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Abstract 

This study investigates the influence of 

human-annotated translation quality on the 

performance of machine translation (MT) 

models for a low-resource language pair—

English to Slovak. We collected and 

categorized 287 student translations from a 

national competition, annotated by expert 

translators into three quality levels. Using 

the mT5-large model, we trained six neural 

MT models: three on the full dataset 

without validation splitting, and three using 

training/validation splits. The models were 

evaluated using a suite of automatic metrics 

(BLEU, METEOR, chrF, COMET, 

BLEURT, and TER), with TER serving as 

the validity criterion. Statistical analyses 

revealed that data quality had no significant 

effect when training without validation, but 

did have a significant impact under fine-

tuning conditions (p < 0.05). Our results 

suggest that fine-tuning with combination 

with validation splitting increases the 

model's sensitivity to the quality of training 

data. While the overall effect size is 

modest, the findings underscore the 

importance of high-quality, annotated 

corpora and modern training strategies for 

improving MT in low-resource languages. 

1 Introduction 

Machine translation (MT) refers to the use of 
algorithms and machine learning models to 
translate texts from one natural language into 
another (Keary, 2023). Modern MT systems 
increasingly rely on artificial neural networks, 
which can autonomously learn to perform 
translation with high accuracy - often achieving 
levels of accuracy comparable to those of human 
translators (Young, 2024). Building a high-quality 
MT model typically requires access to large 

volumes of training data. Although neural 
approaches have reached state-of-the-art 
performance in MT, they suffer from the high cost 
of acquiring large-scale parallel corpora (Wang et 
al., 2021).  

A neural MT model θ translates a source sentence 
x into a target sentence y. Using a parallel training 
corpus C, the model θ is trained by minimizing the 
negative log-likelihood loss. The encoder-decoder 
structure (based on recurrent neural networks, 
convolutional neural networks or transformer) is 
commonly employed in neural MT, where the 
encoder transforms the source sentence into a 
sequence of hidden representations and the 
decoder generates target words based on these 
representations and the previously generated target 
words (Wang et al., 2021). For high-resource 
language pairs such as English-French, data 
availability is less problematic, as substantial 
parallel corpora have been compiled over time. 
However, the requirement for large amounts of 
parallel data is often unrealistic for many of the 
7000+ languages spoken worldwide, which 
presents a major challenge for low-resource 
languages (Ranathunga et al., 2023). The low-
resource problem may stem either from a language 
itself is low-resourced (underrepresented) or from 
specific domains lack sufficient data (Hedderich et 
al., 2021). 

In the case of the Slovak language, the limited 
availability of text data categorizes it as a low-
resource language (Do et al., 2014). Such 
languages are underrepresented in digital spaces 
compared to high-resource languages, making it 
difficult for speakers to use the advaced 
technologies in their daily lives - including 
effective neural MT systems (Tonja et al., 2023). 
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The aim of this study is to investigate how both 
the quality of parallel texts (fair, good, and 
excellent translations) and the distribution of the 
dataset (corpus) influence MT system 
performance, specifically the quality of neural MT 
output as measured by automatic evaluation 
metrics.  

The structure of this study is as follows: Section 
1 introduces the research problem, motivation, and 
contributions. Section 2 reviews related work on 
data quality in MT and prior studies on evaluation 
metrics. Section 3 describes the dataset, 
tokenization process, model setup, and evaluation 
metrics. Section 4 presents the experimental 
results, including statistical analyses of models 
trained on both the full dataset and split dataset. 
Section 6 concludes the study and outlines 
directions for future work. 

2 Related work 

A recent case study demonstrated that carefully 
targeted data collection can significantly improve 
MT performance in a low-resource language pair 
(Hasan et al. 2020). Data is arguably the most 
critical factor in modeling (developing) translation 
systems (Haddow et al., 2022). When applying 
data-driven MT to a specific language pair, the 
initial step involves assessing available data 
resources and identifying effective strategies for 
collecting additional data. In the context of low-
resource MT, Haddow et al. (2022) classify 
research approaches into four main categories: 
searching existing data sources, web-crawling for 
parallel data, data creation, and test data 
development. In our research, we focus on creating 
a new parallel dataset comprising student 
translations from English into Slovak. 

Several researchers have explored the use of 
multiple references in MT. Wu et al. (2024) 
measured semantic similarity among reference 
translations and categorized them into different 
training subsets based on their degree of variation. 
They fine-tuned two pre-trained large language 
models - LLAMA-2-7B and mT5-large - using 
datasets containing multiple references. Their 
results showed that using source texts with 
semantic similarity scores between 0.45 and 1.0 led 
to better performance than unfiltered datasets. 
Similarly, Zouhar et al. (2021) investigated how 
the quality and quantity of reference translations 
affect the reliability of automatic MT evaluation 
metrics. They found that low-quality or overly 
diverse references may distort metric scores, 
whereas carefully selected multiple references 

enhance evaluation robustness. Our study builds on 
these findings by combining both perspectives: we 
employ multiple reference translations per source 
sentence while accounting for diversity in human-
annotated translation quality. Unlike prior studies 
that primarily focused on semantic variation, we 
examine how quantity and quality of human-
annotated translations influences MT model 
training and quality of MT outputs.  

3 Methodology 

3.1 Data collection and pre-processing 

The texts used in this study were obtained from the 
Young Translator public competition, which is 
open to high school students interested in 
translation. A total of 287 student translations were 
included in this study, most of which were 
translations of literary texts. Two professional 
translators - both university lecturers in translation 
and interpreting - evaluated the translations and 
classified them into three quality categories: 1 – 
fair translation, 2 – good translation, and 3 – 
excellent translation. Since the collected 
translations were available only in printed form, 
several pre-processing steps were required before 
training.   

The following pre-processing steps were applied:  

 Optical character recognition (OCR) 
 Text editing for alignment  
 Alignment of English and Slovak texts  
 Additional text editing prior tokenization and 

training  
 Tokenization 

Optical character recognition 

Because the original documents were available 
only as scanned PDFs, it was necessary to convert 
them into machine-readable text. This was 
achieved using the Tesseract OCR library 
(Tesseract OCR, 2025). Although the student 
translations (essays) were typewritten, many 
contained handwritten annotations—often in black 
or colored ink—as part of the evaluation process. 
In cases where colored pens were used, color 
filtering was applied to improve OCR accuracy. 
After recognition, the output was stored in txt 
format for further processing.  
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Text editing for alignment 

The OCR output required extensive cleaning. 
Common issues included misrecognized 
characters, extra punctuation marks (e.g., quotation 
marks), incorrect spacing (e.g., multiple spaces), 
and line breaks not corresponding to sentence 
boundaries. All empty lines were removed to 
prevent alignment errors. Additionally, the texts 
were anonymized to remove any personally 
identifiable information. 

Alignment of English and Slovak sentences 

After cleaning, the English source texts and Slovak 
translations were aligned. Each English sentence 
corresponded to multiple Slovak translations (a 1-
to-n alignment), reflecting the multiple student 
versions. To facilitate semantic alignment, we 
employed LaBSE (Language-agnostic BERT 
Sentence Embedding), a model trained on more 
than 100 languages, including English and Slovak 
(Feng et al. 2020). A similarity threshold of 0.6 was 
applied.  

The aligned data were merged into two larger txt 
files - one for English and one for Slovak - 
structured for training purposes. Each model 
requires one text file in English and one 
corresponding text file in Slovak. Duplicate 
sentence pairs were removed, and the dataset was 
randomly shuffled. Since the number of sentence 
pairs varied across the three quality categories, the 
sets for scores 2 and 3 were downsampled to match 
the smallest set (score 1), ensuring balanced 
training data and avoiding bias in model evaluation 
(Table 1). For English and Slovak, the number of 
words was (54,827 EN | 43,354 SK) for model_1, 
(54,056 EN | 42,849 SK) for model_2, and (55,514 
EN | 42,717 SK) for model_3. Number of tokens 
was (100,841 EN | 97,284 SK) for model model_1, 
(101,698 EN | 96,707 SK) for model_2, and 
(101,802 | 96,406) for model_3. 

 Model_1 Model_2 Model_3 

Slovak 
sentences 

3130  3130 3130 

English 
sentences 

3130 3130 3130 

Table 1: Number of sentences for each model 

Tokenization 

For tokenization and training of MT models, we 
utilized the pre-trained mT5-large model. This 
model is based on the transformer architecture and 

was trained on a multilingual dataset containing 
sentences from 101 languages, including Slovak 
(Xue et al., 2020). The mT5-large model was used 
to tokenize both the English and Slovak texts in 
preparation for training. We selected this model 
because it covers the English-Slovak language pair 
and offers a balance between model capacity and 
training efficiency. 

Although the mT5 model includes Slovak in its 
pre-training data, fine-tuning on domain-specific 
datasets is still necessary to achieve optimal 
performance. In this study, we trained separate 
models for each quality category, resulting in a 
total of six models:  

1) Three models trained on the full dataset for 
each category (fair, good, and excellent 
translations). 

2) Three models trained on a split dataset for 
each category (fair, good, and excellent 
translations). 

All training was conducted on Google Colab using 
an NVIDIA A100 GPU. 

3.2 Models trained on the full dataset 

In the first experiment, we trained three models 
using the entire dataset. Each model corresponded 
to one of the three quality categories - fair, good, 
and excellent translations. 

The training parameters for these models are 
summarized in Table 2: 

Hyperparameters Values 
Per_device_train_batch_size 4 

Num_train_epochs 3 

Learning_rate 1e-4 
fp16 False 

Table 2: Hyperparameters for training  

After training, three MT models were obtained. 

Their performance was evaluated using a reference 

file containing all unique English–Slovak 
sentences, which had been excluded from the 

training data to ensure a fair and unbiased 

evaluation.  

3.3 Models with data split 

The key difference between the initial three models 
and the subsequent three lies in the data split 
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strategy. For these latter models, the dataset was 
randomly divided into 90% for training and 10% 
for validation. The 10% validation set was used to 
fine-tune the models during training. The 
hyperparameters employed for training all three 
fine-tuned models are listed in Table 3. 

Hyperparameters Value 

Per_device_train_batch_size 4 

Num_train_epochs 5 

Learning_rate 1e-4 

fp16 False 

eval_strategy steps 

eval_steps 500 

Table 3: Hyperparameters for training  

3.4 Evaluation metrics 

The trained models were evaluated using a range 

of automatic metrics: BLEU, METEOR, COMET 

chrF, TER, and BLEURT.  

BLEU (BiLingual Evaluation Understudy) is a 
precision-based metric that evaluates MT output 
by comparing n-grams in the hypothesis (MT 
output) with those in one or more reference 
translations. It does not consider word order 
beyond matching n-grams and tends to reward 
exact matches. A higher BLEU score indicates 
closer overlap with the reference and therefore 
better translation quality (Papineni et al., 2002).  

METEOR (Metric for Evaluation of Translation 
with Explicit Ordering) is a metric that aligns 
words and phrases between the hypothesis and 
reference translations using synonyms, stemming, 
and paraphrasing. It calculates scores based on 
unigram precision, recall, and F-score, which are 
combined via a weighted harmonic mean. Score 
ranges from 0 (poor translation) to 1 (perfect 
translation) (Banerjee et al. 2005).  

COMET is a neural framework that considers both 
source and reference translations. Trained on 
human judgment data, it predicts sentence-level 
quality score. This study employed several 
versions, including wmt20-comet-da, wmt21-
comet-da, wmt21-comet-qe-da and wmt22-comet-
da. Metric wmt22-comet-da integrates quality 
estimation techniques using OK/BAD tags from 
human-annotated datasets and combines multiple 
models via hyperparameter optimization to 
produce a single quality score (Rei et al. 2020, Rei 
et al. 2022). Scores typically range from 0 (poor 
quality) to 1 (high quality). 

BLEURT (Bilingual Evaluation Understudy with 
Representations from Transformers) is a 
regression-based evaluation metric built on BERT. 
Fine-tuned on human ratings of translation quality, 
it captures subtle semantic differences between 
translations. BLEURT scores generally range from 
0 to 1, though values may occasionally exceed this 
range due to the nature of the regression output 
(Sellam et al., 2020). 

chrF is a character n-gram F-score metric that 
evaluates translation quality at the character level 
rather than the word level. This approach is 
particularly effective for morphologically rich 
languages or those with flexible word order. It 
computes F-scores over character n-grams (e.g., 6-
grams), combining precision and recall into a 
single score, with higher values indicating better 
translation quality (Popović, 2015). 

TER (Translation Edit Rate) measures the number 
of edits (insertions, deletions, substitutions, and 
shifts) required to transform the hypothesis into the 
reference translation. Lower TER score indicates 
higher translation quality, as fewer edits are needed 
(Snover et al., 2006). 

4 Results 

To facilitate interpretation and comparison of MT 
model performance, the evaluation metrics were 
grouped according to their scale and underlying 
evaluation strategy. Three metric groups were 
defined: 

 Group 1 (within-group factor: Metric1*): 
Includes BLEU, METEOR, chrF, wmt22-
comet-da and wmt21-comet-qe-da. These 
metrics primarily assess surface-level or 
structural similarity between hypothesis 
and reference translations. 

 Group 2 (within-group factor: Metric2*): 
Includes BLEURT, wmt20-comet-da, and 
wmt21-comet-da. These metrics capture 
deeper semantic similarity, often 
leveraging pre-trained language 
representations and human rating data. 

 Group 3: TER, treated as a separate metric 
due to its nature as an error-based measure, 
serving as a validity criterion for the 
accuracy metrics. 

We hypothesize that statistically significant 
differences will exist among the examined metrics, 
between within-group metric (Metric1*/Metric2*) 
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and the translation quality levels of the training 
data (between-group factor: quality levels 1–3). 

TER as the only metric explicitly measuring edit 
distance/error rate, is used as a benchmark validity 
measure to evaluate the reliability and consistency 
of the other metrics. 

4.1 Models trained on full dataset 

To assess the assumption of homogeneity of 
variances across the independent variable (quality 
levels 1, 2, and 3) a nonparametric Levene’s test 
was used. The results were non-significant (Table 
4), indicating that the assumption of equal 
variances between independent groups was not 
violated. 

 MS 
Effect 

MS 
Error 

F p 

bleu 0.019 0.018 1.038 0.355 
meteor 0.004 0.013 0.323 0.724 
chrf 0.002 0.011 0.183 0.833 
wmt22-
comet-
da 

0.003 0.006 0.447 0.640 

Table 4: Levene' test for homogeneity of variances 

However, the assumption of sphericity - which 
concerns the equality of variances of the 
differences between all combinations of dependent 
metrics in Metric1 (BLEU, METEOR, chrF, and 
wmt22-comet-da) - was violated (Table 5). 

 W Chi-

Sqr. 

df p 

Metric1 0.496 396.360 5 0.0000 

Table 5: Mauchley sphericity test 

To preserve statistical power and ensure the 
validity of the analysis, adjusted univariate tests for 
repeated measures were applied. These tests 
evaluated the effects of translation quality and its 
interaction with evaluation metric (metric1 × 
quality) on translation performance (Table 6). 

 Epsilon Adj. 

df1 

Adj. df2 Adj. p 

Metric1 0.705 2.116 1199.867 0.0000 

Metric1 

x 

quality 

0.705 4.232 1199.867 0.4542 

Table 6: Adjusted (G-G) univariate tests for repeated 
measure 

Statistically significant differences (p < 0.05) were 
observed only among the evaluation metrics 
themselves (Table 6). The effect of between-group 
factor (quality level) did not have a statistically 
significant on the evaluation outcomes (p > 0.05), 
indicating that the quality categories (1, 2, and 3) 
did not significantly influence scores across the 
metrics. 

The results of the multilevel comparison (Table 7) 

further clarify the relative behavior of individual 

metrics. Specifically, a statistically significant 

difference was found between the BLEU metric 

and remaining metrics, whereas no statistically 

significant difference was observed between 

meteor and chrf metrics. Even when considering 

the quality levels (Table 7), no statistically 

significant differences were found between the 

individual quality categories (1, 2, and 3) with 

respect to the metrics included in Metric1 (BLEU, 

METEOR, chrF, and wmt22-comet-da). 

Quality Metric1 mean 1 2 3 

3 bleu 0.255  ****  

1 bleu 0.282  ****  

2 bleu 0.299  ****  

3 meteor 0.593 ****   

3 chrf 0.598 ****   

1 meteor 0.606 ****   

1 chrf 0.616 ****   

2 meteor 0.628 ****   

2 chrf 0.635 ****   

1 wmt22-

comet-
da 

0.820   **** 

3 wmt22-

comet-

da 

0.825   **** 

2 wmt22-

comet-

da 

0.837   **** 

Note: **** - p > 0.05, homogeneous group 

Table 7: Multi-stage comparison 

We applied the same analytical procedure to Group 

Metric2, taking into account deviations from the 

assumption of normality. 

Statistically significant differences were observed 

only among the evaluation metrics within-group 

Metric2 (p = 0.000). The effect of the between-

group factor (translation quality level) on 

evaluation scores was not statistically significant (p 

= 0.552), indicating that the assigned quality 



776 

 
 

categories did not influence the metric scores in 

this group. Statistically significant differences 

were found between all three metrics in this group 

(p < 0.05). When incorporating the translation 

quality factor, no significant interaction effects 

based on translation quality were observed (Table 

8). 

 

quality metric2 Mean 1 2 3 

3 

wmt21-

comet-

da 0.050 ****     

1 

wmt21-

comet-

da 0.056 ****   

2 

wmt21-

comet-

da 0.071 ****   

3 bleurt 0.096 **** ****  

1 bleurt 0.134 **** ****  

2 bleurt 0.179  ****  

3 

wmt20-

comet-

da 0.625   **** 

1 

wmt20-

comet-

da 0.638   **** 

2 

wmt20-

comet-

da 0.696     **** 
Note: **** - p > 0.05, homogeneous group 

Table 8: Multi-stage comparisons 

metric2 

MS 

Effect 

MS 

Error F p 

bleurt 0.019 0.055 0.346 0.7077 

wmt20-

comet-

da 0.053 0.110 0.487 0.6147 

wmt21-

comet-

da 0.000 0.008 0.001 0.9994 

Table 9: Levene' Test for Homogeneity of Variances 

  W 

Chi-

Sqr. df p 

metric2 0.728 179.615 2 0.0000 

Table 10: Mauchley Sphericity Test 

  Epsilon 

Adj. 

df1 

Adj. 

df2 Adj. p 

metric2 0.786 1.572 891.567 0.0000 

metric2 

x 

quality 0.786 3.145 891.567 0.5521 

Table 11: Adjusted (G-G) Univariate Tests for 
Repeated Measure 

Similar to the first group of metrics, deviations 

from normality were identified for the second 

group of metrics. Based on the results of the 

nonparametric Levene's test (Table 9), we conclude 

that the assumption of equality of variances 

between independent samples (quality: 1, 2, and 3) 

is not violated. In the case of dependent samples 

(metric2: bleurt, wmt20-comet-da, wmt21-comet-

da), the sphericity condition of the covariance 

matrix was violated (Table 10). In order not to 

reduce the power of the statistical tests, we use 

adjusted univariate tests for repeated measures 

(Table 11) to assess the quality of the translation as 

a function of the interaction of the within-group 

and between-group factors (metric2 x quality). 

Statistically significant differences were observed 

only among the metrics themselves (p < 0.05), 

while the between-group factor, translation quality, 

did not have a significant effect on evaluation 

outcomes (p > 0.05) (Table 8). A multilevel 

comparison (Table 8) indicates that the wmt21-

comet-da metric is statistically the most rigorous 

metric (p < 0.05), whereas wmt20-comet-da is 

statistically the least rigorous (p < 0.05). 

Statistically significant differences were found 

between all three metrics (p < 0.05). 

The reliability analysis of the MT assessment 

procedure indicates that the selected set of 

evaluation metrics - BLEU, METEOR, chrF, 

BLEURT, wmt22-comet-da, wmt20-comet-da, 

and wmt21-comet-da - demonstrates acceptable 

internal consistency (Cronbach’s α > 0.6), 

suggesting that the metrics collectively form a 

coherent measurement construct (Average inter-

item corr. > 0.5). 

The MT evaluation procedure explains nearly 70% 

of the variability in MT error rate (Table 12). Based 

on the validity analysis (Table 12), the procedure 

demonstrates acceptable criterion validity. The 

TER metric, which directly represents MT error 

rate, was employed as the validity criterion (Munk 

et al., 2018), confirming that the combined use of 

BLEU, METEOR, chrF, BLEURT, wmt22-comet-
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da, wmt20-comet-da, and wmt21-comet-da 

provides a valid estimation of translation accuracy. 

  Summary for scale 

Multiple R 0.830 

Multiple R2 0.689 

F(7,562) 178.169 

p 0.0000 

Table 12: Validity analysis 

4.2 Models with data split 

As with the first three models, evaluation of the 
split-data models was performed using the same 
reference file. Due to deviations from normality 
and differences in the range of the evaluated scores, 
the metrics were again divided into three groups, 
following the same grouping strategy as in the first 
experiment. 

We hypothesize that statistically significant 
differences will exist between within-group metric 
(Metric1*/Metric2*) and the translation quality 
levels of the training data (between-group factor: 
quality levels 1–3). 

As in the previous analysis, the TER metric 
(ter_ref.) was employed as the validity criterion, 
since it directly reflects the MT error rate. As in the 
previous analysis, we observed a violation of the 
sphericity assumption for the covariance matrix, as 
indicated by the Mauchly’s Test of Sphericity (p < 
0.05), which pertains to the use of repeated (dependent) 
measures (metric1*: bleu_ref., meteor_ref., chrf_ref., 
wmt22-comet-da, wmt21-comet-qe-da). 

We applied adjusted univariate tests for repeated 
measures to evaluate translation quality as a 
function of the interaction between within-group 
(metric1)* and between-group (quality level) 
factors. The results indicated statistically 
significant differences among the evaluated 
metrics (p = 0.000), as well as a significant effect 
of translation quality on the evaluation outcomes 
(p = 0.004). 

Multilevel comparisons (Table 13) further 

confirmed statistically significant differences 

among all metrics (p < 0.05). Additionally, a 

significant effect of translation quality was 

observed across nearly all metrics, except wmt21-

comet-qe-da, for which the effect was not 

statistically significant (p > 0.05). 

 

quality metric1* Mean 1 2 3 4 5 6 7 

3 wmt21-comet-qe-da 0.106 ****             

2 wmt21-comet-qe-da 0.107 ****       

1 wmt21-comet-qe-da 0.107 ****       

3 bleu_ref. 0.218  ****      

1 bleu_ref. 0.271   ****     

2 bleu_ref. 0.283   ****     

3 meteor_ref. 0.546    ****    

3 chrf_ref. 0.555    ****    

1 meteor_ref. 0.596     ****   

2 meteor_ref. 0.611     ****   

1 chrf_ref. 0.619     ****   

2 chrf_ref. 0.627     ****   

3 wmt22-comet-da 0.801      ****  

1 wmt22-comet-da 0.821      **** **** 

2 wmt22-comet-da 0.842             **** 

Note: **** - p > 0.05, homogeneous group 

Table 13: Multi-stage comparisons 

quality metric2* Mean 1 2 3 4 

8 bleurt_ref. 0.019 ****       

8 wmt21-comet-da 0.024 ****       

6 wmt21-comet-da 0.062 ****       

7 wmt21-comet-da 0.072 ****       

7 bleurt_ref. 0.172   ****     
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6 bleurt_ref. 0.174   ****     

8 wmt20-comet-da 0.54       **** 

6 wmt20-comet-da 0.65     ****   

7 wmt20-comet-da 0.708     ****   

Note: **** - p > 0.05, homogeneous group 

Table 14: Multi-stage comparisons 

 

For the second group of metrics (metric2*: 

bleurt_ref., wmt20-comet-da, wmt21-comet-qe-

da), the sphericity assumption was also violated 

(Mauchley Sphericity Test: p < 0.05). In order not 

to reduce the power of the statistical tests, we use 

modified univariate tests for repeated measures to 

assess the quality of the translation as a function of 

the within-group and between-group interaction 

(metric2* x quality) (Table 15). 

  Epsilon 

Adj. 

df1 

Adj. 

df2 Adj. p 

metric2* 0.787 1.575 892.795 0.0000 

metric2* 
x quality 0.787 3.149 892.795 0.0130 

Table 15: Adjusted (G-G) univariate tests for repeated 
measure 

Statistically significant differences (Table 15) were 

again demonstrated between the metrics 

themselves (p < 0.05), and the effect of translation 

quality was likewise significant (p < 0.05).  

When including translation quality as a factor in 

the multilevel comparison (Table 14), a statistically 

significant influence of quality level was 

confirmed for almost all metrics, with the 

exception of wmt21-comet-da (p > 0.05). 

  Summary for scale 

Multiple R 0.890 

Multiple R2 0.792 

F(7,562) 267.144 

p 0.0000 

Table 16: Validity analysis 

The MT evaluation procedure explains nearly 80% 

of the variability in the MT error rate (Table 16). 

Based on the results of the validity analysis (Table 

16), we conclude that the procedure demonstrates 

acceptable criterion validity. The TER metric was 

employed as the validity criterion (Munk et al., 

2018), confirming that the combined use of BLEU, 

METEOR, chrF, BLEURT, wmt22-comet-da, 

wmt20-comet-da, and wmt21-comet-da provides a 

valid estimation of translation accuracy. 

5 Conclusion 

The study demonstrates that the quality of 

annotated training data influences the performance 

of neural MT systems for the English–Slovak 

language pair. However, the extent of this effect 
depends strongly on the training strategy. When 

models were trained on the full dataset without 

validation splitting, translation quality level 
showed no significant impact on performance (p > 

0.05). In contrast, when the dataset was split into 

training and validation subsets, translation quality 

level significantly affected the evaluation metrics 
(p < 0.05). This suggests that fine-tuning with held-

out validation data increases the model’s 

sensitivity to training data quality.  

Despite minor deviations and variations across 
individual metrics, the overall evaluation 

procedure explains a significant proportion of the 

variance in translation error rates. These findings 
indicate that for low-resource languages such as 

Slovak, enhancing the quality of human-annotated 

parallel corpora can lead to measurable gains in 

MT performance - particularly when modern 
training strategies like fine-tuning on held-out 

validation sets are employed. Nonetheless, the 

effect size remains relatively small, and further 
improvements may require not only higher-quality 

data, but also larger and more diverse training 

corpora.  
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