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Abstract
Transformer models dominate modern NLP,
but efficient, language-specific models remain
scarce. In Portuguese, most focus on scale or
accuracy, often neglecting training and deploy-
ment efficiency. In the present work, we intro-
duce PortBERT, a family of RoBERTa-based
language models for Portuguese, designed to
balance performance and efficiency. Trained
from scratch on over 450 GB of deduplicated
and filtered mC4 and OSCAR23 from Cul-
turaX using fairseq, PortBERT leverages byte-
level BPE tokenization and stable pre-training
routines across both GPU and TPU proces-
sors. We release two variants, PortBERTbase
and PortBERTlarge, and evaluate them on Ex-
traGLUE, a suite of translated GLUE and Su-
perGLUE tasks. Both models perform compet-
itively, matching or surpassing existing mono-
lingual and multilingual models. Beyond ac-
curacy, we report training and inference times
as well as fine-tuning throughput, providing
practical insights into model efficiency. Port-
BERT thus complements prior work by address-
ing the underexplored dimension of compute-
performance tradeoffs in Portuguese NLP. We
release all models on Huggingface and provide
fairseq checkpoints to support further research
and applications.

1 Introduction

The development of neural language models
has profoundly shaped natural language process-
ing (NLP), particularly through the advent of
transformer-based architectures such as BERT (De-
vlin et al., 2019) and its optimized variant
RoBERTa (Liu et al., 2019). These models, which
learn contextualized word representations via self-
supervised pretraining, have become foundational
across a wide range of NLP tasks. While early ef-
forts prioritized English or multilingual solutions,
research has shown that language-specific pretrain-
ing on high-quality, monolingual corpora often

yields superior results for the target language (De-
lobelle et al., 2020; Scheible et al., 2024).

In Portuguese NLP, monolingual transformer
models such as BERTimbau (Souza et al., 2020)
and AlBERTina (Rodrigues et al., 2023) have
marked important milestones. More recently, mul-
tilingual alternatives like XLM-RoBERTa (Chan,
2020) and EuroBERT (Boizard et al., 2025) have
demonstrated strong cross-lingual performance
by scaling up to billions of parameters. Eu-
roBERT, in particular, follows the ”Modern BERT”
framework (Warner et al., 2024), which revisits
encoder-based models with streamlined design
and improved training efficiency. While decoder-
only models continue to dominate general-purpose
NLP, these developments show that encoder-based
masked language models (MLMs) remain competi-
tive and relevant.

However, many of these advancements come at
considerable computational cost. As NLP systems
move closer to real-world applications, ranging
from chatbots and document pipelines to tasks such
as named entity recognition, sentence classifica-
tion, or part-of-speech tagging, efficiency becomes
a central concern. Models deployed in production
must often meet strict requirements in terms of
latency, memory usage, and energy consumption.
Prior work has shown that compact transformer
models can offer significant speed-ups with mini-
mal impact on performance (Sanh et al., 2020; Jiao
et al., 2020). Yet, most Portuguese models focus
primarily on accuracy, offering limited insight into
training efficiency, hardware utilization, or deploy-
ment tradeoffs.

To address this gap, we introduce PortBERT, a
family of RoBERTa-based encoder models tailored
for Portuguese. PortBERT is trained from scratch
on over 450 GB of deduplicated text from Cul-
turaX (Nguyen et al., 2023), combining data from
mC4 (Xue et al., 2021) and OSCAR23 (Jansen
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et al., 2022). Following Scheible et al. (2024), we
construct a byte-level BPE vocabulary with 52k to-
kens using Hugging Face’s tokenizer tools, which
helps improve token efficiency and compression,
an effect observed in prior work on Dutch and Ger-
man (Delobelle et al., 2020; Scheible et al., 2024).

Pretraining is performed using the fairseq frame-
work: the base variant is trained on 8 NVIDIA A40
GPUs, and the large variant on a TPUv4-128 pod.
PortBERT retains the standard RoBERTa architec-
ture without architectural modifications like sparse
attention or extended context. Instead, it empha-
sizes a balanced design that prioritizes pretraining
efficiency, inference throughput, and downstream
accuracy. While not designed to match the scale
of models like EuroBERT (Boizard et al., 2025) or
decoder-based LLMs, PortBERT offers a robust, re-
producible, and accessible alternative for practical
Portuguese NLP.

The main contributions of this study are:

• We provide two variants, PortBERTbase and
PortBERTlarge, trained respectively on GPUs
and a TPUv4 pod, and release both models
under an open-source license.

• We evaluate PortBERT on the ExtraGLUE
benchmark, showing that both models per-
form competitively.

• We report training time for both pretrain-
ing and downstream fine-tuning, and include
throughput metrics for fine-tuning to support
transparent evaluation of efficiency.

2 Related works

In recent years, a growing number of transformer-
based language models have been developed for
Portuguese. These include both monolingual mod-
els trained specifically on Portuguese corpora and
multilingual models that support a wide range of
languages. Table 1 summarizes these models, their
architectures, and training data sources.

BERTimbau (Souza et al., 2020) was one of
the first monolingual BERT-style models for Por-
tuguese, available in base and large versions. It
was trained on a mix of BrWaC (Wagner Filho
et al., 2018), Portuguese Wikipedia, and a news
corpus using whole-word masking (WWM) over
one million steps.

AiBERTa1 (Miquelina et al., 2022; Santos et al.,
1https://huggingface.co/AiBERTa/

aiberta-d-2000M-random

2025a) follows a RoBERTa-style architecture and
is trained on a curated subset of Portuguese periodi-
cal websites archived in Arquivo.pt, a national
web archive. These periodicals range from national
newspapers like Público to smaller regional outlets,
providing well-written and structurally consistent
Portuguese text.

AlBERTina (Rodrigues et al., 2023) adopts the
ALBERT architecture (Lan et al., 2020), introduc-
ing parameter-sharing and embedding factorization.
The models were trained on the January 2023 ver-
sion of OSCAR, as well as DCEP, Europarl, and
ParlamentoPT. Separate variants exist for Brazilian
and European Portuguese.

RoBERTa PT (Santos et al., 2021) was trained
on 10 million English and 10 million Portuguese
sentences from the OSCAR corpus. Despite its
bilingual setup and relatively small training corpus,
the model is widely cited and has been evaluated
in various Portuguese NLP tasks.

RoBERTaCrawlPT and RoBERTaLexPT (Gar-
cia et al., 2024) are both RoBERTa-based mod-
els developed for Portuguese. RoBERTaCrawlPT
uses CrawlPT, a combined corpus comprising
BrWaC, CC100-PT, and OSCAR23-PT. RoBER-
TaLexPT targets legal-domain applications and
adds LegalPT, a corpus aggregating diverse legal
documents totaling up to 125 GiB.

Among multilingual models, XLM-
RoBERTa (Chan, 2020) can be used for Portuguese
tasks. It is trained on 2.5 TB of filtered Common
Crawl data in over 100 languages, including
Portuguese.

EuroBERT (Boizard et al., 2025) is a more re-
cent multilingual encoder model that spans 15 Eu-
ropean languages, including Portuguese. It fol-
lows the Modern BERT architecture (Warner et al.,
2024), with design choices optimized for scalabil-
ity and efficiency. Its training data includes Cul-
turaX (Nguyen et al., 2023), FineWeb (Penedo
et al., 2024), EuroLLM (Martins et al., 2024),
and code-related corpora such as The Stack
v2 (Lozhkov et al., 2024) and Proof-Pile-2 (Azer-
bayev et al., 2024).

While many Portuguese models report strong
downstream performance, few document training
efficiency or hardware usage. PortBERT comple-
ments this work by offering initial insights into
these often underreported aspects.

https://huggingface.co/AiBERTa/aiberta-d-2000M-random
https://huggingface.co/AiBERTa/aiberta-d-2000M-random
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Model Architecture Language(s) Training Data Sources

BERTimbau BERT 1 BrWaC, Wikipedia, news corpora
AiBERTa RoBERTa 1 Arquivo.pt (Portuguese periodicals)
AlBERTina PTPT/PTBR ALBERT 1 OSCAR 23, DCEP, Europarl, ParlamentoPT
RoBERTa PT RoBERTa 2 OSCAR (10M sentences each language)
RoBERTaCrawlPTbase RoBERTa 1 CrawlPT (brWaC, CC100-PT, OSCAR23-PT)
RoBERTaLexPTbase RoBERTa 1 CrawlPT, LegalPT (aggregated legal corpus)
XLM-RoBERTa RoBERTa 100+ CommonCrawl (2.5TB, filtered)

EuroBERT Modern BERT 15
CulturaX, FineWeb, EuroLLM, The Stack v2,
Proof-Pile-2

Table 1: Overview of transformer-based language models relevant to Portuguese. The table lists architecture type,
language coverage, and training data sources.

3 Methods

3.1 Corpus

To pre-train PortBERT, we used the Portuguese por-
tions of mC4 and OSCAR23 (Jansen et al., 2022),
two large-scale web corpora. The original size
of Portuguese mC4 was approximately 453.1 GB,
and OSCAR23 contributed 96.9 GB, totaling 550
GB of raw data. To reduce redundancy and im-
prove quality, we relied on the deduplicated and
filtered versions provided by CulturaX (Nguyen
et al., 2023), which together amount to 456.6 GB,
a size reduction of roughly 17% (93.4 GB). This
large and diverse dataset ensures broad linguistic
coverage with reduced duplication and noise com-
pared to raw crawled corpora. CulturaX applied
language identification, quality filtering, and dedu-
plication to produce these cleaned subsets.

3.2 Pre-processing

RoBERTa employs the byte pair encoding (BPE) to-
kenizer originally introduced with GPT-2 (Radford
et al., 2019), which processes raw text directly with-
out requiring pre-tokenization or language-specific
tools like Moses (Koehn et al., 2007). While this
tokenizer was trained on English corpora, we fol-
lowed the approach taken for GottBERT (Scheible
et al., 2024) by training a dedicated Portuguese
tokenizer. Using 40 GB of randomly sampled Por-
tuguese corpus data, we created a 52k-token vo-
cabulary optimized for the language. Although
we did not explicitly measure the impact on file
size or task performance for PortBERT, similar
adaptations in Dutch (Delobelle et al., 2020) and
German (Scheible et al., 2024) have demonstrated
benefits in both respects. In our experience, a 40
GB sample is sufficient for the subword distribu-

tion to converge, and extending vocabulary training
to the full corpus would add considerable overhead
with little expected benefit.

3.3 Pre-training

Similar to GottBERT, we pre-trained the
PortBERTbase and PortBERTlarge models using the
Fairseq framework. PortBERTlarge was trained
on a 128-core TPUv4 pod (Jouppi et al., 2023),
while PortBERTbase was trained on a cluster of
8 NVIDIA A40 GPUs, using the same training
corpus and identical optimization hyperparameters.
Mixed-precision training (fp16) was disabled
for the GPU setup and not supported by the
TPU implementation used, ensuring that both
models were trained entirely in full precision
(fp32). This controlled setup enables a direct
comparison of hardware-level training efficiency
across compute architectures, without numerical
precision optimizations acting as confounding
factors. Both models were trained on Portuguese
OSCAR data using the RoBERTa architecture.
The PortBERTbase model completed training in
approximately 27 days (2,331,939 seconds), while
PortBERTlarge required around 6.2 days (531,807
seconds). We used the standard RoBERTa pretrain-
ing schedule with 100k update steps, a batch size
of 8k, a 10k-step warmup, and polynomial learning
rate decay. The base model used a peak learning
rate of 0.0004, and the large model 0.00015. As
with GottBERT, we evaluated after each epoch and
stored checkpoints throughout training. However,
since the dataset size only permitted approximately
four epochs, the final checkpoint coincided with
the best-performing one.
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3.4 Downstream Tasks

Based on the pre-trained BERT models, we fine-
tuned several downstream tasks using the training
scripts provided by Huggingface (Wolf et al., 2019).
Hyperparameter optimization was performed via
grid search, focusing on batch size and learning
rate. Each task was trained for a maximum of 10
epochs, and the experiments were orchestrated us-
ing NNI (Microsoft, 2025) on NVIDIA A40 GPUs.

To assess model performance, each downstream
task was fine-tuned 28 times using different com-
binations of batch sizes and learning rates. Since
no separate test set was available, we selected the
best-performing checkpoint based on validation set
scores. The final performance figures reported for
each model and task reflect the best result among
these 28 validation-based runs. For comparison,
we benchmarked our models against eleven other
Portuguese language models.

We evaluated the models on ExtraGLUE (Santos
et al., 2025b), a Portuguese adaptation of the GLUE
benchmark. This suite consists of selected tasks
from GLUE and SuperGLUE that were automati-
cally translated into Portuguese, enabling language-
specific assessment and ensuring that model perfor-
mance reflects capabilities in the target language
context.

To account for varying input lengths across
tasks, we configured the maximum input sequence
length individually per task based on the maximum
observed input lengths after tokenization across
all evaluated models: 192 tokens for MRPC and
WNLI, 320 tokens for STS-B, and 512 tokens for
RTE. This ensured full coverage of the datasets
while avoiding unnecessary padding and memory
overhead.

STS-B The Semantic Textual Similarity Bench-
mark (STS-B) task evaluates the model’s ability
to assess the semantic similarity between two sen-
tences. Each sentence pair is assigned a similarity
score ranging from 0 (completely dissimilar) to 5
(semantically equivalent). Following standard prac-
tice, we report the mean of Pearson and Spearman
correlation coefficients between predicted and gold
scores.

RTE The Recognizing Textual Entailment (RTE)
task consists of binary classification, where the
model must determine whether a given hypothesis
logically follows from a provided premise. This
task evaluates the model’s capacity for inference

and semantic reasoning.

WNLI The Winograd Natural Language Infer-
ence (WNLI) task is a coreference resolution chal-
lenge cast as binary entailment. It requires the
model to resolve ambiguous pronouns and deter-
mine whether a hypothesis follows from a premise.
Despite its small size and challenging structure, it
is retained for completeness and consistency with
GLUE-style benchmarks.

MRPC The Microsoft Research Paraphrase Cor-
pus (MRPC) task is a binary classification problem
where the model must decide whether two sen-
tences are semantically equivalent. Evaluation is
based on both accuracy and F1 score, reflecting
the importance of both precision and recall in para-
phrase detection.

3.5 Model Configurations and Properties

The number of parameters in BERT-like mod-
els varies significantly depending on their ar-
chitecture (see Table 2). The base version of
BERT, such as BERTimbaubase, has approximately
109 million parameters, while large versions
like BERTimbaularge expand to over 334 million.
RoBERTa variants used in Portuguese NLP, such
as RoBERTaCrawlPTbase and RoBERTaLexPTbase,
feature around 125 million parameters, compa-
rable to PortBERTbase (126M). The large Port-
BERT model increases this to 357 million, posi-
tioning it close to BERTimbaularge while retaining
RoBERTa’s efficiency characteristics.

Multilingual models such as XLM-RoBERTa
are designed for cross-lingual tasks, with the base
version containing 278 million parameters and the
large version 560 million. These parameter counts
make them substantially larger than monolingual
base models, but beneficial in zero-shot or cross-
lingual scenarios (Eronen et al., 2023).

The AiBERTa and AlBERTina families offer di-
verse parameter ranges. All AiBERTa variants
(regardless of source or domain configuration)
have approximately 101 million parameters, with a
smaller vocabulary size of 20,000. The AlBERTina
models, in contrast, range from 138 million (100M
variants) to over 1.5 billion parameters for the 1.5B
variants, reflecting a significant increase in capac-
ity and vocabulary size (up to 128,100 tokens).
These models serve different use cases depending
on the required balance between compute and per-
formance.
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Finally, EuroBERT models span from 210 mil-
lion parameters in the 210M variant to over 2.1
billion in the 2.1B variant. They provide a scalable
foundation for multilingual or European-centric
tasks, emphasizing both vocabulary coverage and
model depth.

Table 2: The size of the vocabulary and the size of
the parameters are shown for the model types used in
this study. This table does not show other design dif-
ferences of the models. Values were extracted using
Huggingface’s transformers library. Models are sorted
by number of parameters.

Model Vocab Size #Params
roBERTa PT 32000 68090880
AiBERTa 20000 101401344
BERTimbaubase 29794 108923136
RoBERTaLexPTbase 50265 124645632
RoBERTaCrawlPTbase 50265 124645632
PortBERTbase 52009 125985024
AlBERTina 100M PTPT 50265 138601728
AlBERTina 100M PTBR 50265 138601728
EuroBERT 210m 128256 211766016
XLM RoBERTabase 250002 278043648
BERTimbaularge 29794 334396416
PortBERTlarge 52009 357145600
XLM RoBERTalarge 250002 559890432
EuroBERT 610m 128256 607874688

4 Results

4.1 Downstream task evaluation

Table 3 presents the downstream evaluation results
of all Portuguese language models across four Ex-
traGLUE tasks: STS-B, RTE, WNLI, and MRPC.
We report task-specific metrics: Spearman and
Pearson correlations for STS-B, accuracy for RTE
and WNLI, and both accuracy and F1 for MRPC,
alongside the average performance (AVG) across
all tasks.

Among the base-sized models,
RoBERTaLexPTbase achieves the highest overall
score with an AVG of 80.63, showing strong
results particularly in MRPC accuracy (89.46)
and F1 (92.34). Close behind is PortBERTbase,
with an AVG of 80.57, outperforming all others
in WNLI accuracy (60.56, tied with XLM-R) and
ranking second in STS-B with a Spearman score
of 87.39 and Pearson of 87.65. BERTimbaubase
shows the best performance in STS-B (88.5 mean),
but underperforms slightly in WNLI, holding it
back from overall top placement.

RoBERTaCrawlPTbase and EuroBERT 210m
also demonstrate robust overall performance, par-
ticularly in RTE and MRPC, with AVG scores

above 79.0. Meanwhile, XLM RoBERTabase shows
competitive results in WNLI (60.56) and MRPC F1
(91.32), though its STS-B score slightly lags behind
the top contenders. Legacy models like roBERTa
PT perform significantly worse, especially on se-
mantic similarity tasks, confirming the impact of
more recent training strategies and data sources.

In the large model category, XLM RoBERTalarge
emerges as the strongest overall model with an
AVG of 84.01. It leads all others in STS-B (90.14
mean) and achieves the highest RTE score (82.31),
although it underperforms in WNLI. EuroBERT
610m follows closely with an AVG of 83.44, show-
ing outstanding performance in MRPC (94.2 F1,
91.91 accuracy) and the second-best RTE result
(78.34).

PortBERTlarge achieves a solid overall score of
82.26, slightly ahead of BERTimbaularge (82.23).
While BERTimbaularge does not dominate any sin-
gle task, PortBERTlarge exhibits the highest WNLI
accuracy (61.97). BERTimbaularge stands out with
strong STS-B scores (89.5 mean) and competitive
MRPC metrics.

Overall, the results validate the effectiveness
of the PortBERT models, with both the base and
large variants frequently ranking among the top-
performing models across tasks. The base model
outperforms many existing Portuguese models on
average, while the large model achieves results
close to the best multilingual transformers. This in-
dicates their robustness and applicability to a range
of semantic and inference tasks in Portuguese.

4.2 Performance vs. Efficiency

To complement accuracy-based comparisons, we
also assess model efficiency in terms of training
and inference throughput (see Figure 1). Among
the base models, several exhibit a favorable bal-
ance between performance and efficiency. No-
tably, roBERTa PT achieves the highest train-
ing throughput (62.1 samples/sec) and inference
speed (112.7 samples/sec), but its task perfor-
mance lags significantly behind all competitors,
suggesting that efficiency alone is insufficient
without adequate pretraining quality. In con-
trast, PortBERTbase and RoBERTaCrawlPTbase
both demonstrate strong downstream performance
(AVG: 80.57 and 80.48, respectively) while main-
taining competitive training throughput around
25–26 samples/sec and inference throughput above
65 samples/sec. BERTimbaubase similarly offers
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Model STS-B (Similarity) RTE WNLI MRPC AVG
Spearman Pearson Mean Acc Acc Acc F1

BERTimbaularge 89.4 89.61 89.5 75.45 59.15 88.24 91.55 82.23
EuroBERT 610m 88.46 88.59 88.52 78.34 59.15 91.91 94.2 83.44
XLM RoBERTalarge 90.0 90.27 90.14 82.31 57.75 90.44 93.31 84.01
PortBERTlarge 88.53 88.68 88.6 72.56 61.97 89.46 92.39 82.26
AiBERTa 83.56 83.73 83.65 64.98 56.34 82.11 86.99 76.29
AlBERTina 100M PTBR 85.97 85.99 85.98 68.59 56.34 85.78 89.82 78.75
AlBERTina 100M PTPT 86.52 86.51 86.52 70.04 56.34 85.05 89.57 79.01
BERTimbaubase 88.39 88.6 88.5 70.4 56.34 87.25 90.97 80.32
EuroBERT 210m 86.54 86.62 86.58 65.7 57.75 87.25 91.0 79.14
RoBERTaCrawlPTbase 87.34 87.45 87.39 72.56 56.34 87.99 91.2 80.48
RoBERTaLexPTbase 86.68 86.86 86.77 69.31 59.15 89.46 92.34 80.63
XLM RoBERTabase 85.75 86.09 85.92 68.23 60.56 87.75 91.32 79.95
PortBERTbase 87.39 87.65 87.52 68.95 60.56 87.75 91.13 80.57
roBERTa PT 48.06 48.51 48.29 56.68 59.15 72.06 81.79 61.04

Table 3: Evaluation results in %. STSB is reported with Spearman, Pearson, and their mean. RTE and WNLI are
classification accuracy. MRPC includes accuracy and F1. The AVG score averages the six metrics: STSB Spearman,
STSB Pearson, RTE Acc, WNLI Acc, MRPC Acc, MRPC F1. Bold = best, underlined = second-best per model size.
Based on best epoch from 28 runs for max 10 epochs. The AVG score is computed as the unweighted mean across
six metrics: STS-B Spearman, STS-B Pearson, RTE accuracy, WNLI accuracy, MRPC accuracy, and MRPC F1.

a good trade-off with strong performance (AVG:
80.32) and respectable throughput, making these
three the most efficient base models when balanc-
ing quality and compute.

The large models generally exhibit higher down-
stream performance but at a considerable compu-
tational cost. XLM RoBERTalarge leads in task
performance (AVG: 84.01) and inference through-
put (47.4 samples/sec) compared to its large-model
peers. However, its training throughput is relatively
low (14.9 samples/sec), indicating longer training
durations. PortBERTlarge achieves an attractive
efficiency-performance trade-off, with an AVG of
82.26 while maintaining higher training and infer-
ence throughput (23.3 and 70.7 samples/sec, re-
spectively), positioning it as the most throughput-
efficient large model while still achieving compet-
itive accuracy. Meanwhile, EuroBERT-610M de-
livers strong performance (AVG: 83.44) but with
lower throughput metrics, reflecting its high compu-
tational demands. These results suggest that while
large models provide superior accuracy, the effi-
ciency gap between well-optimized base and large
models like PortBERT is narrowing. Full runtime
statistics are reported in Appendix C.

5 Discussion

5.1 Efficiency and Accuracy Trade-offs

PortBERT demonstrates that efficient, monolin-
gual transformer models remain a valuable asset in
the evolving landscape of Portuguese NLP. While
large multilingual encoders like XLM-RoBERTa
or EuroBERT-610M offer strong performance,
their high computational demands restrict practi-
cal deployment, particularly in latency-sensitive
or resource-constrained settings. In contrast, Port-
BERT delivers competitive downstream task re-
sults while maintaining generally higher through-
put compared to other strong Portuguese baselines,
both during training and inference.

As shown in our efficiency analysis (Section 4.2),
PortBERTbase stands out for its balanced trade-off
between accuracy and efficiency, ranking among
the top performers in its class. PortBERTlarge nar-
rows the performance gap to state-of-the-art models
like XLM RoBERTalarge, while maintaining supe-
rior throughput and lower hardware demands. Our
focus with PortBERT was on cost-efficient pretrain-
ing for Portuguese specifically, where zero-shot
transfer is not required. In this sense, PortBERT
complements large multilingual encoders such as
XLM-RoBERTa by offering a more efficient option
for monolingual applications.
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Figure 1: Performance–throughput trade-off across models. The top plot shows the relationship between average
downstream score (AVG) and training throughput (samples/sec), while the bottom plot presents the same metric
against inference throughput. This comparison highlights which models offer the best balance between effectiveness
and computational efficiency during training and inference.

The performance differences between PortBERT
and large multilingual encoders such as XLM-
RoBERTalarge are not solely attributable to the
amount of training data. They also reflect architec-
tural and training differences, including the substan-

tially larger parameter count of XLM-RoBERTa
(560M vs. 357M for PortBERTlarge), its much
larger multilingual vocabulary (250k vs. 52k to-
kens), and the use of a massive multilingual corpus
(2.5TB multilingual vs. 456GB of Portuguese).
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In addition to hardware throughput, Port-
BERT models also demonstrate strong parame-
ter efficiency. PortBERTbase (126M parameters)
achieves higher average performance than larger
models such as XLM-RoBERTabase (278M) and
EuroBERT-210M (212M), despite having less than
half their parameter count. PortBERTlarge (357M)
achieves results close to XLM-RoBERTalarge
(560M) and EuroBERT-610M (608M), highlight-
ing the impact of targeted, monolingual pretraining
on recent Portuguese corpora. This makes Port-
BERT a compelling choice in scenarios where both
accuracy and model size matter.

5.2 Training Setup and Hardware
Comparisons

Beyond per-job throughput, the total pretraining
time differed substantially between hardware se-
tups. PortBERTbase, trained on 8 NVIDIA A40
GPUs, required approximately 27 days to com-
plete 100k update steps. In contrast, PortBERTlarge,
trained on a TPUv4 128 pod, completed training in
just over 6 days. Both models used the same batch
size, corpus, and optimizer settings in full precision
(fp32), allowing for a clean comparison of train-
ing performance across hardware platforms. Using
GottBERT’s pretraining durations as a reference,
we estimate that PortBERTbase would have taken
around 1.3 days to train on comparable TPU infras-
tructure. This illustrates the advantage of modern
TPUs for large-scale training, particularly when
time is a critical factor. However, TPU-specific
constraints, including limited memory flexibility
and less mature tooling for PyTorch and custom
workflows, can limit development. In addition, the
lack of local TPU hardware forces developers to
rely on cloud platforms, slowing iteration and com-
plicating debugging.

Efficiency comparisons must also consider hard-
ware configuration. Due to memory constraints,
EuroBERT-610M and partly XLM RoBERTalarge
were trained without parallel jobs (i.e., one job per
GPU), whereas PortBERT and other models used
multiple parallel training jobs per GPU to maxi-
mize utilization. This difference in hardware allo-
cation might have impacted the observed through-
put and training durations, potentially skewing effi-
ciency comparisons in this regard.

5.3 Positioning Among Existing Models
Recent large-scale efforts such as Eu-
roBERT (Boizard et al., 2025) illustrate the

scale-performance frontier in multilingual
modeling. EuroBERT training consumed over
200,000 GPU hours across MI250X and MI300A
clusters and leveraged cutting-edge optimization
techniques such as FlashAttention (Dao, 2023).
While such models raise the performance ceiling,
they also require infrastructure that is out of reach
for many academic or industry teams. In contrast,
PortBERT was trained on commodity hardware
using open-source tools, offering a transparent and
efficient alternative that lowers the entry barrier for
building high-quality models in any languages.

To our knowledge, PortBERT is the first
RoBERTa-style Portuguese model trained on recent
deduplicated and filtered corpora from CulturaX
(mC4) and OSCAR23, using a fully transparent and
reproducible fairseq pipeline. This positions it as
a strong alternative to more resource-intensive sys-
tems, particularly for researchers and practitioners
seeking open, efficient solutions.

Although decoder-only models such as GPT vari-
ants dominate general-purpose NLP, they are often
unsuitable for sentence-level classification tasks
due to their autoregressive nature. Encoder-based
models like PortBERT offer lower inference la-
tency and better fit for downstream classification,
especially under real-world constraints.

5.4 Architectural Constraints and Training
Stability

We deliberately retained the standard RoBERTa
encoder architecture. Our goal was not only to es-
tablish a strong monolingual baseline, but also to
enable a fair comparison of computational costs
with GottBERT, which was trained on a compa-
rable TPU setup. Introducing architectural modi-
fications such as sparse or FlashAttention would
have shifted the baseline and made this comparison
meaningless.

Like GeistBERT (Scheible-Schmitt and Frei,
2025), PortBERT prioritizes practical usability over
raw scale. Although it does not achieve top perfor-
mance on every benchmark, it remains consistently
strong across tasks, making it a compelling op-
tion in the accuracy-efficiency trade-off. PortBERT
could also be adapted for longer inputs using archi-
tectures such as Longformer (Beltagy et al., 2020)
or Nyströmformer (Xiong et al., 2021), though at
the cost of increased training complexity.

During pretraining, we did not apply WWM,
as stable support for it was missing in the fairseq
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TPU implementation. As with GottBERT, we en-
countered TPU-specific constraints: the lack of
dynamic memory allocation required processing
the corpus as a continuous token stream, deviating
from RoBERTa’s dynamic sentence-sampling strat-
egy. We were also constrained to 32-bit precision
due to unstable 16-bit support in fairseq’s TPU im-
plementation, increasing memory use and runtime.
To ensure stability under these conditions, we used
conservative learning rates. For comparability, we
deliberately applied the same pre-processing and
training constraints to the GPU-based base model,
even though the GPU setup would have supported
dynamic sampling and mixed precision.

5.5 Final Remarks

Ultimately, PortBERT is a step toward sustainable
and accessible language modeling for Portuguese.
It illustrates that thoughtful model design, com-
bined with optimized pretraining and recent cor-
pora, can yield strong models without relying on
large-scale infrastructure. Future work may explore
quantized or distilled versions for mobile deploy-
ment and domain-specific continued pretraining to
further expand applicability or even continue pre-
training with a more diverse corpus using WWM
similar to Scheible-Schmitt and Frei (2025).

6 Conclusion

We presented PortBERT, a family of RoBERTa-
based language models for Portuguese, pre-trained
on recent large-scale corpora (mC4 and OS-
CAR23). While not state-of-the-art on all bench-
marks, PortBERT models achieve strong down-
stream performance and demonstrate notable ef-
ficiency in training and inference. To support re-
producibility and downstream adoption, we release
both Huggingface-compatible models and fairseq
checkpoints. These resources enable further pre-
training, fine-tuning, or adaptation for longer con-
texts and domain-specific tasks. PortBERT of-
fers an efficient and accessible foundation for Por-
tuguese NLP.
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Limitations

This work has several limitations. First, although
we used deduplicated and filtered corpora from
CulturaX (mC4 and OSCAR23), we did not apply
deduplication across all possible data sources or
levels of granularity. Residual duplication or noise
may therefore remain in the training data.

Second, PortBERT was trained exclusively on
web-based Portuguese text, without explicit control
for dialectal variation (e.g., Brazilian vs. European
Portuguese) or domain-specific content. As a result,
the model’s performance on underrepresented di-
alects or specialized registers (e.g., legal, medical,
or informal language) may be suboptimal without
further fine-tuning.

Third, while we aimed for stable and repro-
ducible training configurations across both GPU
and TPU platforms, we opted for conservative
learning rates and default precision settings to en-
sure stability, particularly on TPUs where dynamic
memory allocation and mixed precision remain lim-
ited in fairseq. We did not explore extensive hyper-
parameter tuning in regard of the peak learning rate
and did not apply WWM, which could potentially
yield further gains.

Fourth, we did not include a detailed error anal-
ysis of model predictions. While such an analysis
could provide additional insights into systematic
failure modes, our focus in this work was on ef-
ficiency and establishing strong baselines for Por-
tuguese NLP.

Lastly, our evaluation is focused on the Ex-
traGLUE benchmark. While this provides a useful
proxy for general NLP performance in Portuguese,
it does not capture the full range of downstream
tasks or real-world deployment settings. Moreover,
ExtraGLUE does not offer a held-out test set with
a submission server, which limits the ability to con-
duct blind evaluations and compare models in a
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standardized manner.

Ethical Considerations

As with any large-scale language model, PortBERT
is susceptible to inheriting and reproducing biases
present in its training data. While we apply dedupli-
cation techniques to reduce noise and redundancy,
deeper societal, cultural, and representational bi-
ases may persist. This is particularly relevant for
downstream applications in sensitive domains such
as healthcare, education, or public administration,
where biased outputs could reinforce inequality or
misinformation.

Training on large-scale web-based corpora also
introduces privacy concerns. Although the dataset
is filtered and preprocessed, models may inadver-
tently memorize and surface sensitive or personal
information. Careful handling is necessary when
deploying PortBERT in real-world applications,
especially those involving user data or decision-
making contexts.

Finally, despite efforts to balance performance
and efficiency, pretraining transformer models on
GPUs and TPUs consumes substantial computa-
tional resources. The associated energy usage and
environmental impact underline the importance of
developing sustainable training practices and pro-
moting model reuse.
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Duarte M. Alves, André Martins, Ayoub Hammal,
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A Parameters

The parameter space for our grid search is listed in
Table 4. In addition, Table 5 shows the parameters
of the best models (selection based on validation
set) of the respective tasks. We include these de-
tails to support reproducibility of our downstream
results.

Parameter Values
Learning Rate 7e-5, 5e-5, 2e-5,

1e-5, 7e-6, 5e-6, 1e-6
Batch Size 16, 32, 48, 64
Epochs 10

Table 4: Hyperparameters used in the grid search of the
downstream tasks.

B Perplexity

During pretraining, model perplexity was tracked
on a test set after each optimization step and on a
validation set at every checkpoint (see Figure 2).
The models exhibited a plateau in their perplexity
curves, brief for the base models, but more pro-
longed for the large ones. Some training curves
also showed temporary spikes, which may ap-
pear as divergence if not interpreted with context.
Across both models, convergence occurred gradu-
ally and stabilized by around 30k steps. In contrast,
the validation perplexity decreased steadily across
both models without showing pronounced plateaus,
stabilizing at lower values by the end of training.
This results from the limited number of validation
checkpoints (three intermediate epochs and a final
checkpoint at 100k steps), which yield a coarser
view of the learning dynamics.

Figure 2: Perplexity of the PortBERT models. Top
based on a validation at the checkpoints. Bottom based
on the validation of each optimization cycle during the
training.

C Efficiency Measurements

Tables 6 and 7 report detailed runtime statistics for
all models and tasks. Table 6 provides a task-level
breakdown of training and inference times, while
Table 7 compares model-level efficiency metrics,
including throughput and per-epoch timing. All
models were fine-tuned using Huggingface Trans-
formers (v4.52.3) on NVIDIA A40 GPUs.

Task Training Time Inference Time
MRPC 157:04 00:38
RTE 241:46 00:57
STSB 314:24 02:25
WNLI 25:30 00:08

Table 6: Computation time in hours and minutes for the
downstream tasks, summing up to 1549 hours and 29
minutes, which corresponds to approximately 64.6 days
of GPU usage.
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Model STS-B RTE WNLI MRPC

BS LR BS LR BS LR BS LR
EuroBERT 210m 16 7 E-06 64 2 E-05 32 2 E-05 32 7 E-06
XLM RoBERTalarge 64 2 E-05 32 1 E-05 16 7 E-05 64 2 E-05
AlBERTina 100M PTPT 64 7 E-05 32 2 E-05 16 2 E-05 48 5 E-05
AlBERTina 100M PTBR 64 5 E-05 16 1 E-05 32 1 E-06 48 7 E-05
AiBERTa 32 2 E-05 32 1 E-05 32 7 E-05 32 5 E-05
EuroBERT 610m 16 1 E-05 16 7 E-06 32 1 E-05 16 5 E-06
XLM RoBERTabase 16 1 E-05 32 2 E-05 64 2 E-05 16 2 E-05
roBERTa PT 32 7 E-05 32 1 E-05 48 5 E-06 32 7 E-05
RoBERTaCrawlPTbase 48 7 E-05 64 7 E-05 48 1 E-06 48 7 E-05
BERTimbaularge 32 2 E-05 16 7 E-05 32 7 E-06 16 5 E-05
BERTimbaubase 48 5 E-05 16 1 E-05 48 7 E-05 32 7 E-05
PortBERTbase 48 7 E-05 16 1 E-05 16 1 E-06 64 1 E-05
RoBERTaLexPTbase 48 5 E-05 48 5 E-05 32 7 E-06 64 2 E-05
PortBERTlarge 16 2 E-05 16 7 E-06 32 7 E-06 16 7 E-06

Table 5: Hyperparameters of the best downstream task models for each task and pre-trained model. BS refers to
batch size, and LR denotes the learning rate.

Model Train Time (s) Train/s Time/Epoch (s) Eval Time (s) Eval/s

AiBERTa2000M 1306.47 29.68 142.39 7.24 71.56
AlBERTinaPTBR 2906.82 15.44 309.08 15.85 38.92
AlBERTinaPTPT 2800.95 17.68 300.35 17.54 37.22
BERTimbaubase 1499.94 25.12 152.88 9.15 62.63
BERTimbaularge 4406.49 8.32 484.90 21.44 24.73
EuroBERT210M 1777.84 20.01 181.90 6.60 75.40
EuroBERT610M 2498.58 15.58 254.26 12.80 52.52
RoBERTaCrawlPTbase 1682.64 25.51 171.76 9.15 66.28
RoBERTaLexPTbase 1457.99 27.86 149.42 8.84 67.58
XLM-RoBERTabase 1440.55 24.97 152.49 4.86 101.59
XLM-RoBERTalarge 2139.34 14.85 233.65 10.46 47.44
PortBERTbase 1524.59 25.00 160.29 8.96 65.79
PortBERTlarge 2389.63 23.26 264.74 15.09 70.71
roBERTa PT 635.46 62.11 79.02 4.82 112.71

Table 7: Training and inference efficiency of all evaluated models. Metrics include total training time, training
samples per second, average time per epoch, total evaluation time, and evaluation throughput.


