Quality Matters: Measuring the Effect of Human-Annotated Translation Quality on

English-Slovak Machine Translation

Matus KleStinec

Constantine the Philosopher University in Nitra

Tr. A. Hlinku 1, 949 01 Nitra, Slovakia
matus.klestinec@ukf.sk

Abstract

This study investigates the influence of
human-annotated translation quality on the
performance of machine translation (MT)
models for a low-resource language pair—
English to Slovak. We collected and
categorized 287 student translations from a
national competition, annotated by expert
translators into three quality levels. Using
the mT5-large model, we trained six neural
MT models: three on the full dataset
without validation splitting, and three using
training/validation splits. The models were
evaluated using a suite of automatic metrics
(BLEU, METEOR, chrF, COMET,
BLEURT, and TER), with TER serving as
the validity criterion. Statistical analyses
revealed that data quality had no significant
effect when training without validation, but
did have a significant impact under fine-
tuning conditions (p < 0.05). Our results
suggest that fine-tuning with combination
with validation splitting increases the
model's sensitivity to the quality of training
data. While the overall effect size is
modest, the findings underscore the
importance of high-quality, annotated
corpora and modern training strategies for
improving MT in low-resource languages.

1 Introduction

Machine translation (MT) refers to the use of
algorithms and machine learning models to
translate texts from one natural language into
another (Keary, 2023). Modern MT systems
increasingly rely on artificial neural networks,
which can autonomously learn to perform
translation with high accuracy - often achieving
levels of accuracy comparable to those of human
translators (Young, 2024). Building a high-quality
MT model typically requires access to large
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volumes of training data. Although neural
approaches  have reached  state-of-the-art
performance in MT, they suffer from the high cost
of acquiring large-scale parallel corpora (Wang et
al., 2021).

A neural MT model @ translates a source sentence
X into a target sentence y. Using a parallel training
corpus C, the model 6 is trained by minimizing the
negative log-likelihood loss. The encoder-decoder
structure (based on recurrent neural networks,
convolutional neural networks or transformer) is
commonly employed in neural MT, where the
encoder transforms the source sentence into a
sequence of hidden representations and the
decoder generates target words based on these
representations and the previously generated target
words (Wang et al., 2021). For high-resource
language pairs such as English-French, data
availability is less problematic, as substantial
parallel corpora have been compiled over time.
However, the requirement for large amounts of
parallel data is often unrealistic for many of the
7000+ languages spoken worldwide, which
presents a major challenge for low-resource
languages (Ranathunga et al, 2023). The low-
resource problem may stem either from a language
itself is low-resourced (underrepresented) or from
specific domains lack sufficient data (Hedderich et
al., 2021).

In the case of the Slovak language, the limited
availability of text data categorizes it as a low-
resource language (Do et al, 2014). Such
languages are underrepresented in digital spaces
compared to high-resource languages, making it
difficult for speakers to wuse the advaced
technologies in their daily lives - including
effective neural MT systems (Tonja et al., 2023).

The research objective:
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The aim of this study is to investigate how both
the quality of parallel texts (fair, good, and
excellent translations) and the distribution of the
dataset  (corpus) influence MT  system
performance, specifically the quality of neural MT
output as measured by automatic evaluation
metrics.

The structure of this study is as follows: Section
1 introduces the research problem, motivation, and
contributions. Section 2 reviews related work on
data quality in MT and prior studies on evaluation
metrics. Section 3 describes the dataset,
tokenization process, model setup, and evaluation
metrics. Section 4 presents the experimental
results, including statistical analyses of models
trained on both the full dataset and split dataset.
Section 6 concludes the study and outlines
directions for future work.

2 Related work

A recent case study demonstrated that carefully
targeted data collection can significantly improve
MT performance in a low-resource language pair
(Hasan et al. 2020). Data is arguably the most
critical factor in modeling (developing) translation
systems (Haddow et al.,, 2022). When applying
data-driven MT to a specific language pair, the
initial step involves assessing available data
resources and identifying effective strategies for
collecting additional data. In the context of low-
resource MT, Haddow et al. (2022) classify
research approaches into four main categories:
searching existing data sources, web-crawling for
parallel data, data creation, and test data
development. In our research, we focus on creating
a new parallel dataset comprising student
translations from English into Slovak.

Several researchers have explored the use of
multiple references in MT. Wu et al. (2024)
measured semantic similarity among reference
translations and categorized them into different
training subsets based on their degree of variation.
They fine-tuned two pre-trained large language
models - LLAMA-2-7B and mT5-large - using
datasets containing multiple references. Their
results showed that using source texts with
semantic similarity scores between 0.45 and 1.0 led
to better performance than unfiltered datasets.
Similarly, Zouhar et al. (2021) investigated how
the quality and quantity of reference translations
affect the reliability of automatic MT evaluation
metrics. They found that low-quality or overly
diverse references may distort metric scores,
whereas carefully selected multiple references

enhance evaluation robustness. Our study builds on
these findings by combining both perspectives: we
employ multiple reference translations per source
sentence while accounting for diversity in human-
annotated translation quality. Unlike prior studies
that primarily focused on semantic variation, we
examine how quantity and quality of human-
annotated translations influences MT model
training and quality of MT outputs.

3 Methodology

3.1 Data collection and pre-processing

The texts used in this study were obtained from the
Young Translator public competition, which is
open to high school students interested in
translation. A total of 287 student translations were
included in this study, most of which were
translations of literary texts. Two professional
translators - both university lecturers in translation
and interpreting - evaluated the translations and
classified them into three quality categories: 1 —
fair translation, 2 — good translation, and 3 —
excellent translation. Since the collected
translations were available only in printed form,
several pre-processing steps were required before
training.

The following pre-processing steps were applied:

Optical character recognition (OCR)

Text editing for alignment

Alignment of English and Slovak texts
Additional text editing prior tokenization and
training

o Tokenization

Optical character recognition

Because the original documents were available
only as scanned PDFs, it was necessary to convert
them into machine-readable text. This was
achieved using the Tesseract OCR library
(Tesseract OCR, 2025). Although the student
translations (essays) were typewritten, many
contained handwritten annotations—often in black
or colored ink—as part of the evaluation process.
In cases where colored pens were used, color
filtering was applied to improve OCR accuracy.
After recognition, the output was stored in txt
format for further processing.



Text editing for alignment

The OCR output required extensive cleaning.
Common issues included  misrecognized
characters, extra punctuation marks (e.g., quotation
marks), incorrect spacing (e.g., multiple spaces),
and line breaks not corresponding to sentence
boundaries. All empty lines were removed to
prevent alignment errors. Additionally, the texts
were anonymized to remove any personally
identifiable information.

Alignment of English and Slovak sentences

After cleaning, the English source texts and Slovak
translations were aligned. Each English sentence
corresponded to multiple Slovak translations (a 1-
to-n alignment), reflecting the multiple student
versions. To facilitate semantic alignment, we
employed LaBSE (Language-agnostic BERT
Sentence Embedding), a model trained on more
than 100 languages, including English and Slovak
(Feng et al. 2020). A similarity threshold of 0.6 was
applied.

The aligned data were merged into two larger txt
files - one for English and one for Slovak -
structured for training purposes. Each model
requires one text file in English and one
corresponding text file in Slovak. Duplicate
sentence pairs were removed, and the dataset was
randomly shuffled. Since the number of sentence
pairs varied across the three quality categories, the
sets for scores 2 and 3 were downsampled to match
the smallest set (score 1), ensuring balanced
training data and avoiding bias in model evaluation
(Table 1). For English and Slovak, the number of
words was (54,827 EN | 43,354 SK) for model 1,
(54,056 EN | 42,849 SK) for model 2, and (55,514
EN | 42,717 SK) for model 3. Number of tokens
was (100,841 EN | 97,284 SK)) for model model 1,
(101,698 EN | 96,707 SK) for model 2, and
(101,802 | 96,406) for model 3.

Model 1 | Model 2 | Model 3
Slovak 3130 3130 3130
sentences
English 3130 3130 3130
sentences

Table 1: Number of sentences for each model
Tokenization

For tokenization and training of MT models, we
utilized the pre-trained mT75-large model. This
model is based on the transformer architecture and

was trained on a multilingual dataset containing
sentences from 101 languages, including Slovak
(Xue et al., 2020). The mT5-large model was used
to tokenize both the English and Slovak texts in
preparation for training. We selected this model
because it covers the English-Slovak language pair
and offers a balance between model capacity and
training efficiency.

Although the mT5 model includes Slovak in its
pre-training data, fine-tuning on domain-specific
datasets is still necessary to achieve optimal
performance. In this study, we trained separate
models for each quality category, resulting in a
total of six models:

1) Three models trained on the full dataset for
each category (fair, good, and excellent
translations).

2) Three models trained on a split dataset for
each category (fair, good, and excellent
translations).

All training was conducted on Google Colab using
an NVIDIA A100 GPU.

3.2 Models trained on the full dataset

In the first experiment, we trained three models
using the entire dataset. Each model corresponded
to one of the three quality categories - fair, good,
and excellent translations.

The training parameters for these models are
summarized in Table 2:

Hyperparameters Values
Per_device train_batch size | 4
Num_train_epochs 3
Learning_rate le-4
fpl6 False

Table 2: Hyperparameters for training

After training, three MT models were obtained.
Their performance was evaluated using a reference
file containing all wunique English—Slovak
sentences, which had been excluded from the
training data to ensure a fair and unbiased
evaluation.

3.3 Models with data split

The key difference between the initial three models
and the subsequent three lies in the data split



strategy. For these latter models, the dataset was
randomly divided into 90% for training and 10%
for validation. The 10% validation set was used to
fine-tune the models during training. The
hyperparameters employed for training all three
fine-tuned models are listed in Table 3.

Hyperparameters Value
Per_device train_batch _size | 4
Num_train_epochs 5
Learning rate le-4
fpl6 False
eval strategy steps
eval_steps 500

Table 3: Hyperparameters for training
3.4 Evaluation metrics

The trained models were evaluated using a range
of automatic metrics: BLEU, METEOR, COMET
chrF, TER, and BLEURT.

BLEU (BiLingual Evaluation Understudy) is a
precision-based metric that evaluates MT output
by comparing n-grams in the hypothesis (MT
output) with those in one or more reference
translations. It does not consider word order
beyond matching n-grams and tends to reward
exact matches. A higher BLEU score indicates
closer overlap with the reference and therefore
better translation quality (Papineni et al., 2002).

METEOR (Metric for Evaluation of Translation
with Explicit Ordering) is a metric that aligns
words and phrases between the hypothesis and
reference translations using synonyms, stemming,
and paraphrasing. It calculates scores based on
unigram precision, recall, and F-score, which are
combined via a weighted harmonic mean. Score
ranges from O (poor translation) to 1 (perfect
translation) (Banerjee et al. 2005).

COMET is a neural framework that considers both
source and reference translations. Trained on
human judgment data, it predicts sentence-level
quality score. This study employed several
versions, including wmt20-comet-da, wmt21-
comet-da, wmt2 1-comet-ge-da and wmt22-comet-
da. Metric wmt22-comet-da integrates quality
estimation techniques using OK/BAD tags from
human-annotated datasets and combines multiple
models via hyperparameter optimization to
produce a single quality score (Rei et al. 2020, Rei
et al. 2022). Scores typically range from 0 (poor
quality) to 1 (high quality).

BLEURT (Bilingual Evaluation Understudy with
Representations  from  Transformers) is a
regression-based evaluation metric built on BERT.
Fine-tuned on human ratings of translation quality,
it captures subtle semantic differences between
translations. BLEURT scores generally range from
0 to 1, though values may occasionally exceed this
range due to the nature of the regression output
(Sellam et al., 2020).

chrF is a character n-gram F-score metric that
evaluates translation quality at the character level
rather than the word level. This approach is
particularly effective for morphologically rich
languages or those with flexible word order. It
computes F-scores over character n-grams (e.g., 6-
grams), combining precision and recall into a
single score, with higher values indicating better
translation quality (Popovi¢, 2015).

TER (Translation Edit Rate) measures the number
of edits (insertions, deletions, substitutions, and
shifts) required to transform the hypothesis into the
reference translation. Lower TER score indicates
higher translation quality, as fewer edits are needed
(Snover et al., 2006).

4 Results

To facilitate interpretation and comparison of MT
model performance, the evaluation metrics were
grouped according to their scale and underlying
evaluation strategy. Three metric groups were
defined:

e Group 1 (within-group factor: Metricl*):
Includes BLEU, METEOR, chrF, wmt22-
comet-da and wmt21-comet-qe-da. These
metrics primarily assess surface-level or
structural similarity between hypothesis
and reference translations.

e Group 2 (within-group factor: Metric2*):
Includes BLEURT, wmt20-comet-da, and
wmt21-comet-da. These metrics capture
deeper  semantic  similarity, often
leveraging pre-trained language
representations and human rating data.

e Group 3: TER, treated as a separate metric
due to its nature as an error-based measure,
serving as a validity criterion for the
accuracy metrics.

We hypothesize that statistically significant
differences will exist among the examined metrics,
between within-group metric (Metricl*/Metric2*)



and the translation quality levels of the training
data (between-group factor: quality levels 1-3).

TER as the only metric explicitly measuring edit
distance/error rate, is used as a benchmark validity
measure to evaluate the reliability and consistency
of the other metrics.

4.1 Models trained on full dataset

To assess the assumption of homogeneity of
variances across the independent variable (quality
levels 1, 2, and 3) a nonparametric Levene’s test
was used. The results were non-significant (Table
4), indicating that the assumption of equal
variances between independent groups was not
violated.

Statistically significant differences (p < 0.05) were
observed only among the evaluation metrics
themselves (Table 6). The effect of between-group
factor (quality level) did not have a statistically
significant on the evaluation outcomes (p > 0.05),
indicating that the quality categories (1, 2, and 3)
did not significantly influence scores across the
metrics.

The results of the multilevel comparison (Table 7)
further clarify the relative behavior of individual
metrics. Specifically, a statistically significant
difference was found between the BLEU metric
and remaining metrics, whereas no statistically
significant difference was observed between
meteor and chrf metrics. Even when considering
the quality levels (Table 7), no statistically
significant differences were found between the

MS MS F p o : : :
Effect | Error individual quality categories (1, 2, and 3) with
bleu 0.019 0.018 1.038 0.355 respect to the metrics included in Metricl (BLEU,
meteor | 0.004 | 0.013 | 0323 |0.724 METEOR, chrF, and wmt22-comet-da).
chrf 0.002 0.011 0.183 0.833
wmt22- | 0.003 0.006 0.447 0.640 Quality | Metricl | mean | 1 2 3
comet- 3 bleu 0.255 ool
da 1 bleu 0.282 e
2 bleu 0.299 falaiolel
Table 4: Levene' test for homogeneity of variances 3 meteor | 0.593 | ****
3 chrf 0.598 | ****
However, the assumption of sphericity - which 1 meteor | 0.606 | ****
concerns the equality of wvariances of the 1 chrf 0.616 | ****
differences between all combinations of dependent 2 meteor | 0.628 | ****
metrics in Metricl (BLEU, METEOR, chrF, and 2 chrf 0.635 | ****
wmt22-comet-da) - was violated (Table 5). 1 wmt22- | 0.820 ek
comet-
w Chi- | df p da
sqr. 3 wmt22- | 0.825 falalalal
Metricl | 0.496 396.360 | 5 0.0000 fizmet_
Table 5: Mauchley sphericity test 2 wmt22- | 0.837 .
comet-
- da
To preserve statistical power and ensure the Note: **** - p > 0.05, homogeneous group

validity of the analysis, adjusted univariate tests for
repeated measures were applied. These tests
evaluated the effects of translation quality and its
interaction with evaluation metric (metricl x
quality) on translation performance (Table 6).

Epsilon | Adj. Adj. df2 | Adj. p
dfl
Metricl | 0.705 2.116 | 1199.867 | 0.0000
Metricl | 0.705 4.232 | 1199.867 | 0.4542
X
quality

Table 6: Adjusted (G-G) univariate tests for repeated
measure

B

Table 7: Multi-stage comparison

We applied the same analytical procedure to Group
Metric2, taking into account deviations from the
assumption of normality.

Statistically significant differences were observed
only among the evaluation metrics within-group
Metric2 (p = 0.000). The effect of the between-
group factor (translation quality level) on
evaluation scores was not statistically significant (p
= 0.552), indicating that the assigned quality



categories did not influence the metric scores in
this group. Statistically significant differences
were found between all three metrics in this group
(» < 0.05). When incorporating the translation
quality factor, no significant interaction effects
based on translation quality were observed (Table
8).

quality | metric2 | Mean | 1 2 3
wmt21-
comet-
3 da 0.050 | **x*
wmt21-
comet-
1 da 0.056 | ****
wmt21-
comet-
2 da 0.071 | ****
3 bleurt 0.006 | *x*k | Hdkkx
1 bleurt 0.134 | *xkk | ks
2 bleurt 0.179 oo
wmt20-
comet-
3 da 0.625 laklo
wmt20-
comet-
1 da 0.638 loklo
wmt20-
comet-
2 da 0.696 loklo
Note: **** - p> (.05, homogeneous group

Table 8: Multi-stage comparisons

MS MS
metric2 | Effect | Error F p
bleurt 0.019 0.055 0.346 0.7077
wmt20-
comet-
da 0.053 0.110 0.487 0.6147
wmt21-
comet-
da 0.000 0.008 0.001 0.9994

Table 9: Levene' Test for Homogeneity of Variances

Chi-
W Sar. df p
metric2 | 0.728 179.615 | 2 0.0000

Table 10: Mauchley Sphericity Test

Adj. Adj.
Epsilon | dfl df2 Adj. p
metric2 | 0.786 1.572 891.567 | 0.0000

metric2
X

quality | 0.786 3.145 891.567 | 0.5521

Table 11: Adjusted (G-G) Univariate Tests for
Repeated Measure

Similar to the first group of metrics, deviations
from normality were identified for the second
group of metrics. Based on the results of the
nonparametric Levene's test (Table 9), we conclude
that the assumption of equality of variances
between independent samples (quality: 1, 2, and 3)
is not violated. In the case of dependent samples
(metric2: bleurt, wmt20-comet-da, wmt21-comet-
da), the sphericity condition of the covariance
matrix was violated (Table 10). In order not to
reduce the power of the statistical tests, we use
adjusted univariate tests for repeated measures
(Table 11) to assess the quality of the translation as
a function of the interaction of the within-group
and between-group factors (metric2 x quality).

Statistically significant differences were observed
only among the metrics themselves (p < 0.05),
while the between-group factor, translation quality,
did not have a significant effect on evaluation
outcomes (p > 0.05) (Table 8). A multilevel
comparison (Table 8) indicates that the wmt21-
comet-da metric is statistically the most rigorous
metric (p < 0.05), whereas wmt20-comet-da is
statistically the least rigorous (p < 0.05).
Statistically significant differences were found
between all three metrics (p < 0.05).

The reliability analysis of the MT assessment
procedure indicates that the selected set of
evaluation metrics - BLEU, METEOR, chrF,
BLEURT, wmt22-comet-da, wmt20-comet-da,
and wmt21-comet-da - demonstrates acceptable
internal consistency (Cronbach’s a > 0.6),
suggesting that the metrics collectively form a
coherent measurement construct (Average inter-
item corr. > 0.5).

The MT evaluation procedure explains nearly 70%
of the variability in MT error rate (Table 12). Based
on the validity analysis (Table 12), the procedure
demonstrates acceptable criterion validity. The
TER metric, which directly represents MT error
rate, was employed as the validity criterion (Munk
et al., 2018), confirming that the combined use of
BLEU, METEOR, chrF, BLEURT, wmt22-comet-



da,

wmt20-comet-da,

and wmt21-comet-da

provides a valid estimation of translation accuracy.

Summary for scale
Multiple R 0.830
Multiple R2 0.689
F(7,562) 178.169
p 0.0000
Table 12: Validity analysis
4.2  Models with data split

As with the first three models, evaluation of the
split-data models was performed using the same
reference file. Due to deviations from normality
and differences in the range of the evaluated scores,
the metrics were again divided into three groups,
following the same grouping strategy as in the first

experiment.

We hypothesize that statistically significant
differences will exist between within-group metric
(Metric1*/Metric2*) and the translation quality
levels of the training data (between-group factor:
quality levels 1-3).

As in the previous analysis, the TER metric
(ter_ref.) was employed as the validity criterion,
since it directly reflects the MT error rate. As in the
previous analysis, we observed a violation of the
sphericity assumption for the covariance matrix, as
indicated by the Mauchly’s Test of Sphericity (p <
0.05), which pertains to the use of repeated (dependent)
measures (metricl*: bleu ref., meteor ref., chrf ref,
wmt22-comet-da, wmt21-comet-ge-da).

We applied adjusted univariate tests for repeated
measures to evaluate translation quality as a
function of the interaction between within-group
(metricl)* and between-group (quality level)
factors. The results indicated statistically
significant differences among the evaluated
metrics (p = 0.000), as well as a significant effect
of translation quality on the evaluation outcomes
(p =0.004).

Multilevel
confirmed

comparisons (Table 13) further
statistically significant differences
among all metrics (p < 0.05). Additionally, a
significant effect of translation quality was
observed across nearly all metrics, except wmt21-
comet-ge-da, for which the effect was not
statistically significant (p > 0.05).

quality | metricl* Mean |1 2 3 4 5 6 7

3 wmt2 1-comet-qe-da 0.106 | ****

2 wmt2 1-comet-qe-da 0.107 | ****

1 wmt2 1-comet-qe-da 0.107 | ****

3 bleu_ref. 0.218 Fkkk

1 bleu_ref. 0.271 Fkkk

2 bleu_ref. 0.283 Fkkk

3 meteor_ref. 0.546 Fhxk

3 chrf_ref. 0.555 Fhxk

1 meteor_ref. 0.596 Fhxk

2 meteor_ref. 0.611 Fhxk

1 chrf_ref. 0.619 Fhxk

2 chrf_ref. 0.627 Fhxk

3 wmt22-comet-da 0.801 faleialel

1 wmt22-comet-da 0.821 Fkkk | Rkkk
2 wmt22-comet-da 0.842 faleialel
Note: **** - p > 0.05, homogeneous group

Table 13: Multi-stage comparisons

quality metric2* Mean 1 2 3 4
8 bleurt ref. 0.019 Hokkok

8 wmt2 1-comet-da 0.024 Hkkx

6 wmt2 1-comet-da 0.062 Hkkx

7 wmt2 1-comet-da 0.072 wkkx

7 bleurt ref. 0.172 Hkkx

8



6 bleurt ref. 0.174 oAk

8 wmt20-comet-da 0.54 ok
6 wmt20-comet-da 0.65 oAk

7 wmt20-comet-da 0.708 oAk

Note: **** - p > (.05, homogeneous group

Table 14: Multi-stage comparisons

For the second group of metrics (metric2*:
bleurt ref.,, wmt20-comet-da, wmt21-comet-qe-
da), the sphericity assumption was also violated
(Mauchley Sphericity Test: p < 0.05). In order not
to reduce the power of the statistical tests, we use
modified univariate tests for repeated measures to
assess the quality of the translation as a function of
the within-group and between-group interaction
(metric2* x quality) (Table 15).

Adj. Adj.
Epsilon | dfl df2 Adj. p
metric2* | 0.787 1.575 892.795 | 0.0000
metric2*
X quality | 0.787 3.149 892.795 | 0.0130

Table 15: Adjusted (G-G) univariate tests for repeated
measure

Statistically significant differences (Table 15) were
again  demonstrated between the metrics
themselves (p < 0.05), and the effect of translation
quality was likewise significant (p < 0.05).

When including translation quality as a factor in
the multilevel comparison (Table 14), a statistically
significant influence of quality level was
confirmed for almost all metrics, with the
exception of wmt21-comet-da (p > 0.05).

Summary for scale
Multiple R 0.890
Multiple R2 0.792
F(7,562) 267.144
p 0.0000

Table 16: Validity analysis

The MT evaluation procedure explains nearly 80%
of the variability in the MT error rate (Table 16).
Based on the results of the validity analysis (Table
16), we conclude that the procedure demonstrates
acceptable criterion validity. The TER metric was
employed as the validity criterion (Munk et al.,

2018), confirming that the combined use of BLEU,
METEOR, chrF, BLEURT, wmt22-comet-da,
wmt20-comet-da, and wmt2 1-comet-da provides a
valid estimation of translation accuracy.

5 Conclusion

The study demonstrates that the quality of
annotated training data influences the performance
of neural MT systems for the English—Slovak
language pair. However, the extent of this effect
depends strongly on the training strategy. When
models were trained on the full dataset without
validation splitting, translation quality level
showed no significant impact on performance (p >
0.05). In contrast, when the dataset was split into
training and validation subsets, translation quality
level significantly affected the evaluation metrics
(» <0.05). This suggests that fine-tuning with held-
out validation data increases the model’s
sensitivity to training data quality.

Despite minor deviations and variations across
individual metrics, the overall evaluation
procedure explains a significant proportion of the
variance in translation error rates. These findings
indicate that for low-resource languages such as
Slovak, enhancing the quality of human-annotated
parallel corpora can lead to measurable gains in
MT performance - particularly when modern
training strategies like fine-tuning on held-out
validation sets are employed. Nonetheless, the
effect size remains relatively small, and further
improvements may require not only higher-quality
data, but also larger and more diverse training
corpora.
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