using binary cross-entropy:

T
Lexp = — Z [re - logay + (1 —r¢) - log(1l — ay)]
t=1

3)
This ensures that the model focuses its interpre-
tive capacity on tokens that are genuinely respon-
sible for the classification decision. Moreover, we
enforce that explanations are not only plausible
(aligning with r) but also faithful (i.e., their re-
moval degrades the prediction confidence), which
is evaluated using comprehensiveness and suffi-
ciency metrics in experiments.

3.4 Prediction Objective

The final classification logits z are computed from
a sequence-level representation v, which may be
derived through operations such as max pooling,
attention-weighted summation, or recurrent aggre-
gation over H. The class prediction is obtained
by:

z=Wuv+b, ¢=argmax(softmax(z)) (4)

where W € R4 and b € RV are train-
able parameters. The model is optimized end-to-
end using the total loss L from Equation (1),
jointly training for both label prediction and ratio-
nale alignment.

4 Methodology

This section describes the architecture of our pro-
posed model, LLM-BiMACNet, which is designed
to classify hateful content and highlight the most
influential contextual tokens. The architecture in-
tegrates deep contextual representations from pre-
trained language models with hierarchical neural
processing and attention-based rationale supervi-
sion.

4.1 Overview

Given an input sequence = {wj, ws,...,wr},
our model performs three primary operations: (1)
extract contextual embeddings using a pretrained
large language model (LLM), (2) process the se-
quence through a bidirectional multi-channel atten-
tion architecture for rich feature interaction, and
(3) jointly optimize for classification accuracy and
token-level rationale alignment. The complete ar-
chitecture is illustrated in Figure 1.

4.2 Contextual Encoding via LLM

We begin by transforming the input sequence into
contextual embeddings using a pretrained language
model ¢(-), such as RoOBERTa:

H = ¢(x) ={h1,ha,....hr}, hy €R? (5)

These embeddings capture semantic and syntac-
tic dependencies between tokens and serve as input
to the next stages of the network.

4.3 Bidirectional Sequential Encoding

To capture sequential dependencies in both forward
and backward directions, we employ a bidirectional
recurrent structure on top of the LLM embeddings:

&
+ = GRUpwa(ht, ht41) (6)

The final sequence representation from this layer
is:

HBI — {[ht7 ht]}?:ly HBI e RTXQd (7)

4.4 Multi-Channel Attention Mechanism

To emphasize different semantic aspects, we ap-
ply a multi-channel attention mechanism over the
Bi-GRU output. Each attention head computes a
distribution over the token representations:

T . yBi .
G &P (wj tanh(W; HP' + bj)>

ap = —
> exp (W;r tanh(W; HP' + bj)>
k=1

)

forj=1,..., M ()

where M is the number of attention channels (or
heads), and each head focuses on a distinct sub-
space of semantic relevance. The final aggregated



representation is the concatenation of all head-wise
weighted sums:

M T
v = @ZO‘?)HF

j=1 t=1

(©))

4.5 Global Feature Abstraction and

Classification
The output vector v from multi-head attention is
passed through a convolutional feature extractor
followed by global max pooling (GMP) to obtain a
fixed-length high-level abstraction:

F = GMP(ReLU(ConvlD(v))) (10)

The final classification logits are computed using
a fully connected layer with softmax activation:

z = WusF + bas, y = arg max(softmax(z))

(1D

4.6 Explanation Generation and Supervision

To make the model’s predictions interpretable,
we define a token-level importance score vector
a = {ai,...,ar} obtained from one of the at-
tention heads trained for explanation. This head is
supervised using the binary rationale vector r from
the HateXplain dataset:

T
Lexp = — Z[Tt log oy + (1 — 1) log(1 — )]

t=1

12)

This encourages the attention distribution to
align with human-provided explanations.

4.7 Joint Optimization Objective

The complete model is trained end-to-end with a
multi-objective loss function:

Ltotal = »Ccls +A- cexp (13)

Here, L. is the standard categorical cross-
entropy loss, Leyp is the rationale alignment loss,
and A is a hyperparameter balancing accuracy and
interpretability.

The proposed LLM-BiMACNet algorithm 1 per-
forms hate speech classification while simultane-
ously identifying the contextual words that con-
tribute most to the prediction using supervised ex-
plainability. Given an input text, the model first
encodes it using a pretrained LLM to capture rich
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Algorithm 1: LLM-BiMACNet: Explain-
able Hate Speech Detection

Input: Tokenized input x = {w1, wa, ..
label y € Y, rationale vector
r={r,...,rr}
Output: Predicted label ¢, contextual tokens C' C x
1 Function TrainModel (D = {(z¥,y@, r)}):
Initialize model parameters 6 ;
foreach epoch = 1 to E do
foreach batch (x,y,r) in D do
(5 cx)

ExplainableForward (z) ;
Les < CrossEntropy(4, y) ;
Lexp —

— ;Z:l [relogar + (1 — 7)) log(1 — an)]

.,wr}, true

n B W N

Elotal — Lcls + A [rexp 5
| Update: 0 < 0 — 1 Vo Lo ;

10 return Trained model 0 ;

11
12

Function ExplainableForward (x):

H + ¢(z); // LLM contextual
embeddings

H® « BiGRU(H) ;

Compute attention scores & = {a1, . ..

z <= CNN — ReLU — GMP — FC;

§ < arg max(softmax(z)) ;

C+{wex|ar>71};

return (9, C) ;

13
14
15
16
17
18

,ar}s;

contextual embeddings. These embeddings are
processed through a BiGRU and multi-head at-
tention mechanism to compute token-level impor-
tance scores. During training, the model optimizes
both classification accuracy and explanation align-
ment by comparing its attention scores to human-
annotated rationales. At inference, it outputs not
only the predicted class (Hate, Offensive, or Nor-
mal) but also the specific tokens with high impor-
tance scores—effectively highlighting the contex-
tual words that influenced the decision.

Figure 1 illustrates the compact dual-channel ar-
chitecture of LLM-BiMACNet, where shared LLM
and BiGRU layers extract contextual representa-
tions from the input text. These representations are
then processed by two parallel branches: one for
hate speech classification using multi-head atten-
tion and CNN layers, and the other for explainabil-
ity using a supervised attention head that highlights
contextual words contributing to each prediction.

5 Dataset Collection

To evaluate our proposed model LLM-BiMACNet
in terms of both classification performance and ex-
planation fidelity, we utilize the publicly available
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Figure 1: LLM-BiMACNet model architecture

HateXplain dataset (Mathew et al., 2021). This
benchmark is specifically designed for explain-
able hate speech detection and provides not only
class labels but also human-annotated rationales at
the token level, making it well-suited for training
and evaluating models with interpretable attention
mechanisms.

5.1 Dataset Composition

The HateXplain dataset consists of over 20,000 so-
cial media posts, primarily sourced from Twitter
and Gab. Each post is annotated by three inde-
pendent annotators from Amazon Mechanical Turk
(AMT), providing:

e A class label from the set

{Hate,Offensive,Normal}.

* A target community label (e.g., religion, eth-
nicity, gender).

* A rationale vector indicating which words
contribute to the label assignment.

The rationales are marked at the token level, al-
lowing models to be trained not only for accurate
classification but also for interpretable decision-
making.

5.2 Annotation and Agreement

Annotators were required to justify their decisions
by highlighting the specific words that led them
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to assign a given label. A majority voting scheme
was employed to determine the final class label
for each post. To ensure annotation consistency,
only samples where at least two annotators agreed
on both class and rationale were retained. This
filtering step improves the quality of supervision
for both classification and explanation tasks.

5.3 Rationale Aggregation

The final rationale mask for each input sequence is
derived by aggregating token-level selections from
the agreeing annotators. Each token wy is associ-
ated with a binary label r, € {0, 1}, where r; = 1
indicates that the token contributes to the hateful
or offensive nature of the text. These rationale vec-
tors are used as ground truth for supervising the
explanation component of our model.

5.4 Train-Validation-Test Splits

We follow the standard data partition provided by
the authors of HateXplain, using 16,043 samples
for training, 1,927 for validation, and 1,969 for
testing. All experiments are conducted using this
split to ensure reproducibility and comparability
with prior work.

5.5 Why HateXplain?

Unlike traditional hate speech datasets, HateXplain
includes fine-grained human explanations, enabling
us to train and evaluate models on rationale align-
ment, explanation plausibility, and faithfulness. Its
inclusion of target community tags also supports
bias-sensitive evaluation, making it ideal for ex-
plainable and responsible Al research in toxic lan-
guage detection.

6 Experimental Results

We evaluate the proposed LLM-BiMACNet model
on the HateXplain dataset to assess its effective-
ness in both classification and explainability. The
dataset contains over 20,000 posts across three
classes—Hate ( 10%), Offensive ( 30%), and Nor-
mal ( 60%)—with an average text length of ap-
proximately 23 words per post. Around 70% of
the posts include annotated rationales highlighting
hateful or offensive spans.

6.1 Preprocessing

Prior to model training, all input samples were
lowercased, and special characters (e.g., emojis,
URLSs, hashtags) were normalized using regular



expressions. Tokenization was performed using the
RoBERTa tokenizer from HuggingFace’s Trans-
formers library, which is compatible with our pre-
trained language model. To maintain sequence con-
sistency, we truncated or padded inputs to a maxi-
mum length of 128 tokens. For rationale alignment,
human-annotated rationale vectors were converted
into binary token-level masks aligned with subword
tokenization. All labels were mapped to categorical
indices: Hate (0), Of fensive (1), and Normal

2).
6.2 Hyperparameter Settings

The model was trained using the AdamW optimizer
with a learning rate of 2x 10~° and weight decay of
0.01. A batch size of 16 was used, and training was
conducted for up to 10 epochs with early stopping
based on validation loss. The loss balancing param-
eter A for rationale supervision was set to 0.5 based
on grid search. The hidden dimension for BiGRU
was set to 256, and we used 4 attention channels in
the multi-channel attention mechanism. The model
uses RoOBERTa-base as the contextual encoder to
generate token-level embeddings of dimension 768.
Dropout with a rate of 0.3 was applied to all inter-
mediate layers to prevent overfitting. Experiments
were conducted on an NVIDIA RTX 3090 GPU
using PyTorch 2.0 and HuggingFace Transformers
v4.30.

6.3 Results and Discussion

We report performance on both classification met-
rics and explanation metrics. Table 1 shows
the comparison of our model against state-of-the-
art baselines on the HateXplain test set. The
baseline models include XGBoost+SHAP for
gradient-based token-level explanations, CNN-
GRU for capturing local and sequential features,
BiRNN-HateXplain and BERT-HateXplain which
use supervised attention on the HateXplain dataset,
XG-HSI-BERT/BiRNN that incorporate semanti-
cally important embeddings for improved inter-
pretability, and HARE, which leverages LLM-
extracted rationales with attention mechanisms to
enhance explanation plausibility and faithfulness.
Our model significantly outperforms existing
baselines in both predictive accuracy and explain-
ability. The token-level F1 score improvement of
over 7% indicates stronger alignment with human-
annotated rationales. Similarly, the comprehensive-
ness score demonstrates that removing highlighted
tokens from input text greatly affects model confi-
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dence, indicating faithful rationale extraction. The
multi-channel attention mechanism, when trained
with supervision, helps the model focus on diverse
contextual patterns, while the LLLM encoder cap-
tures rich semantic structure in the input.

Our model surpasses all baseline models on the
HateXplain benchmark, achieving an accuracy of
87.3%, AUROC of 0.881, token-level F1 of 0.553,
IOU-F1 of 0.261, AUPRC of 0.874, and a compre-
hensiveness score of 0.524, highlighting its effec-
tiveness in both accurate classification and inter-
pretable rationale generation. We also visualized at-
tention heatmaps and found that LLM-BiMACNet
consistently highlights semantically relevant tokens
such as slurs, targeted identities, and abusive verbs,
which aligns well with human reasoning.

6.4 Interpretability Evaluation

To assess the faithfulness and conciseness of model
explanations, we evaluate LLM-BiMACNet using
post-hoc interpretability frameworks—SHAP and
LIME—as well as intrinsic explanation metrics
such as fidelity and sparsity. These help validate
that the rationale alignment is not only plausible
but also logically consistent with model behavior.

Tables 1 and 2 present the classification and ex-
planation performance of LLM-BiMACNet com-
pared to existing models on the HateXplain bench-
mark. LLM-BiMACNet achieves the highest accu-
racy, AUROC, and token-level F1, while also out-
performing baselines in SHAP (0.603) and LIME
(0.581) alignment, indicating strong agreement
with post-hoc explanation tools. It also shows the
highest fidelity (0.752), demonstrating that its ex-
planations reflect essential decision-driving tokens,
and the lowest sparsity (0.366), ensuring concise
and interpretable rationale outputs suitable for real-
world use. Table 3 shows that each component
cannot match the full LLM-BiMACNet. LLM-
BiMACNet, while effective, has a few limitations.
Its performance drops under domain shift, partic-
ularly on non-social media platforms like forums
or blogs with different linguistic structures. The
model’s reliance on human-annotated rationales
means that inconsistent or sparse annotations can
reduce effectiveness. Moreover, the computational
overhead of multi-channel attention is over.

To evaluate the robustness of our proposed LLM-
BIMACNET, we conducted domain generalization
experiments by training on HateXplain (Mathew
et al., 2021) and testing in a zero-shot setting on



Table 1: Performance comparison of LLM-BiMACNet with baseline models on the HateXplain test set.

S.No  Model Accuracy AUROC Token-F1 = Comprehensiveness

1 XGBoost + SHAP 79.0% - 0.420 -
(Babaeianjelodar et al.,
2022)

2 CNN-GRU (Bock et al., 62.8% - - -
2024)

3 BiRNN-HateXplain 61.2% - 0.330 0.200
(Mathew et al., 2021)

4 BERT-HateXplain (Mathew 69.8% - 0.400 0.250
etal., 2021)

5 XG-HSI-BiRNN  (Bock 74.2% - 0.487 -
et al., 2024; Wasi, 2024)

6 XG-HSI-BERT (Wasi, 79.1% - 0.497 -
2024)

7 HARE (Yang et al., 2023) 84.5% 0.860 0.510 0.240

8 LLM-BiMACNet 87.3% 0.881 0.553 0.261

Table 2: Evaluation of model explanation quality.

S.No Model SHAP Score  LIME Score Fidelity Sparsity

1 BERT-HateXplain 0.671 0.431
(Mathew et al., 2021)

2 BiRNN-HateXplain
(Mathew et al., 2021)

3 HARE (Yang et al,
2023)

LLM-BiMACNet

0.562 0.537

0.543 0.501 0.649 0.460

0.580 0.554 0.710 0.395

0.603 0.581 0.752 0.366

Table 3: Ablation results of proposed model.

Model Variant F1- Rationale
Score Alignment (%)

LLM-BiMACNet 92.4 87.6

BiGRU 87.8 859

Multi-Head Attention 89.5 84.2

Rationale Supervision 88.3 75.1

Table 4: Domain generalization results of LLM-
BIMACNET.

Recall

0.83
0.77
0.80

F1

0.83
0.78
0.80

Dataset / Setting Accuracy  Precision

0.83
0.79
0.81
0.80
0.86

0.79
0.86

0.79
0.86

Stormfront (Bala Das et al., 2023) and Davidson
Twitter (Davidson et al., 2017) (Table 4).

7 Conclusion and Future Work

This paper presents LLM-BiMACNet, a large lan-
guage model-based bidirectional multi-channel at-
tention classification network, designed to detect
hate speech while simultaneously identifying the
contextual words that influence model predictions.

57

By incorporating supervised rationale alignment
and multi-head attention over contextual embed-
dings, the model effectively highlights semanti-
cally significant tokens, offering faithful and con-
cise explanations. Experimental results on the
HateXplain dataset demonstrate that our model
outperforms existing state-of-the-art approaches
in both classification accuracy and interpretabil-
ity metrics, including token-level F1, SHAP/LIME
agreement, fidelity, and sparsity. The model not
only provides accurate hate speech categorization
but also reveals interpretable evidence supporting
each decision, making it suitable for sensitive appli-
cations such as content moderation, auditing, and
sociolinguistic research. Future work includes ex-
tending the model for multilingual hate speech with
cross-lingual rationale supervision, optimizing it
for low-resource deployment, adapting it to out-of-
domain texts, and improving explanation quality
using prompt-based LLMs or counterfactual rea-
soning.
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