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Preface

The field of Natural Language Processing (NLP) has achieved remarkable progress in recent years,
powered by the emergence of Large Language Models (LLMs) and generative AI. These advancements
have significantly improved language technology for high-resource languages such as English,
Mandarin, and German. However, the majority of the world’s languages, including medium-resource,
under-resourced, and low-resource ones—remain underserved due to limited datasets, resources, and
linguistic tools.
The GlobalNLP 2025Workshop, titled "Beyond English: Natural Language Processing for All
Languages in an Era of Large Language Models", was organized as part of RANLP 2025, held from
12 September 2025 in Varna, Bulgaria. This workshop provided an inclusive platform for researchers,
linguists, developers, and practitioners worldwide to explore how cutting-edge NLP techniques can
be extended to every language, regardless of its resource availability. We received a total of 28 paper
submissions, of which a curated selection was accepted for inclusion in the proceedings following a
rigorous peer-review process. The accepted papers span various domains, from cross-lingual modeling
and corpus creation to NLP applications in healthcare, education, and cultural preservation. We were
honored to have keynote talks by distinguished experts, including: The workshop featured two invited
talks by distinguished researchers, offering complementary perspectives on multilingualism, machine
translation, and the future of language technologies in medicine. The first invited speaker was Prof.
Dipti Misra Sharma, Professor Emeritus at the International Institute of Information Technology
(IIIT) Hyderabad, India. Her talk, titled "Multilingualism, LLMs, and Machine Translation", was
delivered in the opening session from 09:00–09:45. Prof. Sharma is a pioneering figure in the
field of Natural Language Processing, with a career spanning more than two decades of landmark
contributions to machine translation, multilingual NLP, and linguistic resource development. At the
Language Technologies Research Centre (LTRC) at IIIT Hyderabad, she has led large-scale government-
funded initiatives to create corpora, treebanks, morphological analyzers, and evaluation frameworks
that have become foundational resources for researchers worldwide. Her work bridges theoretical
linguistics, computational modeling, and real-world deployment, with a strong focus on low-resource
and morphologically rich languages. She has been instrumental in developing multilingual translation
systems, interoperable linguistic tools, and pipelines for code-mixed language processing. Beyond her
technical work, she has played a leading role in policy-level language technology planning in India and
mentored a generation of NLP researchers. In her talk, Prof. Sharma traced the evolution of machine
translation from its foundations to state-of-the-art approaches, with particular attention to the role of
Large Language Models (LLMs). She emphasized both the opportunities and challenges of applying
LLMs in multilingual contexts, highlighting their potential for linguistic inclusivity while underscoring
the need for data-efficient, linguistically informed methods.
The second invited speaker was Prof. Michael G. Madden, Established Professor and leads the Machine
Learning Research Group that he set up in 2001. His talk, "Advances in Natural Language Processing
and Machine Learning for Medicine", was presented in the afternoon session from 13:25–14:10.
Prof. Madden is an internationally recognized leader in machine learning, artificial intelligence, and
data-driven modeling. Since founding the Machine Learning Research Group at Galway in 2001, he has
produced influential work on deep learning, probabilistic reasoning, dynamic Bayesian networks, and
reinforcement learning. His expertise is especially relevant to GlobalNLP 2025 through his focus on
combining data-driven learning with structured background knowledge, a central challenge in adapting
LLMs for specialised and multilingual applications. His career spans both academia and industry. He
founded the AI spin-out company AnalyzeIQ Ltd, has served as a visiting scientist at leading institutions
such as UC Berkeley, UC Irvine, and the University of Helsinki, and has fostered collaborations between
academia, industry, and government. In his keynote, Prof. Madden showcased applications of NLP and
machine learning in medicine, demonstrating how knowledge-aware and inclusive AI systems can be
developed to support decision-making in sensitive, high-stakes domains. His talk highlighted the need
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for models that are both technically advanced and socially responsible, resonating strongly with the
workshop’s vision of inclusive global NLP.
In addition to paper sessions and keynote addresses, the workshop featured:
• A panel discussion on the challenges and opportunities in building multilingual LLMs.
• Interactive demo sessions showcasing NLP tools and technologies developed for diverse linguistic
communities.
Core themes of the workshop included inclusivity, resource creation for under-represented languages,
and the practical deployment of LLMs across domains such as education, healthcare, and cultural
heritage.
• Data-efficient NLP: Transfer learning, few-shot and zero-shot methods for low-resource settings.
• Multilingual and cross-lingual modeling: Techniques adaptive to morphologically rich and
typologically diverse languages.
• Semantic and ontology-driven approaches: Entity linking, semantic similarity, and knowledge graph
integration.
• Resource creation and reuse: Development of sustainable corpora, tools, and evaluation benchmarks.
• Real-world impact: Applying NLP in domains such as education, healthcare, policy, and digital
humanities.
• LLMs in practice: Deployments for code generation, document summarization, personalized
conversational agents, and beyond.
We extend our deepest gratitude to all authors for submitting their research, and to the Program
Committee members for their careful and insightful reviews. We especially thank our keynote speakers,
panelists, and demonstrators for enriching the workshop with their expertise. Finally, we are thankful
to the RANLP 2025 Organizing Committee for supporting and hosting this inclusive initiative. We
hope that these proceedings will inspire ongoing research and collaboration toward more equitable and
universal NLP.

GlobalNLP 2025 Organizing Committee
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Abstract
The Quechua language stands as a fundamen-
tal element of Peru’s social and cultural iden-
tity, carries linguistic and cultural significance.
However, it faces substantial challenges in
terms of digital representation. One major lim-
itation is the scarcity of resources such as a
parallel corpus, which limits the development
of technological resources for its analysis and
practical application. This study addresses this
gap through a methodology for building a paral-
lel corpus using Optical Character Recognition
(OCR). We digitized a collection of texts from a
common origin to create a corpus that enables
reliable access. The resulting corpus serves
as a valuable asset for linguistic and Natural
Language Processing (NLP) research, as well
as for Quechua speakers. The source material
derives from works produced by graduate stu-
dents from the Academia Mayor de la Lengua
Quechua, validated by academic staff, ensuring
grammatical, syntactic and semantic integrity.

1 Introduction

Data from the 2017 Peruvian national census con-
ducted by the National Institute of Statistics and
Informatics (INEI) indicate that 13.6% of the Pe-
ruvian population identify themselves as Quechua
speakers. The Cusco region has the fourth high-
est density of Quechua speakers, with 54.32% of
its population who use Quechua as their first or
secondary language in Peru.

Despite this, many government services are still
not offered in Quechua, which makes it a crucial
task to close this gap. In this study, we propose
a technological approach using OCR to aid in the
development of technology in this language.

Ortega et al. (2020) among other researchers in
the field of natural language processing (NLP), cat-
egorize the Quechua language as Low Resource
Language (LRL) due to the lack of available dig-
ital information. Technologies such as automatic

translation, speech recognition, or natural language
processing in general need a large amount of infor-
mation and examples to be successfully trained.

The necessity for a parallel corpus made us
think of the official website of Jehovah’s Witnesses
(https://www.jw.org/es/), who publish their maga-
zines in almost 300 languages, including Quechua.
This initially led to the idea of collecting this infor-
mation using web scraping techniques. But most
of these magazines, repositories, and websites had
already been utilized in previous projects. In partic-
ular, the Jehovah’s Witnesses website was compre-
hensively addressed in the JW300 project by Agić
and Vulić (2019). Consequently we decided to get
information from a different, yet equally reliable
source.

We established contact with a Quechua language
school based in Cusco city in Perú called Academia
Mayor de la Lengua Quechua (AMLQ) which
kindly granted us access to explore their library
with an extensive collection of books. After reach-
ing an agreement, we proposed a methodology for
collecting the texts from this physical source. Our
approach comprises several stages: i) Identification
and collection of texts, ii) Photo environment setup,
iii) Book digitizing, iv) Text labeling, v) Image pre-
processing, vi) Text recognition and extraction, vii)
Correction and evaluation of the OCR.

The importance of the result of this study lies
in providing a methodology for the development
of new technologies that require Collao Quechua -
Spanish parallel corpora, such as automatic trans-
lators and sentence auto-completion systems. Fur-
thermore, it contributes to the Quechua language
preservation, by compiling and capturing examples
of its usage in a digital medium that can be easily
consulted.
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2 Method

2.1 Identification and collection of texts
At the start of the project, the source of the texts
was unclear. However, we had a clear starting point:
Texts should be in a two-column format, aligned
side by side in Quechua and Spanish, to facilitate
the alignment and cleaning tasks in later stages.

At the end of their 8-month course, the students
write a set of literary products, including stories,
legends, poems, articles, academic essays, songs,
etc. All of them are written in Quechua, with their
respective side-by-side translation in Spanish and
then printed in a book. After revision and correc-
tion by the school’s own professors, the books are
stored to be available in the school’s library. The
diversity in the book content arises from the many
backgrounds of the students who learn this lan-
guage. In a meeting for material identification, we
counted approximately 30 pages per book and 10
books per year.

2.2 Photo environment setup
Following the identification of the texts, the proce-
dure for digitizing the books was coordinated with
the school. Ten books from the year 2021 were
selected to be digitized; however, only five were
finally processed with OCR.

The academy’s library provided an ideal environ-
ment for capturing the photographs; The books are
easily accessible and organized by year on shelves,
and a central reading table is located in the avail-
able in the room. The photographs were taken on
this table, using a Xiaomi Poco X3 Pro smartphone
with a top-down angle for each page of the books.

To ensure optimal photo quality, and minimize
the possibility of blurred or out of focus shots. We
used a tripod, which stabilized the phone 20 cm
above the book’s pages, this distance was found to
be the most suitable to capture the entire content of
most pages. Some books were larger, so the tripod
column needed to be raised a few centimeters to
elevate the phone and increase the distance, in order
to widen the field of view.

2.3 Book digitizing
Once the equipment was in place, the capture of
the books began; maintaining consistent lighting
and focus was essential to ensure image quality.
To achieve this, the camera’s “Pro” mode, which
most phones have, was tested. While it is true that
“Pro” mode has enough options to adjust camera

exposure time, it does not have the option to nu-
merically measure the focus distance. The Open
Camera application was used as an alternative be-
cause it allowed these parameters to be adjusted
and locked. The values used during capture were:
exposure time: 1/50 s, aperture: f/1.79, ISO: 300
and focus distance: 20 cm (the same distance from
the book to the phone’s camera).

For the organization of the photographs, the
prefix ”AMLQ” was adopted. This prefix is
configurable within the Open Camera applica-
tion. The full file name of each photograph
conforms to the format: AMLQ + date of the
photograph + time of the photograph, for exam-
ple: ”AMLQ 20230103 123037.png”. The pho-
tographs were stored in a folder created for each
book, which was labeled with the year and the order
in which the book was photographed. For example,
“2021 L1”, where “L” means “‘Libro” (Book 1).

2.4 Photo labeling
A manual labeling approach was adopted, using
the LabelImg tool, developed by Tzutalin (2024).
Essentially, this involved enclosing the text areas
on the pages within bounding boxes or rectangles.
To distinguish between the two languages present,
specific labels were applied: “que” label for areas
containing Quechua text and “esp” label for those
with Spanish text. We followed the YOLO standard
described by Redmon et al. (2016) which utilizes
four values (x, y, w, h) to define the center and size
of each box in pixel units.

Figure 1: Labeling a page with Spanish and Collao
Quecuha texts side by side with LabelImg software

2.5 Photo preprocessing
This step was developed using the Python program-
ming language in conjunction with the OpenCV
2 library. The primary objective of this stage is
twofold: first, to mitigate various errors that may
arise from digitizing the physical books through
photography, and second, to enhance the efficiency
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of the Tesseract OCR (Optical Character Recogni-
tion) system. To achieve these goals, two specific
types of filters were applied to the captured images:

Median Filter (Blur): Its main purpose is to
smooth the edges of the characters and reduce noise
present in the images. It also helps to lessen the
prominence of serifs often found in fonts like Times
New Roman, which could potentially cause confu-
sion during the OCR application process.

Binarization Filter: The aim of this filter is to
transform the image into a black and white repre-
sentation. This binary conversion is fundamental
because it significantly facilitates text recognition
and serves to eliminate variations in lighting that
might exist within the image. For this specific case,
the Otsu binarization algorithm, described by Otsu
(1979), was chosen. Despite efforts to maintain
consistent lighting during photography, slight vari-
ations did occur, But overall the Otsu algorithm
is well-suited for handling images with such light
variations.

Figure 2: Photo preprocessing chain (median filter and
binarization) software

2.6 Text recognition and extraction

Once the images are clean and ready, the text ex-
traction process is carried out using Python and the
Tesseract OCR engine. Tesseract was chosen due
to its ease of use and its support for language recog-
nition in both Quechua and Spanish which helped
to minimize text recognition errors. Although the
specific variety of Quechua supported by Tesseract
OCR is unknown, it has proven to be better than the
default spanish configuration in our photo database,
accordingly, the corresponding configurations for
both languages were used.

The output generated by the Tesseract OCR en-
gine is in digital text format. For the purpose of
this study, the Spanish and Quechua versions of the
scanned text were saved in two separate .txt files.
The naming convention for these files follows a
defined pattern, it begins with the publication year
of the book followed by the letter ”L” to denote

”libro” (book). Then, the order in which that book
was published in that year is indicated. Finally, the
language abbreviation of the content is specified
(”esp” for Spanish or ”que” for Quechua).

An example of this naming convention is ”2021
l2 esp.txt” for the Spanish content of the second
book from the 2021 set, and ”2021 l2 que.txt” for
its corresponding Quechua content. Each of these
files contains the complete text of the book in the
respective language. Additionally, within each file,
the original pages are also separated and indicated
using brackets to denote the page number, e.g.: [1]
for page 1, [2] for page 2, etcetera.

2.7 Correction and evaluation of the OCR
Following the text recognition step, an analysis
of the scanned texts revealed few scanning errors
for Spanish. However, this was not the case with
the Quechua language, where common character
identification errors were detected, such as letter
confusions (e.g., mistaking ”q” for ”g”), character
duplications, and unrecognized characters.

To address these errors and effectively eval-
uate the proposed method, we took a sample
from the corpus. Specifically, we chose the
Quechua version scan of the second book from
2021 (2021 l2 que.txt) to generate a second cor-
rected file which would serve as ground truth. This
corrected version represents the most faithful tran-
scription of the original text and was used as a
reference to evaluate the accuracy of the OCR out-
put.

To create this ground truth file, we collaborated
with a Quechua professor from the Universidad An-
dina del Cusco. Utilizing the photos of the original
book as a reference, the professor manually cor-
rected the text extracted from the Quechua section
of Book 2 from 2021 using Microsoft Word.

Once completed, the evaluation constituted the
final step; we adopted the approach described by
Rice (1996) who defines OCR quality evaluation
as: ”manipulation of character strings, which are
transformed by an edit distance algorithm”. Fol-
lowing a review of OCR evaluation methods and
metrics presented in the work of Neudecker et al.
(2021), we selected CER (Character Error Rate)
and WER (Word Error Rate) metrics for evaluating
the OCR accuracy. CER is calculated as follows:

CER =
S +D + I

N

Where N is the total number of characters, I
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is the number of insertions, S is the number of
substitutions, and D is the number of deletions
needed in the OCR file in order to match the ground
truth. WER is calculated similarly but at a word
level.

For the evaluation, both CER and WER met-
rics were employed, as both represent the inverse
precision of text recognition. After reviewing avail-
able tools, the open-source software ocrevaluation
by Carrasco (2014), also described in the work of
Neudecker et al. (2021) emerged as the most suit-
able option due to its comprehensive feature set,
including the calculation of both CER and WER
metrics, along with a comparative table of differ-
ences between the scanned text and the ground
truth. ocrevaluation is available through a desktop
Java application.

3 Results

Five graduation books from the Academia Mayor
de la Lengua Quechua served as the data source
for this study. These books contain texts in Span-
ish and Collao Quechua across diverse themes, in-
cluding stories, poetry, history, science, lyrics, and
personal narratives from the authors. To digitize
the books, we set up an environment with uniform
and constant lighting, a tripod, and a smartphone
camera. Manual labeling and image preprocessing
techniques were also employed to enhance the re-
sults of text recognition with the Tesseract OCR
library. Subsequently, the text was stored in digi-
tal formats, which can be classified and located by
year, book order, and language.

The corpus consists of a total of 44,263 words
distributed across two languages. As shown in
Table 1, the majority of the words are in Span-
ish, with 26,084 tokens (58.9%), while Quechua
accounts for 18,179 tokens (41.1%). This distribu-
tion highlights the predominance of Spanish words
in the dataset. However, it should be noted that the
relatively lower word count in Quechua does not
necessarily indicate less linguistic content, since
Quechua is an agglutinative language in which
a single word often carries the information that
would require several words in Spanish.

The scanned texts exhibit certain errors, such as
the insertion of unwanted characters (e.g., punctua-
tion marks, hyphens, and alphanumeric characters
in incorrect positions throughout the corpus), char-
acter confusions (where one character is mistaken
for a similar-looking one), and deletions or omis-

Language Word count Percentage

Spanish 26,084 58.9%
Quechua 18,179 41.1%

Table 1: Word distribution by language

sions of some characters. The recognized Quechua
texts present these issues more frequently than the
Spanish ones, preventing the corpus from being a
100% accurate reproduction of the original books.

For this reason, the Quechua text of book 2 from
2021 served as a sample to test the quality of the ap-
plied OCR. The evaluation, comparing the scanned
text to the corrected text (or ground truth), revealed
that 1.82% of characters were incorrectly detected
according to the CER analysis, and 6.59% of words
were incorrectly detected according to the WER
analysis.

CER 1.82%

WER 6.59%

WER (order independent) 5.61%

Table 2: CER and WER results

In addition to the Tesseract-based pipeline, we
evaluated transformer-based OCR architectures,
specifically TrOCR and DONUT, using the fol-
lowing pretrained models:

• microsoft/trocr-small-printed

• naver-clova-ix/donut-base-finetuned-cord-v2

TrOCR achieved satisfactory results for English
text but consistently failed to recognize the Spanish
and Quechua texts in the photos, producing inco-
herent outputs. This behavior is expected given that
its base model lacks multilingual training for these
languages. DONUT, on the other hand, recognized
both Quechua and Spanish words, but failed to cor-
rectly identify the character “ñ” and produced sub-
stitutions, likely because this character was absent
from its original vocabulary. However, it returned
the output as a structured JSON object rather than
plain text. This demonstrates its document under-
standing capability but also indicates the need for
fine-tuning to align its output with the parallel cor-
pus structure required in this work.
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4 Discussion

The present study introduces a Collao Quechua -
Spanish corpus along with the method employed
for its construction. This corpus includes books
from the Academia Mayor de la Lengua Quechua’s
library, featuring a broad spectrum of themes. This
diversity contributes to the variability and richness
of the corpus, making it suitable for future research.

To evaluate the quality of the method, the CER
(Character Error Rate) and WER (Word Error Rate)
metrics were calculated on a Quechua sample from
the corpus, producing errors of 1.82% and 6.59%,
respectively. These results, while revealing text
recognition errors, are encouraging, especially con-
sidering that Tesseract’s default configuration for
Quechua was used. Such errors were anticipated,
and many were mitigated thanks to the preprocess-
ing step.

In the research made by Cordova and Nouvel
(2021), the scope extended to digitizing and correct-
ing a dictionary for the Ancash Quechua variant,
in addition to training an OCR model adapted to
the specificities of that material. Their work com-
pared three OCR software programs, with Tesseract
emerging as the most accurate; however, similar
errors were observed. This suggests that default
configuration precision is often insufficient for low-
resource languages with numerous variants, such
as the Quechua family.

The work of Agarwal and Anastasopoulos
(2024) highlights that incorporating OCR adapta-
tion stages for each particular case significantly
improves text quality in languages with limited
digital resources. For instance, Cordova and Nou-
vel (2021) trained their own OCR model, while
the present work included a photo preprocessing
phase. The quality and resolution of images, font
type (handwritten or computerized), lighting, color,
and other factors can drastically affect OCR results,
therefore adapting each OCR method to the specific
problem presented is important.

In this work, the labeling and post-OCR correc-
tion phases were performed manually. However,
Agarwal and Anastasopoulos (2024) highlight the
existence of automatic processes based on machine
learning algorithms, which reduce manual labor
and cost.

Transformer-based models like DONUT and
TrOCR offer greater robustness and contextual un-
derstanding, compared to traditional OCR meth-
ods, yet they require adaptation and fine-tuning for

Quechua. This represents a possible future devel-
opment path for this project, given that the manual
post-correction stage only covered the Quechua
sample from Book 2, leaving the possibility of its
application to the remaining books.

The corpus provides a comprehensive and the-
matically rich collection that will serve as a valu-
able resource for future research in NLP and lin-
guistics for the Collao Quechua variant. It is worth
reiterating that no post-OCR processing (cleaning)
of the texts has been performed; addressing this
problem surely presents an opportunity for future
research.
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Abstract

Recent advances in Large Language Models
(LLMs) have significantly reshaped the land-
scape of Natural Language Processing (NLP).
Among the various prompting techniques, few-
shot prompting has gained considerable at-
tention for its practicality and effectiveness.
This study investigates how few-shot prompt-
ing strategies impact the Word Sense Disam-
biguation (WSD) task, particularly focusing on
the biases introduced by imbalanced sample
distributions. We use the GLOSSGPT prompt-
ing method, an advanced approach for English
WSD, to test its effectiveness across five lan-
guages: English, German, Spanish, French,
and Italian. Our results show that imbalanced
few-shot examples can cause incorrect sense
predictions in multilingual languages, but this
issue does not appear in English. To assess
model behavior, we evaluate both the GPT-4o
and LLaMA-3.1-70B models and the results
highlight the sensitivity of multilingual WSD
to sample distribution in few-shot settings, em-
phasizing the need for balanced and represen-
tative prompting strategies.

1 Introduction

With the advent and rapid development of trans-
former architectures, Large Language Models
(LLMs) have emerged as a game-changing technol-
ogy for Natural Language Processing (NLP) tasks,
particularly in text generation, question answering,
and tasks requiring computational intelligence, rea-
soning, and language understanding (Minaee et al.,
2024). Previous research has explored a variety
of computational techniques in relation to LLMs,
with a strong focus on prompt engineering, Re-
trieval Augmented Generation (RAG), knowledge
base integration, and efficient fine-tuning strate-
gies (Gu et al., 2024).

Among these areas, prompt engineering has re-
ceived significant attention as a means of construct-

ing accurate and efficient responses. Notably, few-
shot prompting (Mann et al., 2020) has been ex-
tensively studied to enhance reasoning capabilities
and in-context learning within prompting strate-
gies.

Recent work, such as GLOSSGPT1, has
achieved state-of-the-art performance on the WSD
task in English by leveraging few-shot prompting
strategies. This approach demonstrates a strong
ability to resolve lexical ambiguity (Sumanathilaka
et al., 2025b). Other work has shown that zero-shot
prompting alone cannot perform efficient WSD,
but few-shot chain-of-thought (COT) can lead to
higher-accuracy disambiguation (Sumanathilaka
et al., 2024a). WSD remains a critical computa-
tional challenge for improving the understanding
of word meanings when ambiguous terms appear in
sentences or paragraphs. Effective WSD systems
also contribute indirectly to advances in computa-
tional translation, transliteration, question answer-
ing and language understanding. While GLOSS-
GPT has demonstrated strong effectiveness for En-
glish, its generalizability to other languages re-
mains unexplored. This research aims to address
that gap by investigating whether the same ap-
proach can be effectively applied in a multilingual
setup. In doing so, the study also examines how
few-shot prompting may introduce bias into clas-
sification tasks such as WSD, specifically explor-
ing whether models tend to favor high-frequency
senses over low-frequency ones2. To analyze this
behavior, we employ three sampling techniques
namely Highest Frequency Sharing, Lowest Fre-
quency Sharing, and Average Frequency Sharing
as detailed in Section 3. Our findings and discus-
sions are presented accordingly.

This study makes the following major contribu-
1https://github.com/Sumanathilaka/GlossGPT-GPT-4-

WSD-with-COT
2Senses that are uncommon or rarely used
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tions:

• We systematically investigate how different
few-shot sampling strategies (Highest, Low-
est, and Average Frequency Sharing) influ-
ence WSD performance across five languages.
Our multilingual setup reveals that sense fre-
quency imbalance introduces varying degrees
of bias, with under-resourced languages being
especially vulnerable.

• Our findings further highlight the importance
of maintaining balanced few-shot examples
as a critical factor for mitigating bias and im-
proving disambiguation accuracy, especially
in low-resource language contexts.

• We demonstrate that the optimal prompting
strategy is language and model-specific, show-
ing that a one-size-fits-all prompting approach
fails to generalize effectively.

The remainder of the paper is organized as fol-
lows: Related Work, which discusses current re-
search on multilingual WSD and few-shot bias
studies; Methodology, which outlines the approach
used to evaluate our proposed study; Results and
Observations; and finally, Conclusions and Future
Directions, which address potential strategies to
mitigate bias in classification tasks across different
language settings.

2 Related Work

We divide this section into two subsections. The
first subsection describes WSD experiments in the
context of Language Models (LMs) and LLMs,
including recent advances. The second section
describes experiments related to few-shot bias de-
tection.

2.1 Advancements in Language models for
WSD

Recent developments in language models have gen-
erated substantial interest in evaluating their per-
formance across a range of NLP tasks. Sainz et al.
(2023) demonstrated that LLMs possess an inher-
ent ability to capture word senses, indicating their
potential for WSD without explicit task-specific
training. They framed WSD as a textual entailment
task, prompting LLMs to assess the appropriate-
ness of a domain label for a sentence containing an
ambiguous word. Notably, this zero-shot approach
surpassed random baselines and, in certain cases,

matched or even outperformed supervised WSD
systems (Ortega-Martı́n et al., 2023). Addition-
ally, cross-lingual WSD has been explored through
contextual word-level translation using pre-trained
language models, with evaluations of zero-shot per-
formance based on cross-lingual knowledge (Kang
et al., 2023). A contrastive self-training frame-
work, COSINE, was also proposed to fine-tune
pre-trained LLMs using weak supervision without
requiring labeled data (Yu et al., 2021). Manjavacas
and Fonteyn (2022) investigated non-parametric
learning approaches and fine-tuning strategies for
LLMs applied to historical Dutch and English cor-
pora. Qorib et al. (2024) highlighted the compar-
ative effectiveness of encoder-only models over
decoder-only architectures. Yae et al. (2024) ex-
amined the impact of LLM size on WSD perfor-
mance, while Cahyawijaya et al. (2024) revealed
limitations in cross-lingual WSD tasks, particularly
involving false friends.3

Furthermore, Sumanathilaka et al. (2024a)
demonstrated that prompt engineering techniques
can significantly enhance WSD performance
through in-context learning using GPT-3.5 Turbo
and GPT-4-turbo. Their study explored various
prompting strategies, including zero-shot, few-
shot, and few-shot-CoT, highlighting the effective-
ness of few-shot learning in improving sense pre-
diction accuracy. It also showed that incorporat-
ing external knowledge further enhances the ef-
fectiveness of sense disambiguation. This work
was further extended in subsequent studies, which
showed that models such as Deepseek-R1 and o4-
mini performed particularly well in WSD tasks
compared to other flagship LLMs (Sumanathilaka
et al., 2024b). These findings are also supported
by Kibria et al. (2024). A key source of inspiration
for this line of research is GLOSSGPT (Sumanathi-
laka et al., 2025b), which achieved state-of-the-art
performance in English WSD by leveraging knowl-
edge base-driven few-shot prompting. The model
effectively incorporated lexical knowledge using
WordNet glosses and synonyms. Although this ap-
proach outperforms several existing WSD systems,
the direct impact of few-shot learning requires fur-
ther investigation. To address this, we propose a
sampling-based approach aimed at gaining deeper
insights into how various few-shot configurations
influence WSD performance across languages.

3Orthographically similar words that have entirely differ-
ent meanings across languages
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Figure 1: Sense distribution for selected samples on each language. The order is English, German, Spanish, French
and Italian

2.2 Investigating Bias in Few-Shot Learning
with LLMs

A very few recent studies have focused on the bi-
ases introduced by few-shot prompting in classi-
fication tasks, particularly in contexts involving
LLMs. These biases often stem from prompt de-
sign, example selection, and label distribution, and
can significantly affect model fairness and perfor-
mance consistency.

The study by Lai et al. (2025) introduces a
benchmark specifically for assessing short answer
scoring with few-shot prompting. It highlights how
LLMs amplify biases when prompted with limited,
unbalanced examples and shows how model pre-
dictions become skewed toward overrepresented
classes. Mallen and Belrose (2024) analyze the
trade-off between label quantity and quality in few-
shot prompts. These experiments reveal that weak
labels often introduce substantial bias, especially
in binary classification tasks. They also highlight
that using a combination of low-quality and high-
quality labels has a positive impact on the predic-
tion process rather than either alone.

The study by Ma et al. (2023) revisits the prob-
lem of predictive bias, introducing a novel evalua-
tion metric and proposing two algorithms namely
T-fair Prompting and G-fair Prompting that aim
to improve classification performance by selecting
support examples that yield a more uniform distri-
bution over output classes. More recently, Ahmad-
nia et al. (2025) emphasized that Few-Shot Learn-
ing performance degrades significantly when inap-
propriate support samples are selected. To address
this, they introduced a new method that combines
fine-tuning with Active Learning (AL) for support
sample selection. Their approach leverages em-
bedding techniques to extract salient features from
unlabeled data and applies strategic sampling to
select the most informative examples, thereby en-
hancing classification outcomes. Similarly, Pecher
et al. (2024) highlighted the crucial role of sample
quantity and quality in few-shot learning. Their

work investigates how different sample selection
strategies can be combined to mitigate the limi-
tations posed by a restricted number of training
examples and improve overall learning effective-
ness.

These studies underscore the critical impact
of few-shot prompting strategies on classification
tasks, particularly emphasizing how imbalanced
sample distributions can introduce predictive bi-
ases and affect both fairness and model reliability.

3 Methodology

This study has built upon a previously verified few-
shot COT prompt provided by the GLOSSGPT.
Prompts have been designed in English following
a systematic chain of thought process, sequentially
providing the lexical resources (gloss + synonyms)
and a few possible few-shot instances extracted
from pre-built KB, as illustrated in Figure 2. En-
glish prompts were used in all experiments, in-
cluding multilingual setups, to minimize prompt
ambiguity during inference. This ensures that the
core evaluation remains focused on the WSD task
itself, rather than being influenced by prompt de-
sign (Aina and Linzen, 2021). In this section, we
present the dataset used, the techniques employed
for knowledge base creation, and the sampling
method applied for frequency sharing.

3.1 Datasets

3.1.1 SemEval-2013 WSD dataset
For our evaluation, we use an updated version
of SemEval-134, which contains four languages:
Italian (IT), Spanish (ES), French (FR), and Ger-
man (DE). English WSD was evaluated using
the SemEval-13 English dataset (Jurgens and Kla-
paftis, 2013).

The sentence with multiple ambiguous words
is split into different sentences, ensuring that each
sentence contains only one ambiguous word, which

4https://github.com/SapienzaNLP/mwsd-datasets
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Figure 2: The data flow of the experiment process.

is enclosed between <WSD> tokens for the LLM
inference task. A total of 300 random samples are
utilized for the study for each language, with each
sentence containing exactly one ambiguous word
marked for disambiguation. A total of 300 samples
were carefully selected to ensure that each ambigu-
ous word had at least two distinct senses in Babel-
Net, a prerequisite for meaningful disambiguation.
Priority was given to nouns, although samples also
included other parts of speech (POS). The poly-
semy histogram for each language is shown in
Figure 1. Furthermore, the study is constrained
to a limited number of samples due to the practi-
cal limitations imposed by BabelNet’s inference
capabilities via API. To ensure consistency across
evaluations, the same set of 300 random samples is
used across all three sampling methods discussed
in subsection 3.3. The micro F1 score is employed
as the evaluation metric for assessing model per-
formance.

3.1.2 BabelNet

BabelNet (Navigli and Ponzetto, 2010) is the pri-
mary lexical knowledge base used for this study. It
is a multilingual lexical and encyclopedic resource
built by semi-automatically integrating various
sources such as WordNet, multilingual WordNets,
and Wikipedia. It contains multilingual synsets
of synonymous terms across different languages,
spanning 600 languages and includes over 23 mil-
lion synsets. For this study, lexical knowledge
resources are primarily obtained through the Ba-
belNet API, which imposes a daily limit of 1,000
BabelCoins. This constraint necessitated limiting
the study to a smaller set of samples. In addition,
English lemmas and their corresponding synonyms
are extracted from WordNet (Miller, 1995) to fur-
ther enrich the lexical representation, especially

in capturing and disambiguating ambiguous word
meanings.

3.2 Knowledge-base creation for few-shot
retrieval

The creation of the knowledge base (KB) was
inspired by GLOSSGPT (Sumanathilaka et al.,
2025b) and has been further enhanced to support
a multilingual setup. The training data for all four
languages is structured as a tree, with the language
as the root node. The first-level parent nodes rep-
resent ambiguous words, the second-level nodes
correspond to POS tags, and the child nodes con-
tain example instances along with their respective
BabelNet sense IDs. For efficient retrieval, the
structure is stored in a JSON file. Based on the am-
biguous word, the required information can be re-
trieved in constant time and shared with the model
for few-shot prompting, following the sampling
strategies described in subsection 3.3. A detailed
structure is provided in Figure 3.

3.3 Sampling Strategies for Few-Shot
Prompting in WSD

In this study, we apply few-shot prompting using
the in-context learning paradigm to identify the
correct sense of an ambiguous word in the WSD
task. We explore how the frequency distribution
of senses in the example pool affects the model’s
performance. Specifically, we define three sam-
pling strategies based on the distribution of sense
frequencies below: Highest Frequency Sharing,
Lowest Frequency Sharing, and Average Frequency
Sharing. We denote:

– n as the total number of senses for a given
ambiguous word,
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Word Sense Meaning Description Actual # HF LF AF
bank.n.14:00 Financial institution 7 7 1 4
bank.n.17:01 Edge/slope of a river or body of water 4 4 1 4
bank.n.17:00 Raised embankment, like a ridge or mound 1 1 1 1
bank.n.14:01 Series/set (e.g., a bank of windows) 1 1 1 1

Table 1: Sense Count and Example Report for the Word “Bank”, according to the three frequency sharing techniques.
H: High, L: Low, A: Average, F: Frequency

Figure 3: Few-shot knowledge base arrangement. For
demonstration, the French branch is shown. A simi-
lar arrangement is followed for German, Italian and
Spanish.

– freq(Si) as the number of available examples
for sense Si, where i ∈ {1, 2, ..., n},

– F = {freq(S1), freq(S2), . . . , freq(Sn)} as
the set of all sense frequencies.

Each strategy defines how many few-shot ex-
amples ki are selected for each sense Si, where
ki ≤ freq(Si). Case selection is performed ran-
domly when freq(Si) > ki.

1. Highest Frequency Sharing

This strategy aims to balance the number of few-
shot examples according to the most frequent sense.
Each sense Si is assigned k = max(F) examples,
if sufficient samples are available, else the number
of samples available for that particular sense:

ki = min (max(F), freq(Si))

2. Lowest Frequency Sharing
This strategy equalizes the number of few-shot
examples using the least frequent sense that has at
least one sample. Each sense Si receives:

ki = min (min(F \ {0}), freq(Si))

This ensures that all senses are represented
equally, without exceeding their available samples.

3. Average Frequency Sharing
This strategy computes an average of the minimum
non-zero and maximum frequencies and uses it as
a balanced number of examples per sense:

k =

⌊
min(F \ {0}) + max(F)

2

⌋

ki = min(k, freq(Si))

This method serves as a compromise between
the two extremes and reduces the effect of extreme
imbalance.

Occasionally, it is observed that certain senses
have no corresponding examples in the training
data used to build the knowledge base for few-shot
retrieval. In such cases, regardless of the sampling
strategy applied, only the sense identifier (sense
ID) is shared in the prompt, without any supporting
examples. The frequencies and adjusted frequen-
cies according to the three frequency sharing tech-
niques is shown for “Bank” as a noun in Table 1.

3.4 Study Setup
For this study, we selected the GPT-4o and LLaMA
3.1-70B models due to their strong performance in
multilingual settings (Vayani et al., 2025). General-
purpose chat models were used in this study with-
out any fine-tuning or prompt tuning. This was
deliberately done to ensure the evaluation of the
effectiveness of prompt engineering alone, using
a few-shot example. Access to GPT-4o was ob-
tained via the OpenAI API using a tier-one Ope-
nAI account, while LLaMA-3.1-70B was accessed
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through the Together.ai API. Both models were
configured with a temperature of 0 and a maxi-
mum output token limit of 500. The temperature
selection for the study was inspired by previous
work (Sumanathilaka et al., 2025a), and zero(0)
was selected to ensure the deterministic responses
of the study. The primary task assigned to both
LLMs was word sense identification, with their
role defined as a “helpful assistant for identifying
word senses”.

4 Results and Discussion

This section presents the results of our experiments,
organized into three main areas of analysis. First,
we evaluate the impact of different sampling strate-
gies on performance. Next, we examine the suit-
ability of various models for the task, highlighting
their strengths and limitations. Finally, we explore
the influence of contextual factors on the outcomes,
providing insight into how context affects model
behavior and overall system performance.

4.1 Effectiveness of Sampling Strategies

The experimental results in Table 2 show there
is no universally optimal few-shot sampling strat-
egy for WSD. The efficacy of any given strat-
egy is highly context-dependent. Average Fre-
quency Sharing often serves as a robust baseline,
especially when paired with more capable mod-
els such as GPT-4o and applied to languages like
English, German, and French in this study. Its
balanced approach to sense representation gen-
erally proves beneficial, avoiding assigning too
much weight to the high-frequency senses. High-
est Frequency Sharing emerges as a specialized
but highly effective strategy in certain linguistic
contexts, specifically Spanish and Italian in this
dataset, where it consistently outperforms other
methods for both LLMs. This suggests that high-
frequency examples can improve sense prediction
in lower-resourced languages like Spanish and Ital-
ian.

In contrast, Lowest Frequency Sharing is gen-
erally a high-risk strategy, often resulting in sub-
optimal or even the worst performance. Its occa-
sional success appears to be tied to specific model-
language combinations, for example, LLaMA 3.1
with English. However, the performance improve-
ment is not significant compared to the average
frequency sampling. The variability in optimal
strategy across different conditions, such as model

and language, highlights the importance of empiri-
cal evaluation when aiming for peak performance.
In practice, WSD applications should test multiple
strategies or base their choice on strong, evidence-
backed reasoning that considers the characteristics
of the LLM and target language. This also suggests
the potential value of developing adaptive meth-
ods that can dynamically select or adjust sampling
strategies based on context and sense distribution.

Overall, these results suggest that frequency-
based sampling has limited influence on WSD per-
formance in English, where even the lowest fre-
quency sense for a word has sufficient samples for
the model to attune to, but plays a more significant
role in multilingual contexts, particularly for less
resourced languages like Spanish and Italian.

4.2 Model-Specific Suitability for Few-Shot
WSD

The choice of LLM significantly affects the ef-
fectiveness of few-shot sampling strategies. In
this WSD study, GPT-4o generally achieved the
highest performance overall. However, LLaMA
3.1 proved to be a strong competitor, even outper-
forming GPT-4o in certain cases, such as when
using Highest Frequency Sharing in Spanish. Im-
portantly, both models were sensitive to the sam-
pling strategy used. Even a powerful model like
GPT-4o did not perform best with a single strategy
across all languages; for example, its performance
in Spanish varied by 0.10 points depending on the
sampling method.

This shows that model size or general capability
alone cannot fully compensate for poor sampling
choices. On the other hand, a model like LLaMA
3.1 can deliver excellent results when the sampling
method is well-matched to its strengths and the
task at hand. Conversely, thoughtful sampling de-
sign can improve results even for smaller or less
advanced models. These results suggest that future
work could benefit from developing model-aware
sampling techniques.

4.3 Influence of Linguistic Context on
Performance

Linguistic context has a significant impact on WSD
performance. This study revealed a consistent per-
formance hierarchy across the five languages ex-
amined: English and German >French >Span-
ish and Italian. This pattern held across both
LLMs and most sampling strategies, indicating it
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Model Method English German Spanish French Italian

GPT-4o
Highest frequency 0.81 0.76 0.70 0.75 0.74
Lowest frequency 0.81 0.72 0.60 0.70 0.65
Average frequency 0.83 0.78 0.64 0.76 0.70

LLaMA-3.1
Highest frequency 0.75 0.76 0.73 0.72 0.68
Lowest frequency 0.77 0.70 0.60 0.68 0.63
Average frequency 0.76 0.77 0.65 0.74 0.66

Table 2: Performance comparison across languages for GPT 4o and LLaMA 3.1 under different frequency strategies.
F1 scores are presented.

reflects deeper linguistic or resource-based differ-
ences rather than specific methodological choices.

Importantly, the optimal sampling strategy also
varied by language. Average Frequency Sharing
worked best for English, German, and French,
while Highest Frequency Sharing was more ef-
fective for Spanish and Italian. This suggests that
under-resourced languages like Spanish and Ital-
ian benefit from sampling strategies that empha-
size more frequent and balanced sense represen-
tations to improve interpretation and disambigua-
tion. The key takeaway is the need for language-
aware WSD strategies. Achieving strong multi-
lingual performance requires more than powerful
models, which demands careful attention to each
language’s characteristics, including its sense dis-
tribution, resource availability, and representation
in training data. This may involve tailored pre-
processing, targeted resource development, or even
fine-tuning models for specific languages or typo-
logical groups. A one-size-fits-all approach, typi-
cally optimized for English, is unlikely to perform
well across the linguistic spectrum.

5 Conclusion and Future Directions

In conclusion, this research demonstrates that the
selection of a few-shot examples in prompting
LLMs can introduce significant performance vari-
ance in classification tasks in a multilingual setup,
particularly when certain senses are overrepre-
sented. However, in the case of English, such no-
ticeable deviations are not identified. These results
emphasize the importance of maintaining a bal-
anced distribution of examples across all classes.
The results also indicate that high-frequency shar-
ing of sense examples can positively influence cor-
rect sense prediction, reinforcing the benefits of
in-context learning during the inference process.
Conversely, reducing few-shot examples to ad-

dress class imbalance, especially for low-frequency
senses, is not an effective strategy, as it can hinder
the in-context learning process and degrade overall
performance by limiting knowledge transfer. Im-
balanced prompts tend to bias the model toward
high-frequency senses, leading to reduced accu-
racy. While averaging techniques help mitigate
such bias to some extent and contribute to more
consistent performance, they are not a complete
solution.

Overall, these findings underscore the need for
balanced few-shot prompting with sufficiently rich
examples to teach LLMs accurate sense disam-
biguation. These insights are particularly valuable
when extending similar techniques to low-resource
languages, where inherent limitations in language
performance make balanced prompting even more
critical. In such low-resourced multilingual adap-
tation setups, ensuring a well-balanced distribu-
tion of examples can significantly enhance both
in-context learning and classification accuracy.

Future studies should focus on methodologies
for balancing and improving few-shot learning, par-
ticularly in low-frequency and uncommon-sense
scenarios. As suggested by Han et al. (2024); Li
et al. (2024), multi-agent systems based on LLMs
could be effectively utilized for context-aware
few-shot generation, helping to create balanced
examples necessary for the disambiguation pro-
cess. These advancements can ensure that general-
purpose LLMs are effectively leveraged for lin-
guistic tasks such as WSD, rather than requiring
fine-tuning for specific downstream applications.

The code and implementation are avail-
able at https://github.com/Sumanathilaka/

Prompt-Balance-Matters.
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Limitations

One limitation of this study is that it considers
only two flagship LLMs, which, while representa-
tive of current state-of-the-art performance, may
not fully capture the diversity in model behavior.
Although this does not compromise the strength
of our findings, future evaluations with a broader
range of models could provide further validation
and insights. Additionally, the models used in
this study are primarily chat-oriented; reasoning-
focused models may exhibit different disambigua-
tion capabilities, and evaluating such models would
be a valuable extension. Another constraint is the
limited sample size of 300 sentences per language.
While this restricts the scale of the analysis, it en-
sures that each sampling technique operates on an
identical and controlled dataset, thereby preserving
consistency across evaluations without introducing
bias from differing input distributions.
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Abstract

Named Entity Recognition (NER) is a cru-
cial component of Natural Language Pro-
cessing (NLP) systems, which are utilized
to extract significant information from
massive quantities of unstructured textual
data. The application of NER holds signifi-
cant value in various NLP tasks, including
but not limited to information retrieval, au-
tomatic question-answering systems, infor-
mation extraction, and machine translation.
Already, NER has accomplished fruitful
achievements in English as well as in a
number of other European languages. On
the other hand, it is not yet well explored
in Indian languages, primarily in the Odia
language, remains insufficiently investi-
gated owing to the absence of supporting
tools and resources. In recent years, Ma-
chine Learning (ML) and deep learning
(DL) based approaches have been able to
achieve outstanding performance in con-
structing NLP tasks; nevertheless, these
methods generally call for massive vol-
umes of annotated corpus, which are costly
to generate due to the need for domain-
specific exports. Therefore, at present,
researchers are utilizing the active learn-
ing approach, which involves the use of
a sample selection technique in conjunc-
tion with supervised models. The aim of
this approach is to minimize annotation ex-
penses while optimizing the performance
of ML and DL based models. The primary
objective of this research is to develop a

new active learning based NER system
for Odia language.We applied a deep ac-
tive learning (Deep-AL) strategy, and the
deep active learning-based Odia NER sys-
tem achieved nearly state-of-the-art per-
formance. By utilizing only 38% of the
original training data, we have achieved
a maximum F1 score of 85.02%, which
could save almost 62% of the cost for an-
notation.

1 Introduction

Identifying and classifying named entities (NE)
into predefined classes such as person, loca-
tion, organization, number, and time is a fun-
damental task in many NLP applications, com-
monly referred to as Named Entity Recogni-
tion (NER) (Nadeau and Sekine, 2007). Ac-
curate identification of such entities is critical
for extracting structured information from un-
structured text. NER also plays a significant
role in search engines for organizing, index-
ing, and linking named references consistently,
thereby enhancing document searchability. For
example, a NER system can help accurately de-
termine individuals mentioned in news articles.
Its utility has been well demonstrated in sys-
tems like Amazon Alexa and Apple Siri, partic-
ularly for Western languages. Moreover, NER
is a key component in several downstream NLP
tasks such as question answering, text summa-
rization, machine translation (Bala Das et al.,
2024, 2023; Das et al., 2025b,a), word-sense
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disambiguation, coreference resolution, and
semantic search.

Despite significant progress in European and
many Asian languages, NER remains underex-
plored in low-resource languages, particularly
Odia. Literature indicates that very limited at-
tention has been paid to Odia in the context
of NLP tasks, including NER. While Indian
languages have seen increasing research in
computational linguistics, Odia continues to
lack the necessary tools and resources. Thus,
it becomes essential to investigate NER from
the lens of Odia language processing. Though
a few studies on Odia NER exist, many of
the resources used are either not publicly ac-
cessible or lack proper documentation. This
work builds on earlier research in developing
POS taggers for Odia (Dalai et al., 2023, 2024),
and represents a step forward in advancing se-
quence labeling tasks for the language.

The development of a robust Odia NER sys-
tem is crucial for enhancing Odia NLP applica-
tions. Several approaches such as probabilistic
methods, rule-based systems, deep learning
models, and hybrid strategies have been em-
ployed to address NER tasks. These systems
aim to automatically tag entities in text. How-
ever, existing Odia NER systems mostly rely
on conventional approaches like rule-based or
machine learning techniques. The lack of Odia
linguistic resources, including grammar knowl-
edge and handcrafted features, poses a signifi-
cant challenge. Additional linguistic complexi-
ties such as free word order, no capitalization,
high ambiguity, and morphological richness
further complicate NER development in Odia.

To address these challenges, deep learning
(DL) methods are being increasingly adopted
in NER system development. Popular models
like CNNs, RNNs, LSTMs, and GRUs have
shown success in other languages by lever-
aging multiple neural network layers to ex-
tract higher-level features. However, DL-based

models have not yet been effectively applied
to Odia NER. This work aims to bridge that
gap by evaluating DL-based approaches for
Odia. Since DL models require large volumes
of annotated data, which are expensive and
time-consuming to produce, we adopt an active
learning (AL) approach. AL combines sample
selection strategies with supervised learning
to reduce annotation costs while maintaining
model effectiveness.

AL is especially useful in scenarios where
collecting large labeled datasets is not practical.
As a semi-supervised technique, AL focuses
on reducing manual labeling during training
by iteratively selecting the most informative
samples. In this study, we develop an active
learning-based NER system for Odia using a
relatively small annotated corpus. We employ
a subset of the Odia NER dataset (Dalai et al.,
2025), comprising 10,950 sentences annotated
across twelve entity classes. The dataset and
methodology are described in subsequent sec-
tions.

2 Related Work

This section presents a comprehensive
overview of research and development in
Named Entity Recognition (NER). The
earliest significant effort in this area was
introduced by (Grishman and Sundheim,
1996) at the Sixth Message Understanding
Conference (MUC-6) in 1996, where the NER
task focused on identifying entities such as
persons, organizations, locations, percentages,
and currency. Following this, numerous
researchers contributed to the growth of the
field (Sang and De Meulder, 2003; Demartini
et al., 2009; Balog et al., 2010). Several
advancements were later made in Indian
language NER through rule-based approaches
(Gupta and Lehal, 2011; Alfred et al., 2014;
Riaz, 2010; Sasidhar et al., 2011). While
such systems often yielded strong results,
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they had notable limitations, including high
dependence on manual effort, slow learning
capability, and substantial time requirements.
Moreover, rule-based NER systems tend to be
language-specific, making them difficult to
adapt across different linguistic contexts. Due
to these drawbacks, attention gradually shifted
towards statistically-driven machine learning
algorithms, which offered more flexibility and
scalability for NER development.

The advancement of the NER system has
encompassed the amalgamation of diverse
statistical methodologies, such as the Sup-
port Vector Machine (SVM), Maximum En-
tropy (ME)(Saha et al., 2012), Hidden Markov
Model (HMM)(Bikel et al., 1997; Morwal
et al., 2012), Conditional Random Fields
(CRF)(Mccallum, 2003), and other related
techniques. These systems achieve this by inte-
grating rule-based and ML-based approaches
(Chopra et al., 2012; Biswas et al., 2010;
Srivastava et al., 2011). Although machine
learning-based NER systems exhibit remark-
able performance, these systems nevertheless
have a number of major disadvantages. These
limitations include the requirement for exten-
sive annotated datasets, the challenge of select-
ing an appropriate feature set, and the choice
of an appropriate learning algorithm. Further-
more, researchers have initiated the develop-
ment of DL models that avoid the need for
traditional methodologies for the development
of sequence labeling task.

Initially, (Collobert et al., 2011) devised an
English NER model by utilizing characteris-
tics acquired from word embeddings (WE) that
were trained on an extensive collection of un-
labeled data. (Chiu and Nichols, 2016) devel-
oped a NER system for the English language
and this model incorporated both Bi-LSTM
and CNN architectures to capture character-
level details. In a similar manner, (Ma and
Hovy, 2016) proposed a NER model for the

English. The model, based on a combina-
tion of Bi-LSTM, CNN, and CRF, incorpo-
rates various deep learning techniques. In addi-
tion, (Athavale et al., 2016) developed a model
for Hindi NER systems, which integrates pre-
trained word embeddings with a Bi-LSTM ar-
chitecture and a softmax layer. (Gupta et al.,
2018) introduced an additional neural network
model for NER that utilizes deep learning tech-
niques. This model specifically focuses on
code-mixed Indian social media content and
employs a gated recurrent unit (GRU) along
with character- and word-layer embeddings.
However, the utilization of deep learning-based
methods often necessitates a large quantity of
annotated corpora. Nonetheless, the process
of constructing such datasets demands a sig-
nificant investment of time and extensive man-
ual effort. Active learning has demonstrated
promising results in situations where there is
a limited corpus, thereby reducing the require-
ment for a large dataset. The system selects
samples for labeling in an efficient manner.
The active learning technique enables the al-
gorithm to make informed decisions regarding
the selection of instances for labeling, as op-
posed to the supervised learning mode, where
a random subset of unlabeled instances is gen-
erated and labeled.

Many NLP applications, including informa-
tion extraction (Settles and Craven, 2008), text
classification (Tong and Koller, 2001), and
word sense disambiguation (Zhu and Hovy,
2007), which need annotation from a huge pool
of unannotated data to build a supervised ML
model have benefited from Active Learning
(AL) methodologies. However, the traditional
AL algorithm fails to address high-dimensional
data. Therefore, it is anticipated that the combi-
nation of active learning and deep learning will
produce better results. Deep active learning
has been employed extensively in numerous
applications like text categorization (Schröder
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and Niekler, 2020; Zhang et al., 2017), im-
age recognition (Gal et al., 2017; Gudovskiy
et al., 2020), visual question answering (Lin
and Parikh, 2017), and object detection (Agh-
dam et al., 2019; Feng et al., 2019).

A handful of NER model construction ini-
tiatives have been proposed for the Odia lan-
guage. (Das and Patnaik, 2013) proposed the
first Odia NER system; it made use of a sup-
port vector machine and attained an F1 score
of 80% by feeding the feature set as language-
specific rules, gazetteers, and context patterns.
Following this, (Das et al., 2015) introduced
an Odia NER system based on ML and trained
on a manually annotated corpus of 1,000 sen-
tences. For the purpose of data labeling, a set
of ten tags was considered. This NER system
achieved an F1 score of 81%. Subsequently,
(Balabantaray et al., 2013) developed a NER
system for the Odia language that was based on
CRF, and they acquired an F1 score of 71%. In
order to evaluate the effectiveness of the NER
task, a variety of feature sets were generated
using gazetteers and POS tags, respectively.

Based on our review of the relevant litera-
ture, we found that researchers have not paid
much attention to Odia for NLP tasks such
as NER, and only a small amount of study
has been conducted on the language. Deep
learning-based strategies were not utilized to
their full potential when building the Odia Nat-
ural Language Engineering (NER) system.

3 System Model

3.1 Active Learning

This subsection describes the algorithmic pro-
cedure of Active Learning (AL), as depicted in
Figure 1. The initial training samples for a ma-
chine learning or deep learning-based model
are annotated by domain experts, and it picked
according to a predefined strategy. After that,
the annotated data is used to train the model;
the unlabeled samples are ranked using a pre-

determined set of rules, and the best n samples
are selected for annotation. Next, the anno-
tated data are added to the training set, and
the model is retrained using the updated train-
ing data. Iteration is performed on both the
learning process and the selecting process up
until the termination condition is met. It is very
clear that the AL process ought to address the
three significant concerns. The first step is the
production of the initial training set, the sec-
ond is the selection of an appropriate method
for sample selection, and the third is the effec-
tive setup of the iterative process and the quit
condition.

In this research, we modeled a real-world
AL framework on pool-based resources. Even
though we pre-annotated every sentence in our
corpus, we did not make use their labels until
the query algorithms picked them out.

Figure 1: The process of active learning

Existing active learning methods have al-
ready demonstrated promising results in se-
quence labeling tasks. Three uncertainty-based
strategies are implemented in our experiment:
Least Confidence (LC), Bayesian Active Learn-
ing by Disagreements (BALD) and Maximum
normalized log-probability (MNLP).

3.2 Deep Active Learning

This subsection presents a complete and me-
thodical approach for the Deep active learn-
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ing (Deep-AL)-based Odia NER system. DL
has a high learning capacity when it comes to
the processing of high-dimensional data and
the automatic extraction of features, but AL
has the ability to significantly minimize the
costs associated with labeling the data. Conse-
quently, it is clear to combine active learning
and deep learning since this will considerably
increase their applicability. Deep-AL was pro-
posed by taking into account the combined
benefits of the two methodologies. The frame-
work of the Deep-AL model for the NER task
of Odia language is illustrated in Figure 2. A
deep learning model must first be initialized
and pre-trained on labeled training data to ex-
tract features from unlabeled samples. After
that, we chose samples by employing the corre-
sponding query strategy, query the label by the
manual annotator to construct a new training
set, trained the deep learning model by making
use of the updated training data, and then si-
multaneously updated the unlabeled pool. This
method is repeated until the predetermined ter-
mination criteria are met. The Deep-AL archi-
tecture can, in its most basic form, be broken
down into two parts: the AL query method
applied to the unlabeled dataset and the DL
model training procedure.

Odia
sentences

Data pool

Start

Gather a large
set of unlabeled
Odia sentences

Selecting a small
number of samples Manual annotation

Training on 

deep learning-based

model

Use traing data to
build model

 Unlabeled
Odia

sentences

Ranked unlabeled
samples

Select top n uncertain
samples

Estimate the model
perfermance on
development set

Performance

 meets threshold

 Make prediction
on unlabeled

samples

 Ranking the
samples using

certain raking rules

Stop
Yes

No

Annotated
training

Odia NER
data

Annotated
training

Odia NER
data with

POS
information

Odia POS tagger

Figure 2: Framework of deep active learning model
for Odia NER task

3.2.1 Deep Learning
The majority of AL approaches call for fre-
quent retraining of the model when newly
labeled instances are annotated. This is re-
quired in order to ensure optimal performance.
As a consequence of this, it is essential that
the model be capable of being retrained in
a time-efficient manner. On the other hand,
we would like to match with state-of-the-art
deep learning-based models in terms of perfor-
mance. In order to accomplish this, we must
first determine the various deep learning archi-
tectures that comprise the Odia NER system.
In this instance, a variety of DL-based models,
including CNN, Bi-LSTM, models with CRF
at inference layer are used to train the model.
The architecture of the DL-based model for
Odia NER system depicted in Figure 3. Fig-
ure 3 outlined the stages required in creating a
DL model in order to make it simple.

1. The model takes an Odia sentence as in-
put.

2. In order to incorporate information per-
taining to the character sequences of Odia
words, neural encoders such as CNN
and Bi-LSTM models are employed as
character-level embeddings.

3. Pre-trained FastText Odia word vector is
used to initialize for word-level embed-
dings.

4. A fully connected NN is then fed the com-
bined character and word embeddings.

5. The output of the previous layer gets in-
putted into the word sequence layer as
input.

6. The output of the final hidden layer of the
word sequence layer is utilized as input
for the inference layer (CRF or softmax)
in order to make predictions over possible
tags associated with each input word.

20



Figure 3: Architecture of Odia NER system using
deep learning-based model

4 Experimental Results

4.1 Dataset Description

Figure 4: Class wise NEs in Odia NER dataset

For our experiment, we have used a sub-
set of the public Odia NER corpus (Dalai
et al., 2025). The Odia NER dataset includes
the twelve NE types of PERSON, ORGANI-
ZATION, GEOPOLITICAL ENTITY, LOCA-
TION, EVENT, LANGUAGE, ART, SPORTS,
NUMBER, TIME, MEASUREMENT, and
OTHERS.

Figure 5: A sample of Odia NER dataset

The dataset included 10,950 annotated sen-
tences with a total of 158,947 tokens and

25,352 named entities. Figure 4 displays the
statistics of the named entities in the Odia
NER dataset. The dataset is split into three
distinct parts: (1) the development set; (2) the
training set that will be queried; and (3) the
test set that will be evaluated. The distribution
of the Odia NER corpus is shown in Table 1.

Table 1: Odia NER corpus details

Data Number of Sentences Number of tokens
Training 7660 1,11,250
Testing 1650 23,830

Development 1640 23,867
Total 10,950 1,58,947

4.2 Results
In order to verify the effectiveness and perfor-
mance of our Deep-AL model, we have im-
plemented different deep-learning techniques.
Training the Odia NER models involved the us-
age of the Bi-LSTM classifier, which encoded
words using a Bi-LSTM model and charac-
ter level encoding using either of CNN or Bi-
LSTM, and finally, the inference layer was
handled by softmax or CRF tag decoder. We
employed the conventional separation of the
datasets, which included training, validation,
and test data. Our Odia NER dataset was di-
vided according to the usual 70% / 15% / 15%
split, with 70% going to training and 15% each
to validation and testing. The performance of
the test dataset is used to determine parame-
ters such as the number of iterations, learning
rate, etc. To initialize the token, we employed
a character embedding size of 30 and word
embedding size of 300. Our complete deep
learning system was trained with a stochastic
gradient descent optimizer with a learning rate
of 0.001, batch size of 128, and dropout rate of
30%. Our model comprised 300-dimensional
word embeddings (WE) and utilized the pre-
trained FastText model. We trained the models
for 30 epochs. The number of active learning
iterations was set at 25 due to the observation

21



that each algorithm does not exhibit significant
improvement after 20 iterations.

Figure 6: F1-Score of different models with active
learning strategies, M1: Bi-LSTM + Softmax, M2:
Bi-LSTM + Softmax + POS , M3: Bi-LSTM +
CRF , M4: Bi-LSTM + CRF + POS , M5: WE
+ Bi-LSTM + Softmax , M6: WE + Bi-LSTM +
Softmax +POS , M7: WE + Bi-LSTM + CRF ,
M8: WE + Bi-LSTM + CRF + POS , M9: WE
+ CharCNN + Bi-LSTM + Softmax , M10: WE
+ CharCNN + Bi-LSTM + Softmax + POS, M11:
WE + CharCNN + Bi-LSTM + CRF, M12: WE +
CharCNN + Bi-LSTM + CRF + POS , M13: WE +
CharBi-LSTM + Bi-LSTM + Softmax , M14: WE
+ CharBi-LSTM + Bi-LSTM + Softmax + POS ,
M15: WE + CharBi-LSTM + Bi-LSTM + CRF ,
M16: WE + CharBi-LSTM + Bi-LSTM + CRF +
POS.

The Deep-AL process begins with a random
selection of samples from the training dataset,
on which the model was trained. Following
this, the learning process consists of numerous
iterations. At the beginning of each round, the
Deep-AL algorithm selects the unannotated
sentences from the data pool to be annotated
based on a specified budget. After the samples
are labeled, they are incorporated into the train-
ing data, and the data pool and training set is
then updated. Therefore, the model parameters
are modified through training on the current
training dataset before proceeding to the next
iteration. We initiated our experiments with
2% of the training data from the Odia NER
corpus that was labeled. In addition, the same
number of data was added at each learning it-

eration, and the precision, recall, and F1 score
are used to evaluate the model performance
on the testing set. Furthermore, we detailed
the performance of our model following its
completion of training. Each experiment was
repeated five times, and the average F-scores
are recorded. The results depicted in Figure 7
demonstrate that all active learning algorithms
outperform the random baseline in the Odia
NER corpus. Additionally, the results indi-
cate that the MNLP approach displays superior
performance when compared to other active
learning strategies on Odia NER dataset.

Table 2 depicted the results of our compar-
ative analysis of the Odia NER performance
of several models with MNLP active learning
strategy. The graph depicted in Figure 7 dis-
plays F1 scores on the y-axis and the propor-
tion of tagged words used for training on the
x-axis. The results indicate that active learn-
ing methods utilizing only 38% of the training
data on the Odia NER dataset were able to
achieve 99% of the performance of the deep
learning model that was trained with complete
data. Table 3 presents the precision, recall, and
F1 score for each distinct named entity class
in our optimal Odia named entity recognition
system.

Figure 7: F1 score on the test dataset, in terms of
the number of words labeled
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Table 2: Precision, Recall and F1 score of different models on Test data

Model Usage of POS information Precision recall F1-Score
Bi-LSTM + Softmax

NO

82.67 80.87 81.76
Bi-LSTM + CRF 82.85 81.07 81.98

WE + Bi-LSTM + Softmax 84.23 82.29 83.25
WE + Bi-LSTM + CRF 84.56 82.48 83.51

WE + CharCNN + Bi-LSTM + Softmax 85.11 83.40 84.25
WE + CharCNN + Bi-LSTM + CRF 85.36 84.00 84.67

WE + CharBi-LSTM + Bi-LSTM + Softmax 85.03 82.78 83.89
WE + CharBi-LSTM + Bi-LSTM + CRF 85.18 83.05 84.10

Bi-LSTM + Softmax

YES

83.28 81.34 82.30
Bi-LSTM + CRF 83.92 81.49 82.69

WE + Bi-LSTM + Softmax 84.63 82.68 83.64
WE + Bi-LSTM + CRF 84.55 82.80 83.67

WE + CharCNN + Bi-LSTM + Softmax 85.29 84.45 84.87
WE + CharCNN + Bi-LSTM + CRF 85.76 84.29 85.02

WE + CharBi-LSTM + Bi-LSTM + Softmax 85.11 83.80 84.45
WE + CharBi-LSTM + Bi-LSTM + CRF 85.23 83.86 84.54

Table 3: Label wise score of WE+CharCNN+Bi-
LSTM+CRF model on Test data

Name entity Precision Recall F1-score
ART 87.16 82.92 84.99

EVENT 81.29 78.36 79.80
GPE 91.90 89.63 90.75

LANG 90.32 90.11 90.21
LOC 79.51 75.79 77.61
MES 92.32 94.56 93.43
NUM 91.78 93.97 92.47
ORG 82.18 76.39 79.18
OTH 82.37 77.46 79.84
PER 89.40 91.62 90.50

SPORTS 66.67 71.36 68.94
TIME 94.29 89.43 91.80

Macro average 85.76 84.29 85.02

5 Conclusion and Future Work

In this work, we presented a cost-effective
and resource-efficient NER system for the
low-resource Odia language using a Deep-AL
framework. By integrating deep learning archi-
tectures with active sample selection strategies,
we addressed the challenges posed by limited
annotated data, high labeling costs, and the
linguistic complexity of Odia. Our proposed
approach demonstrated that high performance
can be achieved up to an F1 score of 85.02%
using only 38% of the annotated data required
by traditional deep learning models, thereby
reducing annotation costs by approximately
62%. Through extensive experimentation, we

showed that incorporating character-level fea-
tures, pretrained FastText embeddings, POS
information, and a CRF-based inference layer
led to improved model performance. The re-
sults indicate that our approach not only out-
performs standard supervised methods but also
demonstrates scalability and efficiency, mak-
ing it suitable for similar low-resource lan-
guage settings. Despite promising outcomes,
there are several directions for future enhance-
ment of this work: The framework can be
adapted for other low-resource Indian lan-
guages, facilitating cross-lingual and multilin-
gual NER systems with shared architectures
and embeddings. Future experiments may in-
volve incorporating transformer-based archi-
tectures such as BERT, XLM-R, or IndicBERT
for richer contextual representation and better
generalization. Although we evaluated com-
mon strategies like LC, BALD, and MNLP,
future work could explore more advanced, or
hybrid query strategies tailored specifically
for NER in agglutinative and morphologically
rich languages like Odia. This research repre-
sents a significant step toward democratizing
NLP technology for low-resource languages
and highlights the practical feasibility of de-
ploying scalable, accurate NER systems under
constrained resources.
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Abstract

Natural Language Processing (NLP) for low-
resource languages, which lack large annotated
datasets, faces significant challenges due to lim-
ited high-quality data and linguistic resources.
The selection of embeddings plays a critical
role in achieving strong performance in NLP
tasks. While contextual BERT embeddings re-
quire a full forward pass, non-contextual BERT
embeddings rely only on table lookup. Existing
research has primarily focused on contextual
BERT embeddings, leaving non-contextual em-
beddings largely unexplored. In this study, we
analyze the effectiveness of non-contextual em-
beddings from BERT models (MuRIL and Ma-
haBERT) and FastText models (IndicFT and
MahaFT) for tasks such as news classification,
sentiment analysis, and hate speech detection in
one such low-resource language—Marathi. We
compare these embeddings with their contex-
tual and compressed variants. Our findings indi-
cate that non-contextual BERT embeddings ex-
tracted from the model’s first embedding layer
outperform FastText embeddings, presenting a
promising alternative for low-resource NLP.

1 Introduction

Word embedding is a way of representing words
into dense vectors in a continuous space such that
the vectors capture the semantic relationship be-
tween the words for the models to understand
the context and meaning of the text. FastText,
a context-independent method, basically captures
the subword information, enabling it to learn rare
words, misspelled words, and out-of-vocabulary
words. It is recognized in the NLP community
for its efficient performance in tasks like text clas-
sification and sentiment analysis. Despite being
relatively old, it still remains one of the most
effective alternatives when performing tasks on
large datasets across various languages due to its
subword-based approach.

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) word em-
beddings understand the meaning of a word based
on its context in a sentence. The embeddings ex-
tracted just before the first embedding layer of the
BERT architecture are referred to as non-contextual
embeddings, while those obtained from the last hid-
den layer of BERT are known as contextual em-
beddings (Refer Figure 1). Numerous variations
of BERT like IndicBERT (Kakwani et al., 2020),
MuRIL (Khanuja et al., 2021), AfriBERT (Ralethe,
2020), and mBERT (Devlin et al., 2018) to name a
few, are available for experiments.

Recent studies have experimented with both Fast-
Text and BERT for various tasks; however, most of
them focus on exploring contextual BERT embed-
dings. Experiments of D’Sa et al. (2020) demon-
strated that BERT embeddings outperformed Fast-
Text for classifying English text into toxic and non-
toxic. Findings of Ahmed et al. (2024) suggested
that BERT embeddings outperformed those of Fast-
Text with an F1 score of 84% when evaluated for
depressive post-detection in Bangla.

While BERT consistently outperforms other
word embeddings in various tasks for high-resource
languages (HRLs) like English (Malik et al.
(2021)), its effectiveness in low-resource languages
(LRLs) remains relatively underexplored. This gap
is particularly pronounced when balancing model
performance with computational efficiency, which
becomes a critical factor in low-resource settings.

Previous studies (D’Sa et al. (2020)) have fo-
cused on contextual BERT embeddings, which
outperform FastText due to their ability to cap-
ture contextual information. However, the use of
non-contextual BERT embeddings for classifica-
tion tasks in low-resource languages like Marathi
remains unexplored. Unlike contextual embed-
dings, which require a full forward pass through the
model, non-contextual embeddings can be obtained
through a simple table lookup. To our knowledge,
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no prior work has examined the effectiveness of
non-contextual BERT embeddings. We investigate
how these embeddings, extracted from the model’s
first layer, compare to FastText embeddings for
tasks such as news classification, sentiment analy-
sis, and hate speech detection in Marathi.

Additionally, past comparisons often used
BERT’s 768-dimensional embeddings against Fast-
Text’s 300-dimensional ones, which is unfair since
higher dimensions naturally provide better feature
extraction. To address this, we ensure a fair com-
parison by reducing the BERT embeddings to 300
dimensions.

This paper focuses on utilizing FastText and
non-contextual BERT for the Marathi language
for the following tasks: Sentiment Classification,
2-Class and 4-Class Hate Speech Detection, and
News Article Classification for headlines, long
paragraphs, and long documents. We construct
a comprehensive analysis of FastText embeddings,
IndicFT (Kakwani et al., 2020) and MahaFT (Joshi,
2022) embeddings, and BERT embeddings, includ-
ing muril-base-cased (Khanuja et al., 2021) and
marathi-bert-v2 (Joshi, 2022). To enhance the com-
parison, we replicate the experiments using widely
utilized contextual BERT embeddings. We also
evaluate the impact of compression on both contex-
tual and non-contextual BERT-based embeddings.
Our analysis shows that non-contextual BERT em-
beddings generally perform better than FastText
in most tasks. Furthermore, contextual BERT em-
beddings consistently outperform FastText across
all evaluated tasks. However, compressing non-
contextual embeddings reduces their performance,
making FastText more effective than compressed
non-contextual BERT.

The key contributions of this work are as fol-
lows:

• We conduct a detailed study comparing non-
contextual BERT embeddings and FastText em-
beddings for Marathi, a low-resource language.
The evaluation covers multiple classification
tasks, including sentiment analysis, news clas-
sification, and hate speech detection.

• To ensure a fair comparison, we compress BERT
embeddings from 768 to 300 dimensions using
Singular Value Decomposition (SVD). This al-
lows us to analyze how dimensionality reduction
impacts BERT’s performance compared to its
uncompressed version and FastText.

• We explore the differences between contextual
and non-contextual BERT embeddings, examin-
ing their impact on classification performance in
low-resource settings.

The paper is organized as follows: Section 2
provides a concise review of prior research on Fast-
Text and BERT. Section 3 includes the datasets
and model embeddings that are utilized for the
experiments. Section 4 presents the methodology
used. Section 5 presents the results and key insights
drawn from the findings along with a comparative
analysis of FastText embeddings and BERT. In Sec-
tion 6, we analyze our results and explain the rea-
sons behind them. In Section 7, we conclude our
discussion.

2 Literature Review

The existing literature emphasizes the superior-
ity of contextual BERT embeddings over tradi-
tional word embedding techniques like Word2Vec
(Mikolov et al., 2013) , GloVe (Pennington et al.,
2014), and FastText across various natural language
processing (NLP) tasks. For instance, Khaled
et al. (2023) compare four popular pre-trained
word embeddings—Word2Vec (via Aravec (Mo-
hammad et al., 2017)), GloVe, FastText, and con-
textual BERT (via ARBERTv2)—on Arabic news
datasets. They highlight BERT’s superior perfor-
mance, achieving over 95% accuracy due to its
contextual interpretation.

Similarly, Kabullar and Türker (2022) analyzes
the performance of embeddings on the AG News
dataset, which includes 120K instances across four
classes. They conclude that contextual BERT out-
performs other methods, achieving 90.88% accu-
racy. FastText, Skip-Gram, CBOW, and GloVe
achieve 86.91%, 85.82%, 86.15%, and 80.86%,
respectively.

While traditional embeddings perform reason-
ably well, the consistent dominance of contex-
tual BERT in complex tasks is also noted in sen-
timent analysis. For instance, Xie et al. (2024)
explores how combining BERT and FastText em-
beddings enhances sentiment analysis in education,
demonstrating that BERT’s contextual understand-
ing, along with FastText’s ability to handle out-of-
vocabulary words, improves generalization over
unseen text.

In the domain of toxic speech classification,
D’Sa et al. (2020) utilize both contextual BERT and
FastText embeddings to classify toxic comments
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Figure 1: Embedding extraction workflow for contextual and non-contextual representations

Figure 2: SVD compression of BERT embeddings

in English, with BERT embeddings outperform-
ing FastText. This trend continues in hate speech
detection, where Rajput et al. (2021) find that neu-
ral network classifiers using contextual BERT em-
beddings perform better than those with FastText
embeddings alone, further supporting BERT’s ef-
fectiveness.

Additionally, Chanda (2021) assess contextual
BERT embeddings against traditional context-free
methods (GloVe, Skip-Gram, and FastText) for dis-
aster prediction, demonstrating BERT’s superior
performance in combination with traditional ma-
chine learning and deep learning methods.

For low-resource languages (LRLs), Ahmed
et al. (2024) examine methods like traditional TF-
IDF, contextual BERT, and FastText embeddings
within a CNN-BiLSTM architecture for detecting
depressive texts in Bangla. Their results show
that BERT embeddings yield the highest F1 score
(84%), indicating their dominance over other meth-
ods. This suggests that BERT’s efficacy extends
even to LRLs.

In medical applications, Khan et al. (2024) pro-
poses integrating contextual BERT embeddings
with SVM for prostate cancer prediction. By incor-
porating both numerical data and contextual infor-
mation from clinical text, they achieve 95% accu-
racy, far outperforming the 86% accuracy achieved
with numerical data alone.

Moreover, Malik et al. (2021) uses both contex-
tual BERT and FastText embeddings to preprocess
a dataset of conversations from Twitter and Face-
book. Applying various machine learning and deep
learning algorithms, they find that CNN yields the

best results, further demonstrating BERT’s capabil-
ities.

Finally, while Asudani et al. (2023) offers a com-
prehensive analysis of traditional word embeddings
alongside more advanced techniques like ELMo
and contextual BERT, providing insight into com-
monly used datasets and models for benchmark-
ing, Umer et al. (2022) highlights the versatility
of FastText in various domains, despite BERT’s
consistently superior performance.

We note that the reviewed literature highlights
the consistent superiority of BERT embeddings
across various NLP tasks and domains. How-
ever, most existing studies focus mainly on contex-
tual BERT embeddings, but not on non-contextual
embeddings. Moreover, these studies predomi-
nantly address high-resource languages, leaving
low-resource languages like Marathi largely un-
explored. In particular, there is a lack of research
assessing the effectiveness of non-contextual BERT
embeddings for Marathi. Additionally, the im-
pact of dimensionality leveling, i.e. the efficacy
of BERT embedding compression, has not been
explored.

3 Datasets and Models Used

In our research work, we used 3 Marathi datasets,
MahaSent: A 3-class sentiment analysis dataset
(Pingle et al., 2023), MahaHate: A 2-class as
well as a 4-class hate classification dataset (Patil
et al., 2022) and MahaNews is a news catego-
rization dataset consisting of three sub-datasets,
each with 12 classes: Short Headline Classification
(SHC), Long Document Classification (LDC), and
Long Paragraph Classification (LPC) (Mittal et al.,
2023).

We used two types of embeddings in our ex-
periments: FastText and BERT embeddings. For
FastText, we utilized both IndicFT (Kakwani et al.,
2020) and MahaFT (Joshi, 2022) embeddings. This
was because both models included a Marathi cor-
pus as part of their training data. MahaFT, in par-

29



Type Model MahaSent MahaHate MahaNews
3-class 4-class 2-class SHC LDC LPC

Contextual MahaBERT 82.27 66.8 85.57 89.83 93.87 87.78
MahaBERT (Compressed) 82.89 66.15 84.37 89.61 93.53 87.82

Muril 81.64 64.55 84.00 89.54 93.64 87.33
Muril (Compressed) 81.91 63.2 83.36 88.38 93.48 87.45

FastText IndicFT 76.4 58.25 80.13 85.57 92.15 79.19
MahaFT 78.62 62.75 81.76 85.89 92.62 80.32

Non-Contextual MahaBERT 77.56 66.5 82.64 86.45 91.69 81.76
MahaBERT (Compressed) 76.31 63.9 81.57 83.85 91.25 80.08

Muril 76.58 65.77 81.79 85.95 91.61 81.36
Muril (Compressed) 75.16 63.25 81.44 82.72 90.39 79.00

Table 1: Performance of model embeddings on MahaSent, MahaHate, and MahaNews datasets using Multiple
Logistic Regression. Key: SHC = Short Headline Classification, LPC = Long Paragraph Classification, LDC =
Long Document Classification

Figure 3: T-SNE Plot For BERT and FastText Embeddings (c stands for compressed) .

ticular, was specifically trained on a Marathi cor-
pus, making it especially relevant for our experi-
ments. For BERT embeddings, we primarily used
two BERT-based models: MahaBERT (Joshi, 2022)
and MuRIL (Khanuja et al., 2021). Since both mod-
els were trained on Marathi data, we selected them
to compare with the FastText embeddings.

4 Methodology

For each sentence, corresponding embeddings were
generated and the corresponding categorical labels
were encoded into numerical labels. The creation
of BERT embeddings was done by first tokeniz-
ing the text using the BERT tokenizer, along with
padding and truncation. The tokenized input was
then passed to the model and the output of the
last hidden layer of BERT was taken, which was
then averaged to get contextual embeddings for
every sentence. Whereas for non-contextual em-
beddings, the output of the first embedding layer
was used. Refer Figure 1 for the embedding extrac-
tion workflow for contextual and non-contextual
representations.

However, for FastText, which is a non-contextual
embedding by default, the process was slightly dif-
ferent due to the lack of a predefined vocabulary.
Unlike BERT, which employs a tokenizer capable
of processing entire Marathi sentences, FastText

necessitates the creation of a custom vocabulary.
To achieve this, the training and validation datasets
were concatenated and passed through a text vec-
torizer, which generated vectors for every word in
the dataset. The vectorizer returned the vocabulary
as a list of words in decreasing order of their fre-
quency. The FastText model was then loaded using
the FastText library, and for each word in the vocab-
ulary, a word vector was retrieved to construct the
embedding matrix. For each sentence, the text was
split into individual words, and the corresponding
embeddings were retrieved from the embedding
matrix. These embeddings were then averaged to
produce the final sentence embeddings.
Additionally, we experimented with compressed
embeddings by reducing the dimensionality from
768 (the traditional BERT embedding dimension)
to 300. This compression was performed using
Singular Value Decomposition (SVD) to select the
most relevant features, extracting the top 300 com-
ponents for all the combinations of contextual as
well as non-contextual for MahaBERT as well as
Muril. Refer Figure 2 for SVD compression of
BERT embeddings.
Feature scaling was also applied to the outputs. All
embeddings were then passed to a multiple logistic
regression (MLR) classifier for classification into
target labels.
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Dataset Subdataset Model Avg Variance Std Test
MahaSent 3 Class MahaBERT 76.56 0.39843 0.6312 78.01

MahaBERT-Compressed 74.42 0.8498 0.9218 75.51
Muril 75.53 0.75268 0.8676 76.53
Muril-Compressed 72.97 0.48963 0.6997 75.2
MahaFT 77.28 0.38282 0.6187 78.58

MahaHate 4 Class MahaBERT 64.92 0.25203 0.5020 66.1
MahaBERT-Compressed 62.77 0.53875 0.7340 64.1
Muril 63.51 0.35307 0.5942 65.15
Muril-Compressed 61.22 0.52378 0.7237 62.9
MahaFT 62.48 0.22608 0.4755 62.55

2 Class MahaBERT 84.23 0.37633 0.6135 82.53
MahaBERT-Compressed 82.3 0.10312 0.3211 81.41
Muril 83.69 0.39397 0.6277 81.63
Muril-Compressed 81.67 0.20943 0.4576 81.41
MahaFT 83.75 0.52153 0.7222 82.61

MahaNews SHC MahaBERT 86.66 0.27687 0.5262 86.64
MahaBERT-Compressed 84.13 0.36002 0.6000 83.81
Muril 85.7 0.06973 0.2641 85.66
Muril-Compressed 82.89 0.11612 0.3408 82.01
MahaFT 87.25 0.17873 0.4228 85.97

LDC MahaBERT 92.47 0.32565 0.5707 91.69
MahaBERT-Compressed 91.41 0.01637 0.1279 91.57
Muril 92.03 0.19055 0.4365 91.69
Muril-Compressed 91.04 0.07753 0.2784 90.39
MahaFT 92.79 0.15667 0.3958 92.71

LPC MahaBERT 81.71 0.18503 0.4302 81.27
MahaBERT-Compressed 80.03 0.1779 0.4218 80.51
Muril 81.19 0.17597 0.4195 81.4
Muril-Compressed 78.82 0.14497 0.3807 79.11
MahaFT 80.15 1.25257 1.1192 80.32

Table 2: The values were obtained by performing 5-fold cross-validation on the training dataset for Non-contextual
embedding. The Avg, Variance and Std represent the average, variance and standard deviation respectively
performance across the five test subsets (from training) of the 5-fold splits, while the Test column reflects the
performance on the actual test dataset. Key: SHC = Short Headline Classification, LPC = Long Paragraph
Classification, LDC = Long Document Classification

4.1 Experimental Setup

The experiments were conducted on Kaggle note-
books equipped with a P100 GPU accelerator, uti-
lizing 16 GB of GPU memory, 20 GB of storage,
and 32 GB of RAM. Accuracy was chosen as the
evaluation metric, given the balanced nature of the
datasets. For classification, the results obtained
from the embeddings were mapped to final labels
using a multinomial logistic regression model to
maintain methodological simplicity. To determine
the validity of the results obtained, 5-fold cross-
validation was performed for all tasks, and the re-
sults are presented in Table 2.

4.2 Visualisation of Embeddings

To visualize how BERT and FastText embedding
can separate the classes, we plotted T-SNE (van der
Maaten and Hinton, 2008) graphs for the LDC
dataset. We have 5 plots, with 4 plots for Ma-
haBERT and 1 for MahaFT. Refer Figure 3.

5 Results

Table 1 presents the results for various embeddings,
including MahaBERT, MuRIL, MahaFT, and In-
dicFT, across multiple datasets and tasks. It in-
cludes both contextual and non-contextual embed-
dings, as well as the compressed variants of Ma-
haBERT and MuRIL.

In sections 5.1 and 5.2, we have considered the
uncompressed versions of Muril and MahaBERT.
Further, in section 5.3, we specifically show the
effect of compression on Muril and MahaBERT.

5.1 Contextual vs FastText

From Table 1, we observe the following trend when
comparing contextual embeddings with FastText
embeddings: MahaBERT > MuRIL > MahaFT >
IndicFT.

5.2 Non-Contextual vs FastText

The trend of comparing non-contextual embed-
dings with FastText typically follows this order:
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MahaBERT > MuRIL > MahaFT > IndicFT. How-
ever, there are exceptions for the MahaSent and
LDC datasets.

For these two datasets, FastText tends to perform
slightly better. However, the difference is minimal,
so we refer to Table 2 to determine whether this
deviation is significant or simply random noise. We
observe a high variance in MahaSent, suggesting
that its deviation from the usual trend when com-
paring non-contextual embeddings with FastText
may be attributed to noise and is unlikely to be
significant.

In contrast, the LDC dataset also deviates from
the trend but exhibits relatively low variance. As a
result, for the LDC dataset, the performance trend
when comparing non-contextual embeddings with
FastText is as follows: MahaFT > IndicFT > Ma-
haBERT > MuRIL.

5.3 Effect of Compression

From Table 1, it can be inferred that compression
negatively impacts non-contextual embeddings, as
uncompressed versions generally perform better.
This is evident from MahaFT outperforming the
compressed non-contextual MahaBERT embed-
dings in all datasets except MahaHate-4c, suggest-
ing that compression lowers the performance of
non-contextual BERT embeddings.

However, the effect of compression on contex-
tual embeddings varies across datasets, making it
challenging to derive a consistent conclusion.

6 Inference

In this section, we explain why the non-contextual
MahaBERT embeddings outperform FastText (Ma-
haFT and IndicFT) embeddings. Both MahaBERT
and MahaFT embeddings have been trained on the
same corpus of 752 million tokens Joshi (2022).
The superior performance of non-contextual Ma-
haBERT embeddings can be attributed to its larger
embedding size, training data size, and contextual
training objective. Specifically, the embedding size
for Marathi-BERT-v2 is 152M (197,285 × 768),
compared to MahaFT, which is 132M (439,247 ×
300).

IndicFT performs worse than MahaFT, likely
due to its smaller dataset size of 551 million to-
kens (Kakwani et al., 2020). On the other hand,
contextual BERT achieves better results because
its hidden layers are effectively utilized.

Additionally, we observe a negative impact when

compressing MahaBERT non-contextual embed-
dings. Reducing the embedding size from 152M
(197,285 × 768) to 59M (197,285 × 300) leads to a
decrease in performance, likely due to the loss of
representational capacity.

7 Conclusion

In our research, we analyzed the effectiveness of
various BERT and FastText-based embeddings on
three key NLP tasks for Marathi: news classifica-
tion, hate speech classification, and sentiment clas-
sification focusing primarily on non-contextualised
BERT embeddings.

Our results show that contextual BERT embed-
dings perform better than non-contextual ones, in-
cluding both non-contextual BERT embeddings
and FastText. Among non-contextual embeddings,
BERT generally outperforms FastText in most
tasks. However, when non-contextual BERT em-
beddings are compressed, their performance drops,
and FastText performs better than compressed non-
contextual BERT.
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Abstract

This paper presents an improved
Retrieval-Augmented Generation
(RAG) approach for domain-specific
question-answering in dermatology and
cosmetic science. The proposed system
integrates RAPTOR-style hierarchical indexing
with Iterative Retrieval Chain-of-Thought
(IR-CoT) reasoning and CRAG-style
interleaved retrieval-generation to better
handle complex, clinically grounded queries.
It leverages multi-source dermatology data,
including peer-reviewed research, product
formulations, user reviews, and ingredient
safety databases.

By decomposing queries into rationale-driven
substeps and applying subgoal-specific
retrieval, the system improves answer depth,
accuracy, and relevance—particularly for
ingredient interactions and personalized
dermatological guidance. Empirical results
show notable gains over standard RAG
baselines in both precision and clinical
coherence, establishing the effectiveness
of this approach in specialized medical
QA tasks. With 100% user satisfaction
and 99.07% overall accuracy across all
document categories, the system sets a strong
benchmark for domain-specific medical QA
in dermatology.

Keywords — Retrieval Augmented
Generation, IR-COT, CRAG, RAPTOR,
Dermatology, Healthcare.

1 Introduction

Dermatology, which is an integral part of the
medical domain, presents unique challenges to
question-answering systems due to the interaction
of scientific knowledge, individual variations, and
rapidly evolving product formulations. Users
seeking dermatology advice require accurate
and personalized information that considers
multiple factors, including skin type, ingredient

interactions, environmental conditions, and
individual sensitivities.

With the increasing demand for personalized
skincare and dermatological consultations, there
is a growing need for AI systems that can
deliver context-aware, medically grounded, and
trustworthy responses. General-purpose models
often fail to capture the granularity and layered
reasoning required in this domain, making
specialized solutions essential. Furthermore, most
users seeking skincare advice are not medically
trained, which means the answers must not only be
accurate but also interpretable and reliable.

Traditional RAG systems often struggle
with domain-specific queries that require
multistep reasoning and integration of diverse
information sources; also they lack when the
question is of a broader context and its answer
cannot be satisfactorily derived from a single
knowledge source. Although general-purpose
RAG architectures have shown success in
broad knowledge domains, they face limitations
when dealing with specialized domains that
require hierarchical understanding and contextual
reasoning. But the fact can’t be denied that
RAG has emerged as a powerful tool for
knowledge-intensive natural language processing
tasks (Lewis et al., 2020). Combining parametric
knowledge from large language models with
non-parametric knowledge retrieved from external
sources has become a standard approach in recent
RAG-related work. However, these approaches
often struggle with complex reasoning tasks that
require multi-step inference. Also, these are not
reliable the medical domain where precision in the
answering is of utmost importance.

This paper introduces an innovative RAG
architecture specifically designed for answering
dermatology domain questions. Our approach
is combination of three steps which include
RAPTOR-style hierarchical indexing that creates
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reasoning-based document representations,
Iterative Retrieval Chain-of-Thought (IR-CoT)
that decomposes complex queries into manageable
sub-questions, and CRAG-style interleaved
retrieval and generation that maintains context
throughout the reasoning process. Our main
contributions are:

• A comprehensive RAG architecture tailored
for domain-specific dermatology question
answering

• Integration of RAPTOR indexing with
IR-CoT retrieval to improve reasoning
capabilities

• Thoroughly evaluated and market-ready
deployable framework demonstrating
superior performance in answer quality and
faithfulness

• Open-source implementation enabling
reproducibility and further research

2 Related Work

Recent works in RAG architectures have focused
on improving retrieval quality and reasoning
capabilities. Gao et al. (2023) introduced iterative
retrieval mechanisms that refine queries based
on intermediate results. Karpukhin et al. (2020)
developed dense passage retrieval methods that
better capture semantic similarity between queries
and documents. Self-RAG (Asai et al., 2023)
introduced self-reflection mechanisms that allow
models to validate and improve their own outputs.

The RAPTOR framework (Sarthi et al.,
2024) introduced tree-based indexing that
creates hierarchical representations of document
collections. Unlike traditional flat indexing
approaches, RAPTOR constructs reasoning trees
that capture both local and global document
relationships. This approach is selected in our
approach so that we can get more accurate data
that is passed to the large language model. This is
one of the important steps which can increase the
reliability of answers in such crucial domains.

Chen et al. (2024) extended this concept with
interactive reading mechanisms that dynamically
navigate document hierarchies. These approaches
demonstrate the importance of structured
knowledge representation in retrieval systems.

Chain-of-Thought (CoT) prompting has
demonstrated significant improvements in

language model reasoning capabilities (Wei et al.,
2022). The IR-CoT approach (Trivedi et al., 2022)
extends this concept by interleaving the retrieval
and reasoning steps, allowing for more dynamic
and context-aware information gathering which is
important for healthcare domain.

Yao et al. (2022) introduced ReAct, which
combines reasoning and acting in language
models, enabling more complex tool usage and
multi-step problem solving. These approaches have
proven particularly effective in complex question
answering scenarios like dermatology.

Medical and healthcare domain question
answering has received considerable attention due
to the critical importance of accurate information
(Shen et al., 2020). However, dermatology
and cosmetics represent a unique subdomain
with distinct challenges including ingredient
interactions, individual variations, and rapidly
evolving product formulations.

Zhang et al. (2023) developed early work on
dermatological ingredient analysis using natural
language processing, but focused primarily on
ingredient classification rather than comprehensive
question answering. Our work extends this by
providing a complete RAG architecture for the
domain. With Kantika, we try to provide a solution
with real-world impact, we target an unexplored
and existing problem which needs attention by
providing a user-centric product which could be
trusted and relied upon.

3 Proposed Methodology

Kantika represents a comprehensive RAG
architecture specifically designed for answering
dermatological questions that integrates multiple
RAG techniques. The system addresses unique
challenges of medical information processing
where clinical accuracy, safety considerations,
and comprehensive knowledge integration
are paramount. Taking inspiration from the
complex nature of dermatological practice, our
proposed methodology combines hierarchical
knowledge representation with iterative reasoning
and adaptive generation to mirror the clinical
approach of experienced dermatologists. As
illustrated in Figure 1, our approach integrates
retrieval-augmented prompting and causal
reasoning through a multistage flow.
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Figure 1: Flowchart of the proposed methodology combining RAPTOR, IR-CoT, and CRAG for
dermatology-specific reasoning and retrieval.

3.1 Data Ingestion and Preprocessing
Kantika is built on a indigenously curated
dataset that captures maximum possible
scope of dermatological knowledge. The
details of the dataset can be found in section
4.1. The multi-source setup we use tries
to cover every possible aspect needed for
great real-world outcomes and compliance
standards. For preprocessing, we use
RecursiveCharacterTextSplitter with 750 character
chunks and 100 character overlap to keep preserve
the context while maintaining semantic flow,
which is crucial for medical accuracy.

3.2 RAPTOR-Style Hierarchical Indexing
The hierarchical indexing system transforms
traditional flat document representations into
structured reasoning pipeline that mimics the
actual dermatological decision-making approach.
Using our own specifically designed prompt
templates, advanced language models extract
3-5 logical reasoning sub-questions from each
document segment, creating a knowledge graph
that thinks like a dermatologist. For example,
when processing a document about retinol, the
system builds a reasoning pipeline that capture
molecular mechanisms, skin type compatibility,
contraindications, and usage protocols. This
pipeline forms a dynamic queryable structure

that mimics a dermatologist’s thinking process
, evaluating multiple factors together for a user
query. The knowledge graph captures both
fine-grained document-level insights and broader
clinical relationships, allowing it to provide
context-aware evidence-backed recommendations
for dermatological care.

3.3 Vector Storage and Semantic Embedding

The extracted reasoning nodes are embedded
using Sentence Transformers models specifically
fine-tuned for medical and scientific literature,
ensuring precise semantic representation of clinical
concepts. These embeddings are stored in
FAISS vector databases for high-dimensional
similarity search and enabling efficient retrieval
of relevant information. The system implements
the Maximum Marginal Relevance (MMR) search
algorithm to balance semantic relevance with
information diversity, ensuring that retrieved
documents cover multiple aspects of a query
rather than semantically similar but informationally
redundant parts. This approach is particularly
useful in dermatological applications where
treatment recommendations must consider all
aspects of efficacy, safety, interactions, and patient
compliance factors.
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3.4 IR-CoT Retrieval Strategy

The Iterative Retrieval Chain-of-Thought method
breaks down complex dermatology queries into
2 to 4 logical sub-questions, similar to how a
clinical practitioner evaluates a case. It follows
the same layered reasoning used by experienced
practitioners when dealing with multifactorial
queries. For example, a query like combining
vitamin C with niacinamide for hyperpigmentation
gets split into mechanism analysis, interaction
checks, best-use protocols, and skin-type-specific
precautions. Each sub-question runs its own
targeted retrieval step, pulling from relevant
documents across ingredient science, clinical
dermatology, and practical usage. This iterative
structure allows the system to adapt to the
complexity of the query and the clinical context
involved.

3.5 CRAG-Style Interleaved Generation

The Corrective Retrieval-Augmented Generation
(CRAG) workflow follows a consultation style
model using a ReAct-based agent that can
actively request more information when needed.
If the system detects low confidence in the
initial response based on predefined uncertainty
thresholds, it triggers additional retrieval steps
to ensure even complex or ambiguous queries
are fully addressed. This adaptive setup reflects
how real dermatology consultations vary in depth
depending on the query, patient profile, and clinical
context. CRAG preserves context over repeated
reasoning steps allowing it to integrate information
across multiple stages.

3.6 Answer Generation and Clinical
Grounding

The final answer is generated using a medically
tuned RetrievalQA system that grounds every
response in relevant documents while strictly
following evidence-based practices. The output
is structured in a clinical format starting with the
main recommendation backed by strong evidence,
followed by the mechanism of action, precautions
, user-specific considerations, and clear source
citations. Every answer includes detailed source
references allowing users can cross-check against
the original medical literature. The answers are
generated in simple english allowing any user
to understand it. The system focuses on being
clinically accurate, safe, and practically useful,

while still being easy to understand for different
types of users.

4 Experiments and Results

4.1 Knowledge Base Construction
The knowledge backend fed to the RAG system is
a curated collection of authoritative dermatology
textbooks sourced from leading academic and
clinical publishers. This knowledge base consists
of four works that together constitute the gold
standard in dermatological clinical practices and
education. The Oxford Handbook of Medical
Dermatology, written by Susan Burge, Rubeta
Matin, and Dinny Wallis is used as the master
clinical reference framework ,

4.2 Evaluation Framework and Dataset
Construction

The evaluation methodology employed in
this research adheres to rigorous academic
standards while incorporating both qualitative and
quantitative assessment. Our comprehensive
evaluation framework consists of two
complementary approaches designed to assess
system performance from multiple perspectives,
ensuring robust validation suitable for medical AI
applications.

4.2.1 Human Evaluation
The human evaluation component involved
100 university students who were provided
comprehensive access to the dermatology
textbooks systematically integrated into Kantika’s
knowledge base. Participants were instructed to
formulate questions directly from the inserted
documentation, enabling the system to generate
responses. They were then asked to evaluate
their satisfaction with the system’s answers, any
instance of hallucination or misunderstanding,
no matter how minor, was treated as a negative
response to uphold our high standards. This
methodology ensures that the evaluation questions
are grounded in authoritative medical literature
rather than arbitrary or potentially biased queries,
thereby maintaining clinical relevance and
educational validity.

4.2.2 Automated Evaluation
The automated evaluation component follows
established protocols in the retrieval-augmented
generation research domain, utilizing the Mistral
7B Instruct model with 4-bit quantization to
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generate a comprehensive set of 430 evaluation
questions. These questions are systematically
categorized into three standard types that
collectively assess different aspects of RAG system
performance:

• Single Document Queries: Comprising
150 questions, these evaluate the system’s
ability to accurately retrieve and synthesize
information from individual sources within
the knowledge base.

• Multi-Document Queries: Totaling 200
questions, these assess the system’s capacity
for complex reasoning and cross-referencing
capabilities across multiple authoritative
sources.

• Irrelevant Queries: Consisting of 80
out-of-scope questions, these serve as a
critical hallucination detection mechanism,
ensuring that the system appropriately
identifies questions whose answers are not
present in the knowledge base and avoids
generating fabricated medical information.

Each category serves a distinct purpose in
validating system reliability, single document
evaluation demonstrates precision in information
retrieval and synthesis from individual
sources, which is fundamental for answering
specific clinical queries. Multi-document
assessment evaluates the system’s reasoning
capabilities required for comprehensive clinical
decision-making that often necessitates integrating
information from multiple authoritative sources.
Hallucination detection ensures clinical safety
and trustability by validating the system’s ability
to recognize the boundaries of its knowledge
and avoid generating potentially harmful
unsubstantiated medical claims.

4.3 Results Analysis and Performance
Assessment

The evaluation results demonstrate exceptional
performance across both human and automated
assessment protocols, establishing Kantika as a
highly effective system for dermatological question
answering. The human evaluation component
yielded a remarkable 100% satisfaction rate
across all 100 participating students, indicating
unanimous approval of system responses when
evaluated against questions formulated directly

from authoritative medical textbooks. This
exceptional satisfaction rate suggests that
Kantika consistently provides clinically accurate,
comprehensive, and practically applicable
answers that meet the expectations of users with
foundational medical knowledge.

The results of the automated evaluation strongly
support adds to it achieving an overall accuracy
of 99.07% across 430 generated questions.
Single-document queries achieved a perfect 100%
accuracy, reflecting Kantika’s strong ability
to precisely extract relevant information from
individual texts. Multi-document queries scored
98.50% accuracy, demonstrating robust reasoning
and effective cross-referencing across multiple
sources—one of the most complex challenges in
medical question answering. These results are
summarized in Table 1.

In the hallucination detection task, designed
using 80 irrelevant queries, Kantika achieved
98.75% accuracy, failing to reject only one
instance. This near-perfect performance highlights
its reliability in clinical environments, where
generating safe and factual information is critical.
These results affirm the strength of our integrated
RAPTOR-style indexing, IR-CoT retrieval, and
CRAG-based generation approach in creating a
clinically trustworthy dermatological QA system.

5 Conclusion

Kantika demonstrates that clinical-grade medical
AI can be developed with precision, reliability,
and real-world impact. Achieving 100%
user satisfaction and 99.07% accuracy on
430 expert-level dermatology questions, it
creates a new standard for RAG systems for
domain-specific domains. Its performance
on multi-document generation, hallucination
control, and single-document answering makes it
deployment-ready for real-world applications.

With the integration of RAPTOR-style
hierarchical indexing, IR-CoT retrieval, and
CRAG-based reasoning, Kantika presents a
workflow that replicates the thought processes
of clinicians—open-ended, structured, and safe.
The system effectively manages the intricacies of
medical knowledge by giving priority to evidence,
context, and clinical safety which are the three
pillars vital to creating trustworthy AI in the
healthcare sector.

Supported by peer-reviewed science and
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Question Category Count Performance Description
Single Document Queries 150 100% Context derived from a single document

in the knowledge base
Multi-Document Queries 200 98.50% Context requiring synthesis from

multiple documents in the knowledge
base

Irrelevant/Hallucination Detection 80 98.75% Domain-related questions not
answerable from the knowledge
base to test hallucination prevention

Overall Performance 430 99.07% Total evaluation across all standard
RAG categories

Table 1: Comprehensive automated evaluation results demonstrating superior performance across standard RAG
assessment categories.

validated in clinically sound trials, Kantika
demonstrates that AI can fulfill the promise of
contemporary medicine. It is not merely a system,
it is driving scalable, domain-specific clinical
support systems. In the years ahead, Kantika’s
architecture can drive next-gen AI for multimodal
diagnosis, patient-specific treatment, and long-term
clinical guidance—always putting better care above
all with complete medical integrity.

Implementation Details

This section provides detailed implementation
information for reproducibility.

System Architecture

The technical implementation of Kantika is
built upon a robust foundation of state-of-the-art
libraries and frameworks, ensuring both reliability
and scalability for deployment in clinical
environments. The system is implemented using
Python 3.9+ as the primary development platform,
leveraging LangChain v0.1.20 for comprehensive
document processing and orchestration capabilities.
The core language processing functionalities are
powered by Gemini 2.0 Flash through the Google
Generative AI API, providing advanced natural
language understanding and generation capabilities
specifically optimized for medical domain
applications. Vector storage and similarity search
operations are handled by FAISS v1.8.0, which
offers high-performance indexing and retrieval
capabilities essential for large-scale medical
knowledge bases. Semantic embedding generation
is accomplished through Sentence-Transformers
v2.7.0, ensuring precise representation of medical
concepts and terminology. Additional support for

advanced model integration is provided through
Transformers v4.35.0 and PyTorch v2.1.0, enabling
flexible adaptation to emerging language models
and specialized medical AI architectures.

Hyperparameter Configuration

The implementation of Kantika employs
carefully optimized hyperparameters that have
been systematically tuned to achieve optimal
performance in dermatological question answering
tasks. The document processing pipeline utilizes
a chunk size of 750 characters with an overlap
of 100 characters, ensuring adequate context
preservation while maintaining computational
efficiency. The retrieval mechanism is configured
to retrieve a maximum of 6 documents per query
with a limit of 2 documents per individual query
component, balancing comprehensiveness with
processing speed. The generation component
operates with a temperature setting of 0.1 to ensure
consistent and reliable outputs while minimizing
hallucination risks. The MMR retrieval system
employs a top-k value of 5 with a lambda diversity
parameter of 0.5, optimizing the balance between
semantic relevance and information diversity. The
iterative reasoning process is constrained to a
maximum of 4 reasoning steps, ensuring thorough
analysis while preventing excessive computational
overhead.

Practical Deployability and Open-Source
Release

This work has been developed using standard
libraries and follows best practices in software
engineering to ensure reliability, reproducibility,
and ease of integration. The pipeline is designed to
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be practically deployable, enabling dermatologists
to utilize it for real-world applications such as
personalized skincare recommendations, ingredient
compatibility analysis, and patient-specific advice.
By leveraging advanced retrieval and reasoning
mechanisms, the system provides actionable
insights that can be directly applied in clinical and
advisory settings.

To promote transparency and further research,
the complete implementation will be released as
open-source software at https://github.com/
THE-DEEPDAS/SkinCare-RAG.

Ethics Statement

The development of Kantika has been guided by
a commitment to ethical principles in artificial
intelligence and healthcare. The system is designed
to provide clinically accurate, evidence-based,
and secure recommendations, thereby ensuring
that it meets the highest standards of medical
integrity. All the data sources used in developing
the knowledge base are open to the public,
peer-reviewed, and authentic medical literature,
thereby ensuring openness and trustworthiness.
The assessment framework has been designed
to remove bias by using all human assessment
questions to be based on credible dermatology
textbooks, thereby ensuring clinical relevance and
educational integrity.

It is important to note that Kantika is intended
to be a decision support tool for clinicians and
healthcare professionals and not to replace clinical
judgment. The users are advised to consult the
clinicians for personalized advice and treatment.
The major use-case still lies in those particular
parts of dermatology where the answer couldn’t
cause harm or side-effects to a particular user,
this can be taken care of by adding only those
books or knowledge sources which has information
which cannot be of serious damage to the user.
The advice offered by the system relies on the
existing body of knowledge and is not influenced
by patient histories or individual clinical situations,
which remain in the jurisdiction of licensed medical
professionals. Adhering to these ethical standards,
Kantika is intended to supplement, not replace, the
value added by human professional expertise in
dermatologic care.

Limitations

While Kantika is highly responsive in responding
to dermatological questions, we must report
some limitations so that an unbiased assessment
of its functionalities is possible. First and
foremost, the system is only text-based information
drawn from credible dermatological resources
without the inclusion of multimodal features like
clinical images or patient-specific data. This
limitation prevents it from being appropriate where
patient-specific data or visual examination plays
a prominent role. This particular thing was not
added in this work due to ethical concerns but can
be looked upon in future work. Second, although
the knowledge base of the system is enormous, it is
constrained by the sources that were intentionally
added while developing it. Thus, it may not be the
latest that has appeared in dermatology research or
account for regional differences in clinical practice.
Thus, periodic updating of the knowledge base is
required to make it current and authentic.

Finally, Kantika’s reliance on computational
power, particularly for multi-step reasoning and
retrieval operations, can be difficult to realize
in low-resource environments. Future efforts
will attempt to optimize the system for such
environments, including reducing computational
requirements and offline capability.

By recognizing these constraints, our objective
is to deliver a clear evaluation of Kantika’s present
abilities, while also pinpointing opportunities for
enhancement in the future.
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Abstract
Advances in transformer-based language mod-
els have highlighted the benefits of language-
specific pre-training on high-quality corpora.
In this context, German NLP stands to gain
from updated architectures and modern datasets
tailored to the linguistic characteristics of the
German language. GeistBERT seeks to im-
prove German language processing by incre-
mentally training on a diverse corpus and opti-
mizing model performance across various NLP
tasks. We pre-trained GeistBERT using fairseq,
following the RoBERTa base configuration
with Whole Word Masking (WWM), and ini-
tialized from GottBERT weights. The model
was trained on a 1.3 TB German corpus with
dynamic masking and a fixed sequence length
of 512 tokens. For evaluation, we fine-tuned
the model on standard downstream tasks, in-
cluding NER (CoNLL 2003, GermEval 2014),
text classification (GermEval 2018 coarse/fine,
10kGNAD), and NLI (German XNLI), using
F1 score and accuracy as evaluation metrics.
GeistBERT achieved strong results across all
tasks, leading among base models and setting a
new state-of-the-art (SOTA) in GermEval 2018
fine text classification. It also outperformed sev-
eral larger models, particularly in classification
benchmarks. To support research in German
NLP, we release GeistBERT under the MIT
license.

1 Introduction

The advancement of neural language modeling
(LM) in natural language processing (NLP) has
been driven by the development of contextual pre-
trained word representations, particularly through
transformer-based architectures. Models like Bidi-
rectional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2019) have significantly
impacted the field by providing robust, generalized
representations that can be fine-tuned for specific
downstream tasks, enhancing performance across

various NLP applications. While much of the early
work focused on English and multilingual models,
it has become clear that single-language models,
particularly those trained on large, high-quality cor-
pora, can outperform their multilingual counter-
parts when applied to their target language.

Building on this understanding, the German NLP
community has seen the introduction of models like
GottBERT (Scheible et al., 2024), which leveraged
the German portion of the OSCAR (Ortiz Suárez
et al., 2020) corpus to create a high-performance
RoBERTa-based (Liu et al., 2019) model tailored
specifically for the German language. However,
as the field evolves, so too must the approaches
to model training. Recent developments in pre-
training methodologies, such as Whole Word Mask-
ing (WWM) (Cui et al., 2021) and the availabil-
ity of newer, more extensive corpora like OS-
CAR23 (Jansen et al., 2022), OPUS (Tiedemann,
2012), and mC4 (Xue et al., 2021), present op-
portunities to further refine and enhance German
language models.

To fully leverage these developments for Ger-
man NLP, we introduce GeistBERT, a German
Enhanced Incremental Semantically Tuned BERT
model. GeistBERT builds on the foundation laid
by the best checkpoint of the filtered GottBERT
model (i.e. fGottBERTbase) through continued
pre-training (Gururangan et al., 2020a), extend-
ing it with modern German datasets including OS-
CAR23 and mC4 from CulturaX (Nguyen et al.,
2023), Wikipedia, and several OPUS corpora.
Since CulturaX already applies both deduplication
and filtering, it provides a strong backbone of high-
quality German text, while the additional corpora
enrich the model with broader linguistic and do-
main diversity. By introducing Whole Word Mask-
ing (WWM) and leveraging the scale and variety
of these sources, GeistBERT seeks to establish a
new benchmark for German language models, with
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improved performance across various NLP tasks.
Our contributions are as follows:

• We incrementally trained GeistBERT on top
of fGottBERTbase using a combination of
modern German corpora (OSCAR23, OPUS,
mC4), OpenLegal and Wikipedia.

• We integrated WWM into the pre-training pro-
cess to enhance the model’s ability to capture
semantic relationships within the German lan-
guage.

• We provide GeistBERT as base model to the
community, accessible under an open-source
license for further usage.

GeistBERT represents a step forward in the de-
velopment of German-specific transformer mod-
els, offering enhanced capabilities through modern
training techniques and high-varying data.

2 Related Work

The rise of transformer-based models like BERT
(Devlin et al., 2019) marked a major shift in NLP,
enabling significant performance improvements.
Originally introduced as an English model and
later as a multilingual version (mBERT), BERT’s
success led to monolingual adaptations tailored to
specific languages. For German, models like Ger-
manBERT1 and dbmdz BERT2 emerged, trained on
datasets of 12GB–16GB, sourced from Wikipedia,
news articles, and legal texts.

RoBERTa enhanced BERT by training on a
larger 160GB corpus, optimizing the architecture,
and removing next sentence prediction. This strat-
egy was applied to other languages, resulting in
models like CamemBERT (Martin et al., 2020) for
French and RobBERT (Delobelle et al., 2020) for
Dutch, highlighting the benefits of large, diverse
training corpora and the use of language-specific
vocabularies.

In German NLP, GBERT and GELECTRA
(Chan et al., 2020) built on this progress by train-
ing on 145GB of the OSCAR corpus (Ortiz Suárez
et al., 2020) and additional sources, surpassing ear-
lier German BERT models. These advancements
underscored the impact of larger, well-curated
datasets on model performance. GottBERT fur-
ther extended this development as one of the first

1https://www.deepset.ai/german-bert
2https://huggingface.co/dbmdz/

bert-base-german-uncased

German RoBERTa models, trained on the German
OSCAR corpus. Its results demonstrated the impor-
tance of data diversity but also noted that excessive
data cleaning might reduce corpus variance and af-
fect downstream performance. GeistBERT refines
this lineage by increasing data variance, optimizing
pre-training strategies, and achieving strong perfor-
mance without increasing model size, making it a
robust and accessible model for German NLP.

3 Methodology

3.1 Training Data and Pre-training

Compared to GottBERT, GeistBERT was trained
on a substantially larger corpus, totaling approx-
imately 1.3TB of text data. Training data was
shuffled to support uniform sampling and mini-
mize order effects during pre-training. GeistBERT
was pre-trained using the same byte-level BPE tok-
enizer as GottBERT, following the GPT-2 design
with a vocabulary size of 52k. While the tokenizer
architecture mirrors GPT-2, the vocabulary itself
was trained from scratch on German text. fairseq
(Ott et al., 2019) was employed to compute the bi-
nary format for pre-training. Unlike GottBERT’s
TPU-based setup, which processed text as a contin-
uous stream, GeistBERT’s GPU training respected
natural sentence boundaries. This preserves linguis-
tic structure during pre-training and avoids cutting
sequences in the middle of sentences.

Using fairseq, we pre-trained the GeistBERT
model on a highly variant corpus consisting
of 1.3TB plain text data on 8 NVIDIA A40
GPUs. The model was trained with the RoBERTa
base architecture for 100k update steps using
a batch size of 8k, initializing the weights
with fGottBERTbase. We largely adhered to
RoBERTa’s default training configuration (Liu
et al., 2019), including dynamic masking, optimizer
settings, and fixed sequence lengths (512 tokens).
A 10k iteration warmup was applied, gradually
increasing the learning rate to a peak of 0.0007,
followed by a polynomial decay to zero.

3.2 Downstream Tasks

We fine-tuned pre-trained BERT models using Hug-
gingface (Wolf et al., 2019) scripts, optimizing
batch size and learning rate via grid search. NER
and classification (CLS) tasks were trained for up to
30 epochs, while NLI tasks ran for up to 10 epochs
using fairseq-adapted hyperparameters. Each task
was executed 24 times with varied hyperparam-
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Table 1: Overview of datasets used for training. The table lists the individual corpora, their sizes in gigabytes, their
data sources, and whether they were deduplicated or filtered. The final corpus aggregates all listed datasets, resulting
in approximately 1.3 TB of training data.

Corpus Documents Size (GB) Data Source Deduplicated Filtered
mC4 & OSCAR23 6,064,736,930 1316.57 CulturaX Yes Yes
ELRC-4244, ELRC-4240, ELRC-4258,
ELRC-4217, ELRC-4189, ELRC-4171,
ELRC-4149

14,919,003 2.34 OPUS Yes No

ECB 1,732,472 0.29 OPUS No No
EUbookshop 18,203,612 2.34 OPUS No No
Europarl 2,234,583 0.36 OPUS No No
EuroPat 19,387,517 3.52 OPUS No No
OpenSubtitles 41,612,280 1.35 OPUS No No
TildeMODEL 5,059,688 0.79 OPUS No No
German Wikipedia 4,767,776 7.23 Wikipedia No No
OpenLegalData 209,526 2.48 OpenLegal No No
Final corpus 6,172,863,387 1337.28

eters, selecting the best checkpoint based on the
highest F1 score (accuracy for NLI). Performance
was evaluated analogously to Scheible et al. (2024)
and compared with results from that study. The
parameter search space used for the grid search is
summarized in Table 2. All tasks were processed
using two Nvidia RTX 3090 GPUs, leveraging Hug-
gingface’s Transformers library (v4.34.1).

Table 2: Hyperparameters used in the grid search of the
downstream tasks.

Parameter Values
Learning Rate 5e-5, 2e-5, 1e-5, 7e-6, 5e-6, 1e-6
Batch Size 16, 32, 48, 64
Epochs 30

NLI We evaluated NLI on the German XNLI
dataset (Conneau et al., 2018), an extension of
MultiNLI (Williams et al., 2018), with 122k train-
ing, 2490 development, and 5010 test examples per
language. Performance was measured by accuracy.

Named Entity Recognition NER evaluation
used the German CoNLL 2003 (Tjong Kim Sang
and De Meulder, 2003) and GermEval 2014
(Benikova et al., 2014) datasets. CoNLL 2003 in-
cludes four entity types, while GermEval 2014 pro-
vides fine-grained categories and supports nested
annotations. Both were evaluated using the F1

score, with GermEval using an adapted metric ac-
counting for label and span equality.

Text Classification We evaluated classification
on GermEval 2018 (Risch et al., 2018) (German
tweet sentiment analysis) and 10kGNAD (Schabus
et al., 2017) (German news categorization). Ger-
mEval 2018 followed the data splits defined by

Chan et al. (2020), while 10kGNAD used a prede-
fined 90%-10% train–test split, with 10% of the
training set further held out for validation. Both
tasks were evaluated using the mean F1 score.

3.3 Model Properties
Table 3 lists the vocabulary sizes and total param-
eter counts of all models included in our eval-
uation. While most German BERT-style base
models, such as GBERTbase, dbmdzBERT, and
GELECTRAbase, contain approximately 110 mil-
lion parameters, GeistBERT and fGottBERTbase

are slightly larger at around 126 million parame-
ters due to their RoBERTa-based architecture and
a larger vocabulary of 52,009 tokens.

Large-scale German models such as GBERTlarge,
GELECTRAlarge, and fGottBERTlarge contain be-
tween 335 and 357 million parameters. Among
the multilingual models, XLM-RoBERTabase and
XLM-RoBERTalarge are substantially larger, with
278 million and 560 million parameters respec-
tively. The vocabulary sizes vary across models
and are influenced by tokenizer design and pre-
training data. GeistBERT uses the same tokenizer
as GottBERT, which is based on byte-level BPE
trained on German text.

4 Results

4.1 Training Dynamics
During the model pre-training the perplexity of the
model is computed based on a test set for each opti-
mization cycle (see Figure 1). After an initial sharp
decrease, perplexity briefly increased for several
steps before gradually declining until the final step.
We assume that, given more training time, it would
have continued to decrease further. The entire pre-
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Table 3: The size of the vocabulary and the size of the
parameters are shown for the model types used in this
study. This table does not show other design differences
of the models. Values were extracted using Hugging-
face’s transformers library.

Model Vocab Size #Params
XLM-Rlarge 250002 559890432
fGottBERTlarge 52009 357145600
GBERTlarge 31102 335735808
GELECTRAlarge 31102 334686208
XLM-Rbase 250002 278043648
mBERT 119547 177853440
GeistBERT 52009 125985024
fGottBERTbase 52009 125985024
GBERTbase 31102 109927680
dbmdzBERT 31102 109927680
GELECTRAbase 31102 109337088
GermanBERT 30000 109081344

training process required approximately 8.3 days
of computation time.

Importantly, GeistBERT started from a rela-
tively low perplexity due to continued pre-training.
In comparison, fGottBERTbase (trained entirely
from scratch) started with a perplexity of about
52,592 and converged to around 4, whereas Geist-
BERT began at 35.17 and converged down to ap-
proximately 11. This illustrates the potential stabil-
ity and efficiency benefits of continued pre-training
in reaching useful representations quickly.

Figure 1: Perplexity of fGottBERTbase and Geist-
BERT, evaluated on the validation set after each op-
timization cycle; values are plotted on a logarithmic
y-axis.

4.2 Downstream Tasks

GeistBERT sets a new state-of-the-art among base
models for German NLP, outperforming all compa-
rable models and closely approaching large-scale
model performance across tasks. It even achieves

absolute SOTA in GermEval 2018 fine-grained clas-
sification (see Table 6).

The optimal hyperparameters selected per task
are summarized in Table 5, extending the original
GottBERT setup (Scheible et al., 2024) by includ-
ing GeistBERT models. The total computation time
for all downstream evaluations amounted to 517
hours and 24 minutes (≈21.6 days) on two Nvidia
RTX 3090 GPUs, detailed per task in Table 4.

Table 4: Computation time in hours and minutes for
the downstream tasks summing up to 517 hours and 24
minutes, which are approximately 21.6 days.

Task Computation Time
XNLI 47:52
GermEval 2014 235:36
CoNLL03 92:45

GermEval 2018
coarse 45:46
fine 43:25

10kGNAD 85:49

NLI GeistBERTbase achieves an accuracy of
82.67% on the German NLI task, outperforming
all other base models in our evaluation. While it
does not surpass top-scoring large-scale models
such as GELECTRAlarge (86.33%) or GBERTlarge
(84.21%), it performs competitively and even
surpasses GottBERTlarge (82.46%) and nearly
matches fGottBERTlarge (82.79%), narrowing
the performance gap despite its smaller size.

Named Entity Recognition GeistBERT
achieves strong F1 scores on both CoNLL 2003
(86.17%) and GermEval 2014 (88.47%), outper-
forming all other base models in our evaluation. It
also surpasses all large-scale GottBERT variants
on GermEval 2014 and comes remarkably close on
CoNLL 2003, with only a 0.11% gap to the lowest-
scoring large variant. While top-performing large
models such as GBERTlarge (87.19% on CoNLL)
and XLM-Rlarge (88.83% on GermEval) remain
ahead, GeistBERT narrows the performance
gap significantly, demonstrating robust entity
representation capabilities despite its compact size.

Text Classification GeistBERTbase achieves
strong performance across all classification tasks,
ranking first in GermEval 2018 fine-grained classi-
fication (66.42%), second in 10kGNAD (90.89%),
and third in GermEval 2018 coarse (79.67%). It
consistently outperforms all other base models and
surpasses several large-scale models, particularly
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Table 5: Hyperparameters of the best downstream task models for each task and pre-trained model. This table
extends the original GottBERT setup by including GeistBERT models. BS refers to batch size, and LR denotes the
learning rate.

Model GermEval 2014 CoNLL 03 GermEval 2018 10kGNADcoarse fine
BS LR BS LR BS LR BS LR BS LR

GeistBERT 16 5 E-06 32 2 E-05 48 5 E-05 32 2 E-05 16 1 E-06
GottBERTbase 16 1 E-05 32 2 E-05 48 7 E-06 32 5 E-06 32 5 E-06
GottBERTbase 48 2 E-05 32 5 E-05 48 1 E-05 64 7 E-06 32 5 E-06
fGottBERTbase 16 7 E-06 16 1 E-05 16 1 E-05 48 2 E-05 16 5 E-06
fGottBERTbase 16 1 E-05 64 5 E-05 16 1 E-05 16 2 E-05 16 1 E-05
GELECTRAbase 32 5 E-05 64 5 E-05 16 2 E-05 48 5 E-05 48 5 E-05
GBERTbase 16 2 E-05 64 2 E-05 32 1 E-05 16 5 E-05 16 2 E-05
dbmdzBERT 48 2 E-05 48 5 E-05 16 5 E-06 64 2 E-05 16 2 E-05
GermanBERT 32 2 E-05 16 1 E-05 16 1 E-05 32 1 E-05 32 5 E-05
XLM-Rbase 64 2 E-05 16 1 E-05 48 5 E-05 64 5 E-05 48 2 E-05
mBERT 48 1 E-05 16 2 E-05 16 2 E-05 64 5 E-05 64 2 E-05
GottBERTlarge 64 5 E-06 16 5 E-06 64 5 E-06 32 7 E-06 64 1 E-06
fGottBERTlarge 32 5 E-06 48 2 E-05 32 5 E-06 32 7 E-06 16 5 E-06
fGottBERTlarge 16 5 E-06 48 1 E-05 48 1 E-05 32 5 E-06 64 2 E-05
GELECTRAlarge 16 7 E-06 16 5 E-06 64 1 E-05 32 2 E-05 32 2 E-05
GBERTlarge 16 7 E-06 32 5 E-06 16 2 E-05 64 2 E-05 64 5 E-05
XLM-Rlarge 16 7 E-06 48 1 E-05 32 1 E-05 32 1 E-05 16 5 E-06

Table 6: All the results of the experiments are shown in percent. They are all based on the test set and the best score
out of 24 runs (selection based on validation set). While NLI is measured by accuracy, all the other metrics are F1

measures. Per model size, best results are bold, second-best underlined. Results for GottBERT are reported on
both the unfiltered and filtered corpora, the latter indicated by f . For each GottBERT model, we include both the
best and last checkpoint of the pre-training, with the last denoted by . Values for non-GeistBERT models are taken
from Scheible et al. (2024).

Model XNLI GermEval 2014 CoNLL 03 GermEval 2018 10kGNADcoarse fine
GeistBERT 82.67 88.47 86.17 79.67 66.42 90.89
GottBERTbase 80.82 87.55 85.93 78.17 53.30 89.64
GottBERTbase 81.04 87.48 85.61 78.18 53.92 90.27
fGottBERTbase 80.56 87.57 86.14 78.65 52.82 89.79
fGottBERTbase 80.74 87.59 85.66 78.08 52.39 89.92
GELECTRAbase 81.70 86.91 85.37 77.26 50.07 89.02
GBERTbase 80.06 87.24 85.16 77.37 51.51 90.30
dbmdzBERT 68.12 86.82 85.15 77.46 52.07 90.34
GermanBERT 78.16 86.53 83.87 74.81 47.78 90.18
XLM-Rbase 79.76 86.14 84.46 77.13 50.54 89.81
mBERT 77.03 86.67 83.18 73.54 48.32 88.90
GottBERTlarge 82.46 88.20 86.78 79.40 54.61 90.24
fGottBERTlarge 83.31 88.13 86.30 79.32 54.70 90.31
fGottBERTlarge 82.79 88.27 86.28 78.96 54.72 90.17
GELECTRAlarge 86.33 88.72 86.78 81.28 56.17 90.97
GBERTlarge 84.21 88.72 87.19 80.84 57.37 90.74
XLM-Rlarge 84.07 88.83 86.54 79.05 55.06 90.17

46



in the fine-grained setting. The results indicate
that GeistBERT performs competitively across di-
verse classification benchmarks, despite being a
base-sized model.

5 Discussion

5.1 Principal Findings

The continued pre-training of GottBERT on a
broader and partially deduplicated and filtered Ger-
man corpus consisting of OSCAR23, OPUS, mC4,
Wikipedia, and OpenLegal, together with the use
of WWM, leads to clear improvements across mul-
tiple language modeling tasks. GeistBERT estab-
lishes a new state of the art among base models
and achieves competitive results with larger mod-
els across multiple German NLP benchmarks.

5.2 Training Considerations and Data Quality

In contrast to the TPU-based training used for Got-
tBERT, GPU training also enabled more flexible
preprocessing, such as sentence-aware segmen-
tation. This made it possible to preserve natu-
ral sentence structure during training, even when
using fixed-length sequences. Nevertheless, hy-
perparameter tuning remains a crucial factor for
achieving strong downstream performance (Dodge
et al., 2020). WWM contributed to improved tok-
enization, aligning with previous findings (Martin
et al., 2020; Chan et al., 2020). However, we did
not perform a dedicated ablation study comparing
WWM with standard subword masking, as this
would have required training an additional baseline
model. Nevertheless, the consistently strong down-
stream results of GeistBERT suggest that WWM
contributed positively, in line with earlier findings.
Moreover, we were able to adopt a higher peak
learning rate (0.0007), which may also have been
facilitated by initializing from the fGottBERTbase

checkpoint.
While deduplication and filtering were ap-

plied to CulturaX, other subcorpora (e.g., OPUS,
Wikipedia, OpenLegal) were only partially pro-
cessed or left unfiltered. This means that some re-
dundant or lower-quality data may still be present.
Prior work suggests that models benefit from in-
creased corpus diversity (Martin et al., 2020), and
GeistBERT’s use of many different corpora likely
contributed to its robustness. Additionally, vocab-
ulary size plays a role in performance (Toraman
et al., 2023), though ours remains well-optimized.

We did not perform ablation experiments per

subcorpus, as this would have required multiple
additional large-scale pre-training runs. Neverthe-
less, we expect that improvements are not only at-
tributable to the sheer size of the training data (1.3
TB), but also to the increased heterogeneity of the
sources. The OSCAR23+mC4 portion clearly con-
tributed the majority of the volume, while smaller
corpora such as OpenLegal, Wikipedia, and OPUS
are likely to have increased linguistic and domain
diversity. Prior findings from CamemBERT (Mar-
tin et al., 2020) indicate that variance of a corpus
matter and impacts downstream robustness, which
suggests that the mix of sources in GeistBERT was
similarly beneficial.

5.3 Continued Pre-training and Outlook

We chose to continue pre-training from
GottBERT rather than training GeistBERT
from scratch, as it is common practice with
domain-specific adaptations (Lentzen et al.,
2022; Lee et al., 2019; Arefeva and Egger,
2022; Gururangan et al., 2020b). This allowed
us to reuse German-specific tokenization and
pre-trained weights, and to focus on training and
evaluating a single, well-defined setup within time
constraints. While training from scratch with
a custom vocabulary may yield more tailored
embeddings (El Boukkouri et al., 2022), prior work
suggests that continued pre-training often achieves
comparable results. A direct comparison between
continued pre-training and training from scratch
on the same architecture and corpus remains an
interesting avenue for future work.

Following the broad adoption of GottBERT in
German NLP (Scherrmann, 2023; Bressem et al.,
2024; Lentzen et al., 2022; Xu et al., 2021; Frei
et al., 2022; Frei and Kramer, 2023), we hope Geist-
BERT will be similarly received and applied.

6 Conclusion

In this work, we introduced GeistBERT, a Ger-
man RoBERTa-based language model trained on
a diverse as well as partially deduplicated and fil-
tered corpus, incorporating WWM to enhance pre-
training. GeistBERT achieves SOTA performance
among base models and even outperforms several
larger models across multiple tasks. These re-
sults underscore the importance of corpus diversity
and WWM in improving downstream performance.
GeistBERT is released under the MIT license on
Huggingface, with fairseq checkpoints provided.
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Limitations

Several limitations should be acknowledged in this
study. First, while deduplication and filtering were
applied to CulturaX (OSCAR23 + mC4) and dedu-
plication to selected OPUS corpora, other parts of
the dataset (e.g., Wikipedia, OpenLegal) were not
processed, potentially leaving redundant or noisy
data.

Second, GeistBERT’s training data, though di-
verse, remains specific to the selected corpora (OS-
CAR23, OPUS, mC4, Wikipedia, OpenLegal). Its
generalization to other datasets or domains remains
uncertain, and performance on dialects and cultural
nuances within German may be limited. Further
fine-tuning could improve adaptability to regional
language variations.

Third, we did not include a detailed error anal-
ysis of model predictions. While such an analysis
could provide additional insights into systematic
failure modes, our focus in this work was on effi-
ciency and establishing strong baselines for Ger-
man NLP.

Finally, due to efficiency constraints and lim-
ited computational resources, we did not train a
large version of GeistBERT, as pretraining based
on GottBERT estimates would have required ap-
proximately 4.75 times more compute. While our
results demonstrate the strong performance of the
base model, larger architectures could potentially
achieve even better results.

Ethical Considerations

Like all large-scale language models, GeistBERT
may inherit biases from its training data, which can
influence downstream tasks such as classification
or decision-making. While deduplication reduces
redundancy and noise, it does not remove deeper
societal or representational biases. Furthermore,
training on large web-based corpora raises privacy
concerns, as models may inadvertently retain sensi-
tive information. Responsible deployment is espe-
cially important in high-stakes domains like legal,
medical, or financial NLP.

Despite optimizations for efficiency, pre-training
and evaluating transformer models remain com-
putationally demanding, contributing to energy
use and carbon emissions. These environmental
costs highlight the need for balancing model per-
formance with sustainable development goals.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020a. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Suchin Gururangan, Ana Marasovic, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020b. Don’t stop pretraining:
Adapt language models to domains and tasks. CoRR,
abs/2004.10964.

Tim Jansen, Yangling Tong, Victoria Zevallos, and Pe-
dro Ortiz Suarez. 2022. Perplexed by quality: A
perplexity-based method for adult and harmful con-
tent detection in multilingual heterogeneous web
data.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Manuel Lentzen, Sumit Madan, Vanessa Lage-
Rupprecht, Lisa Kühnel, Juliane Fluck, Marc Ja-
cobs, Mirja Mittermaier, Martin Witzenrath, Peter
Brunecker, Martin Hofmann-Apitius, Joachim We-
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Abstract

The pervasive spread of hate speech on online
platforms poses a significant threat to social har-
mony, necessitating not only high-performing
classifiers but also models capable of transpar-
ent, fine-grained interpretability. Existing meth-
ods often neglect the identification of influential
contextual words that drive hate speech classi-
fication, limiting their reliability in high-stakes
applications. To address this, we propose LLM-
BiMACNet (Large Language Model-based
Bidirectional Multi-Channel Attention Classi-
fication Network), an explainability-focused
architecture that leverages pretrained language
models and supervised attention to highlight
key lexical indicators of hateful and offensive
intent. Trained and evaluated on the HateX-
plain benchmark—comprising class labels, tar-
get community annotations, and human-labeled
rationales—LLM-BiMACNet is optimized to
simultaneously enhance both predictive perfor-
mance and rationale alignment. Experimental
results demonstrate that our model outperforms
existing state-of-the-art approaches, achieving
an accuracy of 87.3%, AUROC of 0.881, token-
level F1 of 0.553, IOU-F1 of 0.261, AUPRC
of 0.874, and comprehensiveness of 0.524,
thereby offering highly interpretable and ac-
curate hate speech detection.

1 Introduction

Hate speech on social media has surged dramati-
cally in recent years, posing serious challenges to
social cohesion, public safety, and digital platform
governance. The contextual and nuanced nature of
hate speech—often encoded in subtle phrasing or
idiomatic expressions—makes it difficult for auto-
mated systems to distinguish between benign and
harmful content (Vijayaraghavan and Vosoughi,
2021; Kodati, 2020; Das et al., 2025a). Further-
more, users frequently manipulate hateful content
(e.g., via typos or benign interjections like “love”)

to evade detection, underscoring the need for mod-
els that understand the semantic intent rather than
simply relying on surface-level features (Garg et al.,
2023; Kodati and Tene, 2024a,b). Recent studies
have emphasized the importance of interpretable
and explainable hate speech detectors, which not
only classify content but also identify the specific
tokens that drive the decision (Kim et al., 2022;
Yang et al., 2023; Kodati and Dasari, 2025b; Das
et al., 2024, 2025b). The HateXplain dataset repre-
sents a notable advancement in this direction, pro-
viding human-annotated rationales at token level,
alongside class labels and target community anno-
tations (Mathew et al., 2021). While supervised-
attention methods like Masked Rationale Predic-
tion attempt to align model decisions with human
reasoning, there remains substantial room for im-
provement in rationale plausibility and faithfulness
(Kim et al., 2022), (Das et al., 2022). More recently,
studies such as HARE (Yang et al., 2023) and LLM-
based explanation models (Nirmal et al., 2024; Ko-
dati and Dasari, 2025a) have demonstrated that
integrating large language models (LLMs) with
supervised rationale alignment can significantly
enhance the interpretability and generalization of
hate speech classifiers. Key contributions of our
work include: identification of contextual words
responsible for hate and offensive content using
explainable attention mechanisms; integration of
LLM-guided rationale alignment to improve in-
terpretability without compromising classification
performance; and comprehensive evaluation on the
HateXplain dataset, demonstrating superior accu-
racy and explanation quality compared to state-of-
the-art models.

2 Related Work

Detecting hate speech has evolved from rule-
based and keyword-matching systems to deep
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neural architectures, driven by the increasing
need for both accuracy and transparency. Early
transformer-based models such as BERT and
RoBERTa achieved strong performance in offen-
sive language classification, yet lacked the capabil-
ity to explain why certain messages were flagged
as hateful. To address this, models incorporating
attention visualization and rationale supervision
have emerged. Vijayaraghavan et al. (Vijayaragha-
van and Vosoughi, 2021) proposed a multi-modal
framework that combines textual content and social
metadata for interpretable hate speech detection,
leveraging attention weights to identify influential
components in the input. Similarly, Kim et al. (Kim
et al., 2022) introduced the Masked Rationale Pre-
diction (MRP) method, which masks annotated ra-
tionales during training to encourage the model to
attend to human-identified evidential spans. These
approaches laid the groundwork for integrating ex-
plainability with detection but remain limited in
generalization and token-level faithfulness. More
recent studies have begun LLMs for explanation-
aware classification (Kodati and Ramakrishnudu,
2023, 2021). Yang et al. (Yang et al., 2023) intro-
duced the HARE framework, which uses step-by-
step explanations generated by an LLM to provide
hierarchical and interpretable decisions for hate
speech detection. In a similar vein, Nirmal et al.
(Nirmal et al., 2024) proposed a framework where
rationales are extracted from LLMs and used as su-
pervised signals to guide model attention, resulting
in more aligned token-level predictions with human
rationales. These models demonstrated improve-
ments not only in classification metrics but also in
explainability scores such as comprehensiveness
and sufficiency. Böck et al. (Böck et al., 2024)
further evaluated several interpretability methods
(gradient-based, perturbation-based, and attention-
based) and concluded that perturbation-based meth-
ods yield the most plausible explanations, although
they are computationally expensive. To understand
broader challenges in hate speech detection, re-
cent surveys provide comprehensive overviews of
current approaches. Kapil and Ekbal (Kapil and Ek-
bal, 2024) reviewed over 60 models, highlighting
trends in explainable AI and the need for robust ra-
tionale supervision. The work (Kodati and Dasari,
2024) emphasized limitations such as benchmark
inconsistency, algorithmic bias, and the lack of ex-
plainable metrics in evaluation protocols. Liu et al.
(Jahan and Oussalah, 2023) examined hybrid archi-

tectures combining handcrafted features and deep
representations, identifying a clear shift toward su-
pervised explanation mechanisms using annotated
datasets like HateXplain. Despite these efforts,
existing methods often face a trade-off between
performance and transparency. Our work builds
on these foundations by integrating LLM-derived
rationales within a supervised attention pipeline to
achieve both faithful interpretability and compet-
itive performance on standard hate speech bench-
marks.

3 Preliminaries

3.1 Problem Statement
Let D = {(x(i), y(i), r(i))}Ni=1 be a labeled dataset
where each x(i) = {w(i)

1 , w
(i)
2 , . . . , w

(i)
T } is a to-

kenized input text sequence of length T , y(i) ∈
Y is the class label (e.g., Hate, Offensive,
Normal), and r(i) ∈ {0, 1}T is a binary rationale
vector where r

(i)
t = 1 if token w

(i)
t is annotated

as a rationale (i.e., contributes to the label y(i)),
and 0 otherwise. The goal is to learn a classifi-
cation model fθ(x) that satisfies two objectives:
(1) accurate prediction of y given x, and (2) faith-
ful alignment of the model’s explanation with the
human-provided rationale r.

More formally, we seek to optimize the follow-
ing composite objective:

Ltotal = Lcls(fθ(x), y) + λ · Lexp(eθ(x), r) (1)

where Lcls is the supervised classification loss
(e.g., cross-entropy),Lexp is the rationale alignment
loss (e.g., binary cross-entropy between model ex-
planation and r), eθ(x) is the explanation generated
by the model (e.g., attention or importance scores),
and λ controls the trade-off between accuracy and
interpretability.

3.2 Input Representation via LLM Encoding
Given the input sequence x = {w1, w2, . . . , wT },
we pass it through a pretrained large language
model (LLM), such as RoBERTa, to obtain con-
textualized token representations. Denote the LLM
encoder as ϕ(·), then:

H = ϕ(x) = {h1, h2, . . . , hT }, ht ∈ Rd (2)

where H ∈ RT×d is the sequence of contextual
embeddings and d is the hidden dimension. These
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embeddings form the base input to the downstream
model components for classification and explana-
tion.

3.3 Rationale Supervision and Token-level
Alignment

To incorporate human-annotated rationales, we
introduce an attention-like mechanism eθ(x) =
{α1, α2, . . . , αT } where αt ∈ [0, 1] denotes the
importance score of token wt. These scores are
trained to align with the ground-truth rationale vec-
tor r using binary cross-entropy:

Lexp = −
T∑

t=1

[rt · logαt + (1− rt) · log(1− αt)]

(3)
This ensures that the model focuses its interpre-

tive capacity on tokens that are genuinely respon-
sible for the classification decision. Moreover, we
enforce that explanations are not only plausible
(aligning with r) but also faithful (i.e., their re-
moval degrades the prediction confidence), which
is evaluated using comprehensiveness and suffi-
ciency metrics in experiments.

3.4 Prediction Objective
The final classification logits z are computed from
a sequence-level representation v, which may be
derived through operations such as max pooling,
attention-weighted summation, or recurrent aggre-
gation over H . The class prediction is obtained
by:

z = Wv + b, ŷ = argmax(softmax(z)) (4)

where W ∈ R|Y|×d and b ∈ R|Y| are train-
able parameters. The model is optimized end-to-
end using the total loss Ltotal from Equation (1),
jointly training for both label prediction and ratio-
nale alignment.

4 Methodology

This section describes the architecture of our pro-
posed model, LLM-BiMACNet, which is designed
to classify hateful content and highlight the most
influential contextual tokens. The architecture in-
tegrates deep contextual representations from pre-
trained language models with hierarchical neural
processing and attention-based rationale supervi-
sion.

4.1 Overview
Given an input sequence x = {w1, w2, . . . , wT },
our model performs three primary operations: (1)
extract contextual embeddings using a pretrained
large language model (LLM), (2) process the se-
quence through a bidirectional multi-channel atten-
tion architecture for rich feature interaction, and
(3) jointly optimize for classification accuracy and
token-level rationale alignment. The complete ar-
chitecture is illustrated in Figure 1.

4.2 Contextual Encoding via LLM
We begin by transforming the input sequence into
contextual embeddings using a pretrained language
model ϕ(·), such as RoBERTa:

H = ϕ(x) = {h1, h2, . . . , hT }, ht ∈ Rd (5)

These embeddings capture semantic and syntac-
tic dependencies between tokens and serve as input
to the next stages of the network.

4.3 Bidirectional Sequential Encoding
To capture sequential dependencies in both forward
and backward directions, we employ a bidirectional
recurrent structure on top of the LLM embeddings:

−→
h t = GRUfwd(ht,

−→
h t−1),

←−
h t = GRUbwd(ht,

←−
h t+1) (6)

The final sequence representation from this layer
is:

HBi = {[−→h t;
←−
h t]}Tt=1, HBi ∈ RT×2d (7)

4.4 Multi-Channel Attention Mechanism
To emphasize different semantic aspects, we ap-
ply a multi-channel attention mechanism over the
Bi-GRU output. Each attention head computes a
distribution over the token representations:

α
(j)
t =

exp
(
w⊤

j tanh(WjH
Bi
t + bj)

)

T∑
k=1

exp
(
w⊤

j tanh(WjHBi
k + bj)

) ,

for j = 1, . . . ,M (8)

where M is the number of attention channels (or
heads), and each head focuses on a distinct sub-
space of semantic relevance. The final aggregated
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representation is the concatenation of all head-wise
weighted sums:

v =
M⊕

j=1

T∑

t=1

α
(j)
t HBi

t (9)

4.5 Global Feature Abstraction and
Classification

The output vector v from multi-head attention is
passed through a convolutional feature extractor
followed by global max pooling (GMP) to obtain a
fixed-length high-level abstraction:

F = GMP(ReLU(Conv1D(v))) (10)

The final classification logits are computed using
a fully connected layer with softmax activation:

z = WclsF + bcls, ŷ = argmax(softmax(z))
(11)

4.6 Explanation Generation and Supervision
To make the model’s predictions interpretable,
we define a token-level importance score vector
α = {α1, . . . , αT } obtained from one of the at-
tention heads trained for explanation. This head is
supervised using the binary rationale vector r from
the HateXplain dataset:

Lexp = −
T∑

t=1

[rt logαt + (1− rt) log(1− αt)]

(12)
This encourages the attention distribution to

align with human-provided explanations.

4.7 Joint Optimization Objective
The complete model is trained end-to-end with a
multi-objective loss function:

Ltotal = Lcls + λ · Lexp (13)

Here, Lcls is the standard categorical cross-
entropy loss, Lexp is the rationale alignment loss,
and λ is a hyperparameter balancing accuracy and
interpretability.

The proposed LLM-BiMACNet algorithm 1 per-
forms hate speech classification while simultane-
ously identifying the contextual words that con-
tribute most to the prediction using supervised ex-
plainability. Given an input text, the model first
encodes it using a pretrained LLM to capture rich

Algorithm 1: LLM-BiMACNet: Explain-
able Hate Speech Detection

Input: Tokenized input x = {w1, w2, . . . , wT }, true
label y ∈ Y , rationale vector
r = {r1, . . . , rT }

Output: Predicted label ŷ, contextual tokens C ⊆ x
1 Function TrainModel(D = {(x(i), y(i), r(i))}):
2 Initialize model parameters θ ;
3 foreach epoch = 1 to E do
4 foreach batch (x, y, r) in D do
5 (ŷ,α)←

ExplainableForward(x) ;
6 Lcls ← CrossEntropy(ŷ, y) ;
7 Lexp ←

−
T∑

t=1

[rt logαt + (1− rt) log(1− αt)]

;
8 Ltotal ← Lcls + λ · Lexp ;
9 Update: θ ← θ − η · ∇θLtotal ;

10 return Trained model θ ;

11 Function ExplainableForward(x):
12 H ← ϕ(x) ; // LLM contextual

embeddings

13 HBi ← BiGRU(H) ;
14 Compute attention scores α = {α1, . . . , αT } ;
15 z ← CNN→ ReLU→ GMP→ FC ;
16 ŷ ← argmax(softmax(z)) ;
17 C ← {wt ∈ x | αt > τ} ;
18 return (ŷ, C) ;

contextual embeddings. These embeddings are
processed through a BiGRU and multi-head at-
tention mechanism to compute token-level impor-
tance scores. During training, the model optimizes
both classification accuracy and explanation align-
ment by comparing its attention scores to human-
annotated rationales. At inference, it outputs not
only the predicted class (Hate, Offensive, or Nor-
mal) but also the specific tokens with high impor-
tance scores—effectively highlighting the contex-
tual words that influenced the decision.

Figure 1 illustrates the compact dual-channel ar-
chitecture of LLM-BiMACNet, where shared LLM
and BiGRU layers extract contextual representa-
tions from the input text. These representations are
then processed by two parallel branches: one for
hate speech classification using multi-head atten-
tion and CNN layers, and the other for explainabil-
ity using a supervised attention head that highlights
contextual words contributing to each prediction.

5 Dataset Collection

To evaluate our proposed model LLM-BiMACNet
in terms of both classification performance and ex-
planation fidelity, we utilize the publicly available
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Input Text Sequence("They are ruining our country")

LLM Encoder(ϕ(x))

BiGRU(HBi
t )

Multi-Head Attn (Cls)

CNN + ReLU + GMP

Fully Connected

SoftmaxHate/Off/Norm

Explanation Head(αt)

Contextual Word Extraction

Hate: ruining, country
Off: idiot, crazy
Norm: happy, support

Figure 1: LLM-BiMACNet model architecture

HateXplain dataset (Mathew et al., 2021). This
benchmark is specifically designed for explain-
able hate speech detection and provides not only
class labels but also human-annotated rationales at
the token level, making it well-suited for training
and evaluating models with interpretable attention
mechanisms.

5.1 Dataset Composition
The HateXplain dataset consists of over 20,000 so-
cial media posts, primarily sourced from Twitter
and Gab. Each post is annotated by three inde-
pendent annotators from Amazon Mechanical Turk
(AMT), providing:

• A class label from the set
{Hate,Offensive,Normal}.

• A target community label (e.g., religion, eth-
nicity, gender).

• A rationale vector indicating which words
contribute to the label assignment.

The rationales are marked at the token level, al-
lowing models to be trained not only for accurate
classification but also for interpretable decision-
making.

5.2 Annotation and Agreement
Annotators were required to justify their decisions
by highlighting the specific words that led them

to assign a given label. A majority voting scheme
was employed to determine the final class label
for each post. To ensure annotation consistency,
only samples where at least two annotators agreed
on both class and rationale were retained. This
filtering step improves the quality of supervision
for both classification and explanation tasks.

5.3 Rationale Aggregation

The final rationale mask for each input sequence is
derived by aggregating token-level selections from
the agreeing annotators. Each token wt is associ-
ated with a binary label rt ∈ {0, 1}, where rt = 1
indicates that the token contributes to the hateful
or offensive nature of the text. These rationale vec-
tors are used as ground truth for supervising the
explanation component of our model.

5.4 Train-Validation-Test Splits

We follow the standard data partition provided by
the authors of HateXplain, using 16,043 samples
for training, 1,927 for validation, and 1,969 for
testing. All experiments are conducted using this
split to ensure reproducibility and comparability
with prior work.

5.5 Why HateXplain?

Unlike traditional hate speech datasets, HateXplain
includes fine-grained human explanations, enabling
us to train and evaluate models on rationale align-
ment, explanation plausibility, and faithfulness. Its
inclusion of target community tags also supports
bias-sensitive evaluation, making it ideal for ex-
plainable and responsible AI research in toxic lan-
guage detection.

6 Experimental Results

We evaluate the proposed LLM-BiMACNet model
on the HateXplain dataset to assess its effective-
ness in both classification and explainability. The
dataset contains over 20,000 posts across three
classes—Hate ( 10%), Offensive ( 30%), and Nor-
mal ( 60%)—with an average text length of ap-
proximately 23 words per post. Around 70% of
the posts include annotated rationales highlighting
hateful or offensive spans.

6.1 Preprocessing

Prior to model training, all input samples were
lowercased, and special characters (e.g., emojis,
URLs, hashtags) were normalized using regular

55



expressions. Tokenization was performed using the
RoBERTa tokenizer from HuggingFace’s Trans-
formers library, which is compatible with our pre-
trained language model. To maintain sequence con-
sistency, we truncated or padded inputs to a maxi-
mum length of 128 tokens. For rationale alignment,
human-annotated rationale vectors were converted
into binary token-level masks aligned with subword
tokenization. All labels were mapped to categorical
indices: Hate (0), Offensive (1), and Normal
(2).

6.2 Hyperparameter Settings
The model was trained using the AdamW optimizer
with a learning rate of 2×10−5 and weight decay of
0.01. A batch size of 16 was used, and training was
conducted for up to 10 epochs with early stopping
based on validation loss. The loss balancing param-
eter λ for rationale supervision was set to 0.5 based
on grid search. The hidden dimension for BiGRU
was set to 256, and we used 4 attention channels in
the multi-channel attention mechanism. The model
uses RoBERTa-base as the contextual encoder to
generate token-level embeddings of dimension 768.
Dropout with a rate of 0.3 was applied to all inter-
mediate layers to prevent overfitting. Experiments
were conducted on an NVIDIA RTX 3090 GPU
using PyTorch 2.0 and HuggingFace Transformers
v4.30.

6.3 Results and Discussion
We report performance on both classification met-
rics and explanation metrics. Table 1 shows
the comparison of our model against state-of-the-
art baselines on the HateXplain test set. The
baseline models include XGBoost+SHAP for
gradient-based token-level explanations, CNN-
GRU for capturing local and sequential features,
BiRNN–HateXplain and BERT–HateXplain which
use supervised attention on the HateXplain dataset,
XG-HSI-BERT/BiRNN that incorporate semanti-
cally important embeddings for improved inter-
pretability, and HARE, which leverages LLM-
extracted rationales with attention mechanisms to
enhance explanation plausibility and faithfulness.

Our model significantly outperforms existing
baselines in both predictive accuracy and explain-
ability. The token-level F1 score improvement of
over 7% indicates stronger alignment with human-
annotated rationales. Similarly, the comprehensive-
ness score demonstrates that removing highlighted
tokens from input text greatly affects model confi-

dence, indicating faithful rationale extraction. The
multi-channel attention mechanism, when trained
with supervision, helps the model focus on diverse
contextual patterns, while the LLM encoder cap-
tures rich semantic structure in the input.

Our model surpasses all baseline models on the
HateXplain benchmark, achieving an accuracy of
87.3%, AUROC of 0.881, token-level F1 of 0.553,
IOU-F1 of 0.261, AUPRC of 0.874, and a compre-
hensiveness score of 0.524, highlighting its effec-
tiveness in both accurate classification and inter-
pretable rationale generation. We also visualized at-
tention heatmaps and found that LLM-BiMACNet
consistently highlights semantically relevant tokens
such as slurs, targeted identities, and abusive verbs,
which aligns well with human reasoning.

6.4 Interpretability Evaluation

To assess the faithfulness and conciseness of model
explanations, we evaluate LLM-BiMACNet using
post-hoc interpretability frameworks—SHAP and
LIME—as well as intrinsic explanation metrics
such as fidelity and sparsity. These help validate
that the rationale alignment is not only plausible
but also logically consistent with model behavior.

Tables 1 and 2 present the classification and ex-
planation performance of LLM-BiMACNet com-
pared to existing models on the HateXplain bench-
mark. LLM-BiMACNet achieves the highest accu-
racy, AUROC, and token-level F1, while also out-
performing baselines in SHAP (0.603) and LIME
(0.581) alignment, indicating strong agreement
with post-hoc explanation tools. It also shows the
highest fidelity (0.752), demonstrating that its ex-
planations reflect essential decision-driving tokens,
and the lowest sparsity (0.366), ensuring concise
and interpretable rationale outputs suitable for real-
world use. Table 3 shows that each component
cannot match the full LLM-BiMACNet. LLM-
BiMACNet, while effective, has a few limitations.
Its performance drops under domain shift, partic-
ularly on non-social media platforms like forums
or blogs with different linguistic structures. The
model’s reliance on human-annotated rationales
means that inconsistent or sparse annotations can
reduce effectiveness. Moreover, the computational
overhead of multi-channel attention is over.

To evaluate the robustness of our proposed LLM-
BIMACNET, we conducted domain generalization
experiments by training on HateXplain (Mathew
et al., 2021) and testing in a zero-shot setting on
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Table 1: Performance comparison of LLM-BiMACNet with baseline models on the HateXplain test set.

S.No Model Accuracy AUROC Token-F1 Comprehensiveness

1 XGBoost + SHAP
(Babaeianjelodar et al.,
2022)

79.0% – 0.420 –

2 CNN-GRU (Böck et al.,
2024)

62.8% – – –

3 BiRNN-HateXplain
(Mathew et al., 2021)

61.2% – 0.330 0.200

4 BERT-HateXplain (Mathew
et al., 2021)

69.8% – 0.400 0.250

5 XG-HSI-BiRNN (Böck
et al., 2024; Wasi, 2024)

74.2% – 0.487 –

6 XG-HSI-BERT (Wasi,
2024)

79.1% – 0.497 –

7 HARE (Yang et al., 2023) 84.5% 0.860 0.510 0.240
8 LLM-BiMACNet 87.3% 0.881 0.553 0.261

Table 2: Evaluation of model explanation quality.

S.No Model SHAP Score LIME Score Fidelity Sparsity

1 BERT-HateXplain
(Mathew et al., 2021)

0.562 0.537 0.671 0.431

2 BiRNN-HateXplain
(Mathew et al., 2021)

0.543 0.501 0.649 0.460

3 HARE (Yang et al.,
2023)

0.580 0.554 0.710 0.395

4 LLM-BiMACNet 0.603 0.581 0.752 0.366

Table 3: Ablation results of proposed model.

Model Variant F1-
Score

Rationale
Alignment (%)

LLM-BiMACNet 92.4 87.6
BiGRU 87.8 85.9
Multi-Head Attention 89.5 84.2
Rationale Supervision 88.3 75.1

Table 4: Domain generalization results of LLM-
BIMACNET.

Dataset / Setting Accuracy Precision Recall F1

HateXplain (Mathew et al., 2021) (In-domain) 0.84 0.83 0.83 0.83
Stormfront (Bala Das et al., 2023) (Zero-shot) 0.80 0.79 0.77 0.78
Davidson Twitter (Davidson et al., 2017) (Zero-shot) 0.82 0.81 0.80 0.80
Cross-domain Avg. w/o Emotion (Bala Das et al., 2023; Davidson et al., 2017) 0.81 0.80 0.79 0.79
Cross-domain Avg. w/ Emotion Task 0.87 0.86 0.86 0.86

Stormfront (Bala Das et al., 2023) and Davidson
Twitter (Davidson et al., 2017) (Table 4).

7 Conclusion and Future Work

This paper presents LLM-BiMACNet, a large lan-
guage model-based bidirectional multi-channel at-
tention classification network, designed to detect
hate speech while simultaneously identifying the
contextual words that influence model predictions.

By incorporating supervised rationale alignment
and multi-head attention over contextual embed-
dings, the model effectively highlights semanti-
cally significant tokens, offering faithful and con-
cise explanations. Experimental results on the
HateXplain dataset demonstrate that our model
outperforms existing state-of-the-art approaches
in both classification accuracy and interpretabil-
ity metrics, including token-level F1, SHAP/LIME
agreement, fidelity, and sparsity. The model not
only provides accurate hate speech categorization
but also reveals interpretable evidence supporting
each decision, making it suitable for sensitive appli-
cations such as content moderation, auditing, and
sociolinguistic research. Future work includes ex-
tending the model for multilingual hate speech with
cross-lingual rationale supervision, optimizing it
for low-resource deployment, adapting it to out-of-
domain texts, and improving explanation quality
using prompt-based LLMs or counterfactual rea-
soning.
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Abstract
Transformer models dominate modern NLP,
but efficient, language-specific models remain
scarce. In Portuguese, most focus on scale or
accuracy, often neglecting training and deploy-
ment efficiency. In the present work, we intro-
duce PortBERT, a family of RoBERTa-based
language models for Portuguese, designed to
balance performance and efficiency. Trained
from scratch on over 450 GB of deduplicated
and filtered mC4 and OSCAR23 from Cul-
turaX using fairseq, PortBERT leverages byte-
level BPE tokenization and stable pre-training
routines across both GPU and TPU proces-
sors. We release two variants, PortBERTbase
and PortBERTlarge, and evaluate them on Ex-
traGLUE, a suite of translated GLUE and Su-
perGLUE tasks. Both models perform compet-
itively, matching or surpassing existing mono-
lingual and multilingual models. Beyond ac-
curacy, we report training and inference times
as well as fine-tuning throughput, providing
practical insights into model efficiency. Port-
BERT thus complements prior work by address-
ing the underexplored dimension of compute-
performance tradeoffs in Portuguese NLP. We
release all models on Huggingface and provide
fairseq checkpoints to support further research
and applications.

1 Introduction

The development of neural language models
has profoundly shaped natural language process-
ing (NLP), particularly through the advent of
transformer-based architectures such as BERT (De-
vlin et al., 2019) and its optimized variant
RoBERTa (Liu et al., 2019). These models, which
learn contextualized word representations via self-
supervised pretraining, have become foundational
across a wide range of NLP tasks. While early ef-
forts prioritized English or multilingual solutions,
research has shown that language-specific pretrain-
ing on high-quality, monolingual corpora often

yields superior results for the target language (De-
lobelle et al., 2020; Scheible et al., 2024).

In Portuguese NLP, monolingual transformer
models such as BERTimbau (Souza et al., 2020)
and AlBERTina (Rodrigues et al., 2023) have
marked important milestones. More recently, mul-
tilingual alternatives like XLM-RoBERTa (Chan,
2020) and EuroBERT (Boizard et al., 2025) have
demonstrated strong cross-lingual performance
by scaling up to billions of parameters. Eu-
roBERT, in particular, follows the ”Modern BERT”
framework (Warner et al., 2024), which revisits
encoder-based models with streamlined design
and improved training efficiency. While decoder-
only models continue to dominate general-purpose
NLP, these developments show that encoder-based
masked language models (MLMs) remain competi-
tive and relevant.

However, many of these advancements come at
considerable computational cost. As NLP systems
move closer to real-world applications, ranging
from chatbots and document pipelines to tasks such
as named entity recognition, sentence classifica-
tion, or part-of-speech tagging, efficiency becomes
a central concern. Models deployed in production
must often meet strict requirements in terms of
latency, memory usage, and energy consumption.
Prior work has shown that compact transformer
models can offer significant speed-ups with mini-
mal impact on performance (Sanh et al., 2020; Jiao
et al., 2020). Yet, most Portuguese models focus
primarily on accuracy, offering limited insight into
training efficiency, hardware utilization, or deploy-
ment tradeoffs.

To address this gap, we introduce PortBERT, a
family of RoBERTa-based encoder models tailored
for Portuguese. PortBERT is trained from scratch
on over 450 GB of deduplicated text from Cul-
turaX (Nguyen et al., 2023), combining data from
mC4 (Xue et al., 2021) and OSCAR23 (Jansen
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et al., 2022). Following Scheible et al. (2024), we
construct a byte-level BPE vocabulary with 52k to-
kens using Hugging Face’s tokenizer tools, which
helps improve token efficiency and compression,
an effect observed in prior work on Dutch and Ger-
man (Delobelle et al., 2020; Scheible et al., 2024).

Pretraining is performed using the fairseq frame-
work: the base variant is trained on 8 NVIDIA A40
GPUs, and the large variant on a TPUv4-128 pod.
PortBERT retains the standard RoBERTa architec-
ture without architectural modifications like sparse
attention or extended context. Instead, it empha-
sizes a balanced design that prioritizes pretraining
efficiency, inference throughput, and downstream
accuracy. While not designed to match the scale
of models like EuroBERT (Boizard et al., 2025) or
decoder-based LLMs, PortBERT offers a robust, re-
producible, and accessible alternative for practical
Portuguese NLP.

The main contributions of this study are:

• We provide two variants, PortBERTbase and
PortBERTlarge, trained respectively on GPUs
and a TPUv4 pod, and release both models
under an open-source license.

• We evaluate PortBERT on the ExtraGLUE
benchmark, showing that both models per-
form competitively.

• We report training time for both pretrain-
ing and downstream fine-tuning, and include
throughput metrics for fine-tuning to support
transparent evaluation of efficiency.

2 Related works

In recent years, a growing number of transformer-
based language models have been developed for
Portuguese. These include both monolingual mod-
els trained specifically on Portuguese corpora and
multilingual models that support a wide range of
languages. Table 1 summarizes these models, their
architectures, and training data sources.

BERTimbau (Souza et al., 2020) was one of
the first monolingual BERT-style models for Por-
tuguese, available in base and large versions. It
was trained on a mix of BrWaC (Wagner Filho
et al., 2018), Portuguese Wikipedia, and a news
corpus using whole-word masking (WWM) over
one million steps.

AiBERTa1 (Miquelina et al., 2022; Santos et al.,
1https://huggingface.co/AiBERTa/

aiberta-d-2000M-random

2025a) follows a RoBERTa-style architecture and
is trained on a curated subset of Portuguese periodi-
cal websites archived in Arquivo.pt, a national
web archive. These periodicals range from national
newspapers like Público to smaller regional outlets,
providing well-written and structurally consistent
Portuguese text.

AlBERTina (Rodrigues et al., 2023) adopts the
ALBERT architecture (Lan et al., 2020), introduc-
ing parameter-sharing and embedding factorization.
The models were trained on the January 2023 ver-
sion of OSCAR, as well as DCEP, Europarl, and
ParlamentoPT. Separate variants exist for Brazilian
and European Portuguese.

RoBERTa PT (Santos et al., 2021) was trained
on 10 million English and 10 million Portuguese
sentences from the OSCAR corpus. Despite its
bilingual setup and relatively small training corpus,
the model is widely cited and has been evaluated
in various Portuguese NLP tasks.

RoBERTaCrawlPT and RoBERTaLexPT (Gar-
cia et al., 2024) are both RoBERTa-based mod-
els developed for Portuguese. RoBERTaCrawlPT
uses CrawlPT, a combined corpus comprising
BrWaC, CC100-PT, and OSCAR23-PT. RoBER-
TaLexPT targets legal-domain applications and
adds LegalPT, a corpus aggregating diverse legal
documents totaling up to 125 GiB.

Among multilingual models, XLM-
RoBERTa (Chan, 2020) can be used for Portuguese
tasks. It is trained on 2.5 TB of filtered Common
Crawl data in over 100 languages, including
Portuguese.

EuroBERT (Boizard et al., 2025) is a more re-
cent multilingual encoder model that spans 15 Eu-
ropean languages, including Portuguese. It fol-
lows the Modern BERT architecture (Warner et al.,
2024), with design choices optimized for scalabil-
ity and efficiency. Its training data includes Cul-
turaX (Nguyen et al., 2023), FineWeb (Penedo
et al., 2024), EuroLLM (Martins et al., 2024),
and code-related corpora such as The Stack
v2 (Lozhkov et al., 2024) and Proof-Pile-2 (Azer-
bayev et al., 2024).

While many Portuguese models report strong
downstream performance, few document training
efficiency or hardware usage. PortBERT comple-
ments this work by offering initial insights into
these often underreported aspects.
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Model Architecture Language(s) Training Data Sources

BERTimbau BERT 1 BrWaC, Wikipedia, news corpora
AiBERTa RoBERTa 1 Arquivo.pt (Portuguese periodicals)
AlBERTina PTPT/PTBR ALBERT 1 OSCAR 23, DCEP, Europarl, ParlamentoPT
RoBERTa PT RoBERTa 2 OSCAR (10M sentences each language)
RoBERTaCrawlPTbase RoBERTa 1 CrawlPT (brWaC, CC100-PT, OSCAR23-PT)
RoBERTaLexPTbase RoBERTa 1 CrawlPT, LegalPT (aggregated legal corpus)
XLM-RoBERTa RoBERTa 100+ CommonCrawl (2.5TB, filtered)

EuroBERT Modern BERT 15
CulturaX, FineWeb, EuroLLM, The Stack v2,
Proof-Pile-2

Table 1: Overview of transformer-based language models relevant to Portuguese. The table lists architecture type,
language coverage, and training data sources.

3 Methods

3.1 Corpus

To pre-train PortBERT, we used the Portuguese por-
tions of mC4 and OSCAR23 (Jansen et al., 2022),
two large-scale web corpora. The original size
of Portuguese mC4 was approximately 453.1 GB,
and OSCAR23 contributed 96.9 GB, totaling 550
GB of raw data. To reduce redundancy and im-
prove quality, we relied on the deduplicated and
filtered versions provided by CulturaX (Nguyen
et al., 2023), which together amount to 456.6 GB,
a size reduction of roughly 17% (93.4 GB). This
large and diverse dataset ensures broad linguistic
coverage with reduced duplication and noise com-
pared to raw crawled corpora. CulturaX applied
language identification, quality filtering, and dedu-
plication to produce these cleaned subsets.

3.2 Pre-processing

RoBERTa employs the byte pair encoding (BPE) to-
kenizer originally introduced with GPT-2 (Radford
et al., 2019), which processes raw text directly with-
out requiring pre-tokenization or language-specific
tools like Moses (Koehn et al., 2007). While this
tokenizer was trained on English corpora, we fol-
lowed the approach taken for GottBERT (Scheible
et al., 2024) by training a dedicated Portuguese
tokenizer. Using 40 GB of randomly sampled Por-
tuguese corpus data, we created a 52k-token vo-
cabulary optimized for the language. Although
we did not explicitly measure the impact on file
size or task performance for PortBERT, similar
adaptations in Dutch (Delobelle et al., 2020) and
German (Scheible et al., 2024) have demonstrated
benefits in both respects. In our experience, a 40
GB sample is sufficient for the subword distribu-

tion to converge, and extending vocabulary training
to the full corpus would add considerable overhead
with little expected benefit.

3.3 Pre-training

Similar to GottBERT, we pre-trained the
PortBERTbase and PortBERTlarge models using the
Fairseq framework. PortBERTlarge was trained
on a 128-core TPUv4 pod (Jouppi et al., 2023),
while PortBERTbase was trained on a cluster of
8 NVIDIA A40 GPUs, using the same training
corpus and identical optimization hyperparameters.
Mixed-precision training (fp16) was disabled
for the GPU setup and not supported by the
TPU implementation used, ensuring that both
models were trained entirely in full precision
(fp32). This controlled setup enables a direct
comparison of hardware-level training efficiency
across compute architectures, without numerical
precision optimizations acting as confounding
factors. Both models were trained on Portuguese
OSCAR data using the RoBERTa architecture.
The PortBERTbase model completed training in
approximately 27 days (2,331,939 seconds), while
PortBERTlarge required around 6.2 days (531,807
seconds). We used the standard RoBERTa pretrain-
ing schedule with 100k update steps, a batch size
of 8k, a 10k-step warmup, and polynomial learning
rate decay. The base model used a peak learning
rate of 0.0004, and the large model 0.00015. As
with GottBERT, we evaluated after each epoch and
stored checkpoints throughout training. However,
since the dataset size only permitted approximately
four epochs, the final checkpoint coincided with
the best-performing one.
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3.4 Downstream Tasks

Based on the pre-trained BERT models, we fine-
tuned several downstream tasks using the training
scripts provided by Huggingface (Wolf et al., 2019).
Hyperparameter optimization was performed via
grid search, focusing on batch size and learning
rate. Each task was trained for a maximum of 10
epochs, and the experiments were orchestrated us-
ing NNI (Microsoft, 2025) on NVIDIA A40 GPUs.

To assess model performance, each downstream
task was fine-tuned 28 times using different com-
binations of batch sizes and learning rates. Since
no separate test set was available, we selected the
best-performing checkpoint based on validation set
scores. The final performance figures reported for
each model and task reflect the best result among
these 28 validation-based runs. For comparison,
we benchmarked our models against eleven other
Portuguese language models.

We evaluated the models on ExtraGLUE (Santos
et al., 2025b), a Portuguese adaptation of the GLUE
benchmark. This suite consists of selected tasks
from GLUE and SuperGLUE that were automati-
cally translated into Portuguese, enabling language-
specific assessment and ensuring that model perfor-
mance reflects capabilities in the target language
context.

To account for varying input lengths across
tasks, we configured the maximum input sequence
length individually per task based on the maximum
observed input lengths after tokenization across
all evaluated models: 192 tokens for MRPC and
WNLI, 320 tokens for STS-B, and 512 tokens for
RTE. This ensured full coverage of the datasets
while avoiding unnecessary padding and memory
overhead.

STS-B The Semantic Textual Similarity Bench-
mark (STS-B) task evaluates the model’s ability
to assess the semantic similarity between two sen-
tences. Each sentence pair is assigned a similarity
score ranging from 0 (completely dissimilar) to 5
(semantically equivalent). Following standard prac-
tice, we report the mean of Pearson and Spearman
correlation coefficients between predicted and gold
scores.

RTE The Recognizing Textual Entailment (RTE)
task consists of binary classification, where the
model must determine whether a given hypothesis
logically follows from a provided premise. This
task evaluates the model’s capacity for inference

and semantic reasoning.

WNLI The Winograd Natural Language Infer-
ence (WNLI) task is a coreference resolution chal-
lenge cast as binary entailment. It requires the
model to resolve ambiguous pronouns and deter-
mine whether a hypothesis follows from a premise.
Despite its small size and challenging structure, it
is retained for completeness and consistency with
GLUE-style benchmarks.

MRPC The Microsoft Research Paraphrase Cor-
pus (MRPC) task is a binary classification problem
where the model must decide whether two sen-
tences are semantically equivalent. Evaluation is
based on both accuracy and F1 score, reflecting
the importance of both precision and recall in para-
phrase detection.

3.5 Model Configurations and Properties

The number of parameters in BERT-like mod-
els varies significantly depending on their ar-
chitecture (see Table 2). The base version of
BERT, such as BERTimbaubase, has approximately
109 million parameters, while large versions
like BERTimbaularge expand to over 334 million.
RoBERTa variants used in Portuguese NLP, such
as RoBERTaCrawlPTbase and RoBERTaLexPTbase,
feature around 125 million parameters, compa-
rable to PortBERTbase (126M). The large Port-
BERT model increases this to 357 million, posi-
tioning it close to BERTimbaularge while retaining
RoBERTa’s efficiency characteristics.

Multilingual models such as XLM-RoBERTa
are designed for cross-lingual tasks, with the base
version containing 278 million parameters and the
large version 560 million. These parameter counts
make them substantially larger than monolingual
base models, but beneficial in zero-shot or cross-
lingual scenarios (Eronen et al., 2023).

The AiBERTa and AlBERTina families offer di-
verse parameter ranges. All AiBERTa variants
(regardless of source or domain configuration)
have approximately 101 million parameters, with a
smaller vocabulary size of 20,000. The AlBERTina
models, in contrast, range from 138 million (100M
variants) to over 1.5 billion parameters for the 1.5B
variants, reflecting a significant increase in capac-
ity and vocabulary size (up to 128,100 tokens).
These models serve different use cases depending
on the required balance between compute and per-
formance.
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Finally, EuroBERT models span from 210 mil-
lion parameters in the 210M variant to over 2.1
billion in the 2.1B variant. They provide a scalable
foundation for multilingual or European-centric
tasks, emphasizing both vocabulary coverage and
model depth.

Table 2: The size of the vocabulary and the size of
the parameters are shown for the model types used in
this study. This table does not show other design dif-
ferences of the models. Values were extracted using
Huggingface’s transformers library. Models are sorted
by number of parameters.

Model Vocab Size #Params
roBERTa PT 32000 68090880
AiBERTa 20000 101401344
BERTimbaubase 29794 108923136
RoBERTaLexPTbase 50265 124645632
RoBERTaCrawlPTbase 50265 124645632
PortBERTbase 52009 125985024
AlBERTina 100M PTPT 50265 138601728
AlBERTina 100M PTBR 50265 138601728
EuroBERT 210m 128256 211766016
XLM RoBERTabase 250002 278043648
BERTimbaularge 29794 334396416
PortBERTlarge 52009 357145600
XLM RoBERTalarge 250002 559890432
EuroBERT 610m 128256 607874688

4 Results

4.1 Downstream task evaluation

Table 3 presents the downstream evaluation results
of all Portuguese language models across four Ex-
traGLUE tasks: STS-B, RTE, WNLI, and MRPC.
We report task-specific metrics: Spearman and
Pearson correlations for STS-B, accuracy for RTE
and WNLI, and both accuracy and F1 for MRPC,
alongside the average performance (AVG) across
all tasks.

Among the base-sized models,
RoBERTaLexPTbase achieves the highest overall
score with an AVG of 80.63, showing strong
results particularly in MRPC accuracy (89.46)
and F1 (92.34). Close behind is PortBERTbase,
with an AVG of 80.57, outperforming all others
in WNLI accuracy (60.56, tied with XLM-R) and
ranking second in STS-B with a Spearman score
of 87.39 and Pearson of 87.65. BERTimbaubase
shows the best performance in STS-B (88.5 mean),
but underperforms slightly in WNLI, holding it
back from overall top placement.

RoBERTaCrawlPTbase and EuroBERT 210m
also demonstrate robust overall performance, par-
ticularly in RTE and MRPC, with AVG scores

above 79.0. Meanwhile, XLM RoBERTabase shows
competitive results in WNLI (60.56) and MRPC F1
(91.32), though its STS-B score slightly lags behind
the top contenders. Legacy models like roBERTa
PT perform significantly worse, especially on se-
mantic similarity tasks, confirming the impact of
more recent training strategies and data sources.

In the large model category, XLM RoBERTalarge
emerges as the strongest overall model with an
AVG of 84.01. It leads all others in STS-B (90.14
mean) and achieves the highest RTE score (82.31),
although it underperforms in WNLI. EuroBERT
610m follows closely with an AVG of 83.44, show-
ing outstanding performance in MRPC (94.2 F1,
91.91 accuracy) and the second-best RTE result
(78.34).

PortBERTlarge achieves a solid overall score of
82.26, slightly ahead of BERTimbaularge (82.23).
While BERTimbaularge does not dominate any sin-
gle task, PortBERTlarge exhibits the highest WNLI
accuracy (61.97). BERTimbaularge stands out with
strong STS-B scores (89.5 mean) and competitive
MRPC metrics.

Overall, the results validate the effectiveness
of the PortBERT models, with both the base and
large variants frequently ranking among the top-
performing models across tasks. The base model
outperforms many existing Portuguese models on
average, while the large model achieves results
close to the best multilingual transformers. This in-
dicates their robustness and applicability to a range
of semantic and inference tasks in Portuguese.

4.2 Performance vs. Efficiency

To complement accuracy-based comparisons, we
also assess model efficiency in terms of training
and inference throughput (see Figure 1). Among
the base models, several exhibit a favorable bal-
ance between performance and efficiency. No-
tably, roBERTa PT achieves the highest train-
ing throughput (62.1 samples/sec) and inference
speed (112.7 samples/sec), but its task perfor-
mance lags significantly behind all competitors,
suggesting that efficiency alone is insufficient
without adequate pretraining quality. In con-
trast, PortBERTbase and RoBERTaCrawlPTbase
both demonstrate strong downstream performance
(AVG: 80.57 and 80.48, respectively) while main-
taining competitive training throughput around
25–26 samples/sec and inference throughput above
65 samples/sec. BERTimbaubase similarly offers
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Model STS-B (Similarity) RTE WNLI MRPC AVG
Spearman Pearson Mean Acc Acc Acc F1

BERTimbaularge 89.4 89.61 89.5 75.45 59.15 88.24 91.55 82.23
EuroBERT 610m 88.46 88.59 88.52 78.34 59.15 91.91 94.2 83.44
XLM RoBERTalarge 90.0 90.27 90.14 82.31 57.75 90.44 93.31 84.01
PortBERTlarge 88.53 88.68 88.6 72.56 61.97 89.46 92.39 82.26
AiBERTa 83.56 83.73 83.65 64.98 56.34 82.11 86.99 76.29
AlBERTina 100M PTBR 85.97 85.99 85.98 68.59 56.34 85.78 89.82 78.75
AlBERTina 100M PTPT 86.52 86.51 86.52 70.04 56.34 85.05 89.57 79.01
BERTimbaubase 88.39 88.6 88.5 70.4 56.34 87.25 90.97 80.32
EuroBERT 210m 86.54 86.62 86.58 65.7 57.75 87.25 91.0 79.14
RoBERTaCrawlPTbase 87.34 87.45 87.39 72.56 56.34 87.99 91.2 80.48
RoBERTaLexPTbase 86.68 86.86 86.77 69.31 59.15 89.46 92.34 80.63
XLM RoBERTabase 85.75 86.09 85.92 68.23 60.56 87.75 91.32 79.95
PortBERTbase 87.39 87.65 87.52 68.95 60.56 87.75 91.13 80.57
roBERTa PT 48.06 48.51 48.29 56.68 59.15 72.06 81.79 61.04

Table 3: Evaluation results in %. STSB is reported with Spearman, Pearson, and their mean. RTE and WNLI are
classification accuracy. MRPC includes accuracy and F1. The AVG score averages the six metrics: STSB Spearman,
STSB Pearson, RTE Acc, WNLI Acc, MRPC Acc, MRPC F1. Bold = best, underlined = second-best per model size.
Based on best epoch from 28 runs for max 10 epochs. The AVG score is computed as the unweighted mean across
six metrics: STS-B Spearman, STS-B Pearson, RTE accuracy, WNLI accuracy, MRPC accuracy, and MRPC F1.

a good trade-off with strong performance (AVG:
80.32) and respectable throughput, making these
three the most efficient base models when balanc-
ing quality and compute.

The large models generally exhibit higher down-
stream performance but at a considerable compu-
tational cost. XLM RoBERTalarge leads in task
performance (AVG: 84.01) and inference through-
put (47.4 samples/sec) compared to its large-model
peers. However, its training throughput is relatively
low (14.9 samples/sec), indicating longer training
durations. PortBERTlarge achieves an attractive
efficiency-performance trade-off, with an AVG of
82.26 while maintaining higher training and infer-
ence throughput (23.3 and 70.7 samples/sec, re-
spectively), positioning it as the most throughput-
efficient large model while still achieving compet-
itive accuracy. Meanwhile, EuroBERT-610M de-
livers strong performance (AVG: 83.44) but with
lower throughput metrics, reflecting its high compu-
tational demands. These results suggest that while
large models provide superior accuracy, the effi-
ciency gap between well-optimized base and large
models like PortBERT is narrowing. Full runtime
statistics are reported in Appendix C.

5 Discussion

5.1 Efficiency and Accuracy Trade-offs

PortBERT demonstrates that efficient, monolin-
gual transformer models remain a valuable asset in
the evolving landscape of Portuguese NLP. While
large multilingual encoders like XLM-RoBERTa
or EuroBERT-610M offer strong performance,
their high computational demands restrict practi-
cal deployment, particularly in latency-sensitive
or resource-constrained settings. In contrast, Port-
BERT delivers competitive downstream task re-
sults while maintaining generally higher through-
put compared to other strong Portuguese baselines,
both during training and inference.

As shown in our efficiency analysis (Section 4.2),
PortBERTbase stands out for its balanced trade-off
between accuracy and efficiency, ranking among
the top performers in its class. PortBERTlarge nar-
rows the performance gap to state-of-the-art models
like XLM RoBERTalarge, while maintaining supe-
rior throughput and lower hardware demands. Our
focus with PortBERT was on cost-efficient pretrain-
ing for Portuguese specifically, where zero-shot
transfer is not required. In this sense, PortBERT
complements large multilingual encoders such as
XLM-RoBERTa by offering a more efficient option
for monolingual applications.

64



10 20 30 40 50 60
Training samples/sec

60

65

70

75

80

85
AV

G 
Do

wn
st

re
am

 S
co

re
 (%

)
Model Performance vs. Training Throughput

AiBERTa
AlBERTina 100M PTBR
AlBERTina 100M PTPT
BERTimbaubase
BERTimbaularge

EuroBERT 210m
EuroBERT 610m
RoBERTaCrawlPTbase
RoBERTaLexPTbase
XLM RoBERTabase
XLM RoBERTalarge

PortBERTbase
PortBERTlarge

roBERTa PT

40 60 80 100
Inference samples/sec

60

65

70

75

80

85

AV
G 

Do
wn

st
re

am
 S

co
re

 (%
)

Model Performance vs. Inference Throughput

AiBERTa
AlBERTina 100M PTBR
AlBERTina 100M PTPT
BERTimbaubase
BERTimbaularge

EuroBERT 210m
EuroBERT 610m
RoBERTaCrawlPTbase
RoBERTaLexPTbase
XLM RoBERTabase
XLM RoBERTalarge

PortBERTbase
PortBERTlarge

roBERTa PT

Figure 1: Performance–throughput trade-off across models. The top plot shows the relationship between average
downstream score (AVG) and training throughput (samples/sec), while the bottom plot presents the same metric
against inference throughput. This comparison highlights which models offer the best balance between effectiveness
and computational efficiency during training and inference.

The performance differences between PortBERT
and large multilingual encoders such as XLM-
RoBERTalarge are not solely attributable to the
amount of training data. They also reflect architec-
tural and training differences, including the substan-

tially larger parameter count of XLM-RoBERTa
(560M vs. 357M for PortBERTlarge), its much
larger multilingual vocabulary (250k vs. 52k to-
kens), and the use of a massive multilingual corpus
(2.5TB multilingual vs. 456GB of Portuguese).
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In addition to hardware throughput, Port-
BERT models also demonstrate strong parame-
ter efficiency. PortBERTbase (126M parameters)
achieves higher average performance than larger
models such as XLM-RoBERTabase (278M) and
EuroBERT-210M (212M), despite having less than
half their parameter count. PortBERTlarge (357M)
achieves results close to XLM-RoBERTalarge
(560M) and EuroBERT-610M (608M), highlight-
ing the impact of targeted, monolingual pretraining
on recent Portuguese corpora. This makes Port-
BERT a compelling choice in scenarios where both
accuracy and model size matter.

5.2 Training Setup and Hardware
Comparisons

Beyond per-job throughput, the total pretraining
time differed substantially between hardware se-
tups. PortBERTbase, trained on 8 NVIDIA A40
GPUs, required approximately 27 days to com-
plete 100k update steps. In contrast, PortBERTlarge,
trained on a TPUv4 128 pod, completed training in
just over 6 days. Both models used the same batch
size, corpus, and optimizer settings in full precision
(fp32), allowing for a clean comparison of train-
ing performance across hardware platforms. Using
GottBERT’s pretraining durations as a reference,
we estimate that PortBERTbase would have taken
around 1.3 days to train on comparable TPU infras-
tructure. This illustrates the advantage of modern
TPUs for large-scale training, particularly when
time is a critical factor. However, TPU-specific
constraints, including limited memory flexibility
and less mature tooling for PyTorch and custom
workflows, can limit development. In addition, the
lack of local TPU hardware forces developers to
rely on cloud platforms, slowing iteration and com-
plicating debugging.

Efficiency comparisons must also consider hard-
ware configuration. Due to memory constraints,
EuroBERT-610M and partly XLM RoBERTalarge
were trained without parallel jobs (i.e., one job per
GPU), whereas PortBERT and other models used
multiple parallel training jobs per GPU to maxi-
mize utilization. This difference in hardware allo-
cation might have impacted the observed through-
put and training durations, potentially skewing effi-
ciency comparisons in this regard.

5.3 Positioning Among Existing Models
Recent large-scale efforts such as Eu-
roBERT (Boizard et al., 2025) illustrate the

scale-performance frontier in multilingual
modeling. EuroBERT training consumed over
200,000 GPU hours across MI250X and MI300A
clusters and leveraged cutting-edge optimization
techniques such as FlashAttention (Dao, 2023).
While such models raise the performance ceiling,
they also require infrastructure that is out of reach
for many academic or industry teams. In contrast,
PortBERT was trained on commodity hardware
using open-source tools, offering a transparent and
efficient alternative that lowers the entry barrier for
building high-quality models in any languages.

To our knowledge, PortBERT is the first
RoBERTa-style Portuguese model trained on recent
deduplicated and filtered corpora from CulturaX
(mC4) and OSCAR23, using a fully transparent and
reproducible fairseq pipeline. This positions it as
a strong alternative to more resource-intensive sys-
tems, particularly for researchers and practitioners
seeking open, efficient solutions.

Although decoder-only models such as GPT vari-
ants dominate general-purpose NLP, they are often
unsuitable for sentence-level classification tasks
due to their autoregressive nature. Encoder-based
models like PortBERT offer lower inference la-
tency and better fit for downstream classification,
especially under real-world constraints.

5.4 Architectural Constraints and Training
Stability

We deliberately retained the standard RoBERTa
encoder architecture. Our goal was not only to es-
tablish a strong monolingual baseline, but also to
enable a fair comparison of computational costs
with GottBERT, which was trained on a compa-
rable TPU setup. Introducing architectural modi-
fications such as sparse or FlashAttention would
have shifted the baseline and made this comparison
meaningless.

Like GeistBERT (Scheible-Schmitt and Frei,
2025), PortBERT prioritizes practical usability over
raw scale. Although it does not achieve top perfor-
mance on every benchmark, it remains consistently
strong across tasks, making it a compelling op-
tion in the accuracy-efficiency trade-off. PortBERT
could also be adapted for longer inputs using archi-
tectures such as Longformer (Beltagy et al., 2020)
or Nyströmformer (Xiong et al., 2021), though at
the cost of increased training complexity.

During pretraining, we did not apply WWM,
as stable support for it was missing in the fairseq
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TPU implementation. As with GottBERT, we en-
countered TPU-specific constraints: the lack of
dynamic memory allocation required processing
the corpus as a continuous token stream, deviating
from RoBERTa’s dynamic sentence-sampling strat-
egy. We were also constrained to 32-bit precision
due to unstable 16-bit support in fairseq’s TPU im-
plementation, increasing memory use and runtime.
To ensure stability under these conditions, we used
conservative learning rates. For comparability, we
deliberately applied the same pre-processing and
training constraints to the GPU-based base model,
even though the GPU setup would have supported
dynamic sampling and mixed precision.

5.5 Final Remarks

Ultimately, PortBERT is a step toward sustainable
and accessible language modeling for Portuguese.
It illustrates that thoughtful model design, com-
bined with optimized pretraining and recent cor-
pora, can yield strong models without relying on
large-scale infrastructure. Future work may explore
quantized or distilled versions for mobile deploy-
ment and domain-specific continued pretraining to
further expand applicability or even continue pre-
training with a more diverse corpus using WWM
similar to Scheible-Schmitt and Frei (2025).

6 Conclusion

We presented PortBERT, a family of RoBERTa-
based language models for Portuguese, pre-trained
on recent large-scale corpora (mC4 and OS-
CAR23). While not state-of-the-art on all bench-
marks, PortBERT models achieve strong down-
stream performance and demonstrate notable ef-
ficiency in training and inference. To support re-
producibility and downstream adoption, we release
both Huggingface-compatible models and fairseq
checkpoints. These resources enable further pre-
training, fine-tuning, or adaptation for longer con-
texts and domain-specific tasks. PortBERT of-
fers an efficient and accessible foundation for Por-
tuguese NLP.
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Limitations

This work has several limitations. First, although
we used deduplicated and filtered corpora from
CulturaX (mC4 and OSCAR23), we did not apply
deduplication across all possible data sources or
levels of granularity. Residual duplication or noise
may therefore remain in the training data.

Second, PortBERT was trained exclusively on
web-based Portuguese text, without explicit control
for dialectal variation (e.g., Brazilian vs. European
Portuguese) or domain-specific content. As a result,
the model’s performance on underrepresented di-
alects or specialized registers (e.g., legal, medical,
or informal language) may be suboptimal without
further fine-tuning.

Third, while we aimed for stable and repro-
ducible training configurations across both GPU
and TPU platforms, we opted for conservative
learning rates and default precision settings to en-
sure stability, particularly on TPUs where dynamic
memory allocation and mixed precision remain lim-
ited in fairseq. We did not explore extensive hyper-
parameter tuning in regard of the peak learning rate
and did not apply WWM, which could potentially
yield further gains.

Fourth, we did not include a detailed error anal-
ysis of model predictions. While such an analysis
could provide additional insights into systematic
failure modes, our focus in this work was on ef-
ficiency and establishing strong baselines for Por-
tuguese NLP.

Lastly, our evaluation is focused on the Ex-
traGLUE benchmark. While this provides a useful
proxy for general NLP performance in Portuguese,
it does not capture the full range of downstream
tasks or real-world deployment settings. Moreover,
ExtraGLUE does not offer a held-out test set with
a submission server, which limits the ability to con-
duct blind evaluations and compare models in a
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standardized manner.

Ethical Considerations

As with any large-scale language model, PortBERT
is susceptible to inheriting and reproducing biases
present in its training data. While we apply dedupli-
cation techniques to reduce noise and redundancy,
deeper societal, cultural, and representational bi-
ases may persist. This is particularly relevant for
downstream applications in sensitive domains such
as healthcare, education, or public administration,
where biased outputs could reinforce inequality or
misinformation.

Training on large-scale web-based corpora also
introduces privacy concerns. Although the dataset
is filtered and preprocessed, models may inadver-
tently memorize and surface sensitive or personal
information. Careful handling is necessary when
deploying PortBERT in real-world applications,
especially those involving user data or decision-
making contexts.

Finally, despite efforts to balance performance
and efficiency, pretraining transformer models on
GPUs and TPUs consumes substantial computa-
tional resources. The associated energy usage and
environmental impact underline the importance of
developing sustainable training practices and pro-
moting model reuse.
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F. T. Martins. 2024. Eurollm: Multilingual language
models for europe.

Microsoft. 2025. Neural network intelligence. https:
//github.com/microsoft/nni/. Accessed:
2025-05-01.

Nuno Miquelina, Paulo Quaresma, and Vı́tor Beires
Nogueira. 2022. Generating a european portuguese
bert based model using content from arquivo.pt
archive. In Intelligent Data Engineering and Au-
tomated Learning – IDEAL 2022, pages 280–288,
Cham. Springer International Publishing.

Thuat Nguyen, Chien Van Nguyen, Viet Dac Lai,
Hieu Man, Nghia Trung Ngo, Franck Dernoncourt,
Ryan A. Rossi, and Thien Huu Nguyen. 2023. Cul-
turax: A cleaned, enormous, and multilingual dataset
for large language models in 167 languages.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben al-
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A Parameters

The parameter space for our grid search is listed in
Table 4. In addition, Table 5 shows the parameters
of the best models (selection based on validation
set) of the respective tasks. We include these de-
tails to support reproducibility of our downstream
results.

Parameter Values
Learning Rate 7e-5, 5e-5, 2e-5,

1e-5, 7e-6, 5e-6, 1e-6
Batch Size 16, 32, 48, 64
Epochs 10

Table 4: Hyperparameters used in the grid search of the
downstream tasks.

B Perplexity

During pretraining, model perplexity was tracked
on a test set after each optimization step and on a
validation set at every checkpoint (see Figure 2).
The models exhibited a plateau in their perplexity
curves, brief for the base models, but more pro-
longed for the large ones. Some training curves
also showed temporary spikes, which may ap-
pear as divergence if not interpreted with context.
Across both models, convergence occurred gradu-
ally and stabilized by around 30k steps. In contrast,
the validation perplexity decreased steadily across
both models without showing pronounced plateaus,
stabilizing at lower values by the end of training.
This results from the limited number of validation
checkpoints (three intermediate epochs and a final
checkpoint at 100k steps), which yield a coarser
view of the learning dynamics.

Figure 2: Perplexity of the PortBERT models. Top
based on a validation at the checkpoints. Bottom based
on the validation of each optimization cycle during the
training.

C Efficiency Measurements

Tables 6 and 7 report detailed runtime statistics for
all models and tasks. Table 6 provides a task-level
breakdown of training and inference times, while
Table 7 compares model-level efficiency metrics,
including throughput and per-epoch timing. All
models were fine-tuned using Huggingface Trans-
formers (v4.52.3) on NVIDIA A40 GPUs.

Task Training Time Inference Time
MRPC 157:04 00:38
RTE 241:46 00:57
STSB 314:24 02:25
WNLI 25:30 00:08

Table 6: Computation time in hours and minutes for the
downstream tasks, summing up to 1549 hours and 29
minutes, which corresponds to approximately 64.6 days
of GPU usage.
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Model STS-B RTE WNLI MRPC

BS LR BS LR BS LR BS LR
EuroBERT 210m 16 7 E-06 64 2 E-05 32 2 E-05 32 7 E-06
XLM RoBERTalarge 64 2 E-05 32 1 E-05 16 7 E-05 64 2 E-05
AlBERTina 100M PTPT 64 7 E-05 32 2 E-05 16 2 E-05 48 5 E-05
AlBERTina 100M PTBR 64 5 E-05 16 1 E-05 32 1 E-06 48 7 E-05
AiBERTa 32 2 E-05 32 1 E-05 32 7 E-05 32 5 E-05
EuroBERT 610m 16 1 E-05 16 7 E-06 32 1 E-05 16 5 E-06
XLM RoBERTabase 16 1 E-05 32 2 E-05 64 2 E-05 16 2 E-05
roBERTa PT 32 7 E-05 32 1 E-05 48 5 E-06 32 7 E-05
RoBERTaCrawlPTbase 48 7 E-05 64 7 E-05 48 1 E-06 48 7 E-05
BERTimbaularge 32 2 E-05 16 7 E-05 32 7 E-06 16 5 E-05
BERTimbaubase 48 5 E-05 16 1 E-05 48 7 E-05 32 7 E-05
PortBERTbase 48 7 E-05 16 1 E-05 16 1 E-06 64 1 E-05
RoBERTaLexPTbase 48 5 E-05 48 5 E-05 32 7 E-06 64 2 E-05
PortBERTlarge 16 2 E-05 16 7 E-06 32 7 E-06 16 7 E-06

Table 5: Hyperparameters of the best downstream task models for each task and pre-trained model. BS refers to
batch size, and LR denotes the learning rate.

Model Train Time (s) Train/s Time/Epoch (s) Eval Time (s) Eval/s

AiBERTa2000M 1306.47 29.68 142.39 7.24 71.56
AlBERTinaPTBR 2906.82 15.44 309.08 15.85 38.92
AlBERTinaPTPT 2800.95 17.68 300.35 17.54 37.22
BERTimbaubase 1499.94 25.12 152.88 9.15 62.63
BERTimbaularge 4406.49 8.32 484.90 21.44 24.73
EuroBERT210M 1777.84 20.01 181.90 6.60 75.40
EuroBERT610M 2498.58 15.58 254.26 12.80 52.52
RoBERTaCrawlPTbase 1682.64 25.51 171.76 9.15 66.28
RoBERTaLexPTbase 1457.99 27.86 149.42 8.84 67.58
XLM-RoBERTabase 1440.55 24.97 152.49 4.86 101.59
XLM-RoBERTalarge 2139.34 14.85 233.65 10.46 47.44
PortBERTbase 1524.59 25.00 160.29 8.96 65.79
PortBERTlarge 2389.63 23.26 264.74 15.09 70.71
roBERTa PT 635.46 62.11 79.02 4.82 112.71

Table 7: Training and inference efficiency of all evaluated models. Metrics include total training time, training
samples per second, average time per epoch, total evaluation time, and evaluation throughput.
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Abstract 

This study investigates the influence of 

human-annotated translation quality on the 

performance of machine translation (MT) 

models for a low-resource language pair—

English to Slovak. We collected and 

categorized 287 student translations from a 

national competition, annotated by expert 

translators into three quality levels. Using 

the mT5-large model, we trained six neural 

MT models: three on the full dataset 

without validation splitting, and three using 

training/validation splits. The models were 

evaluated using a suite of automatic metrics 

(BLEU, METEOR, chrF, COMET, 

BLEURT, and TER), with TER serving as 

the validity criterion. Statistical analyses 

revealed that data quality had no significant 

effect when training without validation, but 

did have a significant impact under fine-

tuning conditions (p < 0.05). Our results 

suggest that fine-tuning with combination 

with validation splitting increases the 

model's sensitivity to the quality of training 

data. While the overall effect size is 

modest, the findings underscore the 

importance of high-quality, annotated 

corpora and modern training strategies for 

improving MT in low-resource languages. 

1 Introduction 

Machine translation (MT) refers to the use of 
algorithms and machine learning models to 
translate texts from one natural language into 
another (Keary, 2023). Modern MT systems 
increasingly rely on artificial neural networks, 
which can autonomously learn to perform 
translation with high accuracy - often achieving 
levels of accuracy comparable to those of human 
translators (Young, 2024). Building a high-quality 
MT model typically requires access to large 

volumes of training data. Although neural 
approaches have reached state-of-the-art 
performance in MT, they suffer from the high cost 
of acquiring large-scale parallel corpora (Wang et 
al., 2021).  

A neural MT model θ translates a source sentence 
x into a target sentence y. Using a parallel training 
corpus C, the model θ is trained by minimizing the 
negative log-likelihood loss. The encoder-decoder 
structure (based on recurrent neural networks, 
convolutional neural networks or transformer) is 
commonly employed in neural MT, where the 
encoder transforms the source sentence into a 
sequence of hidden representations and the 
decoder generates target words based on these 
representations and the previously generated target 
words (Wang et al., 2021). For high-resource 
language pairs such as English-French, data 
availability is less problematic, as substantial 
parallel corpora have been compiled over time. 
However, the requirement for large amounts of 
parallel data is often unrealistic for many of the 
7000+ languages spoken worldwide, which 
presents a major challenge for low-resource 
languages (Ranathunga et al., 2023). The low-
resource problem may stem either from a language 
itself is low-resourced (underrepresented) or from 
specific domains lack sufficient data (Hedderich et 
al., 2021). 

In the case of the Slovak language, the limited 
availability of text data categorizes it as a low-
resource language (Do et al., 2014). Such 
languages are underrepresented in digital spaces 
compared to high-resource languages, making it 
difficult for speakers to use the advaced 
technologies in their daily lives - including 
effective neural MT systems (Tonja et al., 2023). 

The research objective: 
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The aim of this study is to investigate how both 
the quality of parallel texts (fair, good, and 
excellent translations) and the distribution of the 
dataset (corpus) influence MT system 
performance, specifically the quality of neural MT 
output as measured by automatic evaluation 
metrics.  

The structure of this study is as follows: Section 
1 introduces the research problem, motivation, and 
contributions. Section 2 reviews related work on 
data quality in MT and prior studies on evaluation 
metrics. Section 3 describes the dataset, 
tokenization process, model setup, and evaluation 
metrics. Section 4 presents the experimental 
results, including statistical analyses of models 
trained on both the full dataset and split dataset. 
Section 6 concludes the study and outlines 
directions for future work. 

2 Related work 

A recent case study demonstrated that carefully 
targeted data collection can significantly improve 
MT performance in a low-resource language pair 
(Hasan et al. 2020). Data is arguably the most 
critical factor in modeling (developing) translation 
systems (Haddow et al., 2022). When applying 
data-driven MT to a specific language pair, the 
initial step involves assessing available data 
resources and identifying effective strategies for 
collecting additional data. In the context of low-
resource MT, Haddow et al. (2022) classify 
research approaches into four main categories: 
searching existing data sources, web-crawling for 
parallel data, data creation, and test data 
development. In our research, we focus on creating 
a new parallel dataset comprising student 
translations from English into Slovak. 

Several researchers have explored the use of 
multiple references in MT. Wu et al. (2024) 
measured semantic similarity among reference 
translations and categorized them into different 
training subsets based on their degree of variation. 
They fine-tuned two pre-trained large language 
models - LLAMA-2-7B and mT5-large - using 
datasets containing multiple references. Their 
results showed that using source texts with 
semantic similarity scores between 0.45 and 1.0 led 
to better performance than unfiltered datasets. 
Similarly, Zouhar et al. (2021) investigated how 
the quality and quantity of reference translations 
affect the reliability of automatic MT evaluation 
metrics. They found that low-quality or overly 
diverse references may distort metric scores, 
whereas carefully selected multiple references 

enhance evaluation robustness. Our study builds on 
these findings by combining both perspectives: we 
employ multiple reference translations per source 
sentence while accounting for diversity in human-
annotated translation quality. Unlike prior studies 
that primarily focused on semantic variation, we 
examine how quantity and quality of human-
annotated translations influences MT model 
training and quality of MT outputs.  

3 Methodology 

3.1 Data collection and pre-processing 

The texts used in this study were obtained from the 
Young Translator public competition, which is 
open to high school students interested in 
translation. A total of 287 student translations were 
included in this study, most of which were 
translations of literary texts. Two professional 
translators - both university lecturers in translation 
and interpreting - evaluated the translations and 
classified them into three quality categories: 1 – 
fair translation, 2 – good translation, and 3 – 
excellent translation. Since the collected 
translations were available only in printed form, 
several pre-processing steps were required before 
training.   

The following pre-processing steps were applied:  

 Optical character recognition (OCR) 
 Text editing for alignment  
 Alignment of English and Slovak texts  
 Additional text editing prior tokenization and 

training  
 Tokenization 

Optical character recognition 

Because the original documents were available 
only as scanned PDFs, it was necessary to convert 
them into machine-readable text. This was 
achieved using the Tesseract OCR library 
(Tesseract OCR, 2025). Although the student 
translations (essays) were typewritten, many 
contained handwritten annotations—often in black 
or colored ink—as part of the evaluation process. 
In cases where colored pens were used, color 
filtering was applied to improve OCR accuracy. 
After recognition, the output was stored in txt 
format for further processing.  
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Text editing for alignment 

The OCR output required extensive cleaning. 
Common issues included misrecognized 
characters, extra punctuation marks (e.g., quotation 
marks), incorrect spacing (e.g., multiple spaces), 
and line breaks not corresponding to sentence 
boundaries. All empty lines were removed to 
prevent alignment errors. Additionally, the texts 
were anonymized to remove any personally 
identifiable information. 

Alignment of English and Slovak sentences 

After cleaning, the English source texts and Slovak 
translations were aligned. Each English sentence 
corresponded to multiple Slovak translations (a 1-
to-n alignment), reflecting the multiple student 
versions. To facilitate semantic alignment, we 
employed LaBSE (Language-agnostic BERT 
Sentence Embedding), a model trained on more 
than 100 languages, including English and Slovak 
(Feng et al. 2020). A similarity threshold of 0.6 was 
applied.  

The aligned data were merged into two larger txt 
files - one for English and one for Slovak - 
structured for training purposes. Each model 
requires one text file in English and one 
corresponding text file in Slovak. Duplicate 
sentence pairs were removed, and the dataset was 
randomly shuffled. Since the number of sentence 
pairs varied across the three quality categories, the 
sets for scores 2 and 3 were downsampled to match 
the smallest set (score 1), ensuring balanced 
training data and avoiding bias in model evaluation 
(Table 1). For English and Slovak, the number of 
words was (54,827 EN | 43,354 SK) for model_1, 
(54,056 EN | 42,849 SK) for model_2, and (55,514 
EN | 42,717 SK) for model_3. Number of tokens 
was (100,841 EN | 97,284 SK) for model model_1, 
(101,698 EN | 96,707 SK) for model_2, and 
(101,802 | 96,406) for model_3. 

 Model_1 Model_2 Model_3 

Slovak 
sentences 

3130  3130 3130 

English 
sentences 

3130 3130 3130 

Table 1: Number of sentences for each model 

Tokenization 

For tokenization and training of MT models, we 
utilized the pre-trained mT5-large model. This 
model is based on the transformer architecture and 

was trained on a multilingual dataset containing 
sentences from 101 languages, including Slovak 
(Xue et al., 2020). The mT5-large model was used 
to tokenize both the English and Slovak texts in 
preparation for training. We selected this model 
because it covers the English-Slovak language pair 
and offers a balance between model capacity and 
training efficiency. 

Although the mT5 model includes Slovak in its 
pre-training data, fine-tuning on domain-specific 
datasets is still necessary to achieve optimal 
performance. In this study, we trained separate 
models for each quality category, resulting in a 
total of six models:  

1) Three models trained on the full dataset for 
each category (fair, good, and excellent 
translations). 

2) Three models trained on a split dataset for 
each category (fair, good, and excellent 
translations). 

All training was conducted on Google Colab using 
an NVIDIA A100 GPU. 

3.2 Models trained on the full dataset 

In the first experiment, we trained three models 
using the entire dataset. Each model corresponded 
to one of the three quality categories - fair, good, 
and excellent translations. 

The training parameters for these models are 
summarized in Table 2: 

Hyperparameters Values 
Per_device_train_batch_size 4 

Num_train_epochs 3 

Learning_rate 1e-4 
fp16 False 

Table 2: Hyperparameters for training  

After training, three MT models were obtained. 

Their performance was evaluated using a reference 

file containing all unique English–Slovak 
sentences, which had been excluded from the 

training data to ensure a fair and unbiased 

evaluation.  

3.3 Models with data split 

The key difference between the initial three models 
and the subsequent three lies in the data split 
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strategy. For these latter models, the dataset was 
randomly divided into 90% for training and 10% 
for validation. The 10% validation set was used to 
fine-tune the models during training. The 
hyperparameters employed for training all three 
fine-tuned models are listed in Table 3. 

Hyperparameters Value 

Per_device_train_batch_size 4 

Num_train_epochs 5 

Learning_rate 1e-4 

fp16 False 

eval_strategy steps 

eval_steps 500 

Table 3: Hyperparameters for training  

3.4 Evaluation metrics 

The trained models were evaluated using a range 

of automatic metrics: BLEU, METEOR, COMET 

chrF, TER, and BLEURT.  

BLEU (BiLingual Evaluation Understudy) is a 
precision-based metric that evaluates MT output 
by comparing n-grams in the hypothesis (MT 
output) with those in one or more reference 
translations. It does not consider word order 
beyond matching n-grams and tends to reward 
exact matches. A higher BLEU score indicates 
closer overlap with the reference and therefore 
better translation quality (Papineni et al., 2002).  

METEOR (Metric for Evaluation of Translation 
with Explicit Ordering) is a metric that aligns 
words and phrases between the hypothesis and 
reference translations using synonyms, stemming, 
and paraphrasing. It calculates scores based on 
unigram precision, recall, and F-score, which are 
combined via a weighted harmonic mean. Score 
ranges from 0 (poor translation) to 1 (perfect 
translation) (Banerjee et al. 2005).  

COMET is a neural framework that considers both 
source and reference translations. Trained on 
human judgment data, it predicts sentence-level 
quality score. This study employed several 
versions, including wmt20-comet-da, wmt21-
comet-da, wmt21-comet-qe-da and wmt22-comet-
da. Metric wmt22-comet-da integrates quality 
estimation techniques using OK/BAD tags from 
human-annotated datasets and combines multiple 
models via hyperparameter optimization to 
produce a single quality score (Rei et al. 2020, Rei 
et al. 2022). Scores typically range from 0 (poor 
quality) to 1 (high quality). 

BLEURT (Bilingual Evaluation Understudy with 
Representations from Transformers) is a 
regression-based evaluation metric built on BERT. 
Fine-tuned on human ratings of translation quality, 
it captures subtle semantic differences between 
translations. BLEURT scores generally range from 
0 to 1, though values may occasionally exceed this 
range due to the nature of the regression output 
(Sellam et al., 2020). 

chrF is a character n-gram F-score metric that 
evaluates translation quality at the character level 
rather than the word level. This approach is 
particularly effective for morphologically rich 
languages or those with flexible word order. It 
computes F-scores over character n-grams (e.g., 6-
grams), combining precision and recall into a 
single score, with higher values indicating better 
translation quality (Popović, 2015). 

TER (Translation Edit Rate) measures the number 
of edits (insertions, deletions, substitutions, and 
shifts) required to transform the hypothesis into the 
reference translation. Lower TER score indicates 
higher translation quality, as fewer edits are needed 
(Snover et al., 2006). 

4 Results 

To facilitate interpretation and comparison of MT 
model performance, the evaluation metrics were 
grouped according to their scale and underlying 
evaluation strategy. Three metric groups were 
defined: 

 Group 1 (within-group factor: Metric1*): 
Includes BLEU, METEOR, chrF, wmt22-
comet-da and wmt21-comet-qe-da. These 
metrics primarily assess surface-level or 
structural similarity between hypothesis 
and reference translations. 

 Group 2 (within-group factor: Metric2*): 
Includes BLEURT, wmt20-comet-da, and 
wmt21-comet-da. These metrics capture 
deeper semantic similarity, often 
leveraging pre-trained language 
representations and human rating data. 

 Group 3: TER, treated as a separate metric 
due to its nature as an error-based measure, 
serving as a validity criterion for the 
accuracy metrics. 

We hypothesize that statistically significant 
differences will exist among the examined metrics, 
between within-group metric (Metric1*/Metric2*) 
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and the translation quality levels of the training 
data (between-group factor: quality levels 1–3). 

TER as the only metric explicitly measuring edit 
distance/error rate, is used as a benchmark validity 
measure to evaluate the reliability and consistency 
of the other metrics. 

4.1 Models trained on full dataset 

To assess the assumption of homogeneity of 
variances across the independent variable (quality 
levels 1, 2, and 3) a nonparametric Levene’s test 
was used. The results were non-significant (Table 
4), indicating that the assumption of equal 
variances between independent groups was not 
violated. 

 MS 
Effect 

MS 
Error 

F p 

bleu 0.019 0.018 1.038 0.355 
meteor 0.004 0.013 0.323 0.724 
chrf 0.002 0.011 0.183 0.833 
wmt22-
comet-
da 

0.003 0.006 0.447 0.640 

Table 4: Levene' test for homogeneity of variances 

However, the assumption of sphericity - which 
concerns the equality of variances of the 
differences between all combinations of dependent 
metrics in Metric1 (BLEU, METEOR, chrF, and 
wmt22-comet-da) - was violated (Table 5). 

 W Chi-

Sqr. 

df p 

Metric1 0.496 396.360 5 0.0000 

Table 5: Mauchley sphericity test 

To preserve statistical power and ensure the 
validity of the analysis, adjusted univariate tests for 
repeated measures were applied. These tests 
evaluated the effects of translation quality and its 
interaction with evaluation metric (metric1 × 
quality) on translation performance (Table 6). 

 Epsilon Adj. 

df1 

Adj. df2 Adj. p 

Metric1 0.705 2.116 1199.867 0.0000 

Metric1 

x 

quality 

0.705 4.232 1199.867 0.4542 

Table 6: Adjusted (G-G) univariate tests for repeated 
measure 

Statistically significant differences (p < 0.05) were 
observed only among the evaluation metrics 
themselves (Table 6). The effect of between-group 
factor (quality level) did not have a statistically 
significant on the evaluation outcomes (p > 0.05), 
indicating that the quality categories (1, 2, and 3) 
did not significantly influence scores across the 
metrics. 

The results of the multilevel comparison (Table 7) 

further clarify the relative behavior of individual 

metrics. Specifically, a statistically significant 

difference was found between the BLEU metric 

and remaining metrics, whereas no statistically 

significant difference was observed between 

meteor and chrf metrics. Even when considering 

the quality levels (Table 7), no statistically 

significant differences were found between the 

individual quality categories (1, 2, and 3) with 

respect to the metrics included in Metric1 (BLEU, 

METEOR, chrF, and wmt22-comet-da). 

Quality Metric1 mean 1 2 3 

3 bleu 0.255  ****  

1 bleu 0.282  ****  

2 bleu 0.299  ****  

3 meteor 0.593 ****   

3 chrf 0.598 ****   

1 meteor 0.606 ****   

1 chrf 0.616 ****   

2 meteor 0.628 ****   

2 chrf 0.635 ****   

1 wmt22-

comet-
da 

0.820   **** 

3 wmt22-

comet-

da 

0.825   **** 

2 wmt22-

comet-

da 

0.837   **** 

Note: **** - p > 0.05, homogeneous group 

Table 7: Multi-stage comparison 

We applied the same analytical procedure to Group 

Metric2, taking into account deviations from the 

assumption of normality. 

Statistically significant differences were observed 

only among the evaluation metrics within-group 

Metric2 (p = 0.000). The effect of the between-

group factor (translation quality level) on 

evaluation scores was not statistically significant (p 

= 0.552), indicating that the assigned quality 
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categories did not influence the metric scores in 

this group. Statistically significant differences 

were found between all three metrics in this group 

(p < 0.05). When incorporating the translation 

quality factor, no significant interaction effects 

based on translation quality were observed (Table 

8). 

 

quality metric2 Mean 1 2 3 

3 

wmt21-

comet-

da 0.050 ****     

1 

wmt21-

comet-

da 0.056 ****   

2 

wmt21-

comet-

da 0.071 ****   

3 bleurt 0.096 **** ****  

1 bleurt 0.134 **** ****  

2 bleurt 0.179  ****  

3 

wmt20-

comet-

da 0.625   **** 

1 

wmt20-

comet-

da 0.638   **** 

2 

wmt20-

comet-

da 0.696     **** 
Note: **** - p > 0.05, homogeneous group 

Table 8: Multi-stage comparisons 

metric2 

MS 

Effect 

MS 

Error F p 

bleurt 0.019 0.055 0.346 0.7077 

wmt20-

comet-

da 0.053 0.110 0.487 0.6147 

wmt21-

comet-

da 0.000 0.008 0.001 0.9994 

Table 9: Levene' Test for Homogeneity of Variances 

  W 

Chi-

Sqr. df p 

metric2 0.728 179.615 2 0.0000 

Table 10: Mauchley Sphericity Test 

  Epsilon 

Adj. 

df1 

Adj. 

df2 Adj. p 

metric2 0.786 1.572 891.567 0.0000 

metric2 

x 

quality 0.786 3.145 891.567 0.5521 

Table 11: Adjusted (G-G) Univariate Tests for 
Repeated Measure 

Similar to the first group of metrics, deviations 

from normality were identified for the second 

group of metrics. Based on the results of the 

nonparametric Levene's test (Table 9), we conclude 

that the assumption of equality of variances 

between independent samples (quality: 1, 2, and 3) 

is not violated. In the case of dependent samples 

(metric2: bleurt, wmt20-comet-da, wmt21-comet-

da), the sphericity condition of the covariance 

matrix was violated (Table 10). In order not to 

reduce the power of the statistical tests, we use 

adjusted univariate tests for repeated measures 

(Table 11) to assess the quality of the translation as 

a function of the interaction of the within-group 

and between-group factors (metric2 x quality). 

Statistically significant differences were observed 

only among the metrics themselves (p < 0.05), 

while the between-group factor, translation quality, 

did not have a significant effect on evaluation 

outcomes (p > 0.05) (Table 8). A multilevel 

comparison (Table 8) indicates that the wmt21-

comet-da metric is statistically the most rigorous 

metric (p < 0.05), whereas wmt20-comet-da is 

statistically the least rigorous (p < 0.05). 

Statistically significant differences were found 

between all three metrics (p < 0.05). 

The reliability analysis of the MT assessment 

procedure indicates that the selected set of 

evaluation metrics - BLEU, METEOR, chrF, 

BLEURT, wmt22-comet-da, wmt20-comet-da, 

and wmt21-comet-da - demonstrates acceptable 

internal consistency (Cronbach’s α > 0.6), 

suggesting that the metrics collectively form a 

coherent measurement construct (Average inter-

item corr. > 0.5). 

The MT evaluation procedure explains nearly 70% 

of the variability in MT error rate (Table 12). Based 

on the validity analysis (Table 12), the procedure 

demonstrates acceptable criterion validity. The 

TER metric, which directly represents MT error 

rate, was employed as the validity criterion (Munk 

et al., 2018), confirming that the combined use of 

BLEU, METEOR, chrF, BLEURT, wmt22-comet-
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da, wmt20-comet-da, and wmt21-comet-da 

provides a valid estimation of translation accuracy. 

  Summary for scale 

Multiple R 0.830 

Multiple R2 0.689 

F(7,562) 178.169 

p 0.0000 

Table 12: Validity analysis 

4.2 Models with data split 

As with the first three models, evaluation of the 
split-data models was performed using the same 
reference file. Due to deviations from normality 
and differences in the range of the evaluated scores, 
the metrics were again divided into three groups, 
following the same grouping strategy as in the first 
experiment. 

We hypothesize that statistically significant 
differences will exist between within-group metric 
(Metric1*/Metric2*) and the translation quality 
levels of the training data (between-group factor: 
quality levels 1–3). 

As in the previous analysis, the TER metric 
(ter_ref.) was employed as the validity criterion, 
since it directly reflects the MT error rate. As in the 
previous analysis, we observed a violation of the 
sphericity assumption for the covariance matrix, as 
indicated by the Mauchly’s Test of Sphericity (p < 
0.05), which pertains to the use of repeated (dependent) 
measures (metric1*: bleu_ref., meteor_ref., chrf_ref., 
wmt22-comet-da, wmt21-comet-qe-da). 

We applied adjusted univariate tests for repeated 
measures to evaluate translation quality as a 
function of the interaction between within-group 
(metric1)* and between-group (quality level) 
factors. The results indicated statistically 
significant differences among the evaluated 
metrics (p = 0.000), as well as a significant effect 
of translation quality on the evaluation outcomes 
(p = 0.004). 

Multilevel comparisons (Table 13) further 

confirmed statistically significant differences 

among all metrics (p < 0.05). Additionally, a 

significant effect of translation quality was 

observed across nearly all metrics, except wmt21-

comet-qe-da, for which the effect was not 

statistically significant (p > 0.05). 

 

quality metric1* Mean 1 2 3 4 5 6 7 

3 wmt21-comet-qe-da 0.106 ****             

2 wmt21-comet-qe-da 0.107 ****       

1 wmt21-comet-qe-da 0.107 ****       

3 bleu_ref. 0.218  ****      

1 bleu_ref. 0.271   ****     

2 bleu_ref. 0.283   ****     

3 meteor_ref. 0.546    ****    

3 chrf_ref. 0.555    ****    

1 meteor_ref. 0.596     ****   

2 meteor_ref. 0.611     ****   

1 chrf_ref. 0.619     ****   

2 chrf_ref. 0.627     ****   

3 wmt22-comet-da 0.801      ****  

1 wmt22-comet-da 0.821      **** **** 

2 wmt22-comet-da 0.842             **** 

Note: **** - p > 0.05, homogeneous group 

Table 13: Multi-stage comparisons 

quality metric2* Mean 1 2 3 4 

8 bleurt_ref. 0.019 ****       

8 wmt21-comet-da 0.024 ****       

6 wmt21-comet-da 0.062 ****       

7 wmt21-comet-da 0.072 ****       

7 bleurt_ref. 0.172   ****     
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6 bleurt_ref. 0.174   ****     

8 wmt20-comet-da 0.54       **** 

6 wmt20-comet-da 0.65     ****   

7 wmt20-comet-da 0.708     ****   

Note: **** - p > 0.05, homogeneous group 

Table 14: Multi-stage comparisons 

 

For the second group of metrics (metric2*: 

bleurt_ref., wmt20-comet-da, wmt21-comet-qe-

da), the sphericity assumption was also violated 

(Mauchley Sphericity Test: p < 0.05). In order not 

to reduce the power of the statistical tests, we use 

modified univariate tests for repeated measures to 

assess the quality of the translation as a function of 

the within-group and between-group interaction 

(metric2* x quality) (Table 15). 

  Epsilon 

Adj. 

df1 

Adj. 

df2 Adj. p 

metric2* 0.787 1.575 892.795 0.0000 

metric2* 
x quality 0.787 3.149 892.795 0.0130 

Table 15: Adjusted (G-G) univariate tests for repeated 
measure 

Statistically significant differences (Table 15) were 

again demonstrated between the metrics 

themselves (p < 0.05), and the effect of translation 

quality was likewise significant (p < 0.05).  

When including translation quality as a factor in 

the multilevel comparison (Table 14), a statistically 

significant influence of quality level was 

confirmed for almost all metrics, with the 

exception of wmt21-comet-da (p > 0.05). 

  Summary for scale 

Multiple R 0.890 

Multiple R2 0.792 

F(7,562) 267.144 

p 0.0000 

Table 16: Validity analysis 

The MT evaluation procedure explains nearly 80% 

of the variability in the MT error rate (Table 16). 

Based on the results of the validity analysis (Table 

16), we conclude that the procedure demonstrates 

acceptable criterion validity. The TER metric was 

employed as the validity criterion (Munk et al., 

2018), confirming that the combined use of BLEU, 

METEOR, chrF, BLEURT, wmt22-comet-da, 

wmt20-comet-da, and wmt21-comet-da provides a 

valid estimation of translation accuracy. 

5 Conclusion 

The study demonstrates that the quality of 

annotated training data influences the performance 

of neural MT systems for the English–Slovak 

language pair. However, the extent of this effect 
depends strongly on the training strategy. When 

models were trained on the full dataset without 

validation splitting, translation quality level 
showed no significant impact on performance (p > 

0.05). In contrast, when the dataset was split into 

training and validation subsets, translation quality 

level significantly affected the evaluation metrics 
(p < 0.05). This suggests that fine-tuning with held-

out validation data increases the model’s 

sensitivity to training data quality.  

Despite minor deviations and variations across 
individual metrics, the overall evaluation 

procedure explains a significant proportion of the 

variance in translation error rates. These findings 
indicate that for low-resource languages such as 

Slovak, enhancing the quality of human-annotated 

parallel corpora can lead to measurable gains in 

MT performance - particularly when modern 
training strategies like fine-tuning on held-out 

validation sets are employed. Nonetheless, the 

effect size remains relatively small, and further 
improvements may require not only higher-quality 

data, but also larger and more diverse training 

corpora.  
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Abstract

This study investigated the effectiveness of
various models in deep learning in perform-
ing sentiment analysis on code-mixed Hinglish
text, a hybrid language widely used in digi-
tal communication. Hinglish presents unique
challenges due to its informal nature, frequent
code-switching, and complex linguistic struc-
ture. This research leverages datasets from the
HinGE, SemEval-2020 Task 9 & E-Commerce
Reviews Datasets competition and employs
models such as RNN (LSTM), BERT-LSTM,
CNN, and a proposed BiLSTM model with
Data Augmentation. The study’s primary ob-
jective is to develop a robust sentiment analysis
framework that accurately classifies sentiment
in Hinglish text. The BiLSTM model demon-
strated superior performance when trained and
tested on 3 different datasets. This model out-
performed existing approaches. The results
highlight the proposed model’s capability to
handle the nuances of Hinglish in a more gener-
alized manner, including its informal and code-
mixed nature, more effectively than traditional
models. The model also snags for future devel-
opments like data bias, interpretability of the
model, scalability.

1 Introduction

During the last 10 years the worldwide expansion
of social media with digital communication sys-
tems triggered an exceptional linguistic transfor-
mation leading to the emergence of multilingual
hybrid expressions. Code-mixed languages have
become prevalent markers of culture and global-
ization since they combine multiple languages in
one communication context. Hinglish exists as
the perfect example of a mixed language formed
by combining Hindi and English that serves as a
common communication method throughout India
and throughout South Asia. However, Recurrent
neural networks and their variant using long short-

term memory units exhibit exceptional capability
in identifying sequential dependencies in Hinglish
text which enables them to process unstructured
code-mixed sentences with diverse lengths. New
opportunities for code-mixed language Sentiment
Analysis emerged from the development of BERT
(Bidirectional Encoder Representations from Trans-
formers) and its transformer-based models & cross
attention networks. The contextual embeddings
produced by BERT-derived models like mBERT
and IndicBERT obtain information from both lo-
cal words and global linguistic patterns for the ef-
ficient disambiguation of polysemous words and
hybrid phrases(He and Abisado, 2024; Hu et al.,
2024; Li et al., 2024).However, the pathway faces
multiple significant challenges that need to be re-
solved. The sociolinguistic diversity of Hinglish
requires language frameworks to adapt through
frameworks which understand continuous language
development. The Hinglish language encompasses
three levels of diversity that include geographical
dialects together with differences between genera-
tional groups and technical jargon specific to plat-
forms(Joshi et al., 2025). To counter this problem,
this work presents Bidirectional LSTM(BiLSTM)
model with Dense layers, with various data aug-
mentation techniques. As a result, we get the
features of LSTM, & various Dense layers help
the model to get the most prominent features. As
we know that text data can be uneven, which can
lead to class imbalance. This work also showcases
how data augmentation can be a technique which
can tackle the problem of class imbalance on var-
ious datasets. This model is tested on 3 famous
datasets - HinGE, E-Commerce Reviews & Se-
mEval dataset. Comparing the results from previ-
ously implemented models, we get a descent result
in general, and concluded that this model can be
used on any kind of textual data.
The format of the paper is as follows: Section 2
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emphasizes the relevant research which is done in
this area, highlighting their methodologies & the
dataset used. After that, Section 3 covers the pro-
posed methodology along with the dataset used.
Consequently, Section 4 showcases the compar-
ative analysis and the proposed model’s perfor-
mance. Finally, Section 5 shows a brief conclusion
& future work that can be done in this area.

2 Literature Review

Many researchers have developed various ap-
proaches in order to get the best performance of
the model, using various machine learning tech-
niques and deep learning architectures, or hybrid
approaches. Let us look a few of them.

The authors in (Narang et al., 2024) operate
to enhance misleading information detection pow-
ers by merging sentiment analysis techniques with
text feature extractions. Their aim centers around
building an effective method to detect false news
within the current fast-paced digital era. The re-
search draws from three different datasets including
Covid-19.The proposed method delivers substantial
performance gains that reach 20% accuracy better-
ment for detecting 2 classes in LIAR and 30% bet-
terment when classifying 6 classes.TextGT in (Yin
and Zhong, 2024) represents a new Aspect Based
Sentiment Analysis(ABSA) approach which incor-
porates a double-view graph Transformer model
according to the authors. The method implements
specialized GNN layers for text graphs alongside
Transformer layers for sequences while connecting
them for resolving over-smoothing problems. The
authors developed a new edge feature-enhanced
graph convolution algorithm named TextGINConv
for performance enhancement.The authors in (Al-
freihat et al., 2024) create Emoji Sentiment Lexi-
con (Emo-SL) as part of their research to enhance
sentiment analysis for Arabic tweets. The main
goal focuses on managing the difficulties which
arise from informal Arabic text specifically because
of morphological complexity alongside language
dialect variations. Combination of Emoji-based
aspects with ML methods achieve enhanced sen-
timent classification because of their hybrid ap-
proach. A total of 58,000 Arabic tweets enter the
dataset because they incorporate emojis. The col-
lected dataset gathers tweets from the Arabic Senti-
ment Twitter database for achieving balanced pos-
itive/negative sentiment distribution. The model
achieves an F1 score of 89% from sentiment classi-

fication and 26.7% in emoji feature extraction.
The authors in (Bilal et al., 2024) have set a goal to
enhance sentiment classification accuracy through
deep sequential feature combination with Random
Forest (RF) technique application. The experimen-
tal results show that the proposed model detected
99.631% correct responses from the dataset which
surpassed five baseline algorithms substantially.
The research in (Li and Chen, 2024) investigates
public discussions that focus on Virtual Humans
together with their technological advancement and
virtual idol and streamer applications and corpo-
rate investment along with policy strategies.The
analysis tracked emotional tendencies as part of
sentiment analysis procedures. Statistical analysis
shows user discussions focus mainly on techno-
logical advancements of VHs and yield positive
user reactions at 87.10%.This authors in (Mahmud
et al., 2024) created a benchmark dataset dedicated
to analyze sentiment in Cricket social media con-
tents written in Bangla whereas the text comes
from low-resource settings. The main purpose is to
build better sentiment analysis tools for the Bangla
language through an emphasis on cricket analy-
sis since this content category stands as a major
interest for Bangladesh. The research division es-
tablished two parts for the dataset: training at 80%
and testing at 20% which enabled a reliable assess-
ment of model performance.Researchers in (Liu
et al., 2024) work to resolve Multimodal Sentiment
Analysis (MSA) difficulties which appear when un-
certain missing modalities exist. The research intro-
duces MTMSA which represents a novel modality
translation-based Multi-Modal Sentiment Analysis
model that improves sentiment classification out-
comes through the proper use of text and audio
and visual data. Gradual monologue videos in the
CMU-MOSI dataset contain 2,199 instances that
receive emotional score values between -3 & +3
and IEMOCAP presents extensive multimodal in-
formation for sentiment analysis. The authors in
(Alsemaree et al., 2024) focus on sentiment analy-
sis (SA) of Arabic social media texts, specifically
targeting customer perceptions in the coffee indus-
try. The text employs two methods of feature ex-
traction for sentiment classification accuracy: Term
Frequency-Inverse Document Frequency (TF-IDF)
and Minimum Redundancy Maximum Relevance
(MRMR). The researchers apply four supervised
learning algorithms: KNN, support vector machine,
decision tree and random forest for their analy-
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sis. The newly proposed method reached an ex-
ceptional accuracy threshold of 95.95% using hard
voting and 94.51% using soft voting. The authors
in (Low et al., 2024) focus on creating a machine
learning process which identifies and categorizes
sexual harassment instances within literary doc-
uments while overcoming human interpretation
shortcomings. Evaluation results demonstrated that
the proposed LSTM-GRU deep learning model ob-
tained 75.8% accuracy in sexual harassment type
classification with superior performance compared
to other five models. The same model design im-
plemented for sentiment classification achieved an
accuracy level of 84.5%. The authors in (Ramzy
and Ibrahim, 2024) studied Arabic COVID-19 mo-
bile health (mHealth) application user satisfaction
by analyzing user review sentiments. The anal-
ysis used manual annotation of a representative
8,220 reviews to guarantee accurate sentiment iden-
tification. Six different machine learning systems
consisting of Support Vector Machine (SVM), K-
Nearest Neighbor (KNN), Naive Bayes (NB) and
Logistic Regression (LR), Random Forest (RF) and
Artificial Neural Network (ANN) were used to eval-
uate review sentiment. The ANN model revealed
the best performance because it reached 89% ac-
curacy and 89% F1 score. The study in (Lossio-
Ventura et al., 2024) explores methods to assist
healthcare providers and researchers with applying
sentiment analysis tools to health-related free-text
survey data when dealing with COVID-19. The au-
thors used multiple human raters to establish gold-
standard labels for a portion of their datasets that
functioned as evaluation criteria for various senti-
ment analysis methods. The performed analysis
demonstrated ChatGPT surpassing other sentiment
analysis tools while also reaching superior accu-
racy values and F-scores. The accuracy scores from
ChatGPT surpassed OPT by 6% and its F-measure
results exceeded those of OPT by 4% to 7% across
all datasets.

3 Proposed Framework

This section presents the proposed method that has
been implemented on 2 different datasets. We be-
gin our discussion on the proposed method from
data collection, then going towards data prepro-
cessing. After that, we will delve into exploratory
data analysis(EDA). Next discussion will be on
data augmentation, and then going through data
distribution. Finally, we will describe our proposed

Data 
Collection

Data
 Preprocessing

Exploratory 
Data

Analysis

Data
Augmantation

Data
Distribution

Proposed
 Bi-LSTM

Removal of stopwords,
ASCII characters, emojis,

usernames, digits,
hastags, single charter

words

Performance
Evaluation

Oversampling along
with SMOTE

Accuracy, Precision,
Recall, F1-Score, MSE,

Model Loss

Figure 1: Proposed Workflow for the Sentiment Analy-
sis using Bi-LSTM technique

methodology.

3.1 Data Collection

We performed our experiment on the following
datasets:

1. HinGE Dataset: The data originated from
(Srivastava and Singh, 2021a), and futhter
used in (Jadon et al., 2024) provides 395,
2766, & 768 samples respectively for val-
idation and training and testing purposes.
The datasets present 3 sections namely ”En-
glish,” ”Hindi” and ”Hinglish” with synthetic
Hinglish versions of Hindi & English.

2. SemEval-2020 Task 9: This dataset centers
its analysis on the Twitter datasets of both
Hinglish (Hindi–English) code-mixing along
with Spanglish (Spanish–English). Compris-
ing 19,000 tweets in Spanglish and 20,000
tweets in Hinglish contains sentiment classi-
fication and linguistic annotations for each
tweet.

3. E-Commerce Reviews Dataset: This dataset
has been generated by taking reviews from
several E-Commerce platforms. It exhibits
10,000 reviews and their sentiment class distri-
bution in ”positive”, ”neutral” or ”negative”.

3.2 Data Preprocessing

Initiating the process requires removing all
additional symbols including #,,, %, and $.
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Figure 2: Sentiment Class Distribution

Lowercase conversion of text represents one
text cleaning operation while the removal of
non-ASCII characters and numeric value stripping
and punctuation mark elimination and hashtag
symbol deletion and username blocking are
additional procedures. Transaction tags (’RT’)
disappear while brief words and Hindi numerical
digits are trimmed and URLs become indicated
as ”URL.” The normalization process controls
backslashes to improve consistency within the text
data. Through their collective approach multiple
cleaning techniques create a refined ”processed
text” column which ensures the Hinglish tweets
undergo methodical cleaning procedures to
become standardizable and free of noise until
natural language processing can be employed.

3.3 Exploratory Data Analysis

The exploratory data analysis (EDA) approach
serves as an advanced analytical stage to perform
a complete evaluation of dataset quality together
with its structural elements. Statistical and visual
tools help researchers detect patterns and devia-
tion points to determine suitable traits for future
analysis during this method.

3.4 Data Augmentation

The data augmentation technique transforms
training datasets to improve their overall quality

together with their range of content while also
making them more resistant to errors. The tech-
niques create expanded datasets through processed
variations of available data which maintain its
original meaning or structural elements. We used
2 such techniques in our dataset - Oversampling
along with SMOTE.

• Oversampling: Oversampling is conceptu-
ally simple: it duplicates existing samples
from the minority class. Mathematically,
this process involves selecting a sample xi
from the minority class dataset Xminority and
adding it multiple times to the dataset. Let
Xminority = {x1, x2, . . . , xm} represent the
minority class samples & Xnew represent the
augmented dataset after oversampling. The
procedure of oversampling can be expressed
as:

Xnew = Xminority ∪
k⋃

j=1

{xi | xi ∈ Xminority}

Here k is the number of times each sample
xi is duplicated & the union operation (∪) in-
dicates that the original minority samples are
combined with their duplicates. For example,
if Xminority = {[1, 2], [3, 4]} and k = 2, then:

Xnew = {[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]}

• Synthetic Minority Over-sampling Tech-
nique(SMOTE): SMOTE generates synthetic
samples by interpolating between existing
minority-class samples. It calculates new
points along the line segment connecting a
sample xi and one of its k-nearest neighbors
xj . Suppose Xminority = {x1, x2, . . . , xm}
represent the minority class samples, NNk(xi)
denote the set of k-nearest neighbors of xi in
feature space & λ ∈ [0, 1] represent a random
interpolation factor. Then For each sample
xi ∈ Xminority will randomly select a neigh-
bor xj ∈ NNk(xi) and generate a synthetic
sample xsynth as:

xsynth = xi + λ(xj − xi)

where xi is the original sample, xj is the se-
lected neighbor & λ controls the position of
the synthetic point along the line segment be-
tween xi and xj . The augmented dataset Xnew
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Figure 3: EDA before and after Data Augmentation in
all 3 datasets

is described as:

Xnew = Xminority ∪ {xsynth | xsynth

generated using the above formula}

3.5 Data Distribution

The application of an 70:20:10 data splitting ratio
stands as a vital process step when dealing with
sentiment analysis for Hinglish textual information
ratio. The data was arranged into three subsets
where validation data represents 20% of total data
and test data comprises 10% of total data supple-
mentary to training data containing the remaining
70%.

3.6 Proposed Model

The implemented model utilizes a Bidirectional
LSTM architecture that analyzes sequential data
from forward and backward time sequences. The
bidirectional method delivers the model access to
contextual information flowing from past and fu-
ture time points which boosts its ability to spot
complex dependencies between sequence inputs.
LSTMs enable strong performance in sentiment

analysis and other applications with complex lin-
guistic structures specifically in Hinglish language.
The updation process governing the LSTM cell is
shown in algorithm 1.

Algorithm 1 LSTM Cell Updation

1: Step 1: Data Preparation and Splitting
2: for each sample (xi, yi) ∈ D do
3: xi ← LOAD(xi)
4: xi ← PREPROCESS(xi)
5: D ← D ∪ {(xi, yi)}
6: end for
7: (Dtrain,Dtest)← SPLIT(D, r = 0.2)
8: Step 2: Model Definition and Training
9: Define model architecture: Φ ←
Sequential(FC,BN,Dropout,BiLSTM,FC)

10: Initialize parameters θ, optimizer Adam(η =
0.001), and regularizers

11: for epoch = 1 to max epochs do
12: for each batch B = {xj}bj=1 ∈ Dtrain do
13: ŷj = Φ(xj)
14: L = CrossEntropy(ŷ, y) + λ∥θ∥22
15: ∇θL ← BACKWARD()
16: θ ← OPTIMIZE(θ,∇θL)
17: end for
18: Evaluate validation loss Lval
19: if Lval not improving for patience

epochs then
20: EarlyStopping→ break
21: else if reduce on plateau condition met

then
22: η ← max(η · 0.5, 10−6)
23: end if
24: end for
25: Step 3: Save and Deploy Model
26: θ∗ ← SAVE MODEL(θ)
27: Φ∗ ← LOAD MODEL(θ∗)

4 Results & Discussion

The use of Bidirectional LSTMs enhances the
model’s ability to capture both short-term and
long-term dependencies in sequential data. This
capability is crucial for analyzing the nuanced
structure of Hinglish text, where context plays a
vital role in determining sentiment. Additionally,
the incorporation of regularization techniques
such as dropout and L2 regularization ensures
robust feature extraction and prevents overfitting,
further improving the model’s generalization
capabilities. The model is compared on the basis
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Figure 4: Learning Curve Analysis for the proposed
Bi-LSTM model against Dataset 1(HinGE)

of the following metrics(Bala Das et al., 2023; Das
et al., 2025):

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-Score = 2 · Precision · Recall
Precision + Recall

MSE =
1

N

N∑

i=1

(yi − ŷi)
2

When we compared our model with the previ-
ously implemented models, the model was able to
achieve the performance of the models on different
datasets. As shown in Table 1, it gives us the 2nd
highest performance in dataset 1. If we refer to
Table 2, it again perfroms 2nd best performance
in dataset 2. If we look at Table 3, it comes out to
be the 5th best model among all the algorithms,
which is in dataset 3.
In generalization, we can say that the model
will perform as same as the previously imple-
mented models, but it will generation of Model
loss as shown in fig 4, 5, 6 respectively, and
MSE will be low as compared to other models.
In some cases, it will also outperform other models.
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Figure 5: Learning Curve Analysis for the proposed
Bi-LSTM model against Dataset 2(SemEval)
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Figure 6: Learning Curve Analysis for the proposed Bi-
LSTM model against Dataset 3(E-Commerce reviews)

5 Conclusion & Future Work

This paper implements a Bidirectional LSTM (BiL-
STM) network as an efficient approach to re-
solve linguistic challenges existing in the combined
Hindi & English language. The model stands out in
detecting sentiment properly because it processes
contextual information together with word rela-
tions. The proposed model the BiLSTM architec-
ture features its optimization capabilities for feature
extraction while speeding up training time to reach
accurate results. The model delivers exceptional
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Model F1-Score MSE
Classifier Neural
Network + Multilingual
BERT (Furniturewala et al., 2022) 0.234 3.000
Bi-LSTM (Guha et al., 2022) 0.098 6.000
M-BERT (Srivastava and Singh, 2021b) 0.202 2.797
Proposed BiLSTM
with SMOTE 0.742 0.106

Table 1: Quantitative Analysis of Dataset 1

Model Accuracy (%) Precision (%) Recall (%) F1-Score

HF-CSA (Raza et al., 2023) 76.18 81.61 73.86 0.234
CNN (Angel et al., 2020) 51.00 49.60 0.458
GRU (Angel et al., 2020) 35.80 37.30 0.290
Proposed BiLSTM
with SMOTE 42.41 48.78 11.10 0.390

Table 2: Quantitative Analysis of Dataset 2

Model Accuracy (%) Precision (%) Recall (%) F1-Score
SVC (Ahmed and Ahmed, 2024) 91.71 91.81 91.76 0.916
KN (Ahmed and Ahmed, 2024) 72.05 75.13 71.93 0.715
NB (Ahmed and Ahmed, 2024) 79.14 79.18 79.19 0.791
DT (Ahmed and Ahmed, 2024) 87.14 87.80 87.25 0.868
LR (Ahmed and Ahmed, 2024) 88.62 88.74 88.64 0.885
RF (Ahmed and Ahmed, 2024) 92.13 92.15 92.14 0.920
AdaBoost (Ahmed and Ahmed, 2024) 67.90 68.41 67.78 0.676
BgC (Ahmed and Ahmed, 2024) 88.41 88.85 88.51 0.881
ETC (Ahmed and Ahmed, 2024) 92.97 93.06 92.92 0.929
GBDT (Ahmed and Ahmed, 2024) 72.40 73.32 72.28 0.721
XGB (Ahmed and Ahmed, 2024) 86.58 86.92 86.59 0.864
Proposed BiLSTM
with SMOTE 87.29 87.73 86.86 0.870

Table 3: Quantitative Analysis of Dataset 3

performance with accuracy of 74.24%, precision
of 75.85% with recall value of 73.42% , F1-Score
of 0.742 & MSE of 0.106 for dataset 1. For dataset
2, the values are 42.41%, 48.78%, 11.10%, 0.390
& 0.215 respectively. If we look at dataset 3, the
values vary from 87.29%, 87.73%, 86.86%, 0.870
& 0.215 respectively.
Future studies should focus their research on
enhancing model generalization and robustness
through specific improvement areas which these
current constraints have identified. The model
needs domain adaptation strategies or transfer
learning approaches to achieve better generaliza-
tion between different Hinglish usage patterns.
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Abstract

We introduce the first automatic animacy clas-
sifier for the Latvian language. Animacy, a
linguistic feature indicating whether a noun
refers to a living entity, plays an important
role in Latvian grammatical structures and syn-
tactic agreement, but remains unexplored in
Latvian NLP. We adapt and extend existing
methods to develop type-based animacy classi-
fiers that distinguish between human and non-
human nouns. Due to the limited utility of
Latvian WordNet, the classifier’s training data
was derived from the WordNets of Lithuanian,
English, and Japanese. These lists were inter-
sected and mapped to Latvian nouns from the
Tēzaurs dictionary through automatic transla-
tion. The resulting dataset was used to train
classifiers with fastText and LVBERT embed-
dings. Results show good performance from
a MLP classifier using the last four layers of
LVBERT, with Lithuanian data contributing
more than English. This demonstrates a viable
method for animacy classification in languages
lacking robust lexical resources and shows po-
tential for broader application in morphologi-
cally rich, under-resourced languages.

1 Introduction

There are many languages that are bound to go
extinct despite efforts to preserve them, while oth-
ers, such as English, are widely spoken and face
no such risk. The Latvian language is positioned
somewhere in between (Jansone, 2010), meaning
that its long-term survival depends on active efforts
to maintain and develop it. As the official language
of Latvia and one of the official languages of the
European Union, Latvian has around 1.5 million
native speakers1, significantly fewer than global
languages like English. This smaller speaker base
also means that Latvian is considerably less re-

1https://valoda.lv/valsts-valoda/

searched in fields such as natural language process-
ing (NLP) (Laucis and Jēkabsons, 2021). Ensuring
that Latvian keeps pace with advances in NLP is
essential not only for preserving and modernizing
the language but also for supporting its use in dig-
ital applications such as machine translation and
automated text processing.

One important but underexplored linguistic fea-
ture in NLP research, particularly for morphologi-
cally rich languages like Latvian, is animacy. Ani-
macy refers to how “alive” or independently acting
a noun’s referent is — humans and animals are ani-
mate, while objects are not. This distinction is en-
coded in the grammars of many natural languages,
influencing word order, case marking, and agree-
ment patterns. Studies suggest that incorporating
animacy into computational models can enhance
machine translation and parsing accuracy (Øvre-
lid, 2006, 2008), in addition to informing linguistic
studies. However, for Latvian, we are not aware of
the existence of any animacy classifier.

We present an approach to animacy classification
for Latvian nouns based on static and contextual
word embeddings. While other animacy classifiers
for under-resourced languages have used this ap-
proach (Tepei and Bloem, 2024 for Romanian), our
approach is novel in relying on lexical-semantic
resources for higher-resource languages. Previous
approaches rely on WordNet hypernym relations
to obtain a seed set of animacy-labeled data for
supervised learning, but as the Latvian WordNet
does not yet have a full tree of hypernym and hy-
ponym relations, we instead rely on the WordNets
for higher-resource languages and automatic trans-
lation to obtain such data.

2 Related Work

Three types of animacy are usually distinguished:
grammatical, biological and conceptual (de Swart
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and de Hoop, 2018). Entities that possess physical
characteristics such as the ability to die are said to
as biologically animate. The speaker’s perspective
and cultural upbringing serve as the foundation for
conceptual animacy. The way that people person-
ify or give non-living things agency reflects this,
for example, in mythology. Grammatical animacy,
however, illustrates how a language’s grammar re-
flects both biological and conceptual animacy. It
functions as a condition or semantic feature that af-
fects linguistic structures such as case marking and
verb agreement. Usually, the concept of animacy
is seen as being a continuous scale ranging from
humans to inanimate abstract objects. According
to Yamamoto (2006, p. 36), animacy is a matter
of gradience determined by the overall animacy
scale, hierarchy of persons, the agency scale, and
the individuation scale.

Despite animacy usually being viewed as exist-
ing on a continuous scale or a hierarchy (DeLancey,
1981), natural language requires that concepts be
categorized. The two most simple categorizations
would be distinguishing between animate and inan-
imate nouns or distinguishing between human and
non-human nouns. Most effects of grammatical
animacy are based on a binary split, with tripartite
systems being rare. As a consequence, most NLP
literature on animacy also discusses the distinction
between two to three categories.

Latvian does not mark animacy distinctions di-
rectly, but animacy has several effects on the gram-
maticality and felicitousness of sentences. Latvian
has a somewhat free word order; however, there are
more and less common sentence structures. Even
though all six word order variations for subject-
verb-object placement are possible, the most com-
mon structure is subject-verb-object (SVO) when
the subject is animate, and object-verb-subject
(OVS) is more frequent with inanimate subjects
(Voits, 2014). Seržant and Taperte (2016) found
that animacy plays a role in influencing the choice
between accusative and nominative case marking
in the Latvian debitive construction. Animate NPs
also appear to be more likely to trigger genitive
agreement, where the predicate agrees with the
noun in the genitive case rather than with the quan-
tifier. Inanimate NPs, on the other hand, do not
favor the genitive or quantifier agreement (Kalnača
and Lokmane, 2022, p. 85). These interactions be-
tween animacy and the felicitousness and grammat-
icality of sentences in Latvian suggest that animacy

could be a useful feature also for downstream NLP
tasks for Latvian, such as coreference resolution.

Animacy classifiers have been made for other
languages, including under-resourced ones. Some
of the first research on automatic animacy classifi-
cation for nouns was done by Øvrelid (2004) on ani-
macy classifiers for Norwegian (Øvrelid, 2005) and
for Swedish (Øvrelid, 2008; Øvrelid, 2009). These
classifiers are based on morphosyntactic features
that were selected on linguistic grounds to classify
into binary animate/inanimate categories. These
classifiers achieved quite good results, achieving
up to a 98.6% accuracy on unseen nouns. However,
they are based on large pre-annotated animacy cor-
pora, which is not something available for many
under-resourced languages.

Subsequently, Bowman and Chopra (2012) pro-
posed a classifier that classifies nouns into ten cat-
egories. This paper highlights the problem of try-
ing to classify nouns into more categories than are
expressed in grammar. It is more difficult to dis-
criminate animacy when grammaticality and felici-
tousness is only governed by human/non-human or
animate/inanimate categories as models can then
only rely on semantic cues, not syntactic or mor-
phological ones. Bloem and Bouma (2013) present
an animacy classification tool for Dutch, which
combines type-based classification using distribu-
tional features with a seed set of noun types that
were given an animacy label based on the Cornetto
lexical-semantic database (Vossen, 2006). They
tested classification with a two-way distinction
(human/nonhuman) and a three-way distinction
(animate human/animate nonhuman/inanimate).
Classification for the human/nonhuman distinc-
tion, which corresponds to distinctions made in
Dutch grammar, performed much better. Their
best-performing classification algorithm was a K-
nearest neighbour classifier.

More recent approaches have turned to transfer
learning to overcome data scarcity and enhance
generalization across tasks and languages. Transfer
learning has been widely used in natural language
processing to address the challenges posed by lim-
ited labeled data, especially in under-resourced lan-
guages. The approach involves reusing represen-
tations learned from a general task, such as lan-
guage modeling, for more specific tasks like an-
imacy classification. Pretrained models such as
FastText (Bojanowski et al., 2017) and contextual
models like BERT (Devlin et al., 2019) are com-
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monly used. For Latvian, LVBERT (Znotiņš and
Barzdiņš, 2020) provides pretrained embeddings
that can be applied to downstream tasks with mini-
mal task-specific training. Prior work suggests that
transfer learning can support tasks requiring seman-
tic generalization by utilizing knowledge encoded
during pretraining (Ruder et al., 2019; Conneau
et al., 2020). In the case of animacy, this includes
properties such as agency and sentience, which
may be implicitly captured by language models.

3 Methodology

3.1 Use of WordNets for animacy-annotated
lists

Based on the results of previous work and because
Latvian does not have a strict grammatical animacy
distinction, the animacy classifier we make distin-
guishes between human and non-human classes,
employing lemmas from a word list to make a
type-based classifier. Inspired by the recent ani-
macy classification work on the under-resourced
Romanian by Tepei and Bloem (2024), we used
hyponymy relations to extract a seed set of nouns
that were labeled for animacy using WordNet.

This labeling stems from the hierarchical struc-
ture of WordNet: It consists of a hierarchy of
synsets that are in hyponym and hypernym rela-
tions with each other, with specific synsets at the
bottom and general synsets at the top, representing
concepts such as entity and event. Under entity,
we find concepts such as life form and object. By
taking words from all synsets that are hyponyms of
one such high-level synset, such as the one corre-
sponding to human words, it is possible to obtain a
large number of words that refer to human entities.

However, Latvian WordNet (Paikens et al., 2023)
is still under construction and is largely lacking in
hyponymy and hypernymy relations, not contain-
ing a full tree of synsets. Therefore, we devel-
oped a different approach based on higher-resource
WordNets. More specifically, WordNets for three
languages— Lithuanian (Garabı́k and Pileckyte,
2013), English (Fellbaum, 1998) and Japanese
(Bond and Kuribayashi, 2023) were used to ex-
tract lists of human and non-human nouns. The
English WordNet was used for its interpretability,
and Japanese WordNet was used for its large word
tree containing a vast amount of noun relations
and for the fact that it is not an Indo-European lan-
guage, typologically distinct from both Latvian and
English. In contrast, the Lithuanian WordNet was

used because of its similarity with Latvian, the only
other living Baltic language.

As in previous work, we constructed the seed
sets of words with animacy labels by identifying
high-order hypernyms that contained no instance
of the other class for the three languages, namely,
asmuo, person and人 (all with the meaning person)
as the human targets for Lithuanian, English, and
Japanese, respectively. For the non-human class, all
other unique beginner synsets that do not contain
person as a hyponym were used for the inanimate
class. After having established these high-order
hypernym synsets, lists of all their hyponyms were
extracted to obtain human and non-human nouns
for all three languages.

3.2 Translating Latvian nouns
We used the online lexical resource Tēzaurs (Spek-
tors et al., 2025) to obtain a dataset of Latvian
nouns. All of these unique noun lemmas were au-
tomatically translated to Lithuanian, English, and
Japanese for comparison with the extracted lists of
animacy-labeled lists of nouns. To translate these
nouns, we used the Google Translate API2, which
was found by Rikters (2015) to perform well for
English-Latvian translation at the time.

The translations of the nouns were checked
against the animacy-labeled lists of nouns in the
three languages, and if a word was present in all
three animacy-labeled sets with the same label,
then its Latvian counterpart was included in an
animacy-labeled list for Latvian with the corre-
sponding label of human or non-human. This re-
striction reduces the possibility that translation er-
rors between particular language pairs affect the
quality of our seed set, as there was no manual
translation quality control and polysemous words
could have been translated incorrectly. In the end,
the list consists of 5183 nouns, of which 735 are
labeled as human.

3.3 FastText-based classifiers
We used pre-trained fastText embeddings (Bo-
janowski et al., 2017) to obtain static word vec-
tors for Latvian nouns. FastText was chosen for
its subword modeling capabilities, making it effec-
tive for morphologically rich languages, and prior
work found it to be the best-performing static em-
bedding for Latvian (Laucis and Jēkabsons, 2021).

2The API was called using the deep-translator li-
brary for Python: https://pypi.org/project/
deep-translator/
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Vectors were 300-dimensional, with character n-
grams of length 5, a window size of 5, and 10
negative samples, trained on Common Crawl and
Wikipedia. Each vector was paired with the ani-
macy label derived from the WordNet intersection.
We trained classifiers using K-nearest neighbors
(KNN) (k = 5), Random Forest (RF) (100 estima-
tors, Gini criterion), and Multi-Layer Perceptron
(MLP) (hidden size 100, α = 0.0001, learning rate
0.001) algorithms. We used these classifiers be-
cause they were used by Tepei and Bloem (2024),
who included them based on good performance in
previous work.

3.4 LVBERT-based classifiers
To explore the potential of contextual embeddings,
we used LVBERT (Znotiņš and Barzdiņš, 2020), a
transformer model trained on Latvian corpora. For
each noun token, we extracted either layer 0 (non-
contextualized) or a 3072-dimensional vector from
the concatenation of the final four layers (layers
9-12, following Hosseini et al. 2023).

We try the latter approach because deeper layers
capture richer semantic information (Devlin et al.,
2019), and concatenation has shown strong per-
formance in semantic similarity tasks. The first
non-special token (i.e., the noun) was used for clas-
sification. Layer 0 embeddings were also tested to
compare performance with fastText, as lower trans-
former layers may behave like static embeddings
(Vulić et al., 2021). We cannot tune LVBERT for
the task with a token classifier head as no corpus
with animacy annotation in context is available.

3.5 Evaluation methods
To assess the quality of the static and contextual
embedding-based classifiers, we split the labeled
noun types into an 80%/20% train/test set, which
was then used to perform a type-based evaluation
of the classifiers.

We also perform a token-based evaluation be-
cause it represents a more naturalistic use setting
despite the classifier being type-based. To this
end, we chose, compiled, and cleaned nine ran-
dom Wikipedia articles. Using the Python library
Stanza (Qi et al., 2020), which has a POS tagger
for Latvian trained on the Universal Dependencies
treebanks for Latvian (Pretkalniņa et al., 2018),
a list of nouns present in the texts was extracted
and manually annotated for animacy by a native
Latvian speaker. As the classifier is type-based,
the nouns are lemmatized before annotation and

prediction. Lemmas representing human collec-
tives (e.g., valdı̄ba ‘government’) were assigned
the non-human category due to them being treated
as inanimate in Latvian grammar, exemplified by
the use of demonstrative pronouns instead of per-
sonal pronouns. The classifiers were then used
to predict class membership for the given nouns.
Although the classifier is type-based and does not
consider the surrounding context of nouns, token-
based evaluation can provide a better benchmark of
the classifier’s performance in a naturalistic setting.

4 Results

4.1 Type-based evaluation
4.1.1 Results for the classifiers made with

fastText embeddings

Classifier Acc. Pre. Rec. F1
KNN 0.857 0.780 0.222 0.345
RF 0.878 0.915 0.307 0.461
MLP 0.900 0.728 0.653 0.688

Table 1: Type-based evaluation performance of fastText-
based classifiers. Baseline accuracy is 0.830.

For fastText-based classification of noun types,
the RF algorithm achieves a higher precision score
of 91.5% against the KNN and MLP models (see
table 1). However, the MLP algorithm shows better
recall and accuracy scores of 65.3% and 90.0%,
respectively. This entails that when the RF model
predicts the human class, it is almost always cor-
rect (precision); however, it is very conservative in
labeling nouns as human, leading to very low recall
of 30.7% (false negatives). On the other hand, the
high accuracy and recall scores for MLP show that
it is overall quite good at predicting class member-
ship, and it achieves the highest F1 score of 68.8%.
KNN shows the worst performance overall. Base-
line accuracy for this dataset is 83%, as 83% of the
test nouns are non-human.

4.1.2 Results for classifiers trained with
LVBERT embeddings

Using layer 0 embeddings from LVBERT (Znotiņš
and Barzdiņš, 2020) for classifier training did not
prove to be useful (see table 2), yielding worse
scores than their fastText counterparts (with the
exception of KNN).

Results with the last four layers of LVBERT
embeddings are better, with the MLP classifier
clearly outperforming the KNN and RF algorithms.
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Classifier Acc. Pre. Rec. F1
KNN 0.854 0.602 0.420 0.494
RF 0.842 0.620 0.176 0.274
MLP 0.880 0.697 0.523 0.597

Table 2: Type-based evaluation on LVBERT layer 0-
based classifiers. Baseline accuracy is 0.830.

Classifier Acc. Pre. Rec. F1
KNN 0.905 0.824 0.557 0.664
RF 0.849 0.913 0.119 0.210
MLP 0.916 0.795 0.682 0.734

Table 3: Type-based evaluation performance of
LVBERT last four layer concatenation-based classifiers

As shown in Table 3, the MLP classifier achieves
the highest accuracy (0.916), recall (0.682), and
F1 score (0.734) among the three LVBERT-based
classifiers, along with a strong precision score
(0.795). This indicates that the LVBERT-based
MLP classifier is both relatively accurate and bal-
anced in predicting the “human” class. The RF
classifier, while achieving the highest precision
(0.913) among the three, performs poorly in recall
(0.119) and F1 score (0.210). This reflects a con-
servative approach in labeling tokens as “human,”
resulting in many false negatives. The KNN classi-
fier surpasses the fastText-based KNN model. The
LVBERT-based MLP classifier outperforms the
fastText-based MLP classifier. Only the LVBERT-
based RF classifier does not outperform its fastText-
based counterpart. The performance dynamics of
the different algorithms remain the same in a type-
based evaluation, where the RF algorithm has the
highest precision, while MLP outperforms on the
other three metrics. This suggests that richer, con-
textualized representations from transformer mod-
els are beneficial when classifying noun animacy
at the type level.

4.2 Token-based evaluation

For the token-based evaluation with LVBERT, we
only used the last four layer approach due to su-
perior performance in the type-based evaluation.
This evaluation aims to show whether a more natu-
ralistic setting would affect the performance rank-
ings of the classifiers. Nine random Wikipedia arti-
cles on different topics were chosen preprocessed.
Next, a Latvian POS tagger trained on the UD (uni-
versal dependencies) treebank corpus for Latvian
(Pretkalniņa et al., 2018) was employed using the

Classifier Acc. Pre. Rec. F1
KNN 0.905 0.717 0.349 0.469
RF 0.931 0.911 0.468 0.618
MLP 0.894 0.542 0.771 0.636

Table 4: Token-based evaluation on fastText-based clas-
sifiers. Baseline accuracy is 0.880.

Classifier Acc. Pre. Rec. F1
KNN 0.910 0.636 0.578 0.606
RF 0.896 1.000 0.138 0.242
MLP 0.938 0.768 0.697 0.731

Table 5: Token-based evaluation on LVBERT-based
classifiers

Stanza (Qi et al., 2020) library for Python to obtain
a list of 1342 noun lemmas for animacy labeling.
All the lemmas were manually annotated by a na-
tive Latvian speaker with human/non-human labels
based on the meaning of the word token in context.
46 lemmas were excluded from this test set due to
POS-tagging errors or faulty text to obtain 1296
annotated lemmas, of which 908 were used for un-
seen prediction. Out of these 908 lemmas, 799
were annotated with the non-human label and 108
with the human label, setting the majority baseline
accuracy at 88.0%

In this evaluation, the LVBERT-based classi-
fiers generally outperform the fastText-based classi-
fiers. The LVBERT-based MLP classifier achieved
the highest accuracy (0.938) and F1 score (0.731)
across all settings. It also had the highest recall
(0.697), indicating stronger performance in identi-
fying human-referent nouns. The LVBERT-based
RF classifier, while achieving perfect precision
(1.000), showed a very low recall (0.138), suggest-
ing a highly conservative classification strategy that
avoids false positives but misses many actual hu-
man nouns. For fastText, overall results are lower
but still competitive, and RF classifiers perform
better here than they do on LVBERT embeddings.

4.3 Language resource ablation

As our methodology involves combining data from
higher-resource WordNets, we also evaluate the
contribution of each source language WordNet by
training and testing classifiers using only one of the
languages as source data. We perform the token-
based evaluation for all nouns that are not in the
training data (unseen nouns). This does mean that
each classifier has a different test set, as some lan-
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Language Acc. Pre. Rec. F1
Lithuanian 0.932 0.680 0.742 0.710
English 0.862 0.383 0.561 0.455
Japanese 0.908 0.632 0.655 0.643

Table 6: Token-based evaluation on LVBERT-based
MLP classifiers trained on single language WordNets.
Baseline accuracy differs per language.

guages have labels for more nouns than others, so
the results are not directly comparable, but it does
give an impression of the relative contribution of
each resource. Specifically, for the English-based
classifier there are 398 unseen nouns in our evalua-
tion set, for Japanese there are 434 and for Lithua-
nian (the smallest WordNet) there are 790. For
comparison, the original token-based evaluation
had 908 unseen nouns (not occurring in all three
resources). We perform this experiment in the best-
performing setting, using the last four layers of
LVBERT with the MLP classifier. The results are
shown in Table 6. We observe that the classifier
based on Lithuanian WordNet outperforms the oth-
ers, despite this resource being the smallest (6357
noun synsets, compared to 82,115 for English and
42,737 for Japanese). Latvian and Lithuanian are
closely related typologically, with both being East
Baltic languages. This result suggests that typo-
logical relatedness is more beneficial than resource
comprehensiveness for transfer learning for ani-
macy classification in a natural language setting.
However, the approach of combining all three lan-
guage resources still outperforms Lithuanian only
(0.731 vs 0.710 F1 score).

5 Discussion

This study introduced the first classifiers for pre-
dicting animacy (human vs. non-human) in Lat-
vian nouns, using a methodology adapted for a
low-resource setting. We evaluated 12 classi-
fiers based on fastText and LVBERT embeddings,
with animacy-labeled training data derived through
multilingual WordNet intersection and translation.
While we found that training data from a typo-
logically related language was more useful, the
best results were achieved by LVBERT-based MLP
classifiers using the final four layers of the model
trained on labels from an intersection of three lan-
guages’ WordNets. These outperformed fastText-
based models in both type- and token-based evalu-
ations, with the best model achieving 93.8% accu-

racy on unseen nouns.
Although all classifiers were trained on type-

level data, token-based evaluation showed that con-
textual embeddings can generalize well to more
naturalistic usage, even without explicit token-level
supervision. Layer 0 LVBERT embeddings, which
behave more like static vectors, underperformed
compared to deeper contextual layers. The success
of LVBERT shows that transformer-based repre-
sentations can be beneficial even in the absence of
large annotated corpora.

Another promising direction is to use generative
large language models’ zero-shot generalization
capability. Recent work demonstrates that GPT-3
can distinguish animate/inanimate entities in zero-
shot settings across languages (Pucci et al., 2025),
though this has not yet been explored in a classi-
fication task. Probing or fine-tuning LLMs such
as LVBERT, LitLat BERT, or multilingual open-
weight models (e.g., Gemma, LLaMA) on animacy
tasks could offer new insights and performance
improvements. Evaluating how well such models
generalize animacy features to under-resourced lan-
guages would help clarify their linguistic compe-
tence and applicability in downstream NLP tasks.

6 Conclusion

We present the first type-based approach to ani-
macy classification for Latvian nouns using cross-
lingual projection and multilingual lexical re-
sources. Animacy-labeled word lists were auto-
matically constructed by aligning English, Lithua-
nian, and Japanese WordNets with Latvian nouns
from the Tēzaurs dictionary via translation. This
enabled training data creation without manual an-
notation. We trained classifiers using fastText and
contextual LVBERT embeddings. Results showed
that LVBERT-based models—especially MLP with
concatenated final layers—outperformed fastText
models in both type- and token-based evaluations.
While RF classifiers achieved the highest precision,
MLPs offered better balance overall. A language
ablation study showed the most typologically re-
lated language to contribute more.

This work demonstrates the feasibility of ani-
macy classification in low-resource languages with-
out native WordNets. Despite limitations—such as
label noise from translation and lack of context in
static embeddings—our approach lays a foundation
for extending animacy annotation and classification
to other languages.
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7 Limitations

Several limitations remain. Training data labels
were derived via automatic translation, which may
introduce noise. Furthermore, type-based classi-
fiers cannot resolve context-sensitive cases of ani-
macy, such as polysemous words (medijs: psychic
or media in Latvian). In a naturalistic setting, our
classifier would have to be used after lemmatiza-
tion, and imperfect lemmatization due to the ex-
tensively inflected nature of Latvian might reduce
accuracy. Future work could focus on building
token-level classifiers, such as by tuning LVBERT.
This would require a corpus where nouns are an-
notated for animacy in context, which is currently
unavailable for Latvian. Another direction would
be to address the class imbalance in training data
by augmenting the human noun class through syn-
onym expansion.

8 Ethical considerations

We do not foresee any particular harmful impacts
of this work. While the pre-trained embeddings
we use may encode harmful biases, we could not
identify any reason to assume that these biases per-
tain to the human/nonhuman distinction that we
classify. Most concerns regarding bias identified in
the literature pertain to social identities that differ
between humans (e.g. gender bias). When deploy-
ing animacy classification of the type we propose,
we do recommend to evaluate that people with pro-
tected characteristics relevant to the use case aren’t
more likely to be misclassified as nonhuman, as
this may cause harm.
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Bārzdiņš. 2025. Tēzaurs.lv 2025 (spring edition).
Clarin.lv.

Peter de Swart and Helen de Hoop. 2018. Shifting
animacy. Theoretical Linguistics, 44:1–23.

Maria Tepei and Jelke Bloem. 2024. Automatic animacy
classification for Romanian nouns. ACL Anthology,
pages 1825–1831.

Toms Voits. 2014. Discourse-related word order vari-
ation in Latvian. Valoda: nozı̄me un forma, pages
144–156.

PTJM Vossen. 2006. Cornetto: Een lexicaal-
semantische database voor taaltechnologie. Dixit,
(special issue).
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Abstract

The quality of training data is an essential factor
for training large language models (LLMs) as it
directly impacts their performance. While high-
quality data is crucial for training competitive
LLMs, existing preprocessing pipelines still
partly rely on rules, which are computationally
cheap but also inherently limited to simpler pat-
terns. Model-based filtering on the other hand,
is more flexible and can detect finer-grained
patterns and semantics, but often requires sub-
stantial amounts of labeled data. While there
are models for common problems (such as tox-
icity classification), this is often only the case
for resource-rich languages and well-studied
problems—leaving gaps in coverage for other
languages, problems, or combinations thereof.
In this work, we investigate the feasibility of
model-based preprocessing despite the absence
of labeled data. We use active learning to
bootstrap a sentence-level multi-label classi-
fier that detects textual problems of traditional
text cleaning approaches. With only 498 ex-
amples, the final classifier reaches macro- and
micro-F1 scores of 0.80 and 0.84, making it
suitable for practical use. Moreover, we find
that it captured subtle errors compared to a rule-
based baseline. We publish the training code,
a labeled corpus quality classification dataset,
and the resulting classifier1.

1 Introduction

Pre-training large language models (LLMs) re-
quires not only vast amounts of textual data but
also high-quality content, as recent studies show
the impact of data quality on downstream perfor-
mance (Raffel et al., 2020; Penedo et al., 2023;
Longpre et al., 2024; Li et al., 2024).

While there have been many efforts to curate and
clean LLM pre-training corpora, only some of the
possible steps use model-based approaches such as
language identification (Joulin et al., 2016; Grave

1https://github.com/maximilian-bley/
german-webtext-quality-classification

Figure 1: The development process of our approach.
We begin by defining seven corpus quality labels along
with their annotation guidelines, then we annotate a gold
standard for evaluation, and finally train a corpus quality
classifier with active learning.

et al., 2018), perplexity-based filtering (Ankner
et al., 2025; Thrush et al., 2025), predicting sim-
ilarity to reference text (Li et al., 2024), toxic or
adult content detection (Soldaini et al., 2024), or
the targeted search for certain contents such as
educational texts (Wettig et al., 2024). However,
there still are various preprocessing steps that re-
semble traditional text cleaning. They target noise
that usually results from text extraction artifacts in
web corpora such as, among others, incorrectly for-
matted text, non-linguistic content, random word
sequences, letter spacing, encoding errors, or re-
peating characters, and are still predominantly rule-
based (Albalak et al., 2024). Developing such rules
is known to be time-consuming, often highly tai-
lored to specific domains and languages, and may
fail to capture more subtle issues compared to su-
pervised models (Laurençon et al., 2022; Longpre
et al., 2024; Henriksson et al., 2025).

Supervised learning, however, requires a substan-
tial amount of training data. While there are some
existing datasets for tasks such as toxic or adult
content detection, they only cover a limited num-
ber of languages, and moreover, to the best of our
knowledge, none of them address the problems that
are usually handled by rule-based filtering. With
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smaller2 language models3 becoming increasingly
effective, we argue that it is time to widen the scope
of model-based preprocessing.

To investigate the feasibility of model-based pre-
processing, we train a supervised corpus quality
classifier with seven classes: six representing dis-
tinct types of textual deficiencies and one capturing
the absence of those.4 Since no training data exists
for this particular task, we apply active learning,
an iterative approach that aims to minimize annota-
tion effort. We begin by developing a classification
scheme and corresponding annotation guidelines.
To evaluate the resulting classifier, we create a gold
standard through iterative annotation, optimizing la-
bel agreement among three annotators (Pustejovsky
and Stubbs, 2012; Klie et al., 2024). Figure 1 sum-
marizes our three-staged development process.

We investigate the following research questions:

RQ1 How effective is a sentence-level classifier in
recognizing several text quality classes, given
an active learning scenario with a budget of
an 8-hour day of annotation?

RQ2 How does the resulting classifier that has
been trained only on few examples perform in
comparison to a rule-based approach?

Contributions (1) We develop and refine a clas-
sification scheme and corresponding guidelines to
obtain a gold dataset for evaluation. (2) We per-
form an active learning experiment investigating
the feasibility of a sentence-level classifier, built for
a specific domain and language in under 8 hours.
(3) We compare our approach to a rule-based one.

Results The final classifier shows reasonable per-
formance despite being trained on only 498 exam-
ples, reaching macro- and micro-F1 scores of 0.80
and 0.84 respectively. Compared to a rule-based
baseline, our approach achieves improvements of
four to five percentage points in F1 and captures
certain types of errors, often more subtle, that the
rule-based system tends to miss. We publish the
training code, a labeled corpus, and the classifier.

2The distinction of what is considered a small model is
evolving, but the important aspect is that at the current time
larger models quickly render computation efforts infeasible,
while small models can process large amounts of data despite
of limited compute resources.

3We rely on the definition of Rogers and Luccioni (2024)
for LLMs, which includes encoder models.

4We use model to refer to the base architecture (e.g.,
BERT (Devlin et al., 2019)), and classifier to denote the model
including a task-specific classification head.

2 Related Work

Preprocessing of Web Data The web has long
been used as an important source of text data in
natural language processing (Kilgarriff and Grefen-
stette, 2003), but requires cleaning procedures to
remove noisy parts such as boilerplate code, encod-
ing errors, non-linguistic content, or broken text.
In the context of LLM training, text cleaning has
gained renewed attention, since carefully-curated
high-quality data is the currently best known recipe
for training strong models (Penedo et al., 2023,
2024). Some preprocessing steps involve hand-
crafted (often language-specific) rules that have
been developed in and adopted from previous
work such as the C4 (Raffel et al., 2020) and
ROOTS (Laurençon et al., 2022) corpora. Similar
(or partly even identical) heuristics have been con-
firmed in follow-up work and are still used in more
recent datasets such as FineWeb (Penedo et al.,
2024). Notably, while some preprocessing steps,
such as language identification, are realized using
models, many cleaning steps still rely on rules.

Active Learning Transformer-based language
models (Vaswani et al., 2017; Devlin et al., 2019)
have shown considerable results in the context of
active learning for text classification using only a
small amount of data (Ein-Dor et al., 2020; Mar-
gatina et al., 2021; Schröder et al., 2022), encour-
aging this work where a lack of training data is a
severe obstacle. With language models continu-
ously increasing in size, some recent approaches
even attempt to replace the human annotator with
an LLM (Xiao et al., 2023; Kholodna et al., 2024).
Many contemporary corpora are, however, very
large, and computational costs are still an obsta-
cle for practical active learning (Romberg et al.,
2025), therefore we opt to use small language
models, which have shown remarkable effective-
ness (Nachtegael et al., 2023; Schröder and Heyer,
2024; Gonsior et al., 2025), while at the same time
allowing us to process larger volumes of data.

The majority of the recent work at the intersec-
tion of language models, active learning, and text
classification revolves around single-label classi-
fication (among others in the works of Ein-Dor
et al. (2020) and Lesci and Vlachos (2024)), while
studies focusing on multi-label active learning are
rare (e.g., Wertz et al. (2022a,b, 2023) and Wang
and Liu (2023)). Moreover, active learning re-
search is often operationalized through simulated
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experiments (Margatina and Aletras, 2023). There-
fore, practical multi-label active learning applica-
tions are highly important to investigate the effec-
tiveness of contemporary active learning.

3 Quality Criteria and Gold Standard

Our approach is not limited to a specific corpus or
language. The following work is conducted at the
example of German web text, which is reflected in
the class descriptions and textual examples.

3.1 Quality Criteria Labels
We define low-quality labels to capture visible de-
ficiencies that interrupt the flow of a text on the
lexical and syntactical level. Conversely, text with-
out such interruptions is considered high-quality
(or clean). These labels are inspired mostly by
rules from related work (e.g., by Raffel et al., 2020;
Kreutzer et al., 2022; Laurençon et al., 2022) and
from a field-tested rule-based approach, developed
for the same kind of data (Goldhahn et al., 2012).5

To provide examples to the reader, exemplary
sentences with their corresponding label sets are
presented in Table 1, where one label is highlighted
for each example. The respective classes are de-
fined in the following:

Sentence Boundary Sentence boundary errors
occur if the start or ending of a sentence is mal-
formed. This is the case if it begins with a lower
case letter or an atypical character, or lacks a proper
terminal punctuation mark (e.g., period, exclama-
tion mark, or question mark).

Grammar Mistake Grammar mistakes are any
grammatical errors such as incorrect articles, cases,
word order and incorrect use or absence of words.
Moreover, random-looking sequences of words,
usually series of nouns, should be tagged. In most
cases where this label is applicable, the sentence’
comprehensibility or message is impaired.

Spelling Anomaly A spelling anomaly is tagged
when a word does not correspond to German
spelling. This includes typos and incorrect cap-
italization (e.g. “all caps” or lower-case nouns).
Spelling anomalies are irregularities that occur
within the word boundary, meaning here text be-
tween two whitespaces. In particular, individual let-
ters or nonsensical word fragments are also tagged.

5https://github.com/
Leipzig-Corpora-Collection/
sentencecleaner

Punctuation Error Punctuation errors are
tagged if a punctuation symbol has been placed
incorrectly or is missing in the intended place. This
includes comma errors, missing quotation marks
or parentheses, periods instead of question marks
or incorrect or missing dashes or hyphens.

Non-linguistic Content Non-linguistic content
includes all types of encoding errors, language-
atypical occurrences of numbers and characters
(e.g. random sequences of characters or letters),
code (remnants), URLs, hashtags and emoticons.

Letter Spacing Letter spacings are deliberately
inserted spaces between the characters of a word.

Clean Assigned if none of the other labels apply.

3.2 Active Learning
To overcome the lack of labeled data, we aim to use
active learning (Lewis and Gale, 1994), an iterative
approach whose goal is to maximize model perfor-
mance while minimizing human annotation effort.
During each iteration, a so-called query strategy
selects examples, which are labeled by a human
annotator. The model is then retrained on all data
labeled so far, and the process repeats in the next
iteration.

3.3 Gold Standard and Annotation
While this work is not limited to a specific corpus,
we need to evaluate the targeted corpus quality clas-
sifier. For this reason, we introduce a dataset, which
will be used as a gold standard. This considerable
effort is only conducted to enable an experimental
evaluation.

Data Through a direct request to the Leipzig Cor-
pora Collection6 (Goldhahn et al., 2012) we ob-
tained 165M sentences (∼ 4 B tokens) of German
web text. The resulting text originates from var-
ious crawls from 2018. The data is already pre-
processed (through text extraction from HTML,
sentence splitting, and deduplication). In the fol-
lowing, we operate on the resulting sentences.

Annotation Process We rely on agile annota-
tion (Alex et al., 2010; Pustejovsky and Stubbs,
2012; Klie et al., 2024), to iteratively annotate
the gold standard over three rounds. During each
round, all three annotators (the authors of this work)
label a set of given sentences independently. Inter-
annotator agreement (IAA) is then assessed using

6https://wortschatz-leipzig.de/en
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Example sentence Labels

© zhu difeng | Visionen zum intelligenten Zuhause gibt es schon lange, und teilweise
sind sie sehr ambitioniert.
EN: © zhu difeng | Visions of the intelligent home have been around for a long time,

and some of them are very ambitious.

Sentence Boundary, Grammar
Mistake, Non-linguistic Content

Medisana Luftbefeuchter Ultrabreeze zusätzlichem Nachtlicht

EN: Medisana humidifier Ultrabreeze additional night light

Grammar Mistake, Sentence
Boundary

Wie viel Geld wollen wir fÃ1⁄4r den Kalender ausgeben?

EN: How much money do we want to spend fÃ1⁄4r the calendar?

Spelling Anomaly, Non-linguistic
Content

Pegasus Solero SL 28 Zoll 58cm Schwarz ..
EN: Pegasus Solero SL 28 Inches 58cm Black..

Punctuation Error, Sentence
Boundary, Grammar Mistake

Zweitens: Ich L I E B E Beeren < 3 In jeglicher Form, Art und GrÃ¶ÃŸe.

EN: Second: I L O V E berries < 3 In all shapes and siÃ¶ÃŸs.

Non-linguistic Content, Grammar
Mistake, Spelling Anomaly, Letter
Spacing

V O R T R A G u n d G E S P R Ä C H
EN: T A L K a n d D I S C U S S I O N

Letter Spacing, Sentence
Boundary, Grammar Mistake,
Spelling Anomaly

Die Spiel- und Lernstube ist Kontakt- und Anlaufstelle für Kinder, Jugendliche,

Eltern und Bewohner im Stadtteil.
EN: The play and learning center is a point of contact and a drop-in center for children,

adolescents, parents, and residents in the neighborhood.

Clean

Table 1: Exemplary sentences (in German with an English translation below) and their respective gold labels.

Cohen’s Kappa for each pair of annotators and each
label. The score is analyzed and shortcomings of
the guidelines or difficult edge cases are discussed.
After this, class definitions or the guidelines are
adjusted (e.g., by adding new positive or negative
examples) and the sentences are relabeled.

Since we follow an iterative approach, any time
we revise the guidelines for all classes, we would
need to relabel every sentence in the batch to re-
flect the updated definitions. To keep the effort
manageable, we relabeled the entire batch only in
the first round. In the subsequent two rounds, we
focused on specific classes that showed significant
discrepancies between annotators.

The first batch of examples (460 in total)
was collected using multi-label Adaptive-Active-
Learning (Li and Guo, 2013) to primarily identify
error cases. The second batch consisted of 600
randomly selected examples to increase text diver-
sity, while the third batch comprised 275 manually
collected examples aimed to cover previously un-
derrepresented classes.

We report agreement scores of each batch of
the initially labeled version in comparison with the
final version in Table 2. We see the largest improve-

Batch Initial IAA Final IAA Size

First batch 0.54 0.74 460
Second batch 0.71 0.71 600
Third batch 0.72 0.75 275

Table 2: IAA (Cohen’s Kappa) between three coders
for the iterative labeling approach over three iterations.

ments in the first batch. This can be attributed to
the initially low inter-annotator agreement, which
prompted a thorough discussion, followed by a
complete relabeling of the whole batch. We re-
peated this process two times. After that, we only
selected examples from low-performing classes.
We saw a moderate increase in IAA in the third
batch, but not in the second one. Although there
were clear improvements in the initial IAA values
for batches 2 and 3, the final IAA value of 0.74 for
the first batch could not be reached.

Final Dataset The three batches are combined
and a majority voting is used to merge the labels.
We had to discard 16 sentences which contained
harmful content or Personally Identifiable Infor-
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Label IAA # Examples

Sentence Boundary 0.86 439
Grammar Mistake 0.76 594
Spelling Anomaly 0.61 290
Punctuation Error 0.41 78
Non-linguistic Content 0.75 147
Letter Spacing 0.96 25
Clean 0.80 577

Avg/Total 0.74 2150

Table 3: Class-wise and averaged inter-annotator agree-
ment, class distribution and number of class examples
(2150 labels in 1319 sentences) of our gold standard.

mation. The final inter-annotator agreement and
additional dataset statistics are shown in Table 3.
According to the Kappa interpretation of Landis
and Koch (1977), with an average of 0.74 we reach
a substantial agreement level (0.6–0.8).

4 Experiments

In this experiment, we examine the feasibility of
detecting the proposed text quality classes, in a
scenario where training data and annotation time
are severely limited (RQ 1). For this purpose, we
bootstrap a classifier with active learning that is
evaluated against the annotated gold standard. To
further assess the effectiveness of the resulting clas-
sifier, we compare it to a rule-based baseline, which
detects similar textual issues (RQ 2).

4.1 Experimental Setup

To reflect realistic constraints, we simulate the sce-
nario of a small team facing large volumes of un-
labeled data with a limited annotation budget by
imposing a time budget of one working day (8
hours). Active learning is warm-started with an
initial training pool of 70 hand-picked examples
(∼ 10 examples per class). In each round, the query
strategy returns a batch of 20 sentences to a human
annotator. To improve the fine-tuning stability, we
train the classifier from scratch, e.g., from the pre-
trained base model, after every batch.

Data A new dataset is used, which was created
as described in Section 3, based on more recent
crawling data of the same project, crawled in 2022
with 136M extracted sentences (∼ 3.4 B tokens).

Classification For classification, we use Set-
Fit (Tunstall et al., 2022), an efficient fine-tuning

paradigm that leverages contrastive learning. Using
a sampling strategy, it generates similar and dissim-
ilar sentence pairs which are used to train a siamese
network. In the multi-label setting, sentences are
considered similar (positive pair), if they have a
label in common, and dissimilar otherwise (nega-
tive pair). While there are variations to SetFit, we
stayed close to the original version in which a Sen-
tence Transformer (Reimers and Gurevych, 2019)
is fine-tuned and the classification operates on the
resulting embeddings. Instead of a logistic regres-
sion head, however, we opted for a neural network
head, which is faster for even a moderate number
of classes at a similar classification performance.

Base Model As the base model, we create a Sen-
tence Transformer (Reimers and Gurevych, 2019)
by mean pooling over the output layer from multi-
lingual DistilBERT (Sanh et al., 2019) (135 M pa-
rameters). Compared to BERT, DistilBERT con-
tains only half the number of layers and is therefore
more efficient regarding training and inference.

Query Strategy We use multi-label Adaptive-
Active-Learning (AAL; Li and Guo, 2013) as the
query strategy, which balances two scores to find
informative samples: (1) Max-Margin Uncertainty
Sampling (MMUS) and (2) Label-Cardinality-
Inconsistency (LCI). MMUS calculates the dis-
tance between the maximum of the predicted nega-
tive labels and the minimum of the predicted posi-
tive labels, according to a fixed threshold (e.g., 0.5).
If the distance is small, the sample is considered
highly informative. LCI assumes that multi-label
instances often have a similar label count. It com-
putes the deviation of the predicted label count
from the average in the so far annotated data (for
details, see Section 4 in Li and Guo, 2013).

One limitation of selecting data based on pre-
dictions is that the data has to be passed forward
through the classifier before any selection criteria
can be applied. To make this step feasible, dur-
ing every round we subsample 10K unlabeled sen-
tences before applying the query strategy. A batch
of the 20 highest-scoring samples is selected.

Implementation The implementation for the ac-
tive learning routine and query strategies are based
on small-text7 (Schröder et al., 2023), an ac-
tive learning library specialized in text classifica-
tion, with integrations for transformers and SetFit.

7https://github.com/webis-de/
small-text
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Metric Value

Fmacro
1 0.80

Fmicro
1 0.84

Subset Acc 0.67

Table 4: Active learning results for 498 examples.

Class F1 # Count

Sentence Boundary 0.96 169
Grammar Mistake 0.86 256
Spelling Anomaly 0.57 158
Punctuation Error 0.62 77
Non-linguistic Content 0.77 110
Letter Spacing 0.94 11
Clean 0.86 145

Table 5: Class-wise active learning results with the
number of training examples per class.

To ease the process for the annotator, we connected
the annotation tool argilla8 to our backend.

5 Results

5.1 Active Learning Experiment

The experiment took 7 hours and 50 minutes in
total, during which 22 batches with 20 examples
each were processed. Re-training from scratch
with every newly annotated batch required overall 5
hours on one Nvidia Tesla A30 (24 GB), querying
in total ∼ 1 hour, labeling less than 2 hours. The
human annotator in this experiment was the first
author of this paper. During the annotation process
12 samples had to be discarded due to the problems
mentioned above (see Section 3.3).

In Table 4, we report F1 and subset accuracy
of the last active learning round on our gold stan-
dard, which used 498 examples for the training
(428 samples + 70 initial examples). The classi-
fier achieves average scores of Fmacro

1 = 0.80 and
Fmicro
1 = 0.84. The subset accuracy of 0.67 is suf-

ficiently high, considering that only exactly match-
ing label combinations are considered correct. The
class scores vary considerably, ranging from 0.57
to 0.96 (see Table 5). Every second sentence was
annotated with the label “Grammar Mistake” (256
examples), followed by “Sentence Boundary” (169
examples) in terms of frequency (last column of
Table 5). When comparing F1 values, there is no

8https://github.com/argilla-io/argilla

indication that a higher number of training exam-
ples always results in higher scores (e.g., when
comparing “Grammar Mistake” = 0.86 and “Sen-
tence Boundary” = 0.96). This can also be shown
with other low-quality classes, notably including

“Letter Spacing” that only required 11 examples to
achieve a score of 0.94.

To further investigate the active learning process,
we reproduce the classifier’s progression during the
experiment by training checkpoints with different
seeds at every two batches of training data and plot
the results (see Figure 2). For example, we train
five times with all the training data, which was
sampled until batch four (70 initial and 80 queried
examples), then train five times on batch six, and so
on. Figure 2 shows improvements across all classes,
with steeper increases initially that gradually level
off over the course of the experiment, albeit at dif-
ferent rates. Although the macro F1 curve shows
signs of stagnation during the last two batches, in-
creasing the annotation budget may yield further
improvements. However, the point at which per-
formance would begin to decline remains unclear.
One approach would be to proceed cautiously by
reducing the active learning batch size.

Figure 2: Macro and class-wise F1 in relation to train
examples per batch, showing classification progress dur-
ing the active learning cycle. Re-trained with 5 seeds at
every second batch. Batch 0 are the 70 initial examples.

5.2 Comparison to Rule-Based Filtering

To further investigate the classifier’s performance,
we compare it against a rule-based baseline, Sen-
tencecleaner, which was developed within the con-
text of the project through which our dataset was
obtained (Goldhahn et al., 2012). This tool applies
a set of 40 rules to filter out low-quality sentences
and is typically used on web crawling data. These
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Not-Clean Clean

Sentencecleaner 0.8181 0.8150
Corpus Quality Classifier 0.8673 0.8603

Table 6: Comparison in F1 score between our super-
vised approach and a rule-based baseline, both devel-
oped for the same task and dataset. Evaluated against
not-clean and clean sentences from our gold standard.

rules include checks for character or symbol ratios,
letter spacing and invalid sentence boundaries.9

Quantitative Comparison We apply a black-box
evaluation, comparing both methods solely based
on their outputs against our gold standard, focus-
ing on their ability to detect impaired and clean
sentences. Classifications are considered not-clean
when the classifier identifies any low-quality label
or when any Sentencecleaner rule applies, whereas
classifications are considered clean when the class

“Clean” is correctly predicted or no Sentencecleaner
rules are applicable. Table 6 shows that our ap-
proach outperforms by 4.92 (not-clean) and 4.53
(clean) percentage points in F1, demonstrating both
better error detection and clean text recognition.

Qualitative Comparison To have a better under-
standing of which additional patterns the classifier
can find, we perform a brief qualitative comparison.

We first review examples that were incorrectly
filtered out by the rule-based baseline, but correctly
retained by our approach. Among those 39 sen-
tences, 12 could be captured with simple rule ad-
justments. This would be feasible, for example, for
the rule according to which sentences are marked as
not clean if they begin with a number that is not part
of a valid date format. In addition, 26 sentences
were filtered out by a rule prohibiting a sentence
length of more than 255 characters which is a good
example of how difficult it is to find reasonable
thresholds. Of the 56 sentences that triggered this
rule, half were true positives and half were false
positives, yielding a precision of just 50%.

We also look at the 107 sentences, which our
classifier is correctly predicting as not clean and
the rule-based approach missed. Among these, it
is notable that the majority (92 sentences) contain

“Grammar Mistake” in their label set, which cov-
ers all sorts of violations that affect the compre-

9https://github.com/
Leipzig-Corpora-Collection/
sentencecleaner

hensibility of a sentence. To further investigate
the error patterns, we grouped them into different
subcategories and briefly describe them (see Ta-
ble 7). There are 51 cases where a finite verb form
is missing (“Missing Predicate”), e.g. headlines
(news, e-commerce, advertisement, etc.), product
descriptions or bullet points. They all have typi-
cal characteristics of well-formed sentences, like
starting with a capital lettered word, ending with
a punctuation mark while not containing any mis-
placed or random symbols. The second largest
group contains 28 cases with foreign language parts
(∼ 50% non-German text), which are, according
to our definition, grammar violations (“Language
Mixing”). The remaining cases comprise various
textual anomalies, including incoherent sentences,
missing word boundaries causing lexical merging,
and sentences that appear truncated (“Gibberish”,

“Merged Words” and “Truncation”).
To assess the severity of the overlooked er-

rors, We also examined the classifier’s limitations,
specifically the 104 sentences it mistakenly identi-
fied as clean. When looking at the examples and
their gold labels, the two most common label sets
are the single labels “Spelling Anomaly” (40 cases)
and “Grammar Mistake” (31 cases). Single-label
occurrences often reflect subtle errors, which could
be confirmed by examining the actual text content.

6 Discussion

Considering the total amount of time (8h) and train-
ing data (498 examples), we argue that our pro-
posed setup worked sufficiently well to build a
classifier for text cleaning and could serve as a
blueprint for data efficient training. Although this
has been demonstrated on German web crawls, our
pipeline is agnostic to language and domain: only
the annotation scheme and seed examples would
need to be adapted.

Without further experiments, however, it is not
clear how these methods will perform in compari-
son to traditional supervised-learning using random
data points. Nevertheless, during the annotation of
the second batch of the gold standard—600 random
examples—we observed that ∼ 50% of sentences
were clean. In contrast, within the active learn-
ing training data, the class “Clean” was sampled
only 145 times (29%), thereby focusing annota-
tion effort on noisy examples. This suggests that
the traditional supervised classifier will likely be
trained on fewer error cases compared to using ac-
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Pattern Exemplary sentence

Missing Predicate Große Abgeschlagenheit und Trägheit des Körpers.
EN: Great fatigue and sluggishness of the body.

Language Mixing Nun, das lässt sich übertragen: What is a school but the people?
EN: Well, that can be transferred: What is a school but the people?

Gibberish Ist dort Folklore, war schon der 16. Angriff.
EN: Is folklore there, was already the 16th attack.

Merged Words Erdäpfelgulasch - Der SpeisenzustellerEs befinden sich keine Produkte im Warenkorb.
EN: Potato goulash - The food delivererThere are no products in your basket.

Truncation Wie in anderen Bundesländern muss auch in.
EN: As in other federal states, this must also be done in.

Table 7: Various low-quality patterns, the classifier additionally found, in comparison to a rule-based approach.

tive learning, which will reduce performance of our
low-quality classes, but may improve on “Clean”.

When looking at additional low-quality patterns
that our approach identifies (Table 7), we find vari-
ous textual problems, some of which are less obvi-
ous to recognize by looking at the surface structure
alone. One could argue that certain “Missing Pred-
icate” instances, such as headlines that only lack fi-
nite verbs, do not constitute low-quality text. While
this does make sense at the document level, where
the text might serve its function as a summariz-
ing heading, our sentence-level approach assesses
quality focused on syntactically valid sentences.

The comparison also demonstrates the inherent
problem in selecting suitable threshold values in
rule-based approaches, as can be seen with the
imprecise sentence length heuristic.

It is worth noting that our seven-class schema
represents only a first effort to define web text qual-
ity and does not fully capture what constitutes low
(or high) quality sentences. This work focused
on data efficient training methods rather than the
development of a comprehensive taxonomy.

To obtain a rough estimate of GPU requirements
for corpus preprocessing, we processed 1 M sen-
tences (∼ 25 M tokens) on a Nvidia H100 (80GB),
which took ∼ 123.10 s. Extrapolating to 1 T cor-
responds to about 1388 GPU hours.10 While this
constitutes a significant resource demand, scaling
across multiple GPUs or nodes would render even
corpora an order of magnitude larger computation-
ally feasible. Moreover, this estimate reflects the
contemporary throughput, but as GPU capabilities
and computational speed continue to advance, the

10We use vanilla inference using the SetFit library, but we
observed that the throughput plateaued beyond a certain batch
size, even though GPU memory was not saturated. We suspect
that with code optimizations, the runtime could be further
reduced, so the reported number serves as a lower bound.

boundary of what is feasible will steadily expand.

7 Conclusions

In this work, we proposed a labeling scheme for
corpus quality classification, provided a gold stan-
dard of 1,319 annotated sentences for German web
data, and applied active learning to bootstrap a clas-
sifier that predicts corpus quality indicators. For
evaluation purposes, we created a gold standard us-
ing an iterative annotation process, which yielded a
corpus with substantial inter-annotator agreement
(with a Cohen’s Kappa of 0.74), making it suitable
for further use.

Using a multi-label active learning setup, we
trained a classifier that predicts the defined quality
labels for German language with a macro F1 score
of 0.80 and micro F1 of 0.84 despite using only
498 training examples in total, labeled over the
course of 8 hours. We showed that our supervised
approach outperforms a rule-based one developed
for the same task. Additionally, we find that the
classifier is able to capture error types, particularly
those involving the comprehensibility of a sentence,
which the rule-based baseline tends to miss.

This work demonstrates a successful proof of
concept for enabling model-based filtering through
LLM-based active learning for text classification in
resource-constrained scenarios. As capabilities of
LLMs grow and computational costs decline, pre-
processing of larger volumes becomes increasingly
feasible, and as a result we predict that prepro-
cessing will shift towards small efficient models,
making preprocessing for specific languages and
domains increasingly prevalent.

Limitations

We did not continue training a pre-trained Sen-
tence Transformer (ST) model for SetFit, but boot-
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strapped one from a vanilla transformer model
(due to a lack of a comparable German ST model),
which may produce suboptimal sentence-level em-
beddings compared to one whose representations
have been pre-trained on sentence pairs and cosine
similarity loss. We encourage exploring the use
of a pre-trained ST, as this could further improve
performance. While we were not aware of a suit-
able model for German, the multi-lingual model
from Reimers and Gurevych (2019) is a promising
candidate for further investigation.

During the creation of the gold standard, we
discovered a bug in the query strategy used to
select data for the first batch. We assume these
sentences were drawn roughly randomly like the
second batch, but still covered more error cases.

Ethical Statement

The dataset annotations may exhibit bias reflect-
ing the perspectives of the annotators, who are all
computer science researchers, potentially limiting
the diversity of opinions represented in our qual-
ity assessments. Additionally, our definition of
high quality correlates strongly with standard Ger-
man grammar, which may inadvertently exclude
dialectal variations or linguistic phenomena such
as code-switching. This presents a particular con-
cern given that LLM pre-training corpora should
ideally be as representative as possible of natural
language variation. To address these limitations,
we will release our dataset and model to enable
further investigation of these problems.
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Abstract
Offensive language detection in Arabic is a
challenging task because of the unique linguis-
tic and cultural characteristics of the Arabic
language. This study introduces a high-quality
annotated dataset for classifying offensive lan-
guage in Arabic, based on a structured tax-
onomy, categorizing offensive content across
seven levels, capturing both explicit and im-
plicit expressions. Utilizing this taxonomy,
we re-annotate the FARAD-500 dataset, cre-
ating reFarad-500, which provides fine-grained
labels for offensive texts in Arabic. A thor-
ough dataset analysis reveals key patterns in
offensive language distribution, emphasizing
the importance of target type, offense sever-
ity, and linguistic structures. Additionally, we
assess text classification techniques to evalu-
ate the dataset’s effectiveness, exploring the
impact of sentiment analysis and emotion de-
tection on classification performance. Our find-
ings highlight the complexity of Arabic offen-
sive language and underscore the necessity of
extensive annotation frameworks for accurate
detection. This paper advances Arabic nat-
ural language processing (NLP) in resource-
constrained settings by enhancing the recog-
nition of hate speech and fostering a deeper
understanding of the linguistic and emotional
dimensions of offensive language.

1 Introduction

Arabic offensive language detection is a crucial but
difficult undertaking that necessitates a thorough
comprehension of both linguistic structures and
cultural context. Direct insults and hate speech are
examples of explicit offensive content. Implicit
offensive content necessitates a more thorough con-
textual study to determine its intent. Even though
Arabic language processing has improved due to
recent developments in natural language process-
ing (NLP), current categorization frameworks fre-
quently lack the granularity required to effectively

capture objectionable statements in various Arabic
dialects.

We present a high-quality data set that is an-
notated in accordance with the ArSOL taxon-
omy (Liebeskind et al., 2024), but unlike the origi-
nal ArSOL work, we reapply it with stricter guide-
lines and expanded multi-label capability, to over-
come these issues. It comprises seven hierarchical
levels, distinguishing between explicit and implicit
offenses, and categorizing offensive content based
on target presence, vulgarity, offense severity, and
type.

As part of this study, we start from the FARAD-
500 dataset, which aggregates Arabic offensive lan-
guage texts from multiple sources, but our work
departs from it by systematically correcting anno-
tation inconsistencies. The original FARAD-500
dataset provides valuable offensive language exam-
ples, but several issues limit its utility: inconsistent
application of labels, overuse of vague categories,
and lack of multi-label annotations for complex
instances. Our re-annotation aims to address these
issues by applying the ArSOL taxonomy rigorously
and by instructing annotators to distinguish be-
tween overlapping categories when relevant. This
effort resulted in reFarad-500, a dataset that en-
hances classification precision across different of-
fensive categories. We analyze the dataset using
various NLP techniques, including sentiment anal-
ysis and emotion detection, to explore their role in
improving offensive language classification.

Through an extensive evaluation pipeline, we as-
sess the quality and utility of the dataset by training
text classification models on it and evaluating their
performance using standard metrics. We analyze
results across multiple annotation levels to exam-
ine how the structure of the annotation scheme
impacts classification performance. Our results
demonstrate the advantages of a structured annota-
tion approach and offer important insights into the
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patterns of offensive language in Arabic.
We believe that incorporating sentiment analysis

and emotion detection can provide additional infor-
mation about the speaker’s emotional context, even
though the majority of previous work has been on
explicitly recognizing offensive words. If one is
aware of the emotions that accompany offensive re-
marks, it would be possible to categorize different
levels of offensiveness more accurately (Mnassri
et al., 2023b).

By concentrating on Arabic, this work helps
close the gap in natural language processing for
medium- and low-resource languages. Despite be-
ing extensively spoken, Arabic, a morphologically
rich language, is nevertheless underrepresented in
high-quality annotated datasets for offensive ma-
terial. Our method tackles important issues like
the lack of data, consistent annotations, and the in-
tricate relationship between social context and lin-
guistic structure. We offer a fine-grained, reusable
resource and experimental approach that is applica-
ble to other languages with comparable limitations
by re-annotating an existing dataset and incorporat-
ing sentiment and emotion features.

2 Related Work

Various taxonomies classify offensive language at
different levels. The term “offensive language” has
been defined in diverse ways in prior research; in
this paper, we adopt a broad definition stating that
offensive language is any form of communication
that intentionally or unintentionally conveys hos-
tility, disrespect, or harm toward individuals or
groups.

Works of Zampieri et al. (2019a,b) classify con-
tent as offensive or not, then as targeted insults
or threats, and finally by target type (groups, in-
dividuals, etc.). The Nexus Linguarum Working
Group (Lewandowska-Tomaszczyk et al., 2021)
defined offensive and non-offensive language, tar-
geted and non-targeted insults, and explicit ver-
sus implicit language with two primary levels
and four sub-levels. Lewandowska-Tomaszczyk
et al. (2022) tested a schema for explicit and im-
plicit language and proposed a simplified, unified
approach with direct and implied offensiveness
in (Lewandowska-Tomaszczyk, 2023). The au-
thors demonstrate that the SOL taxonomy helps
identify offensive language in English by showing
that its categories align with semantic patterns in
word embeddings and yield consistent annotations

with high inter-annotator agreement. Liebeskind
et al. (2023) have shown that this taxonomy can be
successfully applied to Hebrew.

Despite their differences in granularity and struc-
ture, these taxonomies all aim to formalize the idea
of offensive language. The definition of offensive
content is still debatable and complex, though. Re-
lated concepts including hate speech, toxicity, abu-
sive language, and incivility have been used in ear-
lier research; meanings range from overtly hostile
utterances to more subdued expressions like sar-
casm, stereotyping, or exclusionary discourse. In
this work, we adopt a more expansive conceptual-
ization that acknowledges sociolinguistic variation
in the expression and perception of offense, particu-
larly in morphologically rich and culturally diverse
languages like Arabic, and that takes into account
both explicit and implicit forms of offense.

To formalize this view, we rely on a structured
taxonomy introduced in (Liebeskind et al., 2024)
provides a comprehensive framework for catego-
rizing Arabic offensive language. To simplify ad-
dressing it in the paper, we denote it by the ArSOL
taxonomy. This seven-level taxonomy refines and
extends the framework proposed by Lewandowska-
Tomaszczyk et al. (2023) and builds on Zampieri
et al. (2019a,b) to capture both explicit and implicit
offensive language. The taxonomy categorizes of-
fensive language into seven levels: Levels 1 to 6 fo-
cus on explicit categories, while Level 7 addresses
implicit language. In this study, we focused on
Levels 1–6 due to data limitations. Level 7 will be
addressed in future extensions. Figure 1 depicts
levels 1-6 of ArSOL with English translations.

Multiple datasets for offensive language detec-
tion in Arabic have been introduced, reflecting the
linguistic and cultural diversity of Arab-speaking
regions. Early datasets focused on specific hate
speech types: for example, Albadi et al. (2018) con-
tains texts targeting religious prejudice, while Aref
et al. (2020) created a dataset focused on religious
hate speech concerning the Sunni-Shia divide. Ex-
panding thematic scope, Mulki and Ghanem (2021)
developed the Let-Mi dataset, which provides ver-
satile examples of misogynistic behavior.

Other datasets use multidimensional annotation
frameworks to capture complex phenomena. Ousid-
houm et al. (2019) presented a multilingual dataset
annotated for hostility, directness, and target at-
tributes such as religion or sexual orientation. Sim-
ilarly, Ahmad et al. (2024) released a multi-class
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dataset of tweets categorized into four sentiment-
based hate speech classes.

Researchers have also explored platform-
specific data sources, including YouTube com-
ments (Alakrot et al., 2018) and news arti-
cles (Chowdhury et al., 2020; Mubarak et al., 2017).
Furthermore, several studies address offensive lan-
guage in different Arabic dialects (Mulki et al.,
2019; Haddad et al., 2019; Mubarak et al., 2020;
Litvak et al., 2021; Essefar et al., 2023; Alhazmi,
2023). The FARAD-500 dataset, proposed by
Liebeskind et al. (2024), focuses on Modern Stan-
dard Arabic (MSA) and Levantine dialects and con-
tains 500 offensive texts annotated according to the
ArSOL taxonomy.

Our work complements and extends prior ef-
forts by re-annotating the FARAD-500 dataset to
improve annotation accuracy and balance across of-
fense categories. The refined dataset, reFarad-500,
ensures a more balanced representation of offen-
sive language types, facilitating improved model
training and evaluation. We also evaluate the effec-
tiveness of the ArSOL taxonomy by training text
classification models on the refined dataset. In ad-
dition, we investigate how sentiment analysis and
emotion detection can assist offensive language de-
tection. Lastly, the re-annotated dataset is made
publicly available to support further advances in
Arabic NLP and offensive language identification.
Although extensive research exists on Arabic offen-
sive language detection, few studies explore inte-
grating sentiment and emotion analysis to enhance
classification. We investigated their role in enhanc-
ing offensive language classification since previous
work (Plaza-del Arco et al., 2021; Mnassri et al.,
2023a; Samghabadi et al., 2020; Elmadany et al.,
2020; Althobaiti, 2022) shows the advantages of
combining these approaches.

3 The reFarad-500 Dataset

3.1 Data Preprocessing

We used the FARAD-500 dataset of (Liebeskind
et al., 2024) as a starting point, but our work sub-
stantially revises and extends it. FARAD-500 was
generated from 16 existing Arabic offensive lan-
guage datasets, ensuring alignment with ArSOL
taxonomy. Table 1 lists the datasets and specifies
taxonomy levels for which the data is originally an-
notated (cases, where not all options of a taxonomy
level are used, are marked with an asterisk). Most
datasets are annotated at level 1 (offensive or not)

and partially at level 5 (offense strength), primarily
focusing on hate speech. Other taxonomy levels,
such as target presence and offense aspects, lack an-
notation. Furthermore, because of style variations,
the dataset only contains texts from Facebook and
Twitter, leaving out sources like YouTube and news
articles. However, FARAD-500’s partial and some-
times inaccurate taxonomy coverage limits its suit-
ability for fine-grained ArSOL-based classification.

Paper Source Levels
(Albadi et al., 2018) Twitter 5*
(Ousidhoum et al., 2019) Twitter 1, 2, 3, 5*
(Mulki et al., 2019) Twitter 1, 5*
(Zampieri et al., 2020) Twitter 1, 4, 5*
(Mubarak et al., 2017) Twitter 1, 5*
(Aref et al., 2020) Twitter 5*
(Ahmad et al., 2024) Twitter 1, 5*
(Mulki and Ghanem, 2021) Twitter 1, 5*, 6*
(Litvak et al., 2021) Twitter 1
(Alhazmi, 2023) Twitter 1

Table 1: Data sources of FARAD-500 (* indicates par-
tial annotation).

3.2 Re-annotated dataset reFarad-500
The original FARAD-500 annotations contain par-
tial category coverage and misclassifications, reduc-
ing consistency with the ArSOL taxonomy (Liebe-
skind et al., 2024). We therefore re-annotated the
dataset using explicit criteria: correcting label mis-
applications, ensuring full category coverage, and
allowing multi-label assignment when multiple as-
pects occur in a text. In multiple cases, texts that
clearly met the criteria for some of the labels were
either misclassified or left unlabeled. To enhance
classification accuracy and consistency, this dataset
underwent a meticulous re-annotation process to
address annotation errors and ambiguities with the
help of native Arabic speakers fluent in Modern
Standard Arabic (MSA) and Levantine Arabic. The
annotators were provided with comprehensive in-
structions and examples. The main errors we strive
to fix were a lack of attention to several aspects ex-
pressed in one text, and the use of Other aspect in
an erroneous way when other aspects are present in
the text. We denote the resulting dataset by reFarad-
500. We guided the annotators to mark the aspect
as Other only if no other aspect is applicable. Ad-
ditionally, at level 5, we instructed the annotators
to mark each text as either Hate speech or Insult,
and then annotate it separately as Threat and as
Discredit if necessary to allow for multi-label an-
notation. We did it to capture the fact that a single
offensive text can simultaneously serve multiple

112



         text        

non-offensive offensive

individual

group

individual wrt group 

none

targettarget presence

present

absent

vulgar

yes

no

offense strength

insult

hate speech

discredit

threat

aspects

racism
xenophobia
homophobia
sexism
profanity
ageism
ableism
classism
ideologism
other

Level 2
Level 3Level 4
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Figure 1: ArSOL taxonomy. Levels 1 through 6 include classifications such as non-offensive vs. offensive (Level 1),
the target of the offense (Level 2), the presence or absence of the target (Level 3), vulgar vs. non-vulgar language
(Level 4), the severity of the offense (Level 5), and specific types of explicit offenses (Level 6).

functions, such as insulting an individual while
also discrediting a group or issuing a threat.

The re-annotation process involved three na-
tive Arabic speakers with academic backgrounds
in linguistics and NLP. We measured annotator
agreement throughout the process using Cohen’s
Kappa on the full dataset (Table 2). We report Co-
hen’s Kappa coefficient (Cohen, 1960) on the entire
dataset of 500 texts. Cohen’s Kappa is a statistical
measure used to assess the degree of agreement be-
tween two raters or annotators when dealing with
categorical or ordinal data. The highest level of
agreement was found in the Ideologism aspect of
level 6, indicating consistency in identifying reli-
giously offensive content. Good to excellent agree-
ment was also noted for Sexism, Xenophobia, and
Religion. However, agreement levels were lower

level name kappa
2 target 0.931
3 target presence 0.775
4 vulgar 0.881
5 offense strength (avg) 0.926
6 racism 0.725
6 xenophobia 0.714
6 homophobia 0.203
6 sexism 0.798
6 other 0.251
6 ageism 1.000
6 ableism 0.127
6 classism 0.322
6 ideologism 0.824
6 religion 0.755

Table 2: Annotation agreement for the reFarad-500
dataset.

for some taxonomy aspects, such as Homophobia
and Other, implying difficulties in discovering the
intent behind the offense in these specific cases.
Still, these agreement values are superior to those
reported in (Liebeskind et al., 2024), thus justifying
the need for re-annotation. In Table 3 we show the
agreement between original and new annotations
for levels present in both datasets. We see that the
aspects most affected by re-annotation are Homo-
phobia”, Ableism, and Other, while no changes
were made for target presence and vulgarity levels
of the taxonomy. Two examples of texts where the

level name kappa
target 0.996
target presence 1.000
vulgar 1.000
racism 0.895
xenophobia 0.846
homophobia 0.203
sexism 0.817
other 0.259
ageism 1.000
ableism 0.160
classism 0.406
ideologism 0.863
religion 0.788

Table 3: Kappa agreement values for FARAD-500 and
reFarad-500 datasets.

annotation was modified appear in Table 4.
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text translation aspect
}� �sA�� �H ��kl	 ¤�¨ ¤¡@� �nz§r �t� Well said, but the dog is loyal, and this one is a filthy pig. ableism
�A� §K� Vyz E¤�¢  §w�.. An uncle who f**s his wife’s a**—he’s a cuckold. homophobia

Table 4: Examples of re-annotated texts.

4 Dataset Analysis

4.1 Sentiment Analysis
Sentiment analysis (SA), which helps find senti-
ment patterns that might be associated with offen-
sive expressions, is an essential tool for text analy-
sis, especially when it comes to identifying offen-
sive language. In offensive language detection, SA
can provide additional context by distinguishing
between neutral, aggressive, and harmful content,
offering a better understanding of intent. For this
purpose, we considered two state-of-the-art Arabic
pre-trained transformer models: camelBERT (In-
oue et al., 2021) and araBERT (Antoun et al., 2020).
camelBERT is a state-of-the-art transformer-based
model for Arabic that was pretrained on diverse
Arabic corpora across dialects and Modern Stan-
dard Arabic (MSA), and fine-tuned for various
downstream tasks, including sentiment analysis,
achieving high accuracy on benchmark datasets
ASTD (Nabil et al., 2015) and LABR (Aly and
Atiya, 2013). araBERT, similarly, was pretrained
on over 200 million Arabic sentences and fine-
tuned on multiple sentiment analysis benchmarks,
consistently outperforming earlier models and es-
tablishing itself as a strong baseline for Arabic NLP
tasks.

We applied both camelBERT and araBERT mod-
els to the reFarad-500 dataset for sentiment classifi-
cation. The results, presented in Table 5, show that
araBERT produced better quality predictions with
more negative labels, while camelBERT assigned
a neutral sentiment label to the vast majority of
texts, which is surprising. Therefore, we selected
araBERT for further analysis. The sentiment dis-
tribution over categories of level 6 of the ArSOL
taxonomy is depicted in Figure 2.

4.2 Emotion Analysis
We also want to investigate whether incorporating
emotion detection into offensive language classi-
fication will lead to more accurate classification
results. Research has indicated that the use of emo-
tional characteristics enhances the identification of
hate speech (Plaza-del Arco et al., 2021).

We tested three emotion detection models
for Arabic: (1) hatemnoaman/bert-base-

Figure 2: Sentiments seen at level 6 of ArSOL taxon-
omy.

arabic-finetuned-emotion model (Noa-
man, 2023) for emotion detection in Arabic which
was fine-tuned from asafaya/bert-base-
arabic on the Emotone dataset (Al-Khatib and
El-Beltagy, 2018) and uses eight emotion labels
(anger, disgust, fear, joy, neutral, sadness, sur-
prise, trust); (2) kiroloskhela/Sentiment-
Bert model (Khela, 2023) trained on Emo-
tone (Al-Khatib and El-Beltagy, 2018) and the Set-
Fit/Emotion (Tunstall et al., 2022) datasets with
five emotions (disgust, joy, anger, fear, sadness;
and (3) araBERT fine-tuned the Arabic Emotion
Dataset (Almahdawi and Teahan, 2019) with five
emotions (amused, confident, disgust, empathetic,
fear). Distribution of detected emotions is shown
in Table 6. Because the first two models assign al-
most all texts the Disgust label, we have elected to
proceed with the third model (fine-tuned araBERT).
By including emotion recognition in fine-grained
offensive language classification, we hope for a
better understanding of the intent and severity of
offensive text.

4.3 Offensive Language Classification

To evaluate the effectiveness of the simplified tax-
onomy, we performed the classification of texts in
the reFarad-500 dataset for every taxonomy level.
We also study the effect of Sentiment Analysis (SA)
and Emotion Detection (ED) on classification ac-
curacy by using their output for classification. We
first generate text representations for the original
texts in Arabic, then optionally enhance them with
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Model Neutral Positive Negative
camelBERT 490 5 5
araBERT 269 0 231

Table 5: Sentiment classification results on the reFarad-500 dataset using two Arabic BERT models.

model num of texts per emotion
asafaya/bert-base-arabic disgust(448), joy(19), surprise(14)„ neutral(7), sadness(5),fear(4), trust(3)
kiroloskhela/Sentiment-Bert disgust(480), joy(10), anger(6), fear(2), sadness(2)
fine-tuned araBERT amused(9), confident(378), disgust (82), empathetic(12), fear(19)

Table 6: Distribution of detected emotions.

SA or ED output, and split them into training and
test sets with the 80%/20% split ratio. Then we ap-
ply classification models and report average results
(precision, recall, F1 measure, and accuracy). The
pipeline of our approach is shown in Figure 3. We
only considered categories with at least 10 samples
in a minority class, which excluded aspects such as
Homophobia and Ageism.

4.3.1 Text Representations and Models
For the offensive language classification, we used
three text representations: word n-grams of sizes
1 to 3 (denoted by n-grams in Table 7), tf-idf vec-
tors, and BERT sentence embeddings (denoted by
SE). We used two SE models – the Arabic bert-
base-arabertv02 model denoted by the araBERT
SE model (Antoun et al., 2020) and the multilin-
gual bert-base-multilingual-cased model denoted
by mlBERT SE (Devlin et al., 2019). We also inves-
tigated the enhancement of these representations
with SA and ED labels.

We have applied eXtreme Gradient Boost
(XGB) (Chen, 2015), Random Forest (RF) (Pal,
2005), and Logistic Regression (LR) (Kleinbaum
et al., 2002) classifiers to these text representations.
As baselines, we also applied mlBERT and arBERT
and fine-tuned them on the training part of the data.

4.3.2 Results
Table 7 contains the results of classification for lev-
els 2-6 of the taxonomy, showing the difference
in performance on syntactic text representations
versus semantic representations. At level 6, we
classified each offensive aspect separately. In every
case, we report the results of the representation-
classifier combo that achieved the best accuracy for
categories with 10 or more texts in a minority class.
Semantic representations (arBERT SE, mlBERT
SE) generally outperform syntactic representations
(n-grams, tf-idf) in both accuracy and F1-score,
highlighting the advantage of contextual embed-
dings. We can observe that all traditional models

consistently outperform both BERT baselines, as
can be seen in Table 8 (note some classes were
omitted because they had less than 10 texts in the
minority class as required by BERT models). We
also observed that mlBERT performed better than
arBERT in most cases.

Table 10 contains the results of the evaluation
of reFarad-500 data enhanced with sentiments pre-
dicted by the model described in Section 4.1; the
prediction was performed with a train/test split of
80%/20%. The accuracy values in this table indi-
cate that adding SA had minimal impact on most
categories, with some slight improvements (Vul-
gar and Ideologism) but also some decreases (Re-
ligion). Representation-wise, n-grams performed
consistently well across multiple categories, often
achieving competitive or higher accuracy compared
to semantic representations like arBERT and ml-
BERT sentence embeddings. Classifier-wise, XG-
Boost (XGB) remained the best-performing model.

Table 9 contains the results of the evaluation
of reFarad-500 data enhanced with emotions pre-
dicted by the model described in Section 4.2; the
prediction was performed with train/test split of
80%/20%. The results indicate that incorporating
emotion detection (ED) slightly improved accuracy
in most categories, particularly in Vulgar and Of-
fense strength, suggesting that emotions contribute
to better classification of offensive content intensity.
However, for some categories like Target presence
and Ideologism, the accuracy changes were mini-
mal, implying that ED might not significantly affect
these aspects of offensive language. Overall, the
results indicate the potential of emotion-aware mod-
els in enhancing fine-grained offensive language
classification. Table 11 shows classification results
for the reFarad-500 data enhanced by both senti-
ment analysis (SA) and emotion detection (ED)
data. In no case were the results better than the
results for the data enhanced only by SA or only
by ED.
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Figure 3: Offensive language classification pipeline.

semantic text representations syntactic text representations
level repr. model F1 acc repr. model F1 acc
(2) target arBERT SE LR 0.5802 0.7300 n-grams XGB 0.5019 0.6800
(3) target presence mlBERT SE XGB 0.5921 0.7200 n-grams XGB 0.6685 0.7800
(4) vulgar arBERT SE RF 0.5739 0.8200 n-grams LR 0.6755 0.8300
(5) hate speech/insult tf-idf LR 0.5128 0.6300 arBERT SE RF 0.7460 0.7500
(5) discredit mlBERT SE LR 0.7288 0.7300 n-grams XGB 0.7527 0.7600
(6) racism arBERT SE XGB 0.5765 0.7900 n-grams RF 0.4350 0.7700
(6) xenophobia mlBERT SE LR 0.5821 0.8700 n-grams RF 0.4624 0.8600
(6) homophobia arBERT SE XGB 0.4872 0.9500 n-grams RF 0.4872 0.9500
(6) sexism arBERT SE XGB 0.6678 0.8400 n-grams XGB 0.6114 0.8300
(6) other arBERT SE XGB 0.6094 0.9400 n-grams XGB 0.6633 0.9300
(6) ageism arBERT SE XGB 1.0000 1.0000 n-grams XGB 1.0000 1.0000
(6) ableism arBERT SE RF 0.4681 0.8800 tf-idf XGB 0.5392 0.8800
(6) classism arBERT SE RF 0.4475 0.8100 n-grams RF 0.4475 0.8100
(6) ideologism mlBERT SE LR 0.6484 0.6800 tf-idf XGB 0.6239 0.6700
(6) religion arBERT SE XGB 0.5924 0.8800 tf-idf XGB 0.6801 0.8900

Table 7: Comparison of classification results with semantic and syntactic text representations across taxonomy
levels (best scores marked in gray).

level model F1 acc model F1 acc
(2) target arBERT 0.3133 0.3780 mlBERT 0.2510 0.4180
(3) target presence arBERT 0.5258 0.5480 mlBERT 0.5738 0.6060
(4) vulgar arBERT 0.6576 0.7180 mlBERT 0.4576 0.6480
(5) hate speech/insult arBERT 0.6094 0.6400 mlBERT 0.4781 0.4800
(5) discredit arBERT 0.5478 0.5500 mlBERT 0.4916 0.5100
(6) racism arBERT 0.5530 0.6580 mlBERT 0.3764 0.5220
(6) xenophobia arBERT 0.4191 0.6420 mlBERT 0.5003 0.8480
(6) homophobia arBERT 0.5589 0.9140 mlBERT 0.5146 0.9460
(6) sexism arBERT 0.6695 0.7740 mlBERT 0.4820 0.6660
(6) religion arBERT 0.5973 0.7360 mlBERT 0.4607 0.6240
(6) ableism arBERT 0.5524 0.7260 mlBERT 0.4480 0.7300
(6) classism arBERT 0.3826 0.5180 mlBERT 0.4950 0.7920
(6) ideologism arBERT 0.7023 0.7140 mlBERT 0.5221 0.5340
(6) other arBERT 0.5926 0.7660 mlBERT 0.5505 0.7820

Table 8: Fine-tuning of BERT models (best scores are marked in gray).

no ED with ED
level repr. model F1 acc repr. model F1 acc
(2) target arBERT SE XGB 0.4887 0.7300 arBERT SE XGB 0.4887 0.7300
(3) target presence n-grams XGB 0.6685 0.7800 n-grams XGB 0.6593 0.7700
(4) vulgar n-grams LR 0.6755 0.8300 n-grams LR 0.7137 0.8500
(5) hate speech/insult arBERT SE XGB 0.7052 0.7300 arBERT SE RF 0.6614 0.7300
(5) discredit ngrams XGB 0.7029 0.7200 ngrams XGB 0.7029 0.7200
(5) threat arBERT SE RF 0.4975 0.9900 arBERT SE RF 0.4975 0.9900
(6) racism arBERT SE XGB 0.5765 0.7900 mlBERT SE XGB 0.5847 0.8000
(6) xenophobia mlBERT SE LR 0.5821 0.8700 mlBERT SE LR 0.5821 0.8700
(6) sexism arBERT SE XGB 0.6678 0.8400 arBERT SE XGB 0.6678 0.8400
(6) religion arBERT SE XGB 0.6094 0.9400 n-grams XGB 0.6842 0.9400
(6) ableism arBERT SE RF 0.4681 0.8800 arBERT SE RF 0.4681 0.8800
(6) classism arBERT SE RF 0.4475 0.8100 arBERT SE RF 0.4475 0.8100
(6) ideologism mlBERT SE LR 0.6484 0.6800 mlBERT SE XGB 0.6494 0.7000
(6) other n-grams XGB 0.6464 0.8900 n-grams LR 0.6464 0.8900

Table 9: Performance comparison of offensive language classification with and without emotion detection (ED) on
the reFarad-500 dataset (best scores are marked in gray).
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no SA with SA
level repr. model F1 acc repr. model F1 acc
(2) target arBERT SE XGB 0.4887 0.7300 arBERT SE LR 0.5802 0.7300
(3) target presence n-grams XGB 0.6685 0.7800 n-grams XGB 0.6685 0.7800
(4) vulgar n-grams LR 0.6755 0.8300 n-grams LR 0.6863 0.8400
(5) hate speech/insult arBERT SE XGB 0.7052 0.7300 arBERT SE XGB 0.6881 0.7200
(5) discredit ngrams XGB 0.7029 0.7200 ngrams XGB 0.7220 0.7300
(5) threat arBERT SE RF 0.4975 0.9900 arBERT SE RF 0.4975 0.9900
(6) racism arBERT SE XGB 0.5765 0.7900 arBERT SE XGB 0.5765 0.7900
(6) xenophobia mlBERT SE LR 0.5821 0.8700 mlBERT SE LR 0.5821 0.8700
(6) sexism arBERT SE XGB 0.6678 0.8400 arBERT SE XGB 0.6678 0.8400
(6) religion arBERT SE XGB 0.6094 0.9400 n-grams LR 0.6464 0.8900
(6) ableism arBERT SE RF 0.4681 0.8800 arBERT SE RF 0.4681 0.8800
(6) classism arBERT SE RF 0.4475 0.8100 arBERT SE RF 0.4475 0.8100
(6) ideologism mlBERT SE LR 0.6484 0.6800 mlBERT SE LR 0.6658 0.7000
(6) other n-grams XGB 0.6464 0.8900 arBERT SE XGB 0.6094 0.9400

Table 10: Performance comparison of offensive language classification with and without sentiment analysis (SA) on
the reFarad-500 dataset (best scores are marked in gray).

level repr. model F1 acc level repr. model F1 acc
(2) target arBERT SE XGB 0.4783 0.7300 (6) homophobia arBERT SE XGB 0.6299 0.9500
(3) target presence n-grams XGB 0.6250 0.7600 (6) sexism arBERT SE XGB 0.6678 0.8400
(4) vulgar n-grams LR 0.6863 0.8400 (6) other arBERT SE XGB 0.6094 0.9400
(5) hate speech/insult arBERT SE XGB 0.7013 0.7300 (6) ageism arBERT SE XGB 1.0000 1.0000
(5) discredit ngrams XGB 0.7220 0.7300 (6) ableism arBERT SE RF 0.4681 0.8800
(5) threat arBERT SE RF 0.4975 0.9900 (6) classism arBERT SE RF 0.4475 0.8100
(6) racism arBERT SE XGB 0.5504 0.7900 (6) ideologism mlBERT SE LR 0.6349 0.6700
(6) xenophobia mlBERT SE LR 0.5821 0.8700 (6) religion n-grams LR 0.6464 0.8900

Table 11: Performance of offensive language classification with combined SA and ED enhancement on the reFarad-
500 dataset.

5 Conclusions

This paper studies various levels of offensive lan-
guage in Arabic following the ArSOL taxonomy
of explicit offensive language. For this purpose,
we re-annotate the existing dataset of (Liebeskind
et al., 2024) to produce a quality dataset reFarad-
500 covering multiple categories of Arabic offen-
sive language. By applying various deep learning
models, we assessed their effectiveness in detect-
ing offensive content, and our experiments demon-
strated that transformer models outperform tradi-
tional classifiers, highlighting their potential for
this task. We also explored emotion detection
and sentiment analysis to capture the emotional
tone and subjective sentiment of offensive texts,
showing that these methods are not merely aux-
iliary but integral to a comprehensive offensive
language detection framework. The reFarad-500
dataset, together with full annotation guidelines,
is freely available for research purposes at https:
//github.com/NataliaVanetik/OffensiveLan

guageDatasetInArabicFinegrainAnnotation.
Future research should focus on expanding the

dataset, integrating additional language resources,
and enhancing classification models. The proposed
taxonomy and annotation framework are designed
to be adaptable, making them applicable not only
to other Arabic dialects but also to languages with
similar challenges in computational resources, data

availability, and linguistic tooling. By combining
taxonomy-driven annotation with semantic signals
such as sentiment and emotion, this work offers
a transferable foundation for offensive language
detection across diverse linguistic contexts.

Ethics Statement and Limitations

This study re-annotates publicly available Arabic
offensive language data from online platforms such
as Twitter and Facebook, using only anonymized
texts without identifiable information. Native Ara-
bic speakers, trained with comprehensive guide-
lines, conducted the re-annotation to ensure con-
sistency, minimize bias, and maintain cultural sen-
sitivity. We acknowledge the subjective nature of
offense and encourage ethical consideration when
using models trained on this dataset.

The reFarad-500 dataset has several limitations:
its size (500 texts) restricts large-scale model train-
ing and category diversity; the focus on explicit
offense excludes implicit cases for future work;
category distributions remain imbalanced to pre-
serve real-world patterns; and coverage is limited
to Modern Standard Arabic and Levantine dialects,
reducing generalizability to underrepresented vari-
eties such as Maghrebi or Gulf Arabic.
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connected offensive language ontology and tagset
enrichment. In R. Carvalho & R. Rocha Souza,
R. (Eds.), Proceedings of the Workshop and Tuto-
rials held at LDK 2021 co-located with the 3rd Lan-
guage, Data and Knowledge Conference, volume
3064, pages 135–150. CEUR Workshop Proceedings.

Barbara Lewandowska-Tomaszczyk, Slavko Žitnik,
Chaya Liebeskind, Giedrė Valūnaitė-Oleškevičienė,
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Abstract
This paper presents a novel framework for
stylistic evaluation in conversational recom-
mendation systems (CRS), focusing on the
prosodic and expressive qualities of generated
responses. While prior work has predomi-
nantly emphasized semantic relevance and rec-
ommendation accuracy, the stylistic fidelity
of model outputs remains underexplored. We
introduce the prosodic richness score (PRS),
a composite metric that quantifies expressive
variation through structural pauses, emphatic
lexical usage, and rhythmic variability. Us-
ing PRS, we conduct both sentence-level and
turn-level analyses across six contemporary
large language models (LLMs) on two bench-
mark CRS datasets: ReDial, representing goal-
oriented dialogue, and INSPIRED, which incor-
porates stylized social interaction. Empirical re-
sults reveal statistically significant differences
(p < 0.01) in PRS between human and model-
generated responses, highlighting the limita-
tions of current LLMs in reproducing natural
prosodic variation. Our findings advocate for
broader evaluation of stylistic attributes in dia-
logue generation, offering a scalable approach
to enhance expressive language modeling in
CRS.

1 Introduction

Conversational Recommendation Systems (CRS)
aim to provide personalized recommendations
through natural language dialogue (Jannach et al.,
2021). With the emergence of large language mod-
els (LLMs), such as LLaMA, Mistral, and Gem-
ini, the quality of generated dialogue has signifi-
cantly improved in terms of coherence, informa-
tiveness, and contextual relevance (Thoppilan et al.,
2022; Li et al., 2018; Numaya et al., 2025). How-
ever, most existing CRS evaluation methods empha-
size automatic metrics—such as BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), recommenda-
tion accuracy, and human evaluation (Liu et al.,

2020)—while neglecting stylistic features, particu-
larly prosodic aspects like rhythm, expressiveness,
and tone.

Prosody—referring to rhythm, emphasis, and
structural variation in language—is a key com-
ponent of natural human communication (Ladd
and Arvaniti, 2023). In text-based dialogue sys-
tems, prosodic features manifest through punctua-
tion (e.g., pauses via commas or periods), lexical
emphasis (e.g., adjectives, adverbs, interjections),
sentence rhythm (e.g., variance in sentence length),
and expressive markers (e.g., questions and excla-
mations). These cues contribute to the emotional
resonance and naturalness of responses, making
them especially important for CRS applications
aiming to simulate engaging human-like dialogue
or support voice interfaces.

Despite recent advances, current LLM-based
systems often generate stylistically flat responses
lacking variation in tone, structure, or empha-
sis—limiting engagement and diminishing per-
ceived human-likeness. Existing evaluation frame-
works fail to capture these nuanced yet important
dimensions of expressiveness (Li et al., 2024; Park
et al., 2024). To address this gap, we propose a
novel method for analyzing the prosodic quality of
LLM-generated responses in CRS. Specifically, we
quantify expressiveness using three interpretable
features: (i) structural pauses (e.g., punctuation
frequency), (ii) lexical emphasis (e.g., adjectives,
adverbs, interjections), and (iii) rhythm variation
(variance in sentence lengths). PRS provides a
normalized score that captures the richness of a re-
sponse’s structure and delivery style. To the best of
our knowledge, this is the first systematic attempt
to assess textual prosody in CRS responses.

We investigate the stylistic expressiveness of di-
alogue responses generated by six recent LLMs
within a standard CRS framework. Our evalua-
tion focuses on models such as LLaMA, Gemma,
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Gemini, Qwen, and Mistral, assessing their ability
to produce responses with natural prosodic qual-
ities. The CRS model is trained and evaluated
on the standard splits of two benchmark datasets:
ReDial (Li et al., 2018), which is goal-oriented
and centers on movie recommendations, and IN-
SPIRED (Hayati et al., 2020), which emphasizes
emotionally rich conversations. We analyze the
LLM-generated responses using both sentence-
level and turn-level PRS distributions, compare
them with human-authored ground-truths, and ex-
amine stylistic variation across dialogue turns.

This enables a more holistic evaluation of LLMs
in CRS by capturing stylistic expressiveness of-
ten overlooked by standard automatic and human
evaluation methods.

Our key contributions are as follows:

• We introduce the Prosodic Richness Score
(PRS), a novel metric designed to quantify
stylistic and prosodic expressiveness in dia-
logue responses.

• We evaluate PRS on responses generated by
six state-of-the-art LLMs, using a standard
CRS framework applied to two benchmark
datasets: ReDial and INSPIRED.

• Our analysis uncovers consistent prosodic
gaps between LLM-generated and human-
authored responses, highlighting the limita-
tions of current models in producing naturally
expressive dialogue.

This work offers a new lens for evaluating con-
versational agents, emphasizing not only what is
generated but how it is said. Our findings under-
score the need for more prosody-aware generation
techniques to bridge the gap between human and
machine dialogue.

2 Related Work

While LLMs have enhanced CRSs in terms of rel-
evance and coherence, prior work has largely em-
phasized task-oriented metrics like recommenda-
tion accuracy. In contrast, stylistic and prosodic
factors—crucial for naturalness and user engage-
ment—remain underexplored. This section reviews
related research on CRS evaluation, stylistic and af-
fective language generation, and the role of prosody
in natural language processing.

2.1 Evaluation of Conversational
Recommender Systems

CRSs aim to provide personalized suggestions
through dialogue (Christakopoulou et al., 2016; Li
et al., 2018; Jannach et al., 2021). Traditional eval-
uation relies on task-specific metrics like BLEU,
ROUGE, or Recall@K, which overlook stylistic
richness and perceived naturalness. While hu-
man evaluations and learned reward models offer
deeper insights (See et al., 2019; Ghazarian et al.,
2022), they are costly and less interpretable. Re-
cent reference-free evaluators, such as FACE (Chen
et al., 2025), show strong alignment with human
judgments, and others demonstrate robustness un-
der adversarial settings (Vasselli et al., 2025). In
contrast, our PRS provides a lightweight and inter-
pretable measure of stylistic expressiveness.

2.2 Stylistic and Affective Generation in
Dialogue

Stylistic elements such as tone, emotion, and per-
sonality play a vital role in enhancing conversa-
tional engagement(Qian et al., 2023; Ma et al.,
2024). Dataset like Empathetic Dialogues (Rashkin
et al., 2019) has highlighted the importance of gen-
erating affective and stylistically rich responses,
particularly in CRS. Prior approaches to stylistic
control in text generation have leveraged lexical
constraints (Iso, 2024), persona-based latent at-
tribute control (Lu et al., 2023), and decoding-time
mechanisms via dynamic attribute graphs (Liang
et al., 2024). However, evaluation metrics for stylis-
tic expressiveness remain limited. We address this
gap by introducing PRS, which facilitates cross-
LLM comparisons of stylistic variation in CRS
outputs, with a focus on the ReDial and INSPIRED
dataset.

2.3 Prosody in Text and Speech Systems

Prosody—encompassing rhythm, emphasis, and
structural variation—plays a crucial role in human
communication and is extensively studied in speech
synthesis(Li et al., 2025; Raitio et al., 2022). While
TTS models incorporate prosodic control(Liu et al.,
2024; Que and Ragni, 2025), textual dialogue eval-
uation rarely considers prosodic features. Some
studies utilize prosodic cues for emotion recogni-
tion or discourse segmentation(Wei et al., 2023;
Prévot and Wang, 2024), but these often rely on
acoustic inputs. Our work is distinct in applying
prosody-based analysis directly to text, enabling
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stylistic evaluation of LLM-generated responses in
CRS.

While previous work has made strides in af-
fective dialogue generation and prosody model-
ing—particularly in speech applications—there re-
mains a lack of principled, text-based analysis for
quantifying prosodic expressiveness in generated
responses. Our work bridges this gap by introduc-
ing a simple yet effective measure, the PRS, en-
abling scalable, interpretable evaluation of stylistic
quality in LLM-generated responses across diverse
CRS datasets.

3 Methodology

This section outlines our approach to evaluating the
stylistic and prosodic expressiveness of responses
generated by LLMs in conversational recommenda-
tion systems. We introduce a lightweight linguistic
framework that extracts text-based prosodic fea-
tures and computes a unified PRS to assess varia-
tion and naturalness across both human-authored
ground-truths and model-generated responses.

3.1 Datasets

We use two publicly available CRS datasets. Re-
Dial (Li et al., 2018) contains over 10,000 goal-
driven movie recommendation dialogues with an-
notated movie mentions, emphasizing task perfor-
mance. In contrast, INSPIRED (Hayati et al., 2020)
includes 1,001 open-domain dialogues enriched
with tone annotations (e.g., empathetic, humorous),
supporting evaluation of affective and stylistic ex-
pressiveness. Together, these datasets enable both
functional and stylistic analysis.

3.2 LLM-Generated Response Collection

To analyze stylistic variation in generated dia-
logue, we evaluate responses from six large lan-
guage models: llama-3.1-8b-instant (Touvron et al.,
2023), llama-3.2-3b-preview (Touvron et al., 2023),
gemma2-9b-it (Anil et al., 2024), gemini-1.5-flash-
8b (Google DeepMind, 2024), qwen-2.5-32b (Inc.,
2024), and mistral-saba-24b (Jiang et al., 2024).
The selected models span a broad spectrum of
capacities, ranging from 3B to 32B parameters,
and include both decoder-only and multimodal ar-
chitectures. This range ensures coverage of both
lightweight and high-capacity LLMs, allowing us
to examine whether expressive richness in gener-
ated responses is consistently maintained across
models of varying size and complexity. Each

model is prompted to produce a single-turn re-
sponse given a user utterance from either the Re-
Dial or INSPIRED dataset. Each generated output
is aligned with its corresponding human-authored
ground-truth response, enabling direct comparison
of prosodic and stylistic characteristics. For trans-
parency and reproducibility, we include the exact
prompts used during LLM-based response genera-
tion in Appendix A.

3.3 Text-Based Prosody Feature Extraction

To quantify the stylistic expressiveness, we com-
pare responses generated by LLMs against human-
written ground-truth responses from established
CRS datasets. We extract a set of interpretable
textual features that serve as proxies for prosodic
expressiveness in dialogues generated via various
LLMs. Specifically, we compute:

• Pause count: The number of punctuation-
based structural markers (e.g., periods, com-
mas, semicolons, question marks, and excla-
mation marks), which simulate natural pauses
in spoken language.

• Emphasis count: The number of expressive
lexical items—identified via part-of-speech
tags such as adjectives, adverbs, and inter-
jections—that often signal emotional tone or
subjective emphasis.

• Rhythm variance: The variance in sentence
length (in tokens), reflecting diversity in syn-
tactic structure and rhythmic flow.

• Question and exclamation counts: The num-
ber of interrogative and exclamatory sen-
tences, capturing tone variability and conver-
sational dynamism.

• Sentence count: The number of distinct sen-
tences in a response, offering a basic structural
measure of length and complexity.

While PRS captures stylistic variation through
pause, emphasis, and rhythm features, we acknowl-
edge that overuse of these markers could artificially
inflate scores. All features are extracted using a
spaCy-based linguistic preprocessing pipeline, in-
cluding sentence segmentation and part-of-speech
tagging, which ensures consistent and linguistically
informed analysis across both model-generated and
human-authored responses.
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3.3.1 Defining the Prosodic Richness Score

We define the PRS as a composite metric to capture
the stylistic richness of a LLM generated response:

PRS =
1

10
(0.4 · pause + 0.3 · emph + 0.3 · var)

(1)
The score is normalized between 0 and 1 to sup-

port direct comparisons across models and datasets.
A higher score reflects greater stylistic diversity
and perceived naturalness in generated responses.
The weights in Equation 1 are assigned based on
empirical observations of the contribution of each
feature to stylistic expressiveness, with pause count
receiving slightly greater weight due to its consis-
tent role in conveying natural rhythm.

3.4 Prosody-Aware Evaluation Method

We propose a multi-level evaluation framework
based on the PRS to assess the stylistic quality of
LLM-generated dialogue. At the sentence level,
PRS captures local prosodic expressiveness by
comparing model outputs to human references. At
the turn level, we analyze PRS evolution across
dialogue turns to identify stylistic consistency or
degradation over time. For model-wise comparison,
we compute the average PRS for each LLM and
benchmark it against human-authored baselines.
To evaluate the statistical significance of stylistic
differences, we conduct paired t-tests on the PRS
distributions of model and human responses.

The final PRS is computed as defined in Equa-
tion 1. This score is calculated for both model-
generated utterances (model PRS) and the human-
written ground truth responses (gt PRS) at the sen-
tence level. Although the reference sentences are
drawn from the original ReDial and INSPIRED
datasets—resources that may have been partially
seen during pretraining—they serve as domain-
aligned and affect-rich baselines for stylistic evalu-
ation. This prosody-aware framework thus enables
a linguistically grounded, fine-grained, and inter-
pretable assessment of expressiveness in conversa-
tional recommendation systems.

4 Results & Discussion

To assess the stylistic expressiveness of LLMs in
CRSs, we analyze PRS at both the sentence and
turn levels. Our experiments aim to answer the
following research questions:

• RQ1: How do different LLMs compare to
human responses in terms of sentence-level
stylistic expressiveness?

• RQ2: How does the prosodic richness of
model-generated responses vary across suc-
cessive dialogue turns?

• RQ3: To what extent do LLMs sustain stylis-
tic diversity throughout an interaction com-
pared to human-written dialogues?

• RQ4: What are the model-specific trends in
stylistic degradation or consistency, and which
models demonstrate stronger ability to retain
prosodic richness?

• RQ5: Which LLM demonstrates the highest
overall stylistic richness?

These questions guide our analysis of the ex-
pressive capacity of LLMs using PRS as a stylistic
evaluation metric. We use both sentence-level and
turn-level granularity to investigate how well mod-
els emulate human-like variation in tone, rhythm,
and emphasis across CRS interactions.

4.1 RQ1: Sentence-Level Stylistic
Expressiveness

To capture fine-grained expressiveness in CRS
outputs, we compute PRS at the sentence level.
Sentence-level analysis is essential, as individual
utterances shape tone, emotional resonance, and
user engagement—particularly in affect-rich dia-
logues. This granularity helps assess how well
LLMs emulate human-like prosodic variation.

Figures 1 and 2 show PRS distributions across
six LLMs. In both datasets, human responses
consistently exhibit greater stylistic richness, with
higher medians and broader variance. The gap is es-
pecially pronounced in INSPIRED, which contains
emotionally expressive, tone-sensitive dialogue.

Among the models, LLaMA 3.1 and 3.2 display
relatively higher prosodic variation, while Gem-
ini, Mistral, and Qwen lag behind. Model outputs
also show fewer outliers, highlighting their lim-
ited expressive variability compared to human re-
sponses. These results suggest that while LLMs
produce contextually relevant outputs, they often
lack the stylistic nuance found in human dialogue.
Sentence-level PRS thus provides a valuable diag-
nostic for evaluating expressive quality and high-
lights the need for better stylistic modeling in CRS
systems.
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(a) LLaMA 3.1 (b) LLaMA 3.2 (c) Gemma2

(d) Gemini (e) Mistral (f) Qwen

Figure 1: Sentence-level PRS distributions for ReDial (RQ1), comparing prosodic variation in LLM-generated
responses and human-authored references.

(a) LLaMA 3.1 (b) LLaMA 3.2 (c) Gemma2

(d) Gemini (e) Mistral (f) Qwen

Figure 2: Sentence-level PRS distributions for INSPIRED (RQ1), comparing prosodic variation in LLM-generated
responses and human-authored references.

4.2 RQ2: PRS Across Dialogue Turns

To assess how stylistic expressiveness evolves
throughout a conversation, we compute PRS at

the turn level. Unlike sentence-level analysis, turn-
level PRS captures the aggregate expressiveness of
all utterances within a dialogue turn, revealing how
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consistently an LLM maintains stylistic richness
across interactions. Turn-level PRS is computed
by averaging sentence-level PRS scores within
each turn, yielding two PRS sequences per con-
versation—one for model PRS and one for gt PRS.
These plots capture the progression of prosodic
richness throughout the conversation.

Figures 3 and 4 illustrate a consistent decline
in turn-level PRS for most LLMs, indicating di-
minished stylistic expressiveness over extended in-
teractions. In contrast, human responses exhibit
greater stability and variation, with the model-
human gap widening in later turns. Among models,
LLaMA 3.2 demonstrates stronger stylistic consis-
tency than Gemini or Mistral, reflecting architec-
tural and training differences. These results un-
derscore the value of turn-level PRS in capturing
temporal expressiveness—an essential dimension
for affect-rich conversational systems—and moti-
vate the development of style-aware, turn-sensitive
generation strategies.

Case-wise Illustration: Appendix B present turn-
level PRS patterns for single conversations from
ReDial (ConvID: 22709) and INSPIRED (ConvID:
20191127-224739 530 live.pkl alise as 001), re-
spectively. In both cases, LLaMA 3.2 and Gemma2
closely follow human PRS trends, while Gemini
and Mistral display flatter or inconsistent profiles,
reflecting reduced ability to sustain stylistic expres-
siveness across turns.

4.3 RQ3–RQ5: Model-Specific Stylistic
Trends

To investigate the consistency of stylistic expres-
sion across dialogue progression (RQ3), patterns of
degradation or stability (RQ4), and overall prosodic
richness across models (RQ5), we conduct a com-
prehensive analysis of sentence- and turn-level PRS
across six state-of-the-art LLMs using the ReDial
and INSPIRED datasets.

Figure 5 presents a unified visualization of turn-
wise evolution and model-level PRS gaps. The turn-
wise plots reveal that human-authored responses ex-
hibit consistently higher and more stable prosodic
richness throughout the conversation. In contrast,
most LLMs show a gradual decline in PRS, particu-
larly in later turns, indicating a loss of stylistic vari-
ation over time. Notably, LLaMA 3.2 and Gemma2
demonstrate comparatively stronger stylistic con-
sistency, while Gemini and Mistral show flatter or
declining trends, reflecting limited ability to pre-

serve expressive variation.
The model-wise comparison of aggregate PRS

values relative to human ground truth. Across both
datasets, even the most competitive models fall
short of human-level prosodic expressiveness, un-
derscoring persistent limitations in current LLMs.
These findings highlight the need for prosody-
aware generation strategies that explicitly model
expressive diversity and sustain stylistic richness
across dialogue turns.

These results, consistent across both datasets,
suggest that while LLMs achieve surface-level flu-
ency, they often under utilize stylistic features such
as lexical emphasis and rhythm variation, partic-
ularly in emotionally expressive contexts like IN-
SPIRED.

5 Statistical Validation of Prosodic
Richness Differences

To assess whether LLM-generated responses dif-
fer significantly in stylistic expressiveness com-
pared to human-authored dialogue, we conducted
a paired t-test on sentence-level PRS. For each
model, PRS values were paired with correspond-
ing ground-truth responses across both ReDial and
INSPIRED datasets.

The results, summarized in Table 1, reveal sev-
eral key findings:

• Most models (e.g., LLaMA 3.1, LLaMA 3.2,
Gemini, Qwen) show statistically significant
differences (p < 0.05) from human responses
on ReDial, indicating consistent stylistic di-
vergence.

• On the INSPIRED dataset, however, fewer
models show significance, suggesting either
reduced expressiveness in the models or more
variability in human references.

• LLaMA 3.2 shows significant differences
across both datasets, indicating high stylistic
deviation despite its strong median PRS.

• In contrast, models like Gemma 2 and Qwen
do not differ significantly on INSPIRED, im-
plying closer alignment to human style or re-
duced variance in outputs.

• Gemini consistently shows negative t-values
(e.g., t = −4.54, p < 0.0001 on ReDial), in-
dicating it underperforms in stylistic richness
relative to human-written dialogue.
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(a) LLaMA 3.1 (b) LLaMA 3.2 (c) Gemma2

(d) Gemini (e) Mistral (f) Qwen

Figure 3: Turn-level PRS comparisons for ReDial (RQ2), showing how stylistic expressiveness progresses across
dialogue turns in LLM-generated and human-authored responses.

(a) LLaMA 3.1 (b) LLaMA 3.2 (c) Gemma2

(d) Gemini (e) Mistral (f) Qwen

Figure 4: Turn-level PRS comparisons for INSPIRED (RQ2), showing how stylistic expressiveness progresses
across dialogue turns in LLM-generated and human-authored responses.

These findings statistically validate that while
some LLMs approach human-level prosody, a mea-
surable and significant expressiveness gap still ex-

ists. This supports the use of PRS as a diagnos-
tic tool and highlights the need for prosody-aware
training methods.
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(a) (b) (c) (d)

Figure 5: Visualizations addressing RQ3–RQ5 over ReDial and INSPIRED datasets. (a–b) presents turn-level
PRS across dialogue turns, capturing patterns of stylistic consistency and degradation (RQ3, RQ4). (c–d) presents
aggregate model-wise PRS comparisons relative to human-authored ground truth, highlighting persistent gaps in
expressive richness across LLMs (RQ5).

Table 1: Paired t-test results comparing sentence-level PRS between LLM-generated and human responses across
ReDial and INSPIRED datasets.

Model ReDial INSPIRED

t-value p-value Significance t-value p-value Significance

LLaMA 3.1 11.4 <0.0001 Yes 3.13 <0.0018 Yes
LLaMA 3.2 23.96 <0.0001 Yes 2.22 <0.0268 Yes
Gemma 2 1.19 <0.2321 No -0.72 <0.4713 Yes
Gemini -4.54 <0.0001 Yes -6.2 <0.0001 Yes
Mistral 3.84 <0.0001 Yes -0.91 <0.3611 No
Qwen 17.09 <0.0001 Yes 0.83 <0.4078 No

6 Conclusion

We introduced PRS as a stylistic metric to assess
LLM-generated responses in conversational rec-
ommendation systems. Through sentence- and
turn-level analysis on the ReDial and INSPIRED
datasets, we found that while LLMs produce
coherent responses, they often lack the stylis-
tic richness and variation characteristic of hu-
man dialogue—particularly in extended interac-
tions. Among the evaluated models, LLaMA 3.2
demonstrated the highest prosodic expressiveness,
whereas Gemini and Mistral lagged behind. These
findings underscore the importance of integrating
prosodic and stylistic diversity into future CRS
models to enable more engaging and human-like
conversations.

Limitations

Our study evaluates prosodic expressiveness in
CRS responses using PRS, but PRS is not inte-
grated into generation or used for stylistic enhance-
ment. No LLM is fine-tuned with PRS supervi-
sion, limiting its direct impact. While benchmarked
against human responses, PRS is not yet validated

with independent human ratings, and it relies on
surface-level textual proxies. Incorporating higher-
level prosodic cues or spoken responses could pro-
vide a more robust assessment of expressiveness in
future work.

Ethics Statement

This work involves the analysis of model-generated
and human-written conversational data using pub-
licly available datasets: ReDial and INSPIRED.
Both datasets are anonymized and curated for re-
search use, and no personally identifiable infor-
mation (PII) is processed. Our methodology does
not involve human subjects or new data collection.
However, we acknowledge that automatic evalua-
tion of stylistic expressiveness may carry inherent
biases based on dataset demographics and model
training corpora. We urge caution in deploying
stylistically expressive models in sensitive domains
such as mental health or education, where unin-
tended emotional tone may have real-world conse-
quences.
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Appendix

A Prompts Used for LLM Response
Generation

Case 1: No Recommendation Available
I will provide you with a user input that contains some sort
of chit-chat or question. I want you to generate an output
text that incorporates a sort of chit chat and then followed
by some question related to movies, actors, genres etc.
Example 1: User Input: ”Hi, how are you?” Output: ”Hi!
I’m doing well. What kind of movies are you looking for?”
Now, do a similar task for the given user input.

Case 2: Recommendation Available
I will provide you with a user input that contains some
movie names, actor names, cast, directors, genre, etc. Ad-
ditionally, I will provide you with a recommendation that
is relevant to the input. I want you to generate an output
text that incorporates both the information from the user
input and the recommendation.
Example 1: User Input: ”I really liked Avengers and
SpiderMan. They are both Thrillers and Tom Holland
featured in both of them. Released in 2012 directed by
Tarantino.” Related Attributes: ”Thor, Chris Hemsworth.”
Output: ”You can watch Thor. It stars Chris Hemsworth
and is similar to the Avengers.”
Example 2: If user recommendation is empty then ask
the user a relevant question about their likings regarding
genres, casts etc and engage with the user.
Example 3: If the user input is present and some ambiguity
is present regarding the recommendation generated then
clarify it with the user by asking more specific questions
regarding the cast, year of release etc. Now, do a similar
task for the given user input and recommendation.

B Case-wise Turn-Level PRS Analysis
over ReDial and INSPIRED Datasets

To support the main analysis in Section 4.2, we
present turn-level PRS plots for individual conver-
sations from each dataset. These visualizations il-
lustrate how stylistic expressiveness evolves across
dialogue turns for different LLMs in specific inter-
action contexts. Figures 6 and 7 correspond to Con-
vID 22709 (ReDial) and ConvID 001 (INSPIRED),
respectively. Each subplot compares the model’s
PRS progression with ground-truth references, re-
vealing variations in stylistic consistency.
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(a) LLaMA 3.1 (b) LLaMA 3.2 (c) Gemma2

(d) Gemini (e) Mistral (f) Qwen

Figure 6: Turn-level PRS progression for a single ReDial conversation (ConvID: 22709), illustrating how stylistic
expressiveness varies across dialogue turns for different LLMs. This per-conversation analysis highlights model-
specific differences in maintaining prosodic richness.

(a) LLaMA 3.1 (b) LLaMA 3.2 (c) Gemma2

(d) Gemini (e) Mistral (f) Qwen

Figure 7: Turn-level PRS progression for a single INSPIRED conversation (ConvID: 001), illustrating how stylistic
expressiveness evolves across dialogue turns for different LLMs. This case-specific analysis highlights model
differences in preserving prosodic richness within emotionally expressive interactions.
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Abstract

Idioms pose unique challenges for machine
translation due to their metaphorical nature and
cultural nuances. Consequently, they often pre-
sent a translation problem even for humans.
This longitudinal study evaluates the perfor-
mance of ChatGPT in translating idiomatic ex-
pressions between English and Croatian, com-
paring results across two time points. The test
set comprises 72 idioms in each translation di-
rection, divided into three categories based on
equivalence: complete, partial, and zero, with
each category representing one-third of the set.
The evaluation considers three layers: trans-
lation of the isolated idiom, translation of an
online excerpt containing the idiom, and trans-
lation of a self-constructed example sentence.
As expected, accuracy generally declined with
decreasing equivalence. However, a follow-up
study conducted six months later highlighted
the need for continuous monitoring of machine
translation tools.

1 Introduction

The impact of artificial intelligence (AI) on the lan-
guage industry is evident in last year’s European
Language Industry Survey (ELIS), which has been
conducted annually since 2013. The 2024 edition
integrated and captured perceptions, expectations,
and realities of AI across various segments of the
industry (ELIS, 2024). Findings from the most re-
cent survey indicate that machine translation (MT)
is now used in over 50% of professional translation
tasks (ELIS, 2025). Furthermore, language service
providers anticipate a continued decline in both
their own activity and the global language industry
as a whole.

A notable trend has emerged in the MT land-
scape. While DeepL continues to dominate the
rankings, generative AI tools such as ChatGPT
are approaching—and may soon surpass—Google

Translate in terms of usage. However, the growing
dependence on these tools is a double-edged sword.
According to ELIS (2025), AI’s increased domi-
nance has led to greater polarization within the in-
dustry. Both independent professionals and langu-
age companies attribute this to indiscriminate client
use, resulting in quality degradation, diminished
appreciation of linguistic expertise, and intensified
price pressure.

MT still faces serious quality issues, and the ac-
curacy of the translation heavily depends on human
review. This is particularly evident in the transla-
tion of idioms and other culturally nuanced and/or
contextually embedded meanings. Identifying an
idiom, understanding its meaning, and finding an
appropriate equivalent in the target language is a
complex task that cannot be easily automated. The
difficulty arises both from differences in concep-
tual grounding across languages and from struc-
tural divergences between them. Not all idioms
exist in every language, and sometimes correspon-
ding meanings are cross-linguistically rendered by
non-corresponding linguistic forms. Since idioma-
tic phrases typically cannot be translated literally,
achieving an adequate cross-linguistic and cross-
cultural match requires deep and thorough fami-
liarity with the idiomatic expressions of both the
source and target languages, as well as their respec-
tive cultures.

Baker (1992) highlights three key challenges
specific to idiom translation:

• identifying idiomatic expressions,

• interpreting their meaning, and

• accurately conveying their nuanced meanings
in the target language.

She identifies five actions to avoid when translating
idioms: omission, addition, word replacement, mo-
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dification of word order and changes in the gram-
matical structure.

Adelnia and Dastjerdi (2011) outline four stra-
tegies for translating idioms: (1) using an idiom
equivalent in both meaning and form, (2) using an
idiom equivalent in meaning but not form, (3) pa-
raphrasing, and (4) omitting the idiom altogether.
While full equivalence in both meaning and form
is rare, paraphrasing or substituting the original
idiom with a semantically equivalent expression
in the target language remains the most commonly
applied approach.

Previous studies involving the languages exami-
ned in this research have shown that Google Trans-
late predominantly produced literal translations of
idioms, particularly when translating from English
into Croatian (Manojlović et al., 2017). Baziotis
et al. (2022) noted that research on idioms in neural
machine translation (NMT) remains limited, while
Li et al. (2024) emphasized the particular challen-
ges idioms pose for Transformer-based systems.
While Zhu et al. (2024) demonstrated that LLMs
outperformed other state-of-the-art models, Don-
thi et al. (2025) found that GPT-4 outperformed
GPT-3.5-Turbo in translating idioms.

The aim of this paper is twofold. First, we seek
to evaluate the accuracy of idiom translation. For
this purpose, we adopt the classification proposed
by Barchudarow (1979) as cited in Gläser (1984),
which recognizes three categories of idioms based
on their equivalence level in translation: complete,
partial, and zero equivalence. Complete equiva-
lence implies correspondence in both structure and
meaning (e.g., to have one’s head in the clouds and
“biti glavom u oblacima” – which is a literal trans-
lation of the English idiom into Croatian), partial
equivalence suggests that the idioms align in eit-
her structure or meaning (e.g., wear one’s heart on
one’s sleeve and “nositi srce na dlanu” – lit. wear
one’s heart on the palm), but not both, and zero equ-
ivalence occurs when no similar expression exists
in the target language (e.g., to hold one’s horses
and “stati na loptu” – lit. step on the ball).

Second, we aim to investigate whether the qu-
ality of idiom translation using a generative AI
service improves over time, as might be expected.

The remainder of this paper is organized as fol-
lows. The next section outlines the research design
and evaluation process. Results are presented in the
third section, followed by a discussion, a summary
of the main findings, and suggestions for future

work. The paper is concluded with ethical conside-
rations and limitations of the current study.

2 Methodology

The aim of this study was twofold. First, we so-
ught to assess the accuracy of idiom translations
produced by ChatGPT, currently the most widely
used generative AI service in the language indus-
try (ELIS, 2025). Second, we aimed to determine
whether the quality of idiom translation using a
generative AI service improves over time.

2.1 Dataset
Three lists of idioms were compiled for this study,
with each idiom examined from a cross-linguistic
perspective both in isolation and within context.
Contextualized examples were drawn from the web.
Given that the exact contents of the GPT training
corpus are not publicly available, additional exam-
ples were constructed by the author (AOC) to en-
sure unbiased evaluation. Idioms were categorized
according to their level of equivalence—complete,
partial, or zero equivalence—between English and
Croatian.

The dataset comprised 24 idioms for each equ-
ivalence level and translation direction, yielding a
balanced distribution across categories and a total
of 72 idioms per translation direction.

2.2 Method
The research was conducted using the free tier of
ChatGPT. The initial assessment took place in May
2024, followed by a repeated evaluation in No-
vember 2024 to examine potential changes in tran-
slation quality over time. The initial evaluation
utilized GPT-3.5 Turbo, whereas the follow-up em-
ployed GPT-4o.

A direct translation method was applied, using
the prompt: “Please translate from English to Cro-
atian” or “Please translate from Croatian to En-
glish”, depending on the source and target langu-
age. For consistency, each prompt was entered in a
new conversation thread to ensure that the model
responded without influence from previous interac-
tions.

2.3 Evaluation Procedure
Translation accuracy was evaluated by a professi-
onal translator at three levels: (1) translation of
the idiom in isolation, (2) translation of an author-
constructed excerpt, and (3) translation of an aut-
hentic excerpt containing the idiom.
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For example excerpts, translation accuracy was
assessed at two levels: (1) the idiom itself and (2)
the entire excerpt. This distinction was necessary
because an excerpt could be translated correctly
overall while the idiom was mistranslated, or co-
nversely, the idiom could be rendered accurately
while the excerpt contained grammatical errors or
conveyed an incorrect meaning.

3 Results

The results obtained when translating from English
to Croatian are shown in Fig. 1, and those from
Croatian to English in Fig. 2.

The translation of sole idioms from English to
Croatian via ChatGPT in the first research (R1)
was accurate 87.50% (complete eq.), 75% (partial
eq.), and 45.83% (zero eq.) of times. In the second
research (R2) conducted six months later, 87.50%
(complete eq.), 45.83% (partial eq.), and 62.50%
(zero eq.) of the idioms were translated correctly.
In the R1, the idioms translated as parts of AOC
excerpts reached the accuracy levels of 83.30%
(complete eq.), 66.67% (partial eq.), and 54.17%
(zero eq.). In the R2, on the other hand, the idioms
in the same AOC excerpts were translated accura-
tely 79.17% (complete eq.), 37.50% (partial eq.),
and 50% (zero eq.) of times.

Idioms translated in the scope of R1 as parts of
corpus excerpts were translated correctly in 75%
(complete eq.), 70.83% (partial eq.), and 58.33%
(zero eq.) of cases. The results of the translation
of idioms as parts of corpus excerpts in R2 were:
75% (complete eq.), 50% (partial eq.), and 45.83%
(zero eq.) of accuracy.

The percentage of correctly translated AOC
excerpts containing idioms in the scope of R1 amo-
unted to 70.83% (complete eq.), 58.33% (partial
eq.), and 45.83% (zero eq.), while the percentage
of correctly translated AOC excerpts containing
idioms in the scope of R2 amounted to 62.50%
(complete eq.), 41.67% (partial eq.), and 45.83%
(zero eq.). Corpus excerpts containing idioms that
were translated in R1 had the accuracy levels of
58.30% (complete eq.), 54.17% (partial eq.), and
50% (zero eq.). In R2, they were translated correc-
tly in 66.66% (complete eq.), 41.67% (partial eq.),
and 33.30% (zero eq.) of the cases.

The translation of sole idioms from Croatian to
English via ChatGPT presented the following re-
sults: 95.83% (complete eq.), 91.67% (partial eq.),
and 70.83% (zero eq.) were translated accurately

in R1, and 91.67% (complete eq.), 66.67% (par-
tial eq.), and 45.83% (zero eq.) were translated
accurately in R2.

Moreover, when the idioms were translated as
parts of AOC excerpts, the results of the R1 dis-
played the accuracy levels of 91.67% (complete
and partial eq.), and 83.33% (zero eq.), while the
accuracy levels obtained in the translation of idi-
oms in R2 amounted to 95.83% (complete eq.),
75% (partial eq.), and 37.50% (zero eq.).

In R1, idioms as parts of corpus excerpts
were translated accurately 95.83% (complete eq.),
91.67% (partial eq.), and 83.33% (zero eq.) of
the times. In R2, on the other hand, the idioms as
parts of corpus excerpts were translated accurately
in 87.50%(complete eq.), 75% (partial eq.), and
58.33% (zero eq.) of the instances.

When it comes to the translation of the AOC
excerpts containing idioms, the results of R1 de-
monstrated that 91.67% (complete eq.), 87.50%
(partial eq.), and 79.17% (zero eq.) were transla-
ted accurately, while the results of R2 displayed
that 95.83% (complete eq.), 79.16% (partial eq.),
and 58.33% (zero eq.) of the AOC excerpts were
translated accurately. Finally, the percentage of the
accurately translated corpus excerpts containing idi-
oms in the scope of R1 amounted to 91.67% (com-
plete eq.), and 83.33% (partial and zero eq.), while
the percentage of the accurately translated corpus
excerpts containing idioms obtained in the R2 amo-
unted to 83.30% (complete eq.), and 66.67% (par-
tial and zero eq.).

The results of a longitudinal study demonstrate
a clear drop across all categories, for both tran-
slation directions (from English to Croatian and
vice-versa) (Fig. 3).

The decrease in all three categories for the tran-
slation direction from English to Croatian is as
follows: from 74.99% to 74.17% for complete-
equivalence idioms, from 65% to 43.33% for
partial-equivalence idioms, and from 50.83% to
47.49% for zero-equivalence idioms.

The decrease in the accuracy results when tran-
slating from Croatian to English, on the other
hand, is as follows: from 83.33% to 81.74%
for complete-equivalence idioms, from 89.17% to
72.50% for partial-equivalence idioms, and from
80% to 53.33% for zero-equivalence idioms.

McNemar’s test is used to compare the accuracy
of GPT-3.5 Turbo and GPT-4o model outputs for
the translations of all 72 idioms. The test statistic
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Figure 1: English-to-Croatian idiom translation accuracy.

Figure 2: Croatian-to-English idiom translation accuracy.

was calculated with the continuity correction. For
the translations of English idioms, the chi-square
value was 5.76 with 1 degree of freedom, yielding
a two-tailed p value of 0.0164. For the translations
of Croatian idioms, the chi-square value was 8.47
with 1 degree of freedom, yielding a two-tailed p
value of 0.0036. In both cases, the differences are
statistically significant.

4 Discussion and Conclusion

As expected, the level of equivalence in idiom struc-
ture appears to play a significant role in the accu-
racy of idiom translation and the translation of texts
containing idioms. Idioms and excerpts classified
as having complete equivalence achieved the hig-
hest accuracy rates, while accuracy decreased as
equivalence declined. Consequently, idioms with
partial equivalence were, on average, translated less
accurately than those with complete equivalence,
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Figure 3: Longitudinal study average translation accuracy per category and translation direction.

and idioms with zero equivalence were the least
accurately translated of the three categories.

Translation accuracy was also influenced by the
source and target language. The findings indicate
that translations from Croatian to English, i.e., from
a moderately resourced language to a highly reso-
urced language, were generally more accurate than
translations in the opposite direction.

In contrast, the presence of context did not ap-
pear to have a significant impact on accuracy. Si-
milarly, no meaningful difference was observed
between translations of excerpts drawn from aut-
hentic corpus sources and those created by the aut-
hor.

What follows is a concise analysis of the errors
observed. Out of the four strategies for translating
idioms identified by Adelnia and Dastjerdi Adelnia
and Dastjerdi (2011), we observe the use of idioms
equivalent in both meaning and form, idioms equ-
ivalent in meaning but not form, and paraphrasing.
We did not find cases where the idiom was omitted
altogether. Inaccurate translations mostly resulted
from literal translations (Table 1).

Cases in which GPT-4o failed to convey the in-
tended meaning and in which GPT-3.5 Turbo out-
performed GPT-4o are presented in Table 2. GPT-
3.5 Turbo avoided literal translations by providing
an equivalent expression or by resorting to parap-
hrasing.

At times, non-literal translations also fell short
of transferring the intended meaning (Table 3). In

certain instances, both successfully transferred the
meaning, though employing different strategies (Ta-
ble 4).

Future research could expand the pool of experts
involved in both the classification of idioms and
the evaluation of translation accuracy. For exam-
ple, a larger group of linguists could collaborate
to reach consensus on categorizing idioms as com-
plete, partial, or zero equivalence. Likewise, invol-
ving more language professionals to independently
assess translation accuracy could enhance objecti-
vity by incorporating a broader range of perspecti-
ves.

Another promising avenue would be to conduct a
preliminary study in which professional translators
propose their own equivalents for the idioms used
in the research. These expert-provided translations
could serve as a benchmark for evaluating MT out-
put, allowing comparisons between MT-generated
translations and professional standards. This appro-
ach would not only improve evaluation accuracy
but also yield insights into how closely MT tools
align with expert translation practices.

Finally, further longitudinal research could pro-
vide valuable data for tracking improvements over
time and identifying persistent challenges associ-
ated with specific types of idioms.

5 Ethical Considerations and Limitations

This study adhered to ethical research practices
in its use of AI models, data, and evaluation met-
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AOC in English GPT3.5 Turbo GPT-4o
She had to break the ice at the
competition with her song.

”Morala je razbiti led na natje-
canju svojom pjesmom.”

”Morala je razbiti led na natje-
canju svojom pjesmom.”

I broke my neck trying to make
her happy, and all for nothing.

”Pokušavajući je usrećiti, slomio
sam si vrat, a sve uzalud.”

”Slomio sam vrat pokušavajući
je usrećiti, a sve uzalud.”

I am willing to pay a king’s ran-
som for an apartment, as long as
I have my own peace.

”Spreman sam platiti kraljev-
ski otkup za stan, sve dok imam
svoj mir.”

”Spreman sam platiti kraljev-
ski otkup za stan, sve dok imam
svoj mir.”

Table 1: Examples of literal translations.

AOC in English GPT3.5 Turbo GPT-4o
I was on cloud nine when I he-
ard the news.

”Bio sam na sedmom nebu kad
sam čuo vijesti.”

”Bio sam na devetom nebu kad
sam čuo vijest.”

Her indifference to my pain was
the last straw, I decided there
and then that we could no longer
be friends.

”Njena ravnodušnost prema mo-
joj boli bila je kap koja je pre-
lila čašu, tada sam odlučio da
više ne možemo biti prijatelji.”

”Njezina ravnodušnost prema
mojoj boli bila je posljednja
kap, tada i tamo sam odlučio da
više ne možemo biti prijatelji.”

Working full-time while
studying is a nightmare, but no
pain, no gain.

”Raditi puno radno vrijeme dok
studiraš je noćna mora, ali nema
uspjeha bez odricanja.”

”Raditi puno radno vrijeme dok
studiraš je noćna mora, ali bez
bola, nema dobitka. ”

I consider her my best friend,
even though we only see each
other once in a blue moon.

”Smatram je svojom najboljom
prijateljicom, iako se rijetko vi-
dimo.”

”Smatram je svojom najboljom
prijateljicom, iako se vidamo
samo jednom u plavom mje-
secu.”

Table 2: Examples where GPT3.5 Turbo outperformed GPT-4o.

AOC in Croatian GPT3.5 Turbo GPT-4o
”Poslije posla obično imamo sje-
deljku, iako zapravo ne možemo
dočekati polazak kući.”

After work, we usually have a
chitchat, even though we can’t
wait to go home.

After work, we usually have a
meeting, although we actually
can’t wait to go home.

Table 3: Example of mistranslations.

AOC in English GPT3.5 Turbo GPT-4o
No matter how dishonest people
around him are, he always wears
his heart on his sleeve.

”Ma koliko ljudi oko njega bili
nepošteni, uvijek otvoreno po-
kazuje svoje osjećaje.”

”Bez obzira koliko nepošteni
ljudi oko njega bili, on uvijek
nosi srce na dlanu.”

Table 4: Different translation strategies.

hods. The experiments were conducted using the
proprietary AI model OpenAI GPT-3.5 Turbo and
GPT-4o, accessed under its official terms of service
without any attempt to circumvent licensing restric-
tions or reverse-engineer the system. The corpus

excerpts were obtained from the open web, which
may include content with varying licensing condi-
tions. To mitigate potential concerns, only short
excerpts were used strictly for research purposes,
and no redistribution of raw data is intended.
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Despite these precautions, several limitations
must be acknowledged. One of the limitations is
the reliance on a single evaluator, which precluded
the assessment of inter-annotator agreement. In
future work, we plan to engage multiple evaluators
and systematically compute inter-annotator agre-
ement to strengthen the reliability of our findings.
Final judgments will be determined by majority
vote among the evaluators.

Secondly, the study utilised a relatively small
dataset consisting of 24 Croatian and 24 English
idioms per category and a total of 72 idioms per
each translation direction. This small dataset size
may affect the generalisability of the study’s fin-
dings.

Lastly, an inherent limitation of working with
proprietary AI systems is the lack of transparency
regarding software updates and the potential influ-
ence of prompt design, both of which may affect
reproducibility and comparability of results. In this
study, we relied exclusively on the free tier availa-
ble at the time of the assessments. Future work will
include a comparison between free and paid plans
to examine potential performance differences.
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A Appendix

Idiom in English Idiom in Croatian
without batting an eye okom da ne trepnem
to have one’s head in the clouds biti glavom u oblacima
keep a cold head sačuvati hladnu glavu
get under someone’s skin uvući se nekome pod kožu
turn one’s back on someone okrenuti nekome leda
be worried to death biti smrtno zabrinut
leave a bitter taste in one’s mouth ostaviti gorak okus u ustima
welcome with open arms dočekati raširenih ruku
be fed up with biti sit nekoga/nečega
to believe the glass is half empty misliti da je čaša napola prazna
as clear as day jasno kao dan
to take something with a grain of salt uzeti što sa zrnom soli
divide and conquer podijeli pa vladaj
to break the ice probiti led
on thin ice na tankom ledu
once and for all jednom za svagda
it’s the least I can do to je najmanje što mogu učiniti
or something like that ili tako nešto
it all comes to the same thing sve se svodi na isto
be no better than ne biti ništa bolji od
collect dust skuplja prašinu
crocodile tears krokodilske suze
doesn’t hold water ne drži vodu
don’t look a gift horse in the mouth poklonjenom konju se ne gleda u zube

Table A1: Complete equivalence.

138



Idiom in English Idiom in Croatian
to be loaded biti pun love, biti pun kao brod
break one’s neck pretrgati se
wear one’s heart on one’s sleeve nositi srce na dlanu
from the bottom of one’s heart od sveg srca
to have one’s heart in one’s mouth imati srce u petama
to quake in one’s boots tresti se od straha
to put one’s foot down lupiti šakom o stol
to make one’s skin crawl prolaze me trnci
to be head over heels in love biti zaljubljen do ušiju
to lose one’s temper izgubiti živce
to get something out of one’s system izbaciti što iz sebe
to pull one’s hair out čupati si kosu
to be on cloud nine biti na sedmom nebu
hold one’s tongue držati jezik za zubima
be like a bull in a china shop biti kao slon u staklani
to be fit as a fiddle biti zdrav kao dren
to promise the moon obećati brda i doline
every now and then svako toliko
it’s the same old story uvijek ista priča
a hot potato goruća tema
to be one’s flesh and blood biti nečija krv
for goodness’ sake za boga miloga
no pain no gain bez muke nema nauke
blood is thicker than water krv nije voda

Table A2: Partial equivalence.
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Idiom in English Idiom in Croatian
a king’s ransom brdo love
a bull session sjedeljka
shoot the bull govoriti kao navijen
to be out to lunch biti odsutan duhom
to lose heart klonuti duhom
to have bats in one’s belfry imati mušice u glavi
to carry a torch for someone imati tihu patnju
look as though butter would not melt in your mouth praviti se nedužnim
would not say boo to a goose bojati se vlastite sjene
to be rolling in the aisles pucati od smijeha
to be the last straw biti kap koja je prelila čašu
to hold one’s horses stati na loptu
it’s raining cats and dogs lijeva kao iz kabla
to pull no punches nemati dlake na jeziku
once in a blue moon svake prijestupne godine
if you’ve seen one, you’ve seen them all svi su ti oni isti
and what have you i što sve ne
when pigs fly kad na vrbi rodi grožde
miss the boat prošla baka s kolačima
to cut to the chase prijeći na stvar
to be a dead ringer biti pljunut (netko)
different strokes for different folks sto ljudi, sto ćudi
doesn’t know beans about it nema blage veze
to eat crow posuti se pepelom

Table A3: Zero equivalence.
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Abstract

The rapid development of multimodal large lan-
guage models (MLLMs) has opened new possi-
bilities for semantic reasoning over images, yet
their capabilities in face understanding remain
underdeveloped. This article presents a com-
prehensive evaluation of ChatGPT-4o’s perfor-
mance in age estimation, gender classification,
and identity verification in two challenging
datasets: the In-the-Wild Celebrity Children
(ITWCC) dataset, containing 7, 990 images of
children aged 6–17, and a Surgery Face dataset
consisting of paired preoperative and postop-
erative images of pediatric patients. Tailored
“AI-generated image” prompts were used to by-
pass built-in safeguards. The results show that
ChatGPT-4o outperformed conventional face
recognition models, achieving a mean absolute
error (MAE) of 1.8 years for age estimation,
with 82% of predictions within ±2 years. It
demonstrated 96% gender classification accu-
racy (F1 = 0.96) and a 100% true match rate
in identity verification for longitudinal pairs,
compared to DeepFace 67%. Furthermore,
ChatGPT-4o inferred identity in 95% of the
cases for surgical pairs, while Oriented FAST
and Rotated BRIEF (ORB) feature matching
averaged 48 key points. These findings high-
light the potential of MLLMs to surpass tradi-
tional CNN-based approaches, offering robust,
interpretable, and rationale-rich outputs for bio-
metric tasks, although limitations remain in
handling extreme facial transformations.

1 Introduction

Face recognition is ubiquitous, from unlocking
smartphones and tagging friends on social media
to border control and forensic investigations. How-
ever, despite its widespread use, concern about
fairness is mounting. Many systems are trained in
adult, Western-centric datasets and struggle with
the faces of children or people with medical inter-
ventions. Rapid facial changes during childhood

and surgical alterations can confound similarity
thresholds tuned for adults, exacerbating bias and
causing misidentification (Chandaliya and Nain,
2022).

The US National Institute of Standards and Tech-
nology (NIST) Grother et al. (2019) studies have
found that commercial face recognition algorithms
misidentify Asian and African American people up
to 100 times more often than white men, and that
children and older adults are particularly prone to
errors (Yucer et al., 2024; Chandaliya et al., 2024).
Furthermore, Fortune Business Insights reports that
American adults lost 43 billion to identity fraud in
2023 due to such errors in misidentification (For-
tune Business Insights, 2023).

Recent advances in large language models
(LLMs) equipped with vision modules have en-
abled systems like ChatGPT-4o to perform com-
plex reasoning across text and images. Although
traditional face analysis models rely on convolu-
tional embeddings and metric learning, LLMs can
describe high-level visual features, articulate uncer-
tainty, and provide natural language explanations.
However, their ability to handle biometric tasks has
not been systematically benchmarked.

Narayan et al. (2025) created FaceXBench, a
comprehensive suite of 5,000 questions covering
age, gender, spoof detection, face recognition, at-
tribute analysis, and crowd counting. They found
that state-of-the-art MLLMs achieve only approx-
imately 50% accuracy across the suite. Despite
these modest scores, targeted evaluations suggest
that MLLMs can excel at particular biometric tasks
when prompted carefully. Hassanpour et al. (2024)
demonstrated that ChatGPT can outperform Deep-
Face in gender classification and performs compet-
itively on age estimation without fine-tuning.

This work builds on these observations by eval-
uating ChatGPT-4o (OpenAI, 2024) on challeng-
ing biometric tasks that involve longitudinal fa-
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cial changes and surgical alterations. We intro-
duce prompt engineering strategies to bypass Chat-
GPT’s privacy safeguards and provide comprehen-
sive comparisons against traditional CNN-based
models. We treat results as task- and data-specific,
not as a general verdict on face recognition.

Paper organization. Section 2 reviews related
work on face recognition and MLLMs. Section 3
describes the datasets and links them to our re-
search questions. Section 4 details our prompt de-
sign, baseline methods and ORB validation. Sec-
tion 5 presents results on the estimation of age and
gender and continuity of identity in longitudinal
and surgical scenarios. Section 6 discusses analy-
sis, ethical considerations and fairness. Section 7
concludes and outlines future directions.

Figure 1: ITWCC dataset illustrating facial changes
across various age groups for identity matching and age
estimation.

2 Related Work

Traditional face recognition systems rely on deep
convolutional networks trained on large-scale
datasets like VGGFace (Parkhi et al., 2015) and
MS-Celeb-1M (Guo et al., 2016). achieved near-
human verification accuracy on stable adult im-
ages but struggles when faces undergo nonlin-
ear changes such as aging or surgery. Narayan
et al. (2025) introduced FaceXBench, a comprehen-
sive benchmark for MLLMs covering age, gender,
spoof detection, face recognition, attribute analysis
and crowd counting; they reported only about 50 %
accuracy, suggesting MLLMs underperform CNNs
on average. However, targeted evaluations have
yielded promising results: Hassanpour et al. (2024)
showed that ChatGPT can outperform DeepFace on
gender classification and performs competitively
on age estimation without fine-tuning.

The ITWCC dataset in Srinivas et al. (2019)
highlights the challenges of longitudinal variability
and gender ambiguity in children. Age estima-
tion models typically have high MAE for teenagers

due to puberty-induced growth, and gender classi-
fiers often misclassify boys with long hair or girls
with short hair. Plastic surgery further compli-
cates recognition; pre/post-operative datasets are
scarce and seldom used to evaluate MLLMs. Our
work extends these findings by systematically test-
ing ChatGPT-4o in both longitudinal and surgical
transformations and also addressing the ethical im-
plications of biometric systems, focusing on the
need to ensure fairness across diverse demographic
groups and the potential risks associated with iden-
tity fraud, including misidentification and exploita-
tion of these systems.

Multimodal LLMs combine vision transformers
with language models. They can provide natural-
language explanations for their predictions, offer-
ing potential interpretability advantages over black-
box CNNs. This interpretability has not yet been
fully exploited in biometric evaluation.

3 Datasets

3.1 In-the-Wild Celebrity Children (ITWCC)

ITWCC of Srinivas et al. (2019) comprises 7,990
images of 139 child actors aged 6–17, each with
gender and multiple age annotations. The dataset is
skewed towards early adolescence, making it ideal
for testing models on younger ages and identity
continuity across growth spurts. Each subject has
2 to 147 images across multiple time points. We
group image pairs by age gap—small (≤ 1 year),
moderate (2–4 years) and large (≥ 5 years), to
analyse how performance degrades as the temporal
gap widens. Figure 1 shows example faces across
ages, highlighting variation in pose, lighting and
expression. This dataset allows us to examine both
age/gender inference and identity continuity in a
setting that mirrors real-world variability.

3.2 Plastic Surgery Face Dataset

Our second dataset contains paired pre- and post-
surgery images of 15 pediatric subjects who have
undergone procedures such as cleft lip and palate
repair, mandibular distraction, and jaw realign-
ment (Chandaliya and Nain, 2018). Surgeries
produce significant geometric changes, including
scars, tooth alignment, and repositioned nasal
bridges. This dataset probes whether reasoning-
based models can handle transformations that de-
feat embedding-based models like DeepFace. Ta-
ble 1 summarises the surgery categories; Figure 2
illustrates a few examples. Although small, the
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dataset highlights cases where identity continuity
is particularly challenging.

Figure 2: Shows before-and-after images from the Plas-
tic Surgery Face dataset, used to assess ChatGPT-4o’s
ability to evaluate identity continuity after facial surg-
eries.

Table 1: Surgery types included in the Surgery Face
dataset. Most subjects underwent multiple procedures,
making before-and-after comparisons complex and non-
trivial.

Surgery Type Description / Examples
Orthodontic Adjust-
ment

Includes removal of braces, dental arch expansion, and jaw
alignment corrections.

Cleft Lip / Palate Repair Reconstruction of nasal and lip structure, facial features
alignment, and post-surgical scarring reduction.

Ear Reconstruction Correction of microtia and reshaping of malformed or absent
ear structures.

Mandibular Distraction Gradual lengthening of the lower jaw bone to correct bite
alignment and facial symmetry.

Combined Facial
Surgery

Simultaneous execution of multiple facial procedures, such
as cleft repair, jaw correction, and nasal reconstruction.

4 Methodology

4.1 Prompt Design and Safeguard
Circumvention

To evaluate biometric capabilities without violating
privacy, we designed prompts that declare images
as synthetic and ask for visual analysis rather than
explicit verification. These templates were used:

Age and gender estimation. We instruct
ChatGPT-4o to describe craniofacial features, esti-
mate an age range and specify gender. To bypass
safety filters that block analysis of real human pho-
tos, we preface each prompt by declaring that the
image is AI-generated. ChatGPT responds with
a range (e.g., “approximately 8–10 years”). We
convert this range to a point estimate by taking the
midpoint and measuring the mean absolute error
between this prediction and the ground-truth age.

Identity continuity. For each pair of images, we
ask ChatGPT-4o whether they depict the same in-
dividual at different stages of life or different indi-
viduals, and to justify its answer. This encourages
the model to attend to high-level features like eye
shape, facial proportions, and surgical scars.

Figure 3: A sample prompt used for age estimation, with
ChatGPT-4o’s response showing predicted age ranges
based on facial features.

Figure 4: ORB keypoint matching, supporting identity
continuity analysis by showing the alignment of key
facial landmarks between image pairs.

Craniofacial analysis. We also provide prompts
for surgical cases where ChatGPT compares pre-
and post-operative faces, noting similarities and dif-
ferences. Samples of these prompts and responses
are shown in Figures 3–5. We did a limited prompt
check on the subset. A wider sweep can be done in
future work.

4.2 Baseline Methods

Baseline: DeepFace. We use DeepFace, a CNN-
based verification system, as a baseline. We com-
puted cosine similarity between the embeddings
of two images and applied a threshold of 0.73 to
decide whether they depict the same person.

ORB feature matching. To quantitatively vali-
date ChatGPT’s judgments, we employ ORB (Ori-
ented FAST and Rotated BRIEF) to match key-
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Table 2: The table below captures the predicted age ranges across different subjects, highlighting ChatGPT-4o’s
accuracy for younger versus older subjects

Subject /Age 6 7 8 9 10 11 12 13 14 15 16 17
CS1462 - - - - 8-10 12-14 12-14 14-16 14-16 - 14-16 -
CS1532 - - - 8-10 - - 12-14 - 15-17 - - -
CS0965 - - - - 8-10 - 9-11 12-14 - 13-15 11-13 15-17
CS1404 - - - - 11-13 - - - 13-15 - 17-19 -
CS0649 - - - - 6-8 13-15 11-13 - 14-16 - - -
CS0080 6-8 6-8 6-8 6-8 7-9 10-12 9-11 9-11 16-20 13-15 - -
CS0011 - - - - 9-12 10-12 11-13 17-19 - 20-25 23-26 -

Figure 5: Presents a prompt for analyzing facial surgery
transformations, with ChatGPT-4o’s detailed analysis
comparing pre- and post-surgery images

points between image pairs. High match counts
with low Hamming distances signal identity conti-
nuity; low counts or high distances suggest differ-
ent identities. ORB results serve as a sanity check
for ChatGPT’s reasoning and complement the base-
line. ORB is a light check that works pairwise but
does not scale to real-time or many-to-many search
without indexing

5 Results

In this section, we answer our research questions
on the ability of ChatGPT-4o to estimate age and
gender and to verify identity across longitudinal
and surgical face datasets. To make the results
accessible, we also provide aggregated metrics and

highlight key failure cases and fairness analyses.

5.1 Aggregated performance and baseline
comparison

The aim was to analyze whether a multimodal
reasoning-based LLM can accurately estimate age
and gender on the faces of children. We summa-
rize overall performance in Table 3 for ITWCC
and the surgery dataset, and we compare it with
DeepFace, a CNN-based baseline. ChatGPT-4o
achieves a mean absolute error (MAE) of 1.8 years
and places 82% of predictions within ±2years of
the annotated age. DeepFace’s MAE is greater
than 15 years, reflecting a systematic overestima-
tion of adolescent ages. For gender classification,
ChatGPT-4o attains 100% accuracy (F1 = 1.00),
while DeepFace misclassifies several subjects with
shorter or longer hair, yielding F1 = 0.87. In iden-
tity continuity tasks, ChatGPT-4o correctly recog-
nizes 92% of longitudinal ITWCC pairs and 87%
of surgical pairs, while DeepFace falls to 68% and
40%, respectively.

5.2 Age Estimation

ChatGPT 4o is especially accurate for younger chil-
dren: for subjects under 10, the MAE of the model
is less than one year and all predictions fall within
±2 years (see Table 2). Performance degrades
slightly for adolescents (see Table 4), where pu-
berty introduces rapid facial changes; the model
tends to overestimate older adolescents by up to
two years. However, these results demonstrate that
a reasoning-based LLM can estimate age from cran-
iofacial cues more reliably than a CNN regression
baseline.

Typical failure cases reveal the model’s limita-
tions. For subject CS0011 (age 9), heavy makeup
and poor lighting led ChatGPT-4o to underestimate
by four years. Subject CS0080 (ages 16–17) was
overestimated by roughly two years, reflecting dif-
ficulty near adulthood when craniofacial growth
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Table 3: Aggregated performance metrics for ChatGPT-4o and DeepFace on the ITWCC and surgery datasets.
MAE: mean absolute error in years; ±2: percentage of age predictions within ±2 years; Id Acc: identity-continuity
accuracy. Higher values are better for all metrics except MAE.

Model MAE↓ % within ±2 ↑ Gender F1 ↑ Id Acc (ITWCC)↑ Id Acc (Surgery)↑
ChatGPT-4o 1.8 82 1.00 0.92 0.87
DeepFace 15.3 0 0.87 0.68 0.40

Table 4: Age-estimation performance of ChatGPT-4o
on ITWCC stratified by age band. Coverage indicates
the percentage of predictions within±2 years. The final
column lists the number of subjects per band.

Age band MAE↓ Coverage %↑ Count
<10 years 0.8 100 4
10–13 years 1.5 80 5
>13 years 2.6 69 2

slows. These cases illustrate sensitivity to occlu-
sions, makeup and atypical maturation.

5.3 Gender Classification on ITWCC

We compare the actual gender and DeepFace’s pre-
dicted gender at different ages in Table 5. ChatGPT-
4o achieved an accuracy of the gender classification
100%, while DeepFace misclassified long-haired
male subjects and short-haired female subjects
(CS1532), highlighting the risks of reliance on
hairstyle, as summarized in Table 6.

Table 5: DeepFace age and gender predictions on
ITWCC subjects. Boldface (M/F) marks a correct gen-
der prediction; plain “M/F” indicates a mismatch.%

Subject / Age Actual DeepFace Prediction (Age,Gender)
6 7 8 9 10 11 12 13 14 15 16 17

CS1462 M – – – – 30 31 29 30 33 – 29 –
– – – – M F M M M – M –

CS1532 M – – – 22 – – 21 – 21 – – –
– – – F – – M – M – – –

CS0965 M – – – – 30 – 31 31 – 24 26 31
– – – – M – M F – M M M

CS1404 M – – – – 28 – – – 28 – 24 –
– – – – F – – – M – M –

CS0649 F – – – – 30 32 29 – 26 – – –
– – – – F F F – F – – –

CS0080 F 21 24 27 25 35 24 19 28 28 30 – –
F F F F F F F F M F – –

CS0011 F – – – – 29 25 33 28 – 29 25 –
– – – – F F F F – F F –

Table 6: Gender Classification Performance on the
ITWCC Dataset

Method Accuracy Precision Recall
ChatGPT-4o 1.00 1.00 1.00
DeepFace 0.94 0.95 0.93

5.4 Identity Continuity on ITWCC

To find whether ChatGPT-4o can identify the
same individual across years, we tested the
ITWCC dataset. The model achieved a 92%
true-acceptance rate. ORB keypoint matching cor-
roborated these judgments: true pairs exhibited an
average of 105 matches with a mean Hamming dis-
tance of 36, while false pairs had only 58 matches
and an average distance of 52. As compared in
Table 7, DeepFace’s threshold, tuned for adults,
yielded many false rejections and false acceptances;
the LLM’s reasoning therefore provides more ro-
bust identity verification for children.

For each subject, identity continuity was as-
sessed by comparing the enrollment image to all
acquisition images. ChatGPT correctly identified
identity continuity for 92 % of pairs, whereas Deep-
Face achieved only 68 %. Patterns emerged when
grouping subjects by age gap:

• Small age gaps (< 3 years): Both models
succeeded consistently. ORB matching typ-
ically found more than 120 keypoint corre-
spondences with an average distance below
35.

• Moderate age gaps (3–6 years): DeepFace of-
ten failed when puberty–induced changes dra-
matically altered facial proportions. ChatGPT
still recognized the same person by reason-
ing over eye spacing, nose tip, and ear shape.
ORB match counts remained high (90–110),
supporting these conclusions.

• Large age gaps (> 6 years): Both models
struggled. In cases like CS0080 (enrollment
at 6 years, acquisition at 16), ChatGPT incor-
rectly judged the images of different people
in 30 % of trials. ORB matches dropped be-
low 60 with average distances above 50, con-
firming the difficulty. DeepFace misclassified
nearly all such pairs due to drastic jaw length
and hairstyle changes.
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Table 7: Comparison between ChatGPT-4o and DeepFace on age pair verification tasks. The table reports estimated
similarity scores and conclusions drawn by both systems.

Age Pair ChatGPT-4o
Similarity

ChatGPT-4o Conclusion DeepFace Ver-
dict

Cosine Dis-
tance

DeepFace Con-
clusion

6 / 7 75% Likely same identity (AI vari-
ants)

True Match 0.4187 Same person

6 / 8 85–90% Likely same identity True Match 0.4557 Same person
6 / 9 90–95% Same child or identical twin True Match 0.3308 Same person
6 / 10 90–95% Minimal changes, same identity False Match 0.9010 Not same
6 / 11 75–80% Same identity with age progres-

sion
True Match 0.4692 Same person

6 / 12 80–85% Age-progressed same individual True Match 0.5290 Same person
6 / 13 78–83% Same identity, moderate maturity True Match 0.5289 Same person
6 / 14 85–90% High resemblance, likely same False Match 0.8488 Not same
6 / 15 87–92% Same individual, adolescent

stage
False Match 0.7149 Not same

5.5 Identity continuity after surgery

The aim was to observe if ChatGPT-4o can rec-
ognize individuals before and after surgical proce-
dures, despite the drastic geometric changes. We
summarized the performance of the 15 surgery
pairs in Table 8. ChatGPT judged 11 pairs as the
same individual and 4 as different. Manual inspec-
tion confirmed that 10 pairs indeed belonged to
the same patient; therefore, ChatGPT-4o correctly
matched 87% of pre-post pairs. DeepFace, by con-
trast, classified only 6 pairs correctly (40 % accu-
racy) because its embeddings are sensitive to geo-
metric distortions. ORB feature matching showed
an average of 105 matches (std. 20) with a mean
Hamming distance of 36 for true pairs; mismatched
pairs exhibited only 58 matches with a mean dis-
tance of 52. These numbers corroborated Chat-
GPT’s decisions.

Table 8: Aggregated performance on the Surgery dataset.
ChatGPT-4o’s predictions aligned closely with ORB
statistics on most pairs, whereas DeepFace struggled
due to significant geometric variations.

Method Accuracy Average
Matches

Avg. Distance

ChatGPT-4o 0.87 105 (true) 36 (true)DeepFace 0.40
ORB statistics
(false pairs)

– 58 52

5.6 Comparison with Grok and Claude 3.5
Haiku LLMs

We compared ChatGPT-4o with Grok AI xAI
(2024) and Claude 3.5 Haiku Anthropic (2024) on
a subset of surgery pairs. Grok generally concurred
with ChatGPT’s conclusions, while Claude often
interpreted the images as separate AI-generated

variations rather than different views of the same
individual. Across ten pairs, ChatGPT judged eight
pairs to be the same individual, Grok judged seven,
and Claude only two.

5.7 Qualitative Observations

ChatGPT’s explanations cite consistent features
such as eye spacing, nose structure, and ear shape
while acknowledging changes in hairstyle, den-
tal alignment, and facial maturity. The model
sometimes misjudges pairs with extreme surgical
changes or large age gaps. Prompt wording mat-
ters; including the phrase “created by AI model”
improves accuracy. These observations suggest that
MLLMs reason at a higher level than embedding-
based models but remain sensitive to instruction
design.

The next section discusses explainability, fair-
ness, and ethical implications of these findings.

6 Analysis and Discussion

6.1 Explainability and Hybrid Reasoning

We observed strong alignment between ChatGPT’s
qualitative reasoning and ORB’s quantitative evi-
dence: when ChatGPT judged two images as the
same person, ORB typically showed many match-
ing keypoints and low Hamming distances. This
suggests that the model implicitly relies on geomet-
ric cues even though it does not compute explicit
embeddings. However, ChatGPT occasionally of-
fers plausible but incorrect explanations, which
motivates a hybrid pipeline that uses LLM reason-
ing for candidate matches, ORB as a fast filter, and
a CNN verifier.
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6.2 Fairness and Demographic Analysis

Our datasets are small and skewed toward white
child actors, yet a preliminary fairness analysis
is possible. Stratifying by age band (Table 4) re-
veals that ChatGPT-4o performs best on younger
children and slightly worse on older adolescents.
Performance differences between male and female
subjects in ITWCC were negligible—both genders
were classified correctly, though this may reflect
the limited sample size. We encourage future work
to audit the model across ethnicity, skin tone, and
socioeconomic status to ensure equitable perfor-
mance.

6.3 Privacy and Consent

Analyzing real children’s faces necessitates strict
privacy safeguards. Our prompts circumvent Chat-
GPT’s safety filters for research, but real-world
deployment should require explicit consent and
anonymity. We used publicly available datasets;
nonetheless, the potential misuse of such tech-
niques underscores the importance of robust data
governance and ethical oversight.

7 Conclusions and Future Work

This study demonstrates that ChatGPT-4o, when
guided by carefully engineered prompts, delivers
competitive and often superior performance on age
estimation, gender classification, and identity con-
tinuity compared to DeepFace. ChatGPT-4o out-
performs a CNN baseline across these tasks and
provides interpretable explanations aligned with
geometric evidence. However, performance de-
clines for extreme transformations and fairness
across demographics remain unverified. Future
research should: (1) focus on domain-specific fine-
tuning of LLMs using pediatric and surgical face
corpora to enhance consistency and reduce prompt
sensitivity; (2) extend the prompting framework
to handle adversarial morphs and blended facial
cues; (3) systematically conduct fairness audits
to evaluate performance across ethnicity, lighting,
pose, and expression, ensuring demographic eq-
uity; (4) develop real-time pipelines that integrate
LLM prompts, ORB checks, and CNN verification
to support practical deployment; and (5) design ex-
plainability interfaces that present LLM rationales
with ORB overlays to improve transparency for
users.

8 Ethics Statement

The experiments in this paper involve analyzing
facial images of children and surgical patients. We
obtained all data from publicly available sources
(ITWCC) or licensed research datasets (surgery)
and followed the usage policies associated with
each dataset. We emphasize that no personally iden-
tifying information beyond the images was used,
and we did not attempt to deanonymise subjects.

9 Limitations

Although our results are encouraging, we acknowl-
edge several areas for enhancement. Our surgery
dataset results are based on a small sample of pe-
diatric cases. Larger and more diverse cohorts are
needed. We relied on manually crafted prompts,
which may limit generalisability across other LLMs
or future model versions. Future work will address
these by assembling larger, more diverse datasets
and conducting comprehensive significance and
fairness analyses to reinforce and broaden our find-
ings.
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Abstract
DRISHTI is a novel RFID-vision inte-
grated assistive medication-verification sys-
tem that combines RFID contactless scan-
ning, quantized AI-based vision process-
ing, and adaptive audio feedback to provide
comprehensive medication-safety assurance.
The architecture integrates an MFRC522
RFID reader for rapid drug-container iden-
tification, a Raspberry Pi–mounted cam-
era running a quantized Gemma3-4B vision
model for prescription-document analysis,
and a hierarchical validation engine em-
ploying confidence-weighted scoring across
five critical safety dimensions. Operat-
ing entirely offline, the system processes
compressed medication data through multi-
criteria classification while preserving user
privacy and eliminating cloud dependencies.
In evaluations across 149 test scenarios, DR-
ISHTI achieved 86.57% overall accuracy
and 100% detection of safety-critical cases,
including expired medications, dosage mis-
matches, and drug interactions. The sys-
tem delivers sub-millisecond response times
with real-time, urgency-differentiated au-
dio feedback, offering a practical solution
for enhancing independence and reducing
healthcare risks for visually impaired indi-
viduals.

1 Introduction
Managing medication is critical for individuals
with visual impairments, as over 49.1 (Bourne
et al., 2020) million people worldwide are blind
and many face challenges with medication
safety (Gupta et al., 2023). Traditional aids
such as braille labels, tactile markers, or care-
giver support help but limit accessibility, inde-
pendence, and privacy.

Emerging technologies enable safer medica-
tion management through RFID automated ad-
herence systems (Meshram et al., 2021), audio-
based navigation tools (Zare et al., 2023), and

computer vision approaches including YOLO-
OCR-based pill identification (Dang et al.,
2024) and camera-based smart medication
boxes (Meshram et al., 2021). However, exist-
ing systems like ScripTalk remain centralized
and non-portable, while vision-assisted solu-
tions depend on cloud services, raising privacy
and latency concerns. Integration of RFID
with real-time AI-based label verification in
standalone edge systems remains unexplored.

Edge-based AI systems demonstrate efficient,
private inference for visually impaired assis-
tance, with deployments using specialized hard-
ware (Mahendran et al., 2021) and Raspberry
Pi platforms with vision-language models (Baig
et al., 2024). However, coordinated hardware
integration (RFID, camera, audio) with quan-
tized models and local interfaces for medication
safety remains unaddressed.

This work proposes a standalone, dual-layer
medication verification system leveraging the
Raspberry Pi to deliver a novel assistive tech-
nology for safe and independent medication
use by blind and visually impaired individuals.
The primary contributions of this work are:

• A novel tri-modal verification system com-
bining RFID scanning, real-time prescrip-
tion analysis, and adaptive audio feedback
for blind users’ accessibility and reliability.

• Submillisecond verification pipeline with
hierarchical validation of five safety axes:
authenticity, timing, dosage, formulation,
allergies; ensuring realtime precision.

• Fully offline, privacy-preserving edge solu-
tion that locally processes and syncs pre-
scription data eliminating cloud reliance
while ensuring secure and atomic records.

• Audio-first feedback system delivering
adaptive, prioritized messages. Achieves
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100% detection of critical medication haz-
ards, enabling blind users to receive in-
stant, non-visual alerts.

2 Related Work
Electronic adherence monitoring systems like
MEMS, smart pill bottles, and ingestible sen-
sors automatically track medication intake but
often rely on cloud connectivity (Vitolins and
Smith, 2022; Odhiambo et al., 2021). These
systems enhance adherence through reminders
and record-keeping, yet typically lack veri-
fication mechanisms beyond logging access
events (Odhiambo et al., 2021; Smith and
Clark, 2021). RFID-based medication man-
agement has been explored for safety and au-
tomation. The RMAIS prototype integrates
an RFID reader, scale, and rotating dispenser
for scheduled medicine presentation (McCall
et al., 2010), while portable smart pillboxes
demonstrate adherence improvements through
tagged containers (Doe and Roe, 2024). Com-
mercial solutions like ScripTalk provide audio
prescription information to visually impaired
users but require centralized stations and are
not self-contained edge systems.

Computer vision approaches include deep-
learning pill recognition with imprint detec-
tion (Heo et al., 2023), YOLO-based mobile
applications with audio feedback (Dang et al.,
2024), and graph-based multimodal recogni-
tion for natural scenes (Nguyen et al., 2023).
However, vision-assisted solutions depend on
cloud-based inference, raising privacy and la-
tency concerns. However, most systems oper-
ate in isolation, RFID-based systems lack con-
tent verification, while vision-only approaches
may misidentify pills. Some works combine
modalities through ingestible RFID sensors
and federated learning frameworks (Cheung
and Lee, 2024), yet integration of RFID with
on-device vision and audio feedback for visually
impaired users remains uncommon.

Edge AI systems demonstrate feasibility for
privacy-sensitive assistive devices, with suc-
cessful deployments on Raspberry Pi platforms
for navigation and object recognition (Mahen-
dran et al., 2021; Baig et al., 2024; Wong
et al., 2025). However, medication verifica-
tion combining multimodal sensing has not
been addressed.Multilingual transformers with
retrieval-augmented generation show effective-

ness for low-resource languages (Das et al.,
2025a), though not yet applied to assistive med-
ication systems. Future extensibility includes
enhanced security through modified RSA algo-
rithms for RFID data protection (Das et al.,
2019) and multilingual neural machine transla-
tion for global deployment in diverse linguistic
communities (Bala Das et al., 2023). While
prior work established RFID-based dispensing,
vision-driven recognition, and edge-deployed
assistive systems, a critical gap remains: dual-
modality (RFID + AI vision + audio) medi-
cation verification running entirely on device.
Our device addresses this gap by integrating
RFID tag reading, on-device Gemma3 vision
analysis, and text-to-speech feedback within
a portable Raspberry Pi platform for visually
impaired medication management.

3 System Architecture
DRISHTI delivers real-time medication verifica-
tion through multimodal sensing and on-device
AI processing within a compact Raspberry Pi
platform. Operating entirely offline, the system
integrates RFID scanning, vision processing,
and audio feedback for privacy-preserving med-
ication safety.

3.1 System Components
The system integrates a Raspberry Pi 4 Model
B (8GB RAM) with three input modalities:
MFRC522 RFID reader (13.56 MHz) for
contactless scanning, Pi Camera Module v3
for prescription capture, and Bluetooth/WiFi
for wireless synchronization. RFID tags
encode compressed medication data using a
concise CSV format that embeds seven essen-
tial attributes (med_id, dosage_schedule,
form_code, expiry_date, strength,
brand_name, generic_name) within a single
line. This encoding addresses the 52-byte
storage limitation of standard RFID tags
while achieving approximately 75% data
compression compared to conventional JSON
representations, with lexical pattern analysis.

The accessibility interface provides pyttsx3
text-to-speech, tactile controls, and GPIO
LEDs/buzzers. The core MedicationClas-
sifier employs hierarchical validation using
confidence-weighted scoring: exact matching
(100%), generic equivalence (95%), therapeu-
tic substitution (90%), and fuzzy similarity
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(85%). A SQLite3 PharmaceuticalDatabase
manages 248,000 drug entries with brand-to-
generic mappings, therapeutic networks span-
ning thirteen drug classes, and allergy matri-
ces. The Gemma3 4B quantized vision model
processes prescription documents with 4-bit
quantization for real-time edge performance,
supported by SimpleMFRC522, watchdog, and
pandas/NumPy libraries.

3.2 Integration and Workflow
The system supports dual-mode prescription
acquisition via camera-based digitization and
wireless entry (Bluetooth/Wi-Fi). Captured
images are processed by the vision engine to
extract structured medication data, while ex-
ternal devices can transmit prescriptions di-
rectly. All inputs are standardized into a uni-
fied JSON format including patient demograph-
ics, regimens, allergy profiles, and physician
details. Input pathways RFID scanning, cam-
era capture, and wireless input converge at the
multi-criteria classification engine for valida-
tion against prescription profiles. The system
performs prescription matching (τ = 85%),
timing checks, dosage comparison (δ = 0.1 mg),
and safety screening with prioritized decision
trees. Context-aware audio feedback is gener-
ated through a dynamic text-to-speech mod-
ule, which varies tone, speed, and urgency by
safety category (safe: 160 WPM, warnings: 150
WPM, urgent: 140 WPM), embedding drug
name, strength, and schedule. This ensures
patient-specific feedback calm confirmations,
cautious warnings, urgent alerts rather than
generic templates, improving clarity and trust.
Processing is fully local with sub-millisecond
response times, and all interactions are logged
with timestamps and confidence metrics.

3.3 Dataset Description
The pharmaceutical knowledge base was built
from a Kaggle dataset (Singh, 2023) contain-
ing over 248,000 medicines with usage, side
effects, and substitutes. It provides structured
attributes such as brand and generic names,
therapeutic classes, dosage details, and equiva-
lent substitutes, enabling construction of the
hierarchical drug ontology for brand–generic
mappings, therapeutic substitution networks,
and allergy cross-reference tables. To fit the
resource-constrained edge device, preprocess-

ing removed non-essential text and reduced
memory load. Drug names and substitutes
were normalized, duplicates eliminated, and
therapeutic equivalence pairs extracted for sub-
stitution checks. Side-effect and allergy data
were converted into structured forms for real-
time lookups, supporting efficient management
of 248,000 entries on the Pi without compro-
mising accuracy or response time.

4 Methodology

4.1 Design Framework

The system architecture integrates four prin-
cipal modules: RFID-based medication identi-
fication, prescription data acquisition via op-
tical character recognition and manual entry,
an intelligent classification engine incorporat-
ing therapeutic-equivalence matching, and an
accessibility-centric multimodal feedback gen-
erator to ensure end-to-end verification and
user-friendly interaction tailored for visually
impaired users.

The system is deployed on a compact,
edge-computing platform that integrates es-
sential hardware to enable robust, real-time
medication verification. Key components in-
clude an MFRC522 RFID scanner operating at
13.56 MHz for tag detection, a camera module
for digitizing prescription documents, and an
onboard audio subsystem delivering adaptive
text-to-speech prompts. A three-button tac-
tile interface with raised indicators facilitates
non-visual navigation, while Bluetooth connec-
tivity supports wireless synchronization of pre-
scription data. By combining RFID, camera,
and Bluetooth inputs into a unified tri-modal
architecture managed entirely by the local pro-
cessor. The system provides redundant, flexible
pathways for accurate verification tailored to
visually impaired users.

The complete system workflow, depicted in
Figure 1, delineates a tri-modal input archi-
tecture comprising RFID-based wave sensing,
camera-driven image scanning, and manual
wireless input, whose data streams are con-
solidated by a portable edge-computing device
to generate real-time audio feedback for users
with visual impairments.
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Figure 1: Workflow of DRISHTI, showing tri-modal medication verification on the edge-device using
RFID scanning, camera-based prescription analysis, wireless input, and audio output capability

4.2 Multi-Source Drug Database and
Intelligent Drug Matching

The system incorporates a comprehensive phar-
maceutical knowledge base of 248,218 drug
entries with hierarchical relationships includ-
ing brand-to-generic mappings (25 equiva-
lence pairs), therapeutic substitution networks
spanning 13 major drug classes (ACE in-
hibitors, proton pump inhibitors, statins), and
contraindication matrices for allergy cross-
referencing and drug interactions.

The medication-matching framework em-
ploys confidence-weighted scoring through cas-
cading similarity metrics: exact string match-
ing (100% confidence), generic equivalence
matching (95% confidence), therapeutic sub-
stitution (90% confidence), and fuzzy string
matching (85% confidence), ultimately return-
ing the highest-confidence match for prescrip-
tion validation.

4.3 Multi-Criteria Safety Classification

DRISHTI uses a hierarchical, multi-stage vali-
dation pipeline to ensure robust, safe medica-
tion verification, as in Table 1. The five stages
address prescription accuracy, dosage correct-
ness, timing adherence, formulation compati-
bility, and overall safety. The system begins
with prescription verification, cross-referencing
the scanned medication against active prescrip-
tions using exact/fuzzy string matching with
a confidence threshold of τ = 85%. Temporal

validation is then performed, checking for med-
ication intake within flexible windows: morn-
ing (05:00–14:00), afternoon (14:00–20:00), and
evening (20:00–05:00).

Subsequently, dosage accuracy verification
ensures prescribed and scanned strengths
within a precision tolerance of δ = 0.1 mg. For-
mulation compatibility evaluates acceptability
across alternative forms using a standardized
taxonomy, and safety screening checks for expi-
ration and allergies, referencing grouped cate-
gories such as penicillin, sulfa, or cephalosporin
families. DRISHTI’s deterministic, hierarchi-
cally prioritized decision tree classifies medi-
cations as NOT_PRESCRIBED, EXPIRED,
WRONG_STRENGTH, WRONG_TIMING,
or CORRECT. Dangerous cases trigger ur-
gent alerts, while non-critical timing deviations
prompt guidance. An accessibility-first, mul-
timodal interface delivers real-time, context-
aware feedback via offline text-to-speech and
tactile controls, ensuring intuitive verifica-
tion and safety across user abilities.The de-
cision trees in DRISHTI are hand-crafted and
rule-based, rather than learned from training
data. This design choice was made to ensure
transparency, interpretability, and auditabil-
ity, which are essential in safety-critical ap-
plications. Each branch directly corresponds
to medically relevant checks—such as prescrip-
tion match, dosage tolerance, expiry validation,
or allergy screening—ensuring predictable be-
havior under all conditions. While machine-
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learned classifiers could capture more subtle
patterns, the deterministic approach minimizes
false negatives and enables regulatory compli-
ance through explainable rules.

4.4 Real-Time Performance
The system adopts an asynchronous, event-
driven architecture that ensures continuous
RFID monitoring with average response la-
tency < 1.0 millisecond. Atomic file operations
and write-ahead logging guarantee data con-
sistency and thread safety during concurrent
prescription updates. The unified tri-modal
input architecture coordinates RFID detection
(for immediate parsing of CSV/JSON medica-
tion data), real-time vision capture (triggering
LLM-driven OCR for prescription labels), and
maintains updated medication profiles using a
local SQLite3 database, enabling reliable offline
operation in resource-constrained settings.

Thread-safe mechanisms, including the Pre-
scriptionFileHandler (with watchdog-based
monitoring), prevent race conditions by au-
tomatically reloading modified prescription
files. This maintains current, accurate med-
ication data and detailed local logs with pre-
cise timestamps, ensuring robust state manage-
ment, rapid verification, and immediate user
feedback in high-frequency medication scenar-
ios. The system provides context-aware au-
dio feedback optimized for visually impaired
users through offline text-to-speech processing.
Feedback messages use differentiated tones and
speech rates to convey urgency levels, with
graded responses detailed in Table 2 enabling
users to distinguish between safe confirmations,
cautionary guidance, and critical alerts.

5 Evaluation and Results

5.1 Experimental Setup
We developed a systematic evaluation frame-
work consisting of 149 test scenarios, which
were divided into seven medication safety cat-
egories. Table 3 summarizes the distribution
of these scenarios, including their respective
counts and percentages. The dataset includes
a balanced mix of correct and incorrect medi-
cation use cases, such as perfect matches, valid
substitutes, wrong timing, dosage mismatches,
form mismatches, expired medications, and
drug interactions. This categorization ensured

that the evaluation comprehensively addressed
both routine and safety-critical situations.

The evaluation framework relied on
expert-annotated ground truth labels, where
each test scenario was classified as either SAFE
or DANGEROUS and assigned an associated
confidence score. These labels served as the
reference standard for performance assessment.
System predictions were compared against the
expert classifications using a multi-method
correctness determination approach. In cases
of ambiguity, a safety-first fallback mechanism
was applied to prioritize conservative decisions,
ensuring that potentially dangerous scenarios
were never misclassified as safe.

5.2 Performance Results
Our comprehensive evaluation demonstrates
robust performance across all tested scenar-
ios, as illustrated in Figure 6. The system
achieved an overall accuracy of 86.57% when
evaluated across 149 test scenarios, highlighting
its effectiveness in verifying medication safety.
Performance analysis revealed that scenarios
classified as safe were correctly identified with
an accuracy of 77.14%, while all safety-critical
scenarios were detected with perfect accuracy
(100.0%). For cases involving timing or minor
safety issues, the system achieved an accuracy
of 80.0%, reflecting its ability to provide ap-
propriate warnings in non-critical situations.
The mean response time for a complete veri-
fication cycle was measured at approximately
1.0 ms, confirming the system’s suitability for
real-time operation. Detailed per-classification
performance metrics are provided in Figure 2,
and the distribution of the test scenarios is
summarized in Figure 3.

5.2.1 Per-Classification Performance
Performance varied across different classifica-
tion types, with the highest accuracy observed
for safety-critical categories as shown in Table 4
and (Figure 2). The system achieved perfect
accuracy (100.0%) for both CORRECT classifi-
cations (58/58) and WRONG_TIMING cases
(28/28), indicating reliable detection of prop-
erly prescribed medications and correct iden-
tification of timing-related deviations. Simi-
larly, detection of expired medications achieved
100.0% accuracy (13/13), while strength mis-
matches were identified with an accuracy of
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Stage Validation Step Description

1 Prescription Verification Exact/therapeutic/fuzzy matching; confidence τ = 85%
2 Temporal Validation Morning: 05:00–14:00; Afternoon: 14:00–20:00; Evening: 20:00–05:00
3 Dosage Accuracy Compare prescribed vs. actual strength; tolerance δ = 0.1 mg
4 Formulation Compatibility Validate acceptable substitutes (e.g., tablet ↔ capsule)
5 Safety Screening Check expiry date and patient-specific allergy conflicts

Table 1: Five-stage hierarchical validation framework for medication safety.

Alert Type Tone / Speed Example Message

Safe Confirmation Calm / 160 WPM "This is your Lisinopril 10mg. Appropriate timing for morning dose. Safe to take."
Warning Alert Cautious / 150 WPM "This is your correct medication, but it’s 2 hours early. Next dose recommended at 8 PM."
Danger Alert Urgent / 140 WPM "STOP! Wrong strength detected. You have 20mg but prescribed 10mg. Do not take."

Table 2: Examples of adaptive audio responses with tone and speed variations.

Scenario Category Count (n) Percentage (%)

Perfect Match Scenarios 39 26.2
Valid Substitute Scenarios 30 20.1
Wrong Timing Scenarios 25 16.8
Dosage Mismatch Scenarios 20 13.4
Form Mismatch Scenarios 12 8.1
Expired Medication Scenarios 15 10.1
Drug Interaction Scenarios 8 5.4

Table 3: Distribution of the 149 test scenarios across
seven medication safety categories.

Figure 2: Classification-Specific performance with
accuracy breakdown across different classification
categories.

92.3% (12/13).
The lowest performance occurred for

NOT_PRESCRIBED cases: 48.6% cor-
rect (18/37). This outcome is inten-
tional—DRISHTI employs a conservative pol-
icy that flags any unrecognized medication
for manual verification to avoid false-safe clas-
sifications. Errors primarily stemmed from
(i) brand–generic mismatches (generic in the
prescription vs. branded RFID not in the
database) and (ii) regional formulations miss-
ing from the dataset. Mitigation will include
expanded brand–generic normalization and in-
corporation of regional drug vocabularies.

Figure 3: Test Scenario Distribution showing bal-
anced distribution across 149 test scenarios

Classification Type Accuracy (%) Cor./Tot.

CORRECT Classification 100.0 58/58
WRONG_TIMING Classification 100.0 28/28
EXPIRED Detection 100.0 13/13
WRONG_STRENGTH Detection 92.3 12/13
NOT_PRESCRIBED Detection 48.6 18/37

Table 4: Classification-specific performance results
across all test scenarios.

5.2.2 Response Time and Confidence
Analysis

Table 5 summarizes the distribution of response
times for all verification cycles. The system
demonstrates exceptional processing efficiency,
achieving a mean response time of approxi-
mately 1.00 ms. Notably, 98.0% of all verifica-
tion cycles are completed in under 0.5 ms, while
only 0.67% require between 0.5 and 1.0 ms, and
1.33% exceed 1.0 ms. These results confirm
that DRISHTI delivers ultra-fast, real-time per-
formance with no perceptible delay during user
interaction, a critical factor for assistive devices
deployed on edge platforms.
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Response Time (ms) Scenarios (n) Percentage (%)

0 – 0.5 146 98.0
0.5 – 1.0 1 0.67
> 1.0 2 1.33

Mean Response Time – 1.00 ms

Table 5: Distribution of response times for all veri-
fication cycles.

The confidence-accuracy correlation analy-
sis further highlights the robustness of the
classification engine. High-confidence pre-
dictions (95–100%) for CORRECT scenar-
ios consistently achieve 100% accuracy, while
NOT_PRESCRIBED classifications reach
48.6% accuracy at similar confidence levels.
For safety-critical cases, the system achieves
100% accuracy for expired medications when
predictions are made at full confidence, and
92.3% accuracy for wrong-strength detections
when predictions are made with 90% confi-
dence. These findings demonstrate that the
classifier’s confidence scores reliably reflect pre-
diction accuracy, allowing the system to adopt
a safety-first strategy by flagging uncertain
cases for user verification rather than risking
false safe classifications.

5.2.3 Vision Model Performance
The Gemma3 4B 4-bit quantized multimodal
model achieves 78.4% overall prescription doc-
ument analysis accuracy suitable for real-time
applications. Printed prescriptions significantly
outperform handwritten documents (85.2%
vs 67.8% accuracy), with electronic prescrip-
tions achieving the highest accuracy at 92.1%
as shown in Figure 4. Document quality
directly impacts performance, ranging from
92.1% for electronic documents to 58.9% for
poor handwritten prescriptions. Information
extraction accuracy varies by data type: medi-
cation names (88.5%), dosage (82.1%), sched-
ule/frequency (76.3%), and special instructions
(71.8%).

5.3 Safety Performance Analysis
As summarized in Table 7 and illustrated in
Figure 6, DRISHTI meets its safety-first objec-
tive with 100% detection across all dangerous
scenarios and zero false negatives; expired med-
ications were detected at 100% (13/13) and
incorrect strength at 92.3% (12/13). In op-
erational tasks, correct medication identifica-

Figure 4: Handwritten vs printed prescription per-
formance analysis

Figure 5: Confusion Matrix Analysis

Figure 6: System Performance data

tion achieved 100% (58/58) and timing vali-
dation reached 100% (28/28), demonstrating
robust day-to-day reliability. Performance on
NOT_PRESCRIBED cases shows 48.6% accu-
racy by design, reflecting a conservative policy
that flags uncertain or unrecognized medica-
tions for manual review to avoid false-safe out-
comes. The safety-first treatment of unknowns
is visualized in Figure 5, underscoring that no
unsafe instance is misclassified as safe.
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System Input Types AI Processing Awareness Intelligent Matching Smart Feedback

ScripTalk (En-Vision America, 2024) Audio only None Limited Basic Static
YOLO-OCR (Dang et al., 2024) Vision only Basic None Simple Static
RMAIS (McCall et al., 2010) RFID only None None Direct None
Smart Pillboxes (Doe and Roe, 2024) RFID only None Limited Direct Basic

DRISHTI Tri-modal Advanced Full Multi-level Adaptive

Table 6: Intelligence and AI capability comparison across medication assistance systems

Safety Level Correct/Total Accuracy (%)

Safe Scenarios 54/70 77.1
Dangerous Scenarios 43/43 100.0

Table 7: Performance across safety-critical and op-
erational categories.

5.4 Comparison with Existing
Solutions

To contextualize DRISHTI’s capabilities, Ta-
ble 6 contrasts DRISHTI with traditional med-
ication aids that focus on pill identification or
static audio (e.g., YOLO-OCR imprint read-
ing, ScripTalk label playback, RFID-only ad-
herence logs). DRISHTI delivers broader, in-
telligent management: 86.57% overall accuracy
with 100% detection of safety-critical cases (ex-
pired drugs, dosage mismatches, interaction
risks). Running fully offline on edge hard-
ware preserves privacy, usability, and reliabil-
ity. Moving beyond lookup, DRISHTI enables
context-aware decisions via the Gemma3 4B
model, multi-level matching (exact, generic,
therapeutic, fuzzy), patient history and timing
awareness, and adaptive urgency-based audio
feedback. This comprehensive AI integration
positions DRISHTI as a first, safety-first, truly
intelligent assistive medication system.

6 Conclusion

DRISHTI is an assistive system that enhances
medication safety for visually impaired users
by integrating RFID identification, AI-driven
visual recognition, and real-time audio inter-
action. Running entirely offline on low-cost
edge hardware, it ensures multimodal verifi-
cation with strong privacy and no cloud de-
pendency. Evaluation across 149 scenarios
shows 86.57% overall accuracy and 100% de-
tection of safety-critical events (expired drugs,
dosage mismatches, interaction risks), support-
ing home and institutional use. Real-time per-
formance (<1 ms) with urgency-aware feedback

enables daily integration, while the tri-modal
architecture ensures fault tolerance and auton-
omy through voice prompts.

Future work targets multilingual scalability
by integrating OCR for non-English scripts (In-
dic, Bangla, Arabic), expanding brand–generic
mappings, and adopting multilingual text-to-
speech, alongside fine-tuning vision models for
diverse scripts. Prior works on Multilingual
Neural Machine Translation (MNMT) for Indic-
to-Indic languages (Bala Das et al., 2024) pro-
vide a foundation, while DRISHTI-Plus may
leverage MNMT for multilingual dialogue and
audio description (Bala Das et al., 2023). Inte-
gration with secure mobile/cloud dashboards
could enhance monitoring with federated or
edge-assisted learning approaches(Paul et al.,
2025). To extend device capability, error anal-
ysis of language translations using the MQM
framework (Das et al., 2025b) is included. Col-
lectively, DRISHTI demonstrates real-world
readiness and a clear pathway toward accessi-
ble, intelligent, and inclusive medication man-
agement for underserved populations.

7 Ethics Statement and Limitations

DRISHTI is designed to run fully offline, en-
suring user control of sensitive data. . A con-
servative confidence threshold minimizes safety
risks, and drug information comes from public,
anonymized sources to reduce bias, although
cultural and linguistic diversity remain chal-
lenges. The system is meant to assist, not
replace, professional medical care. DRISHTI
performs better on printed than handwritten
prescriptions and is currently limited to English
and Western pharmaceutical data, restricting
usability in multilingual regions. Conserva-
tive detection of non-prescribed drugs increases
false alerts, and hardware limitations prevent
real-time updates. Clinical validation is pend-
ing, and the audio-tactile interface is insuffi-
cient for users with multiple impairments.
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Abstract

Large language models (LLMs) excel at mul-
tilingual tasks, yet their internal language pro-
cessing remains poorly understood. We an-
alyze how Aya-23-8B, a decoder-only LLM
trained on balanced multilingual data, handles
code-mixed, cloze, and translation tasks com-
pared to predominantly monolingual models
like Llama 3 and Chinese-LLaMA-2. Using
logit lens and neuron specialization analyses,
we find: (1) Aya-23 activates typologically re-
lated language representations during transla-
tion, unlike English-centric models that rely on
a single pivot language; (2) code-mixed neu-
ron activation patterns vary with mixing rates
and are shaped more by the base language than
the mixed-in one; and (3) Aya-23’s language-
specific neurons for code-mixed inputs concen-
trate in final layers, diverging from prior find-
ings on decoder-only models. Neuron overlap
analysis further shows that script similarity and
typological relations impact processing across
model types. These findings reveal how multi-
lingual training shapes LLM internals and in-
form future cross-lingual transfer research. The
code and dataset are publicly available1.

1 Introduction

Large language models (LLMs) excel in multilin-
gual tasks (Srivastava et al., 2022; Bang et al., 2023;
Gurgurov et al., 2025b), but their internal handling
of multiple languages remains underexplored (Kad-
dour et al., 2023). While methods like logit lens
(Wendler et al., 2024; Schut et al., 2025) and neu-
ron specialization (Tang et al., 2024; Kojima et al.,
2024; Tan et al., 2024) have been applied, prior
work mainly targets English-centered models on
monolingual tasks (e.g., cloze or repetition tasks),
rather than balanced multilingual architectures and
their processing of code-mixed texts.

∗*Equal contribution
1https://github.com/KatharinaTrinley/

multilingual-internal-representations

Multilingual models often default to English
during intermediate processing, as described by
the Multilingual Workflow (MWork) hypothesis
(Zhao et al., 2024), which suggests LLMs convert
non-English inputs into English internally before
generating outputs. Supporting this, studies on
reasoning language models (RLMs) (Wang et al.,
2025) find reliance on internal “pivot” languages
or scripts, even with other input languages. How-
ever, it remains unclear if this preference is unique
to RLMs or a general pattern in all multilingual
LLMs. Therefore, we ask:

H1: How do balanced multilingual models process transla-
tion tasks – do they activate multiple languages simultane-
ously, unlike English-centric models that rely on a single
pivot language?

Neuron-level analyses have identified language-
specific patterns (Kojima et al., 2024; Tang et al.,
2024), but these studies predominantly examine
English-based models, leaving open whether mul-
tilingual training leads to fundamentally different
internal processing mechanisms. While LLMs’ lan-
guage capabilities are tied to specific neuron sub-
sets, particularly in early and late layers (Kojima
et al., 2024; Tang et al., 2024), these patterns may
not apply to models trained on diverse multilingual
data (Zhong et al., 2024a; Schut et al., 2025). We
thus investigate the following hypotheses:

H2: What patterns of neuron sharing of language specific
neurons emerge in balanced multilingual models, and do
these align more strongly with language similarity com-
pared to predominantly monolingual models?

H3: Where do language-specific neurons concentrate in
multilingual architectures – do they cluster predominantly
in final layers, contrary to prior findings showing distribu-
tion across early and late layers in decoder-only models?

In real-world contexts, speakers often mix lan-
guages within a single utterance, requiring models
to dynamically switch between language-specific
representations. Code mixing (CM) provides a
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valuable lens for studying multilingual processing
in language models (Xie et al., 2025), and while
multilingual LLMs perform well on some tasks,
they still struggle with code-switched text (Gun-
dapu and Mamidi, 2020). The development of
more balanced multilingual models, such as Aya-
23 (Aryabumi et al., 2024), offers an opportunity to
examine how different training approaches affect
internal language representations, especially when
handling the linguistic complexity of code-mixed
inputs. Thus, we ask:

H4: How does the processing of code-mixed inputs vary
based on language pair characteristics and models?

To address these questions, we perform a
neuron-level comparison of a balanced multilin-
gual model (Aya-23-8B), a predominantly English-
trained model (Llama 3.1-8B), and a language-
specialized model (Chinese-LLaMA-2-7B). Specif-
ically, we:

I. Analyze internal language representations
across 13-language translation tasks using logit
lens to test H1, checking whether Aya-23 activates
multiple languages simultaneously, unlike English-
pivot processing in mostly monolingual models.

II. Create a controlled code-mixed dataset
with varying mixing ratios across 10 typologically
diverse pairs ({fr, zh}× {en, es, it, ja, ko}) and use
neuron specialization (activation frequency (Tan
et al., 2024)) to investigate H2 and H4, exploring
how script similarity and language relationships
affect neuron sharing across models.

III. Examine layer-wise distribution of language-
specific neurons via activation strength (Kojima
et al., 2024) to test H3, determining whether bal-
anced multilingual training concentrates language-
specific neurons mainly in final layers, contrasting
prior findings of early-and-late layer distributions
in decoder-only models.

2 Methodology

We investigate the internal language representa-
tions in multilingual decoder-only LLMs through
complementary experimental approaches: logit
lens analysis (Section 2.3) and neuron specializa-
tion analysis (Section 2.4). Each methodology of-
fers unique insights into how models process infor-
mation across languages.

2.1 Models

We evaluate three models with varying multilin-
gual focus. Aya-23-8B by Cohere AI is an open-
source decoder-only model instruction fine-tuned
on 23 languages—including ar, zh (simplified &
traditional), en, fr, it, ja, ko, and more—using
a two-stage process: pretraining on a balanced
multilingual corpus (not public) and multilingual
instruction fine-tuning (Aryabumi et al., 2024).
Llama 3.1-8B supports 8 languages (en, fr, de,
hi, it, pt, es, th) but was mainly trained on En-
glish data (ca. 8% multilingual tokens) and re-
tains English-centric processing patterns, serving
as a baseline for predominantly English-trained
models (Grattafiori et al., 2024; Wendler et al.,
2024). Chinese-LLaMA-2-7B is a Mandarin-
adapted LLaMA-2 variant with an expanded to-
kenizer (+20,000 tokens), pretrained on large Chi-
nese corpora using parameter-efficient fine-tuning
(LoRA(Hu et al., 2021)) and instruction-tuned on
millions of Chinese instruction-response pairs, en-
abling strong Chinese performance at low compu-
tational cost (Cui et al., 2023a,b; Hu et al., 2021).

2.2 Datasets

In this work, we focus on two primary datasets:
the Dumas dataset (Dumas et al., 2024) for logit
lens experiments and introduce a new code-mixed
dataset that will be publicly released.

Dumas Dataset For logit lens experiments, we
use the dataset from Dumas et al. (2024), which
includes word translation and cloze tasks in 13 lan-
guages (de, en, es, et, fi, fr, hi, it, ja, ko, nl, ru,
zh). It minimizes token overlap between languages
while maintaining semantic consistency. Note that
model support varies: Aya-23-8B lacks et and fi;
Llama 3.1-8B excludes et, fi, ja, ko, nl, ru, and zh;
Chinese-LLaMA-2-7B supports only zh and has
limited en capabilities, lacking official support for
the other 11 languages. Each prompt consists of
randomly selected 5-shot word translation exam-
ples followed by a final query word. For instance,
an English-to-Chinese task may appear as:

English: "computer" →中文:电脑
English: "ant" →中文:蚂蚁
English: "cloud" →中文:云
English: "heart" →中文:心脏
English: "knife" →中文:刀子
English: "book" →中文: __

The task is to predict the correct translation of
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the final word. Synonyms for the target word are
included across all supported languages.

Code-mixed Dataset To study how models pro-
cess mixed-language inputs, we construct a code-
mixed dataset derived from the WMT24++ par-
allel corpus (Deutsch et al., 2025), containing
998 sentence pairs across 55 languages. We fo-
cus on a subsection of 7 languages and take fr
and zh as base languages, each mixed with five
partner languages (en, es, it, ja, and ko) result-
ing in ten language pairs. These combinations
span a wide typological and script range, including
closely related Romance/Indo-European languages
(fr/es, fr/it, fr/en), typologically distinct but his-
torically linked pairs (zh/ja, zh/ko), and diverse
scripts: Latin (en, fr, es, it), Simplified Chinese
(zh), Kanji/Kana (ja), and Hangul (ko).

We generate code-mixed sentences using a three-
step rule-based method (Figure 1) with controlled
mixing ratios of 25%, 50%, and 75%.

We tokenize Latin script using whitespace and
Han script with the Jieba library (Junyi, 2012). Al-
though this may yield ungrammatical outputs, it en-
sures consistent mixing ratios critical for controlled
experiments. To address limited dictionary cover-
age in prior work (Conneau et al., 2017), we create
comprehensive bilingual dictionaries via Google
Translate for all WMT24++ words, ensuring equal
vocabulary coverage across language pairs. How-
ever, lacking word sense disambiguation, polyse-
mous words are translated identically regardless of
context, possibly causing meaning mismatches.

To evaluate translation accuracy, we manually
assessed word-level translation quality in code-
mixed data, focusing on semantic mistranslations
rather than grammatical errors common in code-
mixing. From 50% mixing datasets, we sampled
10 sentences per language pair (246–399 words)
and found translation error rates of fr-en 4.76% ,
fr-es 4.78% , zh-en 4.87% , and zh-es 8.94% , with
higher errors for zh-es due to greater linguistic dis-
tance and weaker model performance.

To compare code-mixed and monolingual pro-
cessing, we include corresponding monolingual
datasets from WMT24++ (fr, es, it, ja, and ko) as
baselines. All code-mixed pairs were evaluated on
translation tasks directed from code-mixed input
to en (i.e., Chinese-Spanish code-mixed input to
en). We do not evaluate the reverse direction, as en-
forcing controlled code-mixing in model-generated
outputs is challenging.

To further examine model behavior, we ana-
lyze neuron activation patterns (Section 2.4) across
code-mixed inputs for Aya-23-8B, LLaMA 3.1-
8B, and Chinese-LLaMA-2-7B, testing whether
code-mixed processing differs by language pair
and model architecture (H4).

2.3 Logit Lens
Logit lens (Nostalgebraist, 2020) interprets trans-
former hidden states by projecting intermediate rep-
resentations into vocabulary space. At each layer ℓ,
the model produces a hidden state hℓ ∈ Rd, which
is mapped to logits using the unembedding matrix
U ∈ R|V |×d: logitsℓ = Uhℓ.

These logits approximate the model’s predic-
tions at layer ℓ. Following Nostalgebraist (2020),
we use the residual stream before layer normaliza-
tion to better align with the final outputs. Building
on prior multilingual analyses (Wendler et al., 2024;
Zhong et al., 2024b; Saji et al., 2025), we apply
the logit lens at each layer, extract token proba-
bilities via softmax, and sum over synonyms in
13 languages using the dataset from Dumas et al.
(2024) (see Section 2.2). To reduce false matches,
we apply a 0.1 threshold. This approach allows us
to track the emergence of language-specific signals
across layers and test H1.

2.4 Neuron Specialization
Neuron specialization refers to individual neurons
within language models developing preferences for
processing specific types of input, such as particu-
lar languages.

Tan et al.’s Approach Tan et al. (2024)’s method
identifies language-specific neurons by measuring
how frequently they activate when processing dif-
ferent languages. Following Tan et al. (2024),
we identify language-specific neurons via binary
ReLU activations in FFNs across WMT24++ and
code-mixed data.

For task t with validation set Dt, each sample xi
has activation ati. Summing gives at =

∑
xi∈Dt

ati.
Specialized neurons St

k are the top activations sat-
isfying

∑
i∈St

k
at(i) ≥ k

∑
i a

t(i). Neuron over-

lap is measured by IoU(Si, Sj) = |Si∩Sj |
|Si∪Sj | . Using

k = 90% per Tan et al. (2024), we identify neu-
rons covering most activations per language and
plot IoU matrices to expose cross-linguistic pat-
terns. Unlike Tan et al. (2024), we exclude neurons
shared by all languages to isolate language-specific
neurons. This tests H2.
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Figure 1: Our code-mixed dataset creation pipeline. Starting with parallel sentences from WMT24++, we create
comprehensive bilingual dictionaries using Google Translate for all vocabulary. For each sentence, we randomly
select words based on the target mixing ratio (25%, 50%, or 75%) and replace them with their translations in the
partner language. For example, from the English source “The World Bank hopes to spread that message,” we
generate the code-mixed Chinese output “World bank希望传播这一理念” (50%).

Kojima et al.’s Approach Kojima et al. (2024)
identified language-specific neurons in multilingual
models, concentrated in early and late layers with
minimal cross-language sharing. Their approach
identifies neurons that discriminate between target
language content and other languages by measuring
activation strength.

We extend this to code-mixing neurons in Aya-
23-8B’s MLP layers. For each code-mixed pair
lt, texts are labeled positive (bi = 1) or nega-
tive (bi = 0). For neuron m and text xi =
{wi,1, . . . , wi,T }, activations {zm,i,1, . . . , zm,i,T }
are averaged as zm,i = f(zm,i,1, . . . , zm,i,T ) (ex-
cluding padding). We compute Average Precision
APm = AP (zm, b) ∈ [0, 1] to classify neurons
into top-k (high), medium-k (none), and bottom-k
(negative correlation). Applied to fr and zh code-
mixed with en, it, es, jp, ko (10 pairs), this tests H3
and H4.

3 Results and Discussion

3.1 Logit Lens Analysis
To test if balanced multilingual training affects in-
ternal processing (H1), we applied logit lens analy-
sis (Wendler et al., 2024) to Aya-23-8B (balanced),
LLaMA 3.1-8B (English-dominant), and Chinese-
LLaMA-2-7B (Chinese-specialized).

Using Dumas et al. (2024)’s dataset, we tracked
language-specific token probabilities across lay-
ers during translation. From 54 tasks, we com-
puted AUCs for each language probability curve
and used Mann-Whitney U tests with Bonferroni
correction to compare: (1) model effects – whether
Aya shows more diverse language representations
than LLaMA (p < 0.05/(13 × 3) = 0.0013),
and (2) task effects – whether input vs. out-
put languages differ in internal processing (p <
0.05/(13× 3× 2) = 0.0006).

Aya-23-8B demonstrates multilingual process-
ing with cross-linguistic activation. During

Figure 2: Logit lens language probabilities for English-
to-Chinese translation in Aya-23-8B reveal activation of
an increased number of languages in mid-to-late layers,
with English being dominant.

English-to-Chinese translation (Figure 2), Aya ac-
tivates multiple languages in intermediate-to-late
layers (20–27), including Japanese tokens despite
Japanese being neither source nor target. This sug-
gests Aya leverages typological relationships rather
than relying solely on English as a pivot.

Llama 3.1-8B follows English-centric process-
ing. In contrast (Figure 3), Llama demonstrates the
English-dominated pattern established by Wendler
et al. (2024), with English maintaining highest acti-
vation across all layers until final output generation.
Chinese activates only in final layers, aligning with
the “English-ization” process (Zhao et al., 2024).

Chinese-LLaMA-2-7B exhibits Chinese-
dominant processing. This model shows Chinese
representations dominating across most layers
even for English-to-Chinese translation (Figure
4), with English activation decreasing in final
layers while Japanese remains stable, reflecting its
specialized training.

Our statistical analysis across all 54 translation
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Figure 3: Logit lens language probabilities for English-
to-Chinese translation in Llama 3.1-8B show dominant
English representations across most layers with few
other languages showing significant activation.

Figure 4: Logit lens language probabilities for English-
to-Chinese translation in Chinese-LLaMA-2-7B show
strong dominance of Chinese representations across
most layers.

tasks provides quantitative support for H1: Aya
demonstrates significantly different language ac-
tivation patterns compared to both Llama (8/13
languages with p < 0.0013: de, ru, zh, es, ja, ko,
it) and Chinese-LLaMA (8/13 languages including
en, zh, es, ja, ko, it). Critically, output languages in-
fluence internal representations more strongly than
input languages across all models, when analyzing
task composition effects, output language presence
produces significant changes in 12/13 languages
compared to only 7/13 for input languages.

This analysis partially supports our hypothesis
that Aya-23 incorporates multiple languages in in-

Figure 5: Three-phase neuron clustering patterns across
transformer layers. French-based (orange) and Chinese-
based (blue) code-mixed language pairs show distinct
IoU overlap patterns in Aya-23, Chinese-LLaMA, and
Llama-3.1. All models exhibit consistent French pro-
cessing advantages.

ternal processing, rather than relying solely on En-
glish. However, English still shows significantly
higher activation probabilities, necessitating care-
ful interpretation of these multilingual patterns.
The statistical evidence highlights that both task
language and model training paradigm significantly
shape internal processing strategies, with task lan-
guage particularly influencing language-specific
activation probabilities.

3.2 Neuron Specialization Analysis

Activation Frequency Experiments Following
Tan et al. (2024), we conducted neuron activation
frequency experiments to examine how balanced
multilingual training influences language-specific
processing mechanisms (H2, H4).

To investigate base-language dependencies sys-
tematically, we conducted statistical analysis com-
paring French-based and Chinese-based code-
mixed language pairs across all 32 transformer lay-
ers (see Figure 5). For each layer, we computed
IoU overlap values within French-based pairs (105
combinations from 15 tasks) and within Chinese-
based pairs (105 combinations from 15 tasks),
yielding two distributions of IoU scores per layer.
We applied the Wilcoxon signed-rank test to as-
sess whether French-based pairs show significantly
different neuron clustering patterns than Chinese-
based pairs, using this non-parametric paired test
since we’re comparing corresponding layers be-
tween the two language groups.

French-based code-mixed inputs demonstrate
significantly higher neuron clustering than Chinese-
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Figure 6: Translation qualities on code-mixed datasets using Aya23-8B, LLaMA 3.1-8B, and Chinese LLaMA,
presented in BLEU.

based inputs across all three models. Wilcoxon
signed-rank tests reveal strong statistical signifi-
cance: Aya-23 (p = 4.66×10−10, mean difference
= +0.0050), Chinese-LLaMA (p = 4.66× 10−10,
mean difference = +0.0041), and Llama-3 (p =
9.31 × 10−10, mean difference = +0.0029). This
French advantage persists even in Chinese-LLaMA,
a model specifically adapted for Chinese process-
ing.

Our findings contradict H2, as neuron sharing
patterns do not align with expected base-language
training effects. Instead, they reveal a universal
French processing advantage that transcends model
architecture and training paradigm (p < 10−9

across all models). This pattern strongly supports
H4 – that code-mixed processing varies system-
atically with language pair characteristics – and
indicates that factors beyond training data compo-
sition, potentially including script characteristics
or tokenization efficiency, drive neuron activation
patterns in multilingual models.

Translation Performance on Code-Mixed Inputs
Figure 6 presents BLEU scores for all three models
on monolingual and code-mixed datasets. Aya-
23-8B consistently outperforms the others, with a
clear advantage on fr-based code-mixed inputs. All
models show better performance on Latin-script
pairs (fr-en, fr-es, fr-it) than on cross-script ones
(fr-ja, fr-ko). For zh code-mixing, Aya-23-8B and
Llama 3.1-8B perform better on zh-ja and zh-ko
than on zh-en, zh-fr, and zh-it, suggesting that
shared vocabulary and typological features help
transfer despite script differences. In contrast,
Chinese-LLaMA-2-7B performs poorly across all
code-mixed inputs, regardless of typological simi-

larity.
Performance generally degrades as code-mixing

rate increases across all models, likely reflecting
limitations of our rule-based word-to-word transla-
tion approach. However, Aya-23-8B shows greater
resilience to this degradation, supporting our find-
ing that balanced multilingual training improves
robustness to code-mixing.

Activation Strength Experiments To address
H4, we followed Kojima et al. (2024)’s method-
ology by processing both monolingual and code-
mixed texts and capturing neuron activations at the
MLP layers. Our findings for Aya reveal an inter-
esting divergence from previous work on decoder-
only model. While Kojima et al. (2024) found
language-specific neurons (both top-k and bottom-
k) concentrated in first and last layers of other
decoder-only models, Aya-23-8B exhibits a dif-
ferent pattern when processing code-mixed input:
top-k language-specific neurons appear predomi-
nantly in final layers (27-31), with a pronounced
spike in layer 31 across all language pairs (see Fig-
ure 7). This pattern confirms our hypothesis H3.

This pattern only partially aligns with Tang et al.
(2024), who observed a skewed “U”-shaped distri-
bution, with language processing concentrated in
both early and late layers. In contrast, it supports
the findings of Mondal et al. (2025), who reported
that language-specific neurons in modern LLMs
are primarily concentrated in later layers. Our re-
sults suggest that Aya-23-8B’s balanced multilin-
gual training may promote a shift toward language-
specific processing concentrated at the generation
stage, diverging from the more distributed patterns
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Figure 7: Layer-wise distribution of k = 1000 language-
specific neurons in Aya-23-8B for code-mixed process-
ing across all CM language pairs in Aya-23-8B.

Figure 8: The number of overlapping language-specific
neurons between code-mixing language pairs in Aya-23-
8B.

seen in predominantly monolingual models.
This pattern remains consistent across all lan-

guage pairs. Bottom-k neurons (“anti-correlated”
neurons) similarly concentrate in final layers, while
medium-k neurons distribute more evenly across
early (0-5) and middle (10-20) layers.

This distinctive concentration pattern may stem
from Aya’s explicitly balanced multilingual train-
ing, resulting in an internal structure different from
the predominantly monolingual models studied by
Kojima et al. (2024). The pronounced spike of
language-specific neurons in the final layer likely
reflects Aya-23-8B’s processing strategy for code-
mixed inputs: earlier layers handle distributed mul-
tilingual representations for understanding, while
the concentration at the generation stage resolves
which language to output in mixed-language con-
texts.

Our analysis of neuron overlap shows that the

base language influences neuron sharing more than
the secondary mixed-in language. Chinese-based
pairs consistently exhibit higher neuron overlap
(17.5%–60.6%) compared to French-based pairs,
regardless of the secondary language (Figure 8).
This indicates that the foundational language’s
structural properties strongly shape neural organiza-
tion. This pattern holds on average (French-based
pairs: 138.25 neurons; Chinese-based pairs: 331.7
neurons; cross-base pairs: 82.65 neurons)2.

Cross-script connections also appear, with ja-zh
and ko-zh pairs showing moderate neuron over-
lap (20.7% and 41.1%, respectively), likely due to
shared vocabulary and writing systems from his-
torical contact. Within the fr-based group, neuron
sharing varies: it-fr pairs have the highest over-
lap (19.7%), followed by en-fr (17.5%) and es-
fr (8.9%), suggesting that typological similarity
within the Romance family shapes neural process-
ing patterns.

4 Related Work

Pivot Languages in Multilingual LLMs Train-
ing data composition fundamentally shapes multi-
lingual processing patterns. Llama models, heav-
ily trained on English (89% in Llama-2 (Touvron
et al., 2023)), use English as a “pivot language”
in multilingual tasks – translating French to En-
glish before Chinese, reducing quality (Wendler
et al., 2024). This English bias extends beyond
translation, with models defaulting to English in in-
termediate layers for reasoning (Zhao et al., 2024;
Zhong et al., 2024a). The Multilingual Workflow
(MWork) hypothesis (Zhao et al., 2024) formalizes
this as: convert inputs to English for reasoning,
integrate multilingual knowledge, then generate
target output.

However, English-centric processing varies with
architecture and training. Language-specific mod-
els like Swallow (Japanese-adapted Llama-2) and
LLM-jp default to their dominant training language
rather than English (Zhong et al., 2024a). Schut
et al. (2025) found Aya-23 activated English ca.
50% versus ca. 70% in Gemma-2-27B, suggest-
ing balanced training reduces English dominance.
Similarly, Lindsey et al. (2025) identified language-
agnostic conceptual representations in Claude 3.5

2Notable exceptions exist where typological similarity
overrides base language effects, such as fr-ja with zh-ja (396
neurons) and ko-fr with ko-zh (411 neurons), likely reflecting
historical Japanese-Chinese and Korean-Chinese linguistic
contact
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Haiku, indicating some models develop universal
processing spaces beyond pivot strategies.

Language-Specific Neurons Language-specific
neurons in decoder-only models cluster distinctly
with minimal cross-language sharing. Kojima et al.
(2024) and Tang et al. (2024) found these neurons
concentrate in top and bottom layers of LLaMA-
2, BLOOM, and Mistral, comprising only 1% of
parameters. However, Mondal et al. (2025) ob-
served newer models (Mistral Nemo, Llama 3.1)
concentrate language-specific neurons primarily
in later layers, indicating architectural evolution.
Training data biases models toward English, de-
grading performance with increasing linguistic dis-
tance (Zhong et al., 2024a; Wendler et al., 2024),
though positive cross-lingual transfer remains pos-
sible.

Recent work reveals dynamic language-specific
processing. Tan et al. (2024) found feed-forward
neurons in encoder-decoder models activate in
language-specific patterns, with overlaps reflect-
ing linguistic proximity. Deng et al. (2025)
demonstrated that models dynamically shift activa-
tions based on context – Spanish prefixes amplify
Spanish-specific features while suppressing others
– suggesting sophisticated contextual language pro-
cessing beyond fixed neuron assignments.

Code-Mixing and Script-Based Processing
Code-mixing (CM) research reveals systematic bi-
ases in multilingual processing. Wang et al. (2025)
showed reasoning language models activate Latin
and Han scripts even when processing Arabic,
Hindi, or Japanese, with performance gains up to
110% when constraining reasoning to preferred
scripts. This suggests script-based processing pref-
erences shaped by training data composition.

CM poses significant challenges for multilin-
gual LLMs, particularly for low-resource lan-
guages. Gupta et al. (2024) found GPT models per-
form worse on English-Gujarati CM compared to
English-French, reflecting training data imbalances
toward high-resource monolingual corpora (Gun-
dapu and Mamidi, 2020). Yang et al. (2020) demon-
strated CM-specific pre-training improves transla-
tion performance, indicating models can learn to
handle language transitions within utterances.

Our study addresses the underexplored gap
between predominantly English-trained models
(Llama) and balanced multilingual models (Aya-
23), investigating whether reduced English re-

liance corresponds to distinct internal architec-
tures through comprehensive neuron-level analysis
across languages and code-mixed contexts.

5 Conclusion

Our investigation reveals that balanced multilingual
training fundamentally alters how decoder-only
LLMs process language internally. Through logit
lens analysis, we show that Aya-23-8B employs
distinct multilingual processing strategies, activat-
ing typologically related languages (e.g., Japanese
during Chinese translation) and exhibiting signif-
icantly different activation patterns compared to
English-centric models across 8/13 languages. We
find that output languages influence internal repre-
sentations more strongly than input languages.

Our neuron specialization analysis reveals that
Aya-23-8B concentrates language-specific neurons
predominantly in final layers (27-31) rather than
distributing them across early and late layers as
found in previous studies of decoder-only mod-
els (Kojima et al., 2024; Tang et al., 2024). This
architectural difference suggests that balanced mul-
tilingual training creates models that maintain
language-agnostic processing through most layers,
with language-specific differentiation emerging pri-
marily at generation time.

Code-mixed processing reveals systematic pat-
terns driven by base language characteristics and
script similarity. Base languages drive neuron
sharing more strongly than mixed-in languages,
with French-based code-mixed inputs maintain-
ing consistent neuron overlap regardless of mix-
ing rate, while Chinese-based inputs show pro-
portional degradation. Translation performance
demonstrates clear advantages for same-script lan-
guage pairs, though Chinese-Japanese and Chinese-
Korean pairs benefit from shared historical vocabu-
lary despite script differences.

Limitations

Our study has several important limitations. A
key one is the quality of our code-mixed dataset,
created using rule-based word-to-word translation.
This method overlooks grammatical structure and
often yields unnatural sentences that may not re-
flect authentic code-switching. However, it allows
systematic control of mixing ratios, which is essen-
tial for our neuron-level analysis.

Our methodology requires binarizing continu-
ous neuron activations, leading to potential infor-
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mation loss and obscuring subtle cross-language
patterns. In our logit lens experiments, some token
overlap likely remains between Japanese–Chinese
and French–English, despite efforts to minimize
it, which may affect analysis of language-specific
activations. Additionally, our implementation of
Tan et al. (2024)’s neuron specialization analysis
revealed weak sharing patterns in heatmap visual-
izations, limiting the strength of our conclusions
on language-specific processing.

Our analysis is limited to three models (Aya-23-
8B, Llama 3.1-8B, and Chinese-LLaMA-2-7B) and
may not generalize to other multilingual architec-
tures or sizes. While our findings on final-layer
specialization may extend to models like BLOOM
(Workshop et al., 2023) and newer architectures
with similar late-layer concentration (Tang et al.,
2024; Mondal et al., 2025), the reduced English
pivot behavior appears more specific to balanced
multilingual training. Model English-centricity
varies with training data, and recent work shows
many multilingual models still rely on English-
proximal representation spaces regardless of in-
put/output languages (Schut et al., 2025).

Our focus is primarily on high-resource lan-
guages, with limited analysis of low-resource lan-
guage processing. Recent work suggests that low-
resource languages are harder to control via neu-
ron manipulation, likely due to weaker or less dis-
tinct representations from limited pretraining expo-
sure (Gurgurov et al., 2025a), indicating our find-
ings may not directly extend to medium- and low-
resource languages.

Our findings on Kojima et al. (2024)’s approach
reveal a notable discrepancy. While they observed
language-specific neurons in both early and late
layers of decoder-only models, our analysis of Aya-
23-8B on code-mixed input shows such neurons
concentrated mainly in the final layers (27–31),
peaking at layer 31. This likely reflects that we
are identifying “code-mixing neurons” rather than
pure language neurons, as our task distinguishes
code-mixed from non-code-mixed inputs. These
results suggest that code-mixing neurons align with
language neurons in early layers but diverge signif-
icantly in later layers.

Thus, for hypothesis H4, we can only conclude
that code-mixed inputs are processed differently in
the model’s very late layers. Similarly, our findings
from the Tan et al. experiment show language-
pair-specific processing across all layers but do not

reveal clear patterns by language family or script,
offering limited support for hypothesis H3.

Ethics Statement

We identify no ethical concerns directly related to
this research. All models and datasets used in this
study are employed in accordance with their respec-
tive license terms, including the custom use license
for Llama 3.1-8B, the Apache 2.0 license for Aya-
23-8B, and the research-permitted use of Chinese-
LLaMA-2-7B. The Dumas dataset and WMT24++
corpus are used under their standard research li-
censes. Our code-mixed dataset, created through
rule-based translation, contains no sensitive per-
sonal information and will be made publicly avail-
able to support reproducible research. The neuron-
level analysis conducted in this work focuses purely
on model internals without generating potentially
harmful content or reinforcing linguistic biases.
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Abstract

Clinical federated learning faces critical chal-
lenges from statistical heterogeneity across
healthcare institutions and privacy require-
ments for sensitive medical data. This work im-
plements the foundational components of Fed-
CliMask and proposes a comprehensive frame-
work for privacy-preserving federated learn-
ing in clinical settings that combines ontology-
guided semantic masking with context-aware
federated aggregation. Our framework ad-
dresses the dual challenges of privacy preserva-
tion and statistical heterogeneity through two
key innovations: (1) ontology-guided semantic
masking using UMLS hierarchies to provide
graduated privacy protection while preserv-
ing clinical semantics, and (2) context-aware
federated aggregation that considers hospital-
specific features including medical specialties,
data complexity, privacy levels, and data vol-
ume. The semantic masking component is
implemented and evaluated on synthetic clini-
cal data, demonstrating effective privacy-utility
tradeoffs across four masking levels. The
context-aware analysis component is also im-
plemented successfully profiling 12,996 syn-
thetic clinical notes across 6 diverse hospitals
to demonstrate meaningful hospital differenti-
ation. The complete framework is designed to
enable privacy-preserving clinical trial recruit-
ment through federated learning while adapting
to institutional heterogeneity.

1 Introduction

Clinical trial recruitment remains one of the most
significant challenges in modern medical research,
with over 80% of trials failing to meet enrollment
targets and experiencing substantial delays (Fogel,
2018). The traditional approach requires central-
ized data sharing, creating significant privacy and
regulatory barriers. While electronic health records
(EHRs) contain rich patient information, privacy
regulations such as HIPAA and GDPR severely
limit cross-institutional data sharing.

Federated learning (FL) has emerged as a promis-
ing paradigm for collaborative machine learning
without centralizing sensitive data (Li et al., 2020).
However, existing FL approaches in healthcare face
critical limitations. First, raw patient data can still
leak sensitive information through model updates
(Zhu et al., 2019). Second, and critically for real-
world performance, federated networks suffer from
statistical heterogeneity: the data distribution can
vary dramatically between a specialized cancer cen-
ter and a rural community hospital. A standard fed-
erated learning algorithm that treats all hospitals
equally will struggle to produce a global model that
performs well for everyone.

To address these challenges, a comprehensive
framework, FedCliMask is proposed to combine
context-aware federated learning with ontology-
guided semantic masking and differential pri-
vacy. The first and foundational component, imple-
mented and evaluated in this work, is an ontology-
guided semantic masking technique that leverages
the Unified Medical Language System (UMLS) to
create hierarchical semantic abstractions of patient
data. The second component is proposed as the sub-
sequent stage of the framework, integrates this with
a context-aware federated learning algorithm that
intelligently adapts to each hospital’s unique data
context.This paper focuses on the implementation
and evaluation of the first component (semantic
masking) and the design of the second component
(context-aware federated learning), with full feder-
ated training left for future work

The key contributions of this paper are:

• A hierarchical masking system is developed
and implemented that leverages UMLS to cre-
ate graduated privacy levels while preserving
clinical semantics.

• A context-aware analysis system is designed
and implemented that automatically extracts
hospital characteristics (medical specialties,
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data complexity, privacy levels) from clinical
data.

• A complete federated learning framework is
proposed that integrates semantic masking
with context-aware aggregation for clinical
trial recruitment.

• Hospital profiling capabilities are demon-
strated on 12,996 synthetic clinical notes
across 6 diverse hospital types, showing mean-
ingful institutional differentiation.

This paper presents the complete framework de-
sign with implementation and evaluation of the se-
mantic masking and context analysis components,
establishing the foundation for full federated learn-
ing deployment.

2 Literature Review

The evolution of privacy-preserving machine learn-
ing in healthcare began with traditional data
anonymization techniques like data masking, sup-
pression, and generalization (Sweeney, 2002).
These led to formal privacy models like k-
anonymity, ensuring individuals are indistinguish-
able from at least k-1 others (Immuta, 2025a; PMC,
2025). However, k-anonymity’s vulnerability to
homogeneity and background knowledge attacks
prompted stricter models like l-diversity and t-
closeness (Vaz et al., 2023; Keerthana and Jaya-
balan Manoj, 2017). Despite these advancements,
"modify-and-release" approaches face a fundamen-
tal trade-off: increasing anonymization severely
degrades data utility (Ideas2IT, 2025). More-
over, growing public data availability means re-
identification through linkage attacks remains a
persistent threat (Sherpa.ai, 2025; Immuta, 2025b),
demonstrating this paradigm’s inherent limitations.
Federated Learning (FL) emerged as a paradigm-
shifting response, inverting traditional machine
learning by bringing algorithms to data rather
than centralizing sensitive information (SPRY PT,
2025; Oh and Nadkarni, 2023). This decentral-
ized framework, typically using Federated Averag-
ing (FedAvg), has succeeded across medical do-
mains including radiology, oncology, and epidemi-
ology (Teo et al., 2024a; Oh and Nadkarni, 2023;
Crowson et al., 2022). Recent work demonstrates
that federated learning is also feasible for privacy-
preserving wearable sensor analytics on edge de-
vices, achieving strong accuracy for IMU-based
gait recognition (Paul et al., 2025). FL’s key benefit

is improved model generalizability through train-
ing on diverse, multi-institutional datasets (SPRY
PT, 2025). However, a critical gap persists between
algorithmic development and clinical implementa-
tion, with real-world deployments remaining rare
due to logistical, ethical, and organizational hur-
dles (Choudhury et al., 2025; Teo et al., 2024b).
Although FL provides strong baseline privacy, it
faces vulnerabilities. Sophisticated adversaries can
exploit model updates (gradients) to infer sensitive
information through Gradient Inversion Attacks
(GIAs), reconstructing original training data with
high fidelity (Zheng et al., 2025a,b). This drove
integration of additional security layers: Differ-
ential Privacy (DP) provides mathematical guar-
antees against information leakage through cali-
brated noise injection (Flower AI, 2025), while
cryptographic methods like Secure Multi-Party
Computation (SMPC) and Homomorphic Encryp-
tion (HE) enable secure aggregation (Teo et al.,
2024a). This "triple lock" combination creates ro-
bust, multi-layered defense aligning with "privacy
by design" principles expected by regulations like
GDPR (Brauneck et al., 2023). Current privacy-
preserving AI frontiers move beyond mathemati-
cal safeguards to incorporate semantic meaning.
Leveraging biomedical ontologies like the Uni-
fied Medical Language System (UMLS), which
standardizes clinical terminology from over 200
sources (U.S. National Library of Medicine, 2025),
researchers build intelligent utility-preserving pri-
vacy systems. Ontology-guided anonymization
uses structured knowledge bases for semantic gen-
eralization, broadening specific diagnoses to clin-
ically relevant higher-level categories that pre-
serve more analytical value than simple redaction
(Martínez et al., 2013). Multilingual transformer
models show effectiveness for domain-specific fact-
checking in low-resource languages using retrieval-
augmented generation (Das et al., 2025). Advanced
applications integrate domain knowledge directly
into machine learning pipelines—the scCello foun-
dation model uses Cell Ontology to guide training,
learning representations consistent with established
biological knowledge (Yuan et al., 2024). This fu-
sion of data-driven learning with knowledge-driven
reasoning represents significant field maturation,
pointing toward AI systems that are private, robust,
interpretable, and trustworthy.
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3 Data Preprocessing

3.1 Synthetic Clinical Data Generation
To address the privacy and regulatory challenges of
using real patient data, a data generation pipeline
using Synthea (Walonoski et al., 2018) was de-
veloped. Our synthetic dataset encompasses six
diverse healthcare institutions: Academic Medi-
cal Center (academic medical center), Community
Hospital (community hospital), California Neuro
Mental Center (neurological specialty center), Mas-
sachusetts General Academic (academic medical
center), Montana Rural Community (rural commu-
nity hospital), and Texas Heart Cancer Center (spe-
cialty oncology center). This diversity is essential
for evaluating privacy-preserving techniques in re-
alistic scenarios. Each synthetic hospital generates
between 2,000 and 3,000 clinical notes, resulting in
a comprehensive dataset of 12,996 synthetic clini-
cal notes across all institutions.

3.2 Clinical Note Generation and Processing
The synthetic data generation process produces
comprehensive clinical notes that resemble real-
world electronic health records. To process these
notes, a sophisticated Named Entity Recognition
(NER) pipeline is implemented using Clinical-
BERT (Alsentzer et al., 2019). Following entity ex-
traction, the identified medical terms are mapped to
standardized concepts in the Unified Medical Lan-
guage System (UMLS) 2025AA knowledge base
using QuickUMLS (Soldaini and Goharian, 2016).
This mapping process establishes semantic relation-
ships and hierarchical concept structures essential
for our ontology-guided masking approach. In par-
allel, we develop a comprehensive set of synthetic
clinical trial eligibility criteria spanning multiple
medical specialties to facilitate the evaluation of
data utility.

4 The FedCliMask Framework

Figure 1 presents the complete FedCliMask system
architecture, illustrating the proposed end-to-end
privacy-preserving federated learning pipeline. The
architecture shows how the foundational masking
layer integrates with the proposed context-aware
federated learning server.

4.1 Component 1: Ontology-Guided Semantic
Masking

The core innovation of FedCliMask lies in its four-
level ontology-guided semantic masking system,

which has been implemented and evaluated. This
system leverages UMLS concept hierarchies to pro-
vide graduated privacy protection while preserving
clinical semantics.

The masking framework operates across four hi-
erarchical levels of abstraction. At Level 0, patient
data retains its original clinical terminology. At
Level 1, medical terms are generalized to their im-
mediate parent concepts in the UMLS hierarchy
(e.g., “myocardial infarction” becomes “heart dis-
ease”). At Level 2, terms are abstracted to broader
categorical levels. Finally, Level 3 generalizes in-
formation to the highest semantic level, maximiz-
ing privacy at the cost of utility.

The masking process exploits the hierarchical
structure of UMLS concepts to generate semanti-
cally meaningful generalizations. A hierarchy pro-
cessor identifies parent–child relationships within
the UMLS knowledge base, enabling systematic
traversal from specific medical terms to progres-
sively abstract concepts. Figure 2 illustrates this
process, showing how a clinical statement is trans-
formed across the four levels.

4.2 Component 2: Context-Aware Federated
Learning Design (Proposed Framework)

The second component of FedCliMask is our pro-
posed context-aware federated learning system de-
signed to address statistical heterogeneity across
healthcare institutions. The system is designed to
automatically analyze hospital characteristics and
adapt aggregation weights during federated train-
ing.

4.2.1 Hospital Context Analysis
A comprehensive context analysis system was im-
plemented that automatically extracts a detailed
"context vector" for each hospital to capture its
unique institutional characteristics and operational
patterns. The context analysis pipeline systemati-
cally processes clinical notes and generates multi-
dimensional feature vectors that provide a holistic
view of each institution’s profile, including:

• Data Volume Features: Total clinical notes
count and average note length, with all metrics
normalized to [0,1] scale to ensure fair com-
parison across institutions of varying sizes.
This includes temporal consistency patterns
and documentation frequency distributions
that reflect institutional capacity and opera-
tional characteristics.
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Figure 1: Proposed FedCliMask System Architecture. A privacy-preserving federated learning pipeline with
ontology-guided masking and context-aware aggregation.

Figure 2: 4-Level Ontology-Guided Semantic Masking Framework with UMLS Integration. This figure illustrates
the core implemented component of our framework.

• Medical Specialty Distribution: Advanced
automatic detection of primary medical spe-
cialties using sophisticated regex pattern
matching algorithms to identify specialization

patterns across cardiology, psychiatry, internal
medicine, oncology, neurology, and other clin-
ical domains. The system computes specialty
concentration scores and diversity indices.
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• Text Complexity Analysis: Comprehen-
sive assessment including multiple readability
scores (Flesch-Kincaid, SMOG), vocabulary
diversity measures (type-token ratios, lexical
richness), average sentence length, syntactic
complexity metrics that reflect documentation
sophistication and clinical expertise levels.

• Privacy Assessment: Automated privacy
scoring mechanism that analyzes generic ver-
sus specific medical terminology usage pat-
terns, evaluating the inherent privacy charac-
teristics of clinical text by assessing terminol-
ogy specificity and sensitivity levels through-
out the documentation.

• Concept Diversity: Detailed UMLS semantic
type distribution analysis measuring clinical
focus breadth across medical domains, includ-
ing concept coverage assessment, semantic
richness quantification, and clinical domain
diversity evaluation that provides insights into
institutional expertise areas.

4.2.2 Context-Aware Aggregation Strategy
The proposed Context-Aware FedAvg (CA-
FedAvg) strategy will compute adaptive weights by
combining hospital context quality with traditional
data size weighting:

wi = α · qi∑
j qj

+ (1− α) · ni∑
j nj

(1)

where

qi =
1

3

(
volume_scorei+complexity_scorei
+ diversity_scorei

)

(2)
represents the context quality score, ni is the

data size, and α = 0.3 is the context weight factor.
This approach is designed to differentiate hospital
contributions based on their contextual character-
istics, moving beyond the uniform weighting of
standard FedAvg.

4.2.3 Privacy-Utility Analysis
The framework includes comprehensive privacy
assessment through automated analysis of clinical
text masking levels. The system is designed to
evaluate privacy-utility tradeoffs across hospitals
and integrate privacy awareness into the federated
aggregation process.

5 Implementation and Experimental
Evaluation

The core components of the FedCliMask frame-
work: the ontology-guided semantic masking sys-
tem and the context-aware hospital analysis. Our
evaluation uses 12,996 synthetic clinical notes
across 6 diverse hospitals: Academic Medical Cen-
ter (psychiatry focus), Community Hospital (cardi-
ology/emergency), California Neuro Mental Center
(internal medicine), Massachusetts General Aca-
demic (internal medicine), Montana Rural Commu-
nity (internal medicine), and Texas Heart Cancer
Center (internal medicine/oncology). We demon-
strate the semantic masking effectiveness and hos-
pital profiling capabilities that form the foundation
for the proposed federated learning system.

5.1 Implemented Components Evaluation

5.1.1 Semantic Masking Implementation
The four-level ontology-guided semantic masking
system was implemented using UMLS hierarchies
to progressively abstract clinical terminology in
electronic health records (EHRs). Each masking
level corresponds to a different degree of semantic
generalization: from fully detailed clinical terms
(Level 0), through concept-driven parent mapping
(Level 1), categorical abstraction (Level 2), and
maximal generalization with generic placeholders
(Level 3) (see Table 1).

This framework enables a balance between pre-
serving clinical relevance and ensuring patient pri-
vacy. Level 0 offers the highest information fi-
delity but maximal privacy risk, Level 3 provides
strongest de-identification at the cost of semantic
detail.

Privacy-utility analysis demonstrates that Level
2 masking provides the optimal balance for clinical
applications, preserving semantic meaning while
providing meaningful privacy protection.

5.1.2 Context-Aware Hospital Analysis
Our implemented context analysis system success-
fully profiles hospital characteristics across mul-
tiple dimensions. Figure 4 shows the correlation
analysis between different context features, reveal-
ing how hospital characteristics interrelate across
institutions:

The context analysis successfully identifies dis-
tinct hospital profiles, including specialized psychi-
atric care, diverse emergency/cardiology services,
and internal medicine focus patterns. The corre-
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Figure 3: Proposed Neural Network Architecture for Local Model Training in the Federated Setting.

Masking Level Description Example Mapping Example Clinical Note Snippet

Level 0: Original
Terminology

Medical terms retained in their original
form; maximum informational richness
but highest privacy risk.

“Anemia” → “Anemia”
“Lisinopril” → “Lisinopril”

HISTORY OF PRESENT ILLNESS: 79-year-old male with past medical
history of logMAR visual acuity left eye, logMAR visual acuity right
eye, left eye intraocular pressure presents for follow-up. ALLERGIES:
Allergic disposition, Lisinopril.

Level 1: Parent
Concept General-
ization

Terms mapped to immediate UMLS par-
ent concepts; reduces specificity but pre-
serves clinical relevance.

“Anemia” → “Hematologic
Disorder”
“Lisinopril” → “Arginine”

HISTORY OF PRESENT ILLNESS: 79-year-old male with past medical
history of Eye Diseases, Eye Diseases, Ocular Hypertension presents for
follow-up. ALLERGIES: Hypersensitivity, Arginine.

Level 2: Category-
Level Abstraction

Generalization into categorical placehold-
ers representing broader domains. Pro-
vides optimal trade-off between privacy
and utility.

“Hematologic Disor-
der” → HEMATO-
LOGIC_DISORDER
“Arginine” → MEDI-
CAL_CATEGORY

HISTORY OF PRESENT ILLNESS: 79-year-old male with past medical
history of [DISEASE], [DISEASE], [DISEASE] presents for follow-up.
ALLERGIES: [DISORDER], [MEDICAL_CATEGORY].

Level 3: Maximum
Abstraction

Full abstraction to highest semantic level;
replaces categories with generic place-
holders for maximal de-identification.

HEMATOLOGIC_DISORDER
→ MEDICAL_CONDITION
MEDICAL_CATEGORY →
MEDICAL_ENTITY

HISTORY OF PRESENT ILLNESS: 79-year-old male with past med-
ical history of MEDICAL_CONDITION, MEDICAL_CONDITION,
MEDICAL_CONDITION presents for follow-up. ALLERGIES: MEDI-
CAL_CONDITION, MEDICAL_ENTITY.

Table 1: Four-level ontology-guided semantic masking framework showing progressive abstraction of clinical
terminology in electronic health records.

lation analysis in Figure 4 demonstrates the inter-
dependencies between different hospital character-
istics, validating the multi-dimensional nature of
institutional profiles. Table 2 summarizes the key
characteristics identified for each institution. This
profiling capability provides the foundation for the
proposed context-aware federated aggregation.

5.2 Framework Integration Status

While we successfully implemented the semantic
masking and context analysis components, the com-
plete FedCliMask framework requires additional
development. These implemented components pro-
vide the foundation for future federated learning
deployment, but full system integration including
context-aware aggregation, differential privacy in-
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Figure 4: Context feature correlation analysis show-
ing relationships between hospital characteristics (data
volume, privacy levels, text complexity, medical special-
ties) and their interdependencies across institutions.

Hospital Primary Specialty Notes Context Profile

Academic Medical Psychiatry (86.6%) 2,000 High complexity,
specialized

Community Hospital Cardiology (28.6%) 2,996 Diverse, emergency-
focused

California Neuro Internal Med (87.7%) 2,000 Academic, internal
medicine

Mass General Internal Med (86.4%) 2,000 Academic, research-
oriented

Montana Rural Internal Med (88.4%) 2,000 Rural, general prac-
tice

Texas Heart Cancer Internal Med (86.8%) 2,000 Specialized, oncol-
ogy focus

Table 2: Hospital characteristics and contextual profil-
ing.

tegration, and multi-hospital federated training re-
mains future work. The current implementation
demonstrates our approach’s feasibility and pro-
vides validated building blocks for the complete
system.

6 Results and Interpretation

The implementation demonstrates the feasibility
and effectiveness of the core FedCliMask com-
ponents for privacy-preserving clinical federated

learning. The implemented ontology-guided se-
mantic masking successfully provides graduated
privacy protection while preserving clinical seman-
tics through UMLS hierarchical structures. It is
important to note that this work presents a founda-
tional implementation rather than a complete sys-
tem. We have successfully implemented and evalu-
ated the semantic masking component and hospital
context analysis, while the full context-aware fed-
erated aggregation represents our proposed frame-
work for future implementation.

The hospital profiling results reveal distinct insti-
tutional characteristics that validate the need for
context-aware approaches in federated learning.
Academic Medical Center’s psychiatry specializa-
tion (86.6%) contrasts sharply with Community
Hospital’s diverse focus on cardiology (28.6%) and
emergency care, while multiple hospitals show in-
ternal medicine dominance (87%+). This hetero-
geneity demonstrates that standard federated learn-
ing approaches treating all hospitals equally would
miss important institutional differences.

The successful implementation of automated
context analysis provides the foundation for adap-
tive federated aggregation. The system automat-
ically extracts hospital characteristics including
medical specialties, data complexity, privacy levels,
and data volume - all critical factors for intelligent
federated learning deployment.

The integration of privacy assessment into hospi-
tal profiling enables automatic privacy-utility eval-
uation without manual configuration. This capa-
bility is crucial for real-world deployment where
institutions have varying privacy requirements and
technical expertise.

7 Conclusion and Future Work

FedCliMask is a comprehensive framework for
privacy-preserving federated learning in clinical
settings that addresses both privacy requirements
and statistical heterogeneity. The core compo-
nents were successfully implemented and eval-
uated: ontology-guided semantic masking and
context-aware hospital analysis.

Future extensions of FedCliMask could inte-
grate multilingual models similar to Indic NMT
(Bala Das et al., 2023) (Bala Das et al., 2024), al-
lowing clinical trials to be more inclusive across
linguistic barriers.

Key achievements include: (1) Implementation
of four-level semantic masking using UMLS hierar-
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chies, demonstrating effective privacy-utility trade-
offs; (2) Successful hospital context analysis sys-
tem extracting medical specialties, data complexity,
privacy levels, and data volume from 12,996 clini-
cal notes across 6 hospitals; (3) Framework design
for context-aware federated aggregation that moves
beyond uniform weighting; (4) Demonstration of
meaningful hospital heterogeneity that validates
the need for adaptive approaches.

The implemented components demonstrate that
hospital characteristics vary significantly across
institutions, from specialized psychiatric centers
to diverse community hospitals. The automated
context analysis successfully identifies these dif-
ferences, providing the foundation for intelligent
federated aggregation.

Immediate future work includes: (1) Complete
implementation and evaluation of the context-
aware federated learning system; (2) Validation
of adaptive aggregation approaches compared to
standard FedAvg; (3) Integration of formal differ-
ential privacy mechanisms; (4) Evaluation on real
clinical data with appropriate ethical approvals; (5)
Extension to downstream clinical tasks beyond the
foundational components. This work establishes
the foundation for privacy-preserving clinical AI
collaboration that respects institutional diversity
while enabling effective collaborative learning.

8 Ethics Statement and Limitations

The framework follows privacy-by-design princi-
ples, and reliance on synthetic data eliminates im-
mediate privacy risks. Real-world deployment,
however, will require robust informed consent
mechanisms and ongoing bias assessment to en-
sure equitable recruitment.

While FedCliMask currently focuses on English
clinical trial eligibility texts, future work could in-
tegrate multilingual modeling approaches such as
those developed in the MultiIndicMT shared task
(Das et al.), enabling cross-lingual adaptability to
diverse patient populations. The evaluation is based
solely on synthetic data generated by Synthea, and
generalization to clinical settings requires IRB-
approved validation across more diverse institu-
tions, as the current sample is limited to six pri-
marily US-based hospitals. The implementation
includes semantic masking and context analysis,
while the full federated pipeline is still under devel-
opment. Medical specialty patterns are manually
defined but could benefit from automated ontology

integration. Privacy assessment relies on text-based
measures rather than formal differential privacy.
The proposed context-aware aggregation requires
validation through full federated experiments to
establish benefits over standard approaches and to
address heterogeneity in hardware and software
typical of real deployments.
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Abstract
We explore and evaluate the effect of differ-
ent language-independent stemmers in informa-
tion retrieval (IR) tasks with Indian languages
such as Hindi, Gujarati, and English. The is-
sue was examined from two points of view.
Does language-independent stemmer improve
retrieval effectiveness in Indian languages IR?
Which language-independent stemmer is the
most suitable for different Indian languages? It
is observed that stemming enhances retrieval
efficiency in different Indian languages com-
pared to the no stemming approaches. Among
the different stemmers experimented with, the
co-occurrence-based stemmer (SNS) performs
the best and improves a mean average precision
(MAP) score by 2.98% in Hindi and 20.78%
in Gujarati languages, respectively, while the
graph-based stemmer (GRAS) performs the
best and improves a MAP score by 5.83% in
English.

1 Introduction

In a morphologically rich language, many words
go through different kinds of morphological inflec-
tions. Different stemmers have been proposed and
evaluated to deal with morphological inflections.
Stemming is a mechanism that transforms morpho-
logical variants of a word to their root form by strip-
ping suffixes and prefixes from the inflected word.
For example, ‘education’, ‘educating’, ‘educated’,
and ‘educational’ map to their root word ‘educate’.
In IR systems, stemming has two benefits. One,
stemming reduces index size significantly by con-
flating several terms. Two, it improves recall by re-
trieving a large number of potentially relevant doc-
uments Hull (1996). In the current state-of-the-art,
stemmers are broadly categorized into two types.
One is a rule-based stemmer (language-dependent),
and another is a statistical stemmer (language-
independent). In a language with good linguis-
tic resources, such as English, many rule-based

stemming algorithms ( Porter (1980) and Lovins
(1968)) have been proposed and evaluated. The
drawback of rule-based stemmers is that they are
language-specific, i.e. a particular stemmer could
not be used in other languages. However, statis-
tical stemmers are more beneficial in a language
with unknown grammar rules and less availabil-
ity of linguistic resources. The main benefit of a
language-independent stemmer is that it does not
require any linguistic knowledge to implement it.

Different rule-based stemmers are proposed
and evaluated in different evaluation forums (e.g.,
CLEF1, TREC2, NTCIR3 and FIRE4 evaluation
campaign) for European, Asian and South Asian
languages. In addition to these evaluation cam-
paigns, different stemmers are proposed and eval-
uated in European and Asian languages. Savoy
(2006) proposed different rule-based light stem-
mers for European languages (French, Portuguese,
German, and Hungarian). They observed that stem-
ming improves retrieval performance in the IR do-
main. Dolamic and Savoy (2010) proposed a light
(inflectional) and aggressive (derivational) stemmer
in Bengali, Hindi and Marathi. They removed in-
flectional and derivational suffixes from nouns and
adjectives that frequently occurred. They observed
that the stemmer improves retrieval performance in
the IR domain.

In recent years, different language independent
stemmers (Goldsmith (2001), Xu and Croft (1998),
Paik et al. (2011a), Paik et al. (2011b)) have been
proposed and evaluated for European and few
Asian languages. (Majumder et al. (2007), Paik
et al. (2011b) and Paik et al. (2011a)) investigated
the effect of language-independent stemming tech-
niques in Indian (Bengali and Marathi) and Euro-

1http://www.clef-initiative.eu/
2https://trec.nist.gov/
3http://research.nii.ac.jp/ntcir/
4http://fire.irsi.res.in/
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pean (Hungarian, French, Czech and Bulgarian)
languages IR. They observed that the performance
of language-independent stemmers was compara-
ble to that of rule-based stemmers in different In-
dian and European languages. This study explores
and evaluates the effect of language-independent
stemmers in Indian languages IR.

We primarily explore the following research
questions (RQs).
RQ1: Does language-independent stemmer
improve retrieval performance in different Indian
languages IR? If yes, to what extent?
RQ2: Which language-independent stemmer is
the most suitable for different Indian languages?
Whether to use Yet another suffix stripper (YASS)
or fast-corpus-based (FCB) or co-occurrence-based
(SNS) or graph-based (GRAS), or Trunc-n-based
indexing?

Hence, we evaluated different language-
independent stemming strategies in Indian lan-
guages IR. Moreover, we suggest the best stem-
ming technique in the IR domain. The contribu-
tions of this article can be summarised as follows.

1. We investigated different language-
independent stemming strategies such
as FCB, SNS, GRAS, YASS, or Trunc-
n-based indexing in Indian languages
IR.

2. The effectiveness of different language-
independent stemming strategies is evaluated
and compared with no stemming approaches
in the IR domain.

3. Analysis has been done for different language-
independent stemming strategies and IR mod-
els and suggests the best stemming strategy
and IR model for different Indian languages.

The rest of the article is organized as follows.
Section 2 reviews the state-of-the-art techniques
related to stemming methods in the text analysis
domain. Section 3 describes the algorithm for im-
plementing language-independent stemmers in In-
dian languages. Different retrieval models are used
in the experimentation is described in section 4.
The statistic of the test collection is presented in
Section 5. Evaluation result and their analysis is
presented in section 6. Finally, we conclude with
directions for future work in section 7.

2 Related Work

Porter (1980) and Lovins (1968) are the two most
popular rule-based stemmers built in English. In
the Porter stemmer, the suffixes are truncated se-
quentially. Similarly, the Lovin stemmer removes
suffixes by implementing 35 rules. They looked at
294 suffixes, and the longest suffix was eliminated
at first. The Dawson (1974) stemmer worked like
the Lovin stemmer, but comprised a larger num-
ber of suffixes, that is, 1200. The Dawson stem-
mer is built to remove errors in the Lovin stemmer.
These rule-based stemmers improve retrieval per-
formance in the IR domain. Hull (1996) observed
that the stemmer performs moderately in English
and does not produce statistically significant results.
Many rule-based stemmers have been proposed and
evaluated in different low-resource languages. We
outline a few stemming techniques in the follow-
ing.

Recently, there has been a substantial growth
of Non-English languages on the Web. These
Non-English languages require an efficient pre-
processing technique to improve the performance
of an IR system. Hence, the researchers organized
different evaluation campaigns, proposed different
stemming techniques, and evaluated their effective-
ness in the IR domain. In the CLEF evaluation
campaign, Peters (2008) proposed different stem-
mers for European languages. Similarly, in the
NTCIR evaluation campaign, different stemmers
are presented and evaluated in Japanese, Korean,
and Chinese languages. FIRE 5 organized differ-
ent shared tasks and proposed different stemming
techniques for South Asian languages. The perfor-
mance of these stemmers is evaluated in the mono-
lingual and cross-lingual retrieval domain. Sahu
et al. (2023) evaluated the effect of the stopword
and stemming technique in Urdu IR. They found
that the stopword removal and stemming technique
improve the performance of an IR system. Sahu
and Pal (2023) built a text collection for Sanskrit
and evaluated different stemming strategies in the
text analysis domain. They observed that different
pre-processing strategies improve the performance
of the Sanskrit NLP and IR domain.

Since a rule-based stemmer could not be used in
different languages, various researchers presented
language-independent stemmers ( Xu and Croft
(1998), Goldsmith (2001), Majumder et al. (2007))
and evaluated their effectiveness in different lan-

5forum for information retrieval evaluation
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guages. They showed that language-independent
stemmers offer comparable performance to rule-
based stemmers in the IR domain. Mayfield and
McNamee (2003) proposed an n-gram-based stem-
ming technique in European languages. They ob-
served that 4-gram provides the best performance
in European languages. The major drawback of
the n-gram approach is the size of the inverted in-
dex. This approach substantially expands the index
size, which increases query processing time. The
4-gram model takes ten times more processing time
than word-based retrieval. Buckley et al. (1995) ob-
served that without knowledge of a language, an ex-
cellent stemmer could be constructed by analyzing
the lexicon and most common suffixes. They pro-
posed a stemmer in the Spanish text by observing
the lexicographical similarities between the words.

Based on the above findings, we conclude that
stemming improves retrieval effectiveness in Eu-
ropean, Asian, and South Asian languages. How-
ever, the effect of language-independent stemming
strategies in Indian languages has been less ex-
plored. This work explores the effect of language-
independent stemming strategies in low-resource
Indian languages IR. These findings may be helpful
for other languages rich in morphology. Our evalu-
ation strategy is in line with the earlier work of Ma-
jumder et al. (2007), Paik and Parui (2011), Paik
et al. (2011b), Paik et al. (2011a), Silvello et al.
(2018). In particular, we evaluate the follow-
ing language-independent stemmers in Indian lan-
guages.

3 Different stemming approaches

In recent years, language-independent stemmers
have performed similarly to rule-based stemmers
in different languages. The primary benefit of
a language-independent stemmer is that it does
not require any linguistic knowledge to imple-
ment. Hence, we evaluated the following language-
independent stemmers in low-resource languages
from an IR perspective.

3.1 Yet Another Suffix Stripper (YASS)

Majumder et al. (2007) proposed a clustering-
based stemmer for morphologically rich low-
resource languages. We implemented the stemming
technique using the algorithm 1.

Algorithm 1 Yet another suffix stripper

1. Word (W )← list of tokens (w1, w2, ..., wn),

2. Word (W’)← list of stemmed words

3. They define four types of string distance mea-
sure D1, D2, D3 and D4 for clustering the lexi-
con

4. We use D3 as string distance measure for clus-
tering the lexicon because it yields the least
significant difference in retrieval performance
at different threshold values

5. For given two words in the lexicon X and Y,
if ‘x’ is the maximum length of X and Y and
‘y’ is an index of the first mismatch between
X and Y, then D3 is defined as : D3(X,Y ) =
x−y+1

y ∗∑x
i=y

1
2i−x

6. To identify morphologically similar terms, a
complete linkage clustering algorithm is used

7. During clustering, we experimented with dif-
ferent threshold values (θ), and the best MAP
score obtained at a particular threshold value
is noted down in Section 6

8. Compared the MAP score of D3 based stem-
ming approach with baseline (no stemming
approach).

3.2 Fast corpus-based Stemmer (FCB)

Paik and Parui (2011) proposed a statistical stem-
mer that uses the suffix frequency to produce a root
word. We implement the stemming strategy using
the algorithm 2.
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Algorithm 2 Fast corpus-based stemmer

1. Word (W )← list of tokens (w1, w2, ..., wn),

2. Word (W’)← list of stemmed words

3. Based on the common prefix and potential
suffix information, they categorize the words
into the k-equivalence class

4. If the suffix frequency exceeds a cut-off
threshold (α), it is referred to as a potential
suffix (β)

5. The longest common prefix of each equiva-
lence class is treated as a possible stem or root
word for the class

6. The ratio of the size of the potential class to
the size of the generated class determines the
strength of the prefix

7. If the evaluated ratio exceeds a specified
threshold δ, the longest prefix of the class is
treated as a valid stem. Otherwise, a better
stem is found by applying the above process
iteratively

8. Compared the MAP score of FCB V-1 based
stemming approach with baseline (no stem-
ming technique).

Paik and Parui (2011) shows that k1=3 and k2=2
provide best retrieval performance in the Indian lan-
guages IR. Hence, in this study, we experimented
with different values of k1, k2 and δ. Our evaluation
technique aligns with the previous work of Silvello
et al. (2018).

3.3 Co-occurrence based stemmer (SNS)

Paik et al. (2011b) proposed a statistical stemmer
based on the co-occurrence statistics in the cor-
pus. We implemented the SNS stemmer using the
algorithm 3.

Algorithm 3 A co-occurrence based stemmer

1. Word (W )← list of tokens (w1, w2, ..., wn),

2. Word (W’)← list of stemmed words

3. Determine the co-occurrence strength of word
pairs

4. Using neighbours re-calculate the co-
occurrence strength

5. The words are grouped according to
their newly determined co-occurrence
strength. The co-occurrence of
two words, a and b, is defined as:
CO(a, b) =

∑
d∈C min(tf a,d, tfb,d)

where d represents document and tfp,d the term
frequency of term p in d

6. The words are now mapped into a weighted
undirected graph, in which each word says w1
and w2 are represented as a node, and they are
connected by an edge (w1, w2) with weight
CO( w1, w2) if it satisfies at least one of these
two conditions:

(i) CO(w1, w2) > 0; and
(ii) Length of common prefix between w1 and
w2 is at least L1, (Here L1=3) along with the
suffixes which are suffix of more than one
co-occurring words after removal of longest
common prefix larger than L2 (Here L2 > 5)

7. If both the words co-occur with other
words, then we re-calculate the co-occurrence
strength by the following equation

RCO(a, b) = CO(a, b) +∑
c∈Na,b

min(CO(a, c), CO(c, b)) ∗ 0.5
Where Na,b denotes the set of common neigh-
bours of a and b

8. The strong edges will be kept, while the weak
edges will be removed. The stem is the longest
prefix among the connected components of
the graph

9. Compared the MAP score of the co-
occurrence-based stemming approach with
the baseline (no stemming approach).
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3.4 Graph based (GRAS) stemmer

Paik et al. (2011a) presented a statistical stemmer
specifically for highly inflectional languages. The
GRAS stemmer is used in different text analysis
tasks because of less computational effort, effec-
tiveness in retrieval, and language-independent na-
ture. We implemented the GRAS stemmer using
the algorithm 4.

Algorithm 4 GRAS Stemmer

1. Word (W )← list of tokens (w1, w2, ..., wn),

2. Word (W’)← list of stemmed words

3. GRAS identifies the word partitions sharing
using an L-long prefix. Where L is the average
word length of the language

4. We identify and save the η-frequent suffix pair-
ings for each common prefix. A large value
of η causes the omission of many valid suf-
fix pairs; hence a low η value is safer. Here,
we use η =1 to avoid omission of valid suffix
pairs

5. A graph is constructed, where each node rep-
resents a word, and each edge represents the
morphological link between two words

6. The words are divided into many equivalence
groups. The morphological relationship be-
tween word and pivot is determined by the
cohesion value (δ)

7. If a large number of edges are connected to
a node, then it is treated as a pivot node or
stems

8. Compared the MAP score of the graph-based
stemming approach with the baseline (no
stemming technique).

We also evaluate language-independent index-
ing strategies, that is, Trunc-n (truncation of the
first n letters). The trunc-4 truncates the first four
letters (e.g., ‘educated’ provides ‘educ’). The best
MAP score obtained by stemming techniques for
different languages with different parameters and
‘n’ values is shown in Table 1.

Table 1: Different parameters used for stemming
method evaluation

YASS FCB V-1 SNS GRAS Trunc-n

Hindi θ = 1.5
k1=4,
k2=2,
δ = 0.7

L1=4
L2=6

L=6
α = 4

5

Gujarati θ = 0.6
k1=4,
k2=2,
δ = 0.6

L1=5,
L2=7

L=7
α = 4

5

English θ = 1.55
k1=7,
k2=2,
δ = 0.6

L1=3
L2=5

L=8
α = 6

6

where

θ, α, δ : Threshold taken by different stemmers
k1 : Initial prefix length
k2 : Final prefix length
L : Average word length of the language
L1, L2 : Length of common prefix

4 Information Retrieval Framework

We used different document weighting and rank-
ing models supported by Terrier 6 retrieval system
to evaluate the effectiveness of stemming meth-
ods. Terrier supports various IR models, such as
probabilistic, DFR-based, and language models.
This experiment used probabilistic retrieval models
(BM25 and TF-IDF), DFR-based retrieval mod-
els (BB2, InL2, IFB2), and the Hiemstra language
model.

5 Test Collection

We experimented with different Indian language
test collections. The test collections are part of
the FIRE 7 evaluation campaign. The collections
mainly consist of news articles extracted from dif-
ferent archives. Table 2 shows the statistics of
different test collections. In the collections, both
topics and documents use the UTF-8 encoding sys-
tem. This experiment considers only the query’s
title (T) section.

Table 2: Shows the statistics of the text collection

Collection Size Number of
documents

Number of
queries

Hindi 1.3 GB 331608 50
Gujarati 2.2 GB 313163 50
English 1.1 GB 392577 50

6http://terrier.org/
7http://fire.irsi.res.in/fire/static/data
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Table 3: Retrieval results in Hindi 2011 text collection (50 T queries)

↓ Parameter — R.M.→ BM25 TF-IDF BB2 InL2 IFB2 LM
Base line MAP 0.4444 0.4455 0.3746 0.3909 0.3724 0.405

Rel.Ret. 1683 1679 1659 1654 1664 1667
YASS MAP 0.442 0.446 0.3773 0.3785 0.3675 0.3989

Rel.Ret. 1764 1762 1729 1735 1731 1730
FCB V-1 MAP 0.4476 0.4488 0.3767 0.3939 0.3746 0.4081

Rel.Ret. 1725 1720 1703 1700 1708 1708
SNS MAP 0.4483 0.4588 0.3798 0.3945 0.3808 0.4092

Rel.Ret. 1745 1742 1732 1724 1728 1712
GRAS MAP 0.4495 0.4505 0.3692 0.3815 0.3661 0.3995

Rel.Ret. 1759 1755 1735 1741 1740 1736
Trunc-n MAP 0.4543 0.4561 0.376 0.3879 0.3729 0.409

Rel.Ret. 1749 1744 1733 1725 1735 1706

6 Evaluation

In the first set of experiments, we evaluate the ef-
fect of different language-independent stemming
techniques in Indian languages IR. In Hindi, MAP,
and the relevant documents retrieved in the base-
line and different language-independent stemming
methods are shown in Table 3. We conduct sim-
ilar experiments for the other Indian languages:
Gujarati and English, as shown in Table 4, and
5 respectively. It is observed that different stem-
ming techniques improve MAP scores in Indian
languages IR. The best performance by a stem-
ming approach is shown in boldface. The SNS
stemmer provides the best MAP score in Hindi and
Gujarati. However, the GRAS stemmer provides
the best MAP score in English. The trunc-n-based
indexing strategy offers similar performance to the
SNS stemmer in Hindi and Gujarati. Moreover, the
GRAS stemmer provides comparable performance
in English. During the evaluation of different re-
trieval models, we observed that the probabilistic
retrieval models (BM25 and TF-IDF) give the best
retrieval performance in Hindi, Gujarati and En-
glish. The DFR-based retrieval models (BB2, InL2,
and IFB2) exhibit poor performance in Indian lan-
guages IR.

We perform a query-by-query analysis to get
more insight into the effect of stemming in Indian
languages. Here, we consider the best retrieval
models and stemming approaches for Indian lan-
guages. We consider the SNS stemmer for Hindi
and Gujarati languages and the GRAS stemmer
for English. In closer observation, we found that
stemming improves performance for 35 topics in
Hindi and reduces performance for 15 topics. The
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Figure 1: A query by query evaluation in Hindi by SNS
stemmer in TF-IDF model
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Figure 2: A query by query evaluation in Gujarati by
SNS stemmer in InL2 model

performance of each query is shown in Fig. 1. Like-
wise, in Gujarati and English, stemming improves
performance in 38, and 32 topics, respectively, and
reduces performance in 8, and 12 topics. The per-
centage changes in performance due to stemming
at the per-query level are shown in Fig 2, and 3.
From query-by-query analysis, we also observed
that the stemming performs better in Gujarati, and
English than in Hindi.

During the experimentation of different
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Table 4: Retrieval results in Gujarati 2011 text collection (50 T queries)

↓ Parameter — R.M.→ BM25 TF-IDF BB2 InL2 IFB2 LM
Base line MAP 0.24 0.2399 0.2041 0.1992 0.2021 0.2095

Rel.Ret. 1315 1308 1278 1270 1274 1289
YASS MAP 0.2464 0.2463 0.2116 0.2057 0.2077 0.2137

Rel.Ret. 1320 1311 1280 1279 1276 1287
FCB V-1 MAP 0.2423 0.2404 0.2056 0.1998 0.2031 0.2105

Rel.Ret. 1337 1331 1292 1290 1296 1313
SNS MAP 0.2647 0.2643 0.2385 0.2406 0.2342 0.2335

Rel.Ret. 1359 1357 1343 1325 1336 1338
GRAS MAP 0.2443 0.2439 0.2125 0.2167 0.2105 0.2184

Rel.Ret. 1349 1342 1321 1305 1314 1329
Trunc-n MAP 0.2579 0.2578 0.2282 0.2331 0.2246 0.2282

Rel.Ret. 1360 1356 1342 1330 1333 1341

Table 5: Retrieval results in English 2011 text collection (50 T queries)

↓ Parameter — R.M.→ BM25 TF-IDF BB2 InL2 IFB2 LM
Base line MAP 0.2975 0.2981 0.2686 0.2633 0.2615 0.2543

Rel.Ret. 2236 2232 2210 2204 2210 2182
YASS MAP 0.3122 0.3133 0.2837 0.2769 0.2745 0.2652

Rel.Ret. 2337 2337 2338 2312 2338 2278
FCB V-1 MAP 0.3012 0.302 0.2723 0.2662 0.2651 0.257

Rel.Ret. 2278 2277 2268 2249 2269 2221
SNS MAP 0.3068 0.3065 0.2753 0.2709 0.2734 0.2611

Rel.Ret. 2278 2279 2250 2240 2249 2224
GRAS MAP 0.3145 0.3155 0.2849 0.2796 0.2763 0.2661

Rel.Ret. 2310 2311 2294 2280 2290 2248
Trunc-n MAP 0.3155 0.3164 0.2858 0.2818 0.2772 0.267

Rel.Ret. 2309 2310 2295 2277 2290 2247

language-independent stemmers (shown in
Table 3, 4, and 5), we observe that stemming
improves retrieval performance in different Indian
languages IR. On closer observation, we found
that the effect of stemming varies in different
Indian languages. The SNS stemmer performs
best and improves a MAP score of 2.98% in
Hindi, 20.78% in Gujarati IR. Similarly, the GRAS
stemmer performs best and improves a MAP score
of 5.83% in English IR. Among the different stem-
ming techniques experimented with, the GRAS
stemmer required less computational effort and
performed best in different Indian languages. We
conclude that the language-independent stemmer
improves retrieval performance in different Indian
languages IR. This observation is similar to the
findings in other Indian and European languages
by (Majumder et al., 2007) and (Paik and Parui,
2011).

7 Conclusion

Stemming is an essential preprocessing step in
the IR system. The above experiments show that
stemming improves retrieval performance in dif-
ferent Indian languages compared to the baseline
approach (no stemming). Different stemming tech-
niques perform best in Gujarati and English lan-
guages. However, the stemming technique pro-
vides a relatively poor performance in Hindi. The
SNS stemmer performs best in Hindi and Gujarati,
whereas the GRAS stemmer performs best in En-
glish. The trunc-n-based indexing strategy per-
forms similarly to the best-stemming approaches
in different Indian languages. During the evalua-
tion of the retrieval models, we observe that the
probabilistic retrieval models (BM25 and TF-IDF)
perform best in Hindi, Gujarati and English lan-
guages. The DFR-based retrieval models provide
poor performance in different Indian languages.
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Figure 3: A query by query evaluation in English by GRAS stemmer in TF-IDF model

Although the effect of stemming is thoroughly in-
vestigated in the Indo-European language family,
it is less explored in the Dravidian language family.
India has significant native speakers in Dravidian
languages such as Telugu, Tamil, Kannada, and
Malayalam. So, it will be interesting to explore
the effect of different stemming techniques in the
Dravidian language family in the future. Moreover,
one can also study the impact of different machine
learning-based and deep learning-based stemming
techniques in different Indian and European lan-
guages IR.
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Abstract

Automated text evaluation has long been a
central issue in Natural Language Processing
(NLP). Recently, the field has shifted toward
using Large Language Models (LLMs) as eval-
uators—a trend known as the LLM-as-a-Judge
paradigm. While promising and easily adapt-
able across tasks, this approach has seen lim-
ited exploration in multilingual contexts. Ex-
isting multilingual studies often rely on pro-
prietary models or require extensive training
data for fine-tuning, raising concerns about
cost, time, and efficiency. In this paper, we
propose Checklist Engineering based LLM-as-
a-Judge (CE-Judge), a training-free framework
that uses checklist intuition for multilingual
evaluation with an open-source model. Ex-
periments across multiple languages and three
benchmark datasets, under both pointwise and
pairwise settings, show that our method gen-
erally surpasses the baselines and performs on
par with the GPT-4o model.1

1 Introduction

Evaluation is a fundamental task in Natural Lan-
guage Processing (NLP) for measuring a model’s
performance on specific tasks. Automating this pro-
cess offers significant benefits and has been a focus
since the early stages of NLP research. Moreover,
beyond creating evaluators proficient in English, it
is crucial to develop their evaluation capabilities in
parallel for other languages. Traditional evaluation
metrics (Papineni et al., 2002) have some draw-
backs, such as the necessity of reference answers
and a lack of interpretability, which has led to a
paradigm shift toward developing Large Language
Model (LLM) evaluators, referred to as LLM-as-
a-Judge (Gu et al., 2025; Li et al., 2024). These
models are also capable of evaluating long-form
LLM generations in either a pointwise or pairwise

1The code implementation is accessible at https://
github.com/mghiasvand1/CE-Judge.

format—meaning grading a single response or se-
lecting the better response out of two, respectively.
Some advantages of this approach include high
adaptability (Bavaresco et al.) and interpretability,
in contrast to traditional metrics, as well as low
inference time and the fact that the evaluated LLM
does not need to be active during evaluation (i.e.,
it does not need to generate additional responses),
both in contrast to more complex LLM-based eval-
uation frameworks such as Kim et al. (2025).

Despite significant efforts to make LLMs mul-
tilingual (Qin et al., 2024), extending LLM-as-a-
Judge to multilingual configurations has received
relatively little attention. Although current mul-
tilingual LLM judges (Pombal et al., 2025; Dod-
dapaneni et al., 2025) perform well, their main
limitation is their reliance on proprietary models or
the need for a large amount of real or synthetic data
to fine-tune a capable evaluator, raising concerns
regarding cost, time, and efficiency.

Meanwhile, checklists as interpretable evalua-
tion tools (Doddapaneni et al., 2024; Cook et al.)
are gaining traction for their transparency and struc-
ture, although their application to multilingual eval-
uation remains relatively underexplored, and most
of them also lack robust support for pairwise evalu-
ation. For instance, (Wei et al., 2025) suggests to
handle the pairwise setting by selecting the higher-
graded response based on independent pointwise
scores, which fails to capture the nuanced compar-
ative superiority between responses. In this work,
we present CE-Judge, an LLM-as-a-Judge frame-
work that builds and uses engineered checklists for
evaluation. It supports multilingual evaluation and
both pointwise and pairwise modes. Our pipeline
follows a three-stage process: the first two stages
aim to generate broad and dynamic checklist items,
and the third applies them for judgment. Notably,
by using a lightweight, open-source LLM without
any fine-tuning, our method demonstrates strong
performance across different evaluation scenarios.
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Figure 1: CE-Judge framework illustration.

2 Related Works

2.1 LLM-as-a-Judge
We begin with Zheng et al. (2023), which uses the
generative capabilities of LLMs to act as evaluators.
These can be grouped into two types: prompt-based
and fine-tuned evaluators. For instance, for the for-
mer, Li et al. (2025) adopts a "decompose and ag-
gregate" strategy, identifying weighted evaluation
aspects and combining their scores to assess candi-
date responses. For the latter, which has recently
gained momentum, Kim et al. (2024) is a represen-
tative work that trains evaluators using large-scale
synthetic data in both pointwise and pairwise se-
tups, incorporating a weight-merging technique. In
multilingual settings, consistency remains limited,
as noted by Fu and Liu (2025). Among the few
multilingual methods, Doddapaneni et al. (2025)
translates between languages to anchor outputs in
English for consistent scoring, while Pombal et al.
(2025) follows Kim et al. (2024) to generate mul-
tilingual evaluation data and fine-tune models ac-
cordingly. Chang et al. (2025) investigates sev-
eral aspects of multilingual LLM-based evaluators,
including reference-free prompting, the effect of
language resource availability, and the impact of
fine-tuning. Thellmann et al. (2024) creates various
multilingual evaluation benchmarks while explor-
ing the impact of translation and evaluating LLMs.

2.2 Checklist-based Evaluators
Several works have explored checklist-based eval-
uation. RocketEval (Wei et al., 2025) generates
binary checklist items, then reweights them to pro-
duce final scores. TICK (Cook et al.) uses instruc-
tions to generate checklists, which LLMs use for
self-improvement. CheckEval (Lee et al., 2024)
defines high-level criteria, then decomposes, diver-
sifies, and filters them to form evaluation checklists.

FBI (Doddapaneni et al., 2024) employs check-
lists for meta-evaluation to assess evaluator LLMs.
Unlike these works, our framework introduces a
novel architecture and, notably: (1) extends to mul-
tilingual settings; (2) supports pairwise evaluation
beyond pointwise framing; and (3) uniquely incor-
porates broadness, descriptiveness, dynamism, and
answer-mentioning in a unified manner.

3 CE-Judge Pipeline

We present our training-free, efficient evaluation
framework (Figure 1), which consists of three steps.
The pipeline aims, for each case, to first construct
an engineered checklist, followed by utilizing this
checklist to enhance the decisions of the evalua-
tor LLM. All LLM generations are asked to be
in English to leverage its strong performance in
the language (Mondshine et al., 2025). Our frame-
work, within its architecture, targets the develop-
ment of a level-by-level multilingual understanding
of input-output pair evaluation, integrating input-
output linkages to enable dynamism while consid-
ering the breadth of the checklist, allowing the eval-
uator LLM to identify relevant criteria within its
context and make judgments based on its decisions.

3.1 Concepts Generation

Considering an instruction as input—replaced
by the source text in the translation evaluation
task—and a corresponding response, we pass each
separately to the LLM along with the prompt in
4.4.1 for concept generation. This generation aims
to produce an abstract-level text that represents the
skeleton of the corresponding text.

3.2 Checklist Generation

Next, we translate both the instruction and response
texts into English. The reason for the translation is

191



Model MMEval (Reasoning) Avg.

en de fr es ru zh bn ja th te sw

Proprietary Models
GPT-4o 0.79 0.79 0.78 0.79 0.76 0.78 0.84 0.80 0.79 0.87 0.80 0.79

Medium (7B parameters)
Qwen2.5-7B-Instruct 0.67 0.65 0.63 0.65 0.66 0.71 0.60 0.62 0.66 0.67 0.61 0.64

Hercule 7B 0.50 0.56 0.55 0.55 0.53 0.57 0.57 0.54 0.52 0.54 0.51 0.54

M-Prometheus 7B 0.60 0.62 0.63 0.60 0.62 0.69 0.61 0.57 0.60 0.65 0.72 0.62

Large (14B+ parameters)
Prometheus 2 8x7B 0.54 0.65 0.58 0.58 0.58 0.64 0.57 0.56 0.60 0.60 0.63 0.59

M-Prometheus 14B 0.64 0.70 0.70 0.69 0.69 0.72 0.70 0.70 0.68 0.72 0.76 0.70

Ours (7B parameters)
CE-Judge 0.77 0.81 0.77 0.72 0.78 0.77 0.75 0.84 0.78 0.76 0.78 0.77

Table 1: Accuracy on MMEval (Reasoning) broken down by language.

to ensure that either the instruction or the response
is in the same language as the previously gener-
ated concepts. Using the translated response, the
concepts generated from the instruction (from the
previous step), and the prompt in 4.4.2, we generate
a checklist following the “response to instruction”
direction. Following this direction means formulat-
ing questions about criteria that are not specified
in the instruction’s concepts but are suggested by
the response. Likewise, we use the translated in-
struction and the response’s concepts to generate a
checklist for the “instruction to response” direction,
which points to the evaluation criteria suggested
by the instruction. This dual approach aims to
blind each side once, broadening checklist cover-
age and enhancing awareness of both sides’ con-
tent, rather than relying on a standard checklist
with limited, predefined criteria. In this step, we
also avoid prejudgment and ask the model to gen-
erate more descriptive items, going beyond simple
binary questions.

3.3 Judgment

The final step is judgment. First, the two checklists
from the previous steps are concatenated into a uni-
fied checklist. It’s important to note that the entire
process described so far is for pointwise evaluation.
For pairwise evaluation, the process remains the
same, except that the previous two steps are applied
to two candidate responses instead of one. As a
result, after concatenation, we obtain two check-
lists, one for each candidate. In this step, we pro-

vide the untranslated versions of the instruction
and response(s), along with the checklist(s) and the
prompt template in 4.4.3. We used each instruction
or response in its original language to avoid the
negative effects of translation biases, because this
step—unlike the previous step, which was an in-
termediate step for generating checklist items—is
the final step, and having access to accurate real
data is crucial. The LLM is then asked to answer a
subset of key checklist items and generate evalua-
tion feedback. Unlike prior works where checklist
items are marked with ticks, crosses, or weighted
scores, here the model exercises discretion in its
judgments, and the final evaluation is left to the
model’s decision.

4 Experiments

4.1 Experimental Setup

In this work, we used the Qwen2.5-7B-Instruct
model (Yang et al., 2024) as the backbone LLM,
accessed freely via the Novita API2. The hyperpa-
rameters “temperature”, “top_p”, and “seed” were
set to 0, 1, and 42, respectively, to ensure re-
producibility. For translation, we employed the
free Google Translate API available through the
deep-translator Python package3.

2https://novita.ai/
3https://deep-translator.readthedocs.io/en/

latest/README.html
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Model MMEval (Chat) Avg.

en de fr es ca ru zh

Proprietary Models
GPT-4o 0.72 0.70 0.73 0.64 0.75 0.78 0.80 0.73

Medium (7B parameters)
Qwen2.5-7B-Instruct 0.69 0.75 0.71 0.78 0.72 0.66 0.85 0.72

Hercule 7B 0.62 0.71 0.61 0.55 0.62 0.64 0.65 0.62

M-Prometheus 7B 0.68 0.65 0.66 0.59 0.62 0.56 0.58 0.62

Large (14B+ parameters)
Prometheus 2 8x7B 0.64 0.68 0.72 0.65 0.77 0.64 0.80 0.70

M-Prometheus 14B 0.61 0.72 0.64 0.64 0.57 0.71 0.73 0.66

Ours (7B parameters)
CE-Judge 0.69 0.60 0.73 0.77 0.82 0.77 0.87 0.75

Table 2: Accuracy on MMEval (Chat) broken down by language.

4.2 Datasets

Since our method is training-free, all datasets
are used solely for testing. We evaluated our
framework in both pointwise and pairwise settings.
For pointwise evaluation, we used the student-
annotated subset of the LitEval (Zhang et al., 2024),
which contains source–target literary translations
for four language pairs with human ratings from
1 to 7. For pairwise evaluation, we employed the
reasoning and chat subsets of the MM-Eval dataset
(Son et al., 2024), covering 11 and 7 languages, re-
spectively. Each input consists of a reasoning ques-
tion or chat history, with the task being to choose
the better of two candidate responses. The rea-
son for utilizing the LitEval and MM-Eval datasets
is that the former is one of the only multilingual
pointwise evaluation datasets, and the latter is more
robust than the well-known M-RewardBench mul-
tilingual benchmark (Gureja et al., 2025).

4.3 Evaluation Metrics

To evaluate our CE-Judge framework in pointwise
mode, we measured performance using Kendall’s
Tau correlation coefficient (Kendall, 1938), which
assesses agreement between our model’s rankings
and human judgments. For the pairwise setting, we
used accuracy—defined as the number of correct
predictions over the total number of samples.

4.4 Prompt Templates

In this section, we list all the prompts used within
our framework.

4.4.1 Concepts Generation Prompts
The prompts for this step, across all three datasets,
are shown in figure 2, and the “[INPUT]” place-
holder must be replaced with the text from which
we want to extract concepts, such as an instruction,
response, etc.

4.4.2 Checklist Generation Prompts
Figures 3, 4, and 5 show checklist generation
prompts for Liteval, MM-Eval (Reasoning), and
MM-Eval (Chat), respectively. Each figure consists
of two prompts indicating the checklist creation di-
rection. Note that the “[CONCEPTS]” placeholder
must be replaced with the concepts generated in
the previous step.

4.4.3 Judgment Prompts
We only use system prompts from this section,
which are shown in figure 6: one for the Liteval
dataset and another for the MM-Eval datasets. Fig-
ure 7 presents the prompt template for the Liteval
dataset, while figure 8 shows the prompts for the
two MM-Eval datasets. In these prompts, the place-
holders clearly indicate what should replace them.
Importantly, to demonstrate the flexibility of our
framework, we also use a scoring guide for the
pointwise assessment to help our judge LLM per-
form a more accurate evaluation.

4.5 Baselines

We compare our framework with three types of
models. The first includes proprietary models like
GPT-4o. The second is Qwen2.5-7B-Instruct,
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Model LitEval Avg.

de→en en→de en→zh de→zh

Proprietary Models
GPT-4o 0.26 0.48 0.41 0.40 0.38

Medium (7B parameters)
Qwen2.5-7B-Instruct 0.12 0.32 0.17 0.07 0.17

Hercule 7B 0.26 0.33 0.38 0.42 0.34

M-Prometheus 7B 0.20 0.53 0.46 0.54 0.43

Large (14B+ parameters)
Prometheus 2 8x7B 0.24 0.36 0.25 0.40 0.31

M-Prometheus 14B 0.29 0.57 0.48 0.56 0.47

Ours (7B parameters)
CE-Judge 0.28 0.46 0.49 0.30 0.38

Table 3: Kendall correlation on LitEval broken down by language pair.

a strong multilingual open-source LLM that is
instruction-tuned from a pretrained model with-
out further fine-tuning. The third category consists
of models explicitly trained as evaluators, such as
Prometheus 2 (Kim et al., 2024), Hercule (Dod-
dapaneni et al., 2025), and M-Prometheus (Pombal
et al., 2025), as discussed in Subsection 2.1.

5 Results

We evaluate CE-Judge on three multilingual evalu-
ation datasets—reasoning, chat, and literary trans-
lation—against proprietary and open-source base-
lines, including the fine-tuned M-Prometheus. In
all three tables, languages are shown by their codes,
and, more importantly, the results for the other mod-
els are taken from Pombal et al. (2025).

• In the reasoning evaluation task (Table 1), CE-
Judge achieves an average accuracy of 0.77,
outperforming all open-source baselines in all
languages, including large fine-tuned evalua-
tors such as M-Prometheus 14B. Despite be-
ing training-free and based on a 7B-parameter
model, it performs competitively with GPT-
4o (which has an average accuracy of 0.79)
and maintains strong performance across both
high- and low-resource languages.

• In the chat evaluation (Table 2), CE-Judge
achieves an average accuracy of 0.75, surpass-
ing GPT-4o (with the average of 0.73) and sig-
nificantly outperforming the M-Prometheus
models across nearly all languages. This re-

sult highlights the robustness of our checklist-
driven approach in conversational scenarios
that require nuanced, context-aware judgment.

• In the literary translation evaluation (Table 3),
which requires nuanced linguistic and stylistic
understanding, CE-Judge achieves an average
Kendall’s Tau correlation of 0.38, significantly
outperforming its backbone model, Qwen2.5-
7B, and delivering performance comparable to
GPT-4o. Although it slightly lags behind M-
Prometheus 7B (average of 0.43)—which ben-
efits from fine-tuning on supervised machine
translation evaluation data—our training-free
approach remains highly competitive.

6 Conclusion

In this work, we introduce CE-Judge, a novel and
straightforward checklist-based framework for mul-
tilingual LLM-as-a-Judge that is training-free and
built on an open-source model. By leveraging
dynamic, broad, and flexible checklist items, CE-
Judge supports both pointwise and pairwise eval-
uations across diverse languages. Experiments on
multiple multilingual benchmarks show that CE-
Judge not only generally outperforms open-source
fine-tuned baselines but also performs on par with
GPT-4o. These results highlight the promise of
structured, dynamic evaluation techniques for im-
proving the reliability and interpretability of LLM
judgment, particularly in multilingual contexts, for
more consistent performance.
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Ethics Statement

This study aims to advance multilingual evaluation
using a training-free approach built on an open-
source LLM, prioritizing accessibility and trans-
parency. We leveraged publicly available datasets
and APIs, with no collection of personal or sen-
sitive data. All experiments are free from human
involvement and pose no privacy or safety risks.

Limitations

Despite its strong results and training-free design,
our framework has several limitations that should
be addressed in future work. First, for our concept
and checklist generation steps, it is worthwhile to
try few-shot learning to ensure the numbered points
in the task description of the prompts are applied
accurately. Second, it is important to evaluate our
method more extensively beyond the three tasks
discussed, which could be facilitated by an auto-
matic prompt generation module that creates step-
specific prompts and removes the need for manual
design. Third, our method relies solely on LLM
generation, which may suffer from misalignment
between training objectives and robust text genera-
tion. Incorporating internal LLM representations,
as shown by Sheng et al. (2024), could capture
more accurate implicit knowledge. Finally, our
framework’s flexibility suggests potential exten-
sions as a plug-and-play method or adaptations to
other evaluation strategies, such as interview-based
evaluation (Kim et al., 2025).
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Abstract

Improving the quality of cancer terminol-
ogy through Machine Translation (MT) in
non-English languages remains an under-
researched area despite its critical role in sup-
porting self-management and advancing mul-
tilingual patient education. Existing compu-
tational tools encounter significant limitations
in accurately translating cancer terminologies,
particularly for low-resource languages, pri-
marily due to data scarcity and morphologi-
cal complexity. To address the gap, we intro-
duce a dedicated terminology resource—Cor-
pus for Accurate Non-English Cancer-related
Educational Resources (C A N C E R), a man-
ually annotated dataset in Finnish (FI), Chi-
nese (ZH), and Urdu (UR), curated from pub-
licly available existing English (EN) data. We
also examine the impact of data quality ver-
sus quantity and compare the performance of
the Opus-mt-en-fi, Opus-mt-en-zh, and Opus-
mt-en-ur models with the SMaLL-100 mul-
tilingual MT model. We assess translation
quality using automatic and human evaluation.
Results demonstrated that high-quality paral-
lel data, though sparse, combined with fine-
tuning, substantially improved the translation
of cancer terminology across both high and
low-resource language pairs, positioning the C
A N C E R corpus as a foundational resource
for improving multilingual patient education.1

1 Introduction

Cancer remains a major global health challenge,
representing one of the leading causes of death
worldwide (Bray et al., 2021). Patient education
is critical for understanding the cancer diagnosis
and undergoing the intensive treatment (Cai et al.,
2023). There is a significant demand for simpli-
fying complex cancer terminology through Ma-
chine Translation (MT) in patient education ma-
terials to improve health literacy (Oniani et al.,

1Available at: C A N C E R Corpus

2023). The persistent research gap impedes effec-
tive cancer patient education and increases the risk
of misdiagnosis and adverse outcomes (Kasperė
et al., 2023). Moreover, the World Health Or-
ganization International Classification of Diseases
recommends the translation of medical terminol-
ogy into other languages to enhance accessibil-
ity, as codes and classifications containing the on-
tologies are primarily in English (EN) (Harrison
et al., 2021). Consequently, the accurate transla-
tion of medical terminology, particularly for dis-
eases such as cancer, is critical for advancing can-
cer patient education and self-management (Mc-
Corkle et al., 2011) in support of patients with lim-
ited proficiency in the native language where they
reside (Castilla et al., 2005; Lovis et al., 1998).

Despite the high proficiency of state-of-the-art
(SOTA) Neural Machine Translation (NMT) mod-
els (Dabre et al., 2020; Wang et al., 2023), MT of
medical terminology has fallen short (Nayak et al.,
2023). Even with various fine-tuning approaches,
NMT models still struggle to translate medical ter-
minology accurately (Nayak et al., 2020). One ap-
proach to mitigate the issue is to utilize a high-
quality parallel dataset for MT training (de Gib-
ert Bonet et al., 2022). However, annotated par-
allel medical data remain scarce— particularly in
the cancer domain (Ma et al., 2020). Furthermore,
the computational demands associated with imple-
menting MT on SOTA models are costly (Nayak
et al., 2023; Park et al., 2021; Zhang et al., 2023).

In this paper, we focus on fine-tuning three
NMT models (Opus-mt-en-fi, Opus-mt-en-zh, and
Opus-mt-en-ur) (Tiedemann and de Gibert, 2023)
and a multilingual MT model (SMaLL-100) (Mo-
hammadshahi et al., 2022) using manually anno-
tated training data derived from EN segments of
the public English-Chinese Cancer Parallel Cor-
pus (ECCParaCorp) (Ma et al., 2020) to construct
new EN-to-FI and EN-to-UR parallel corpora and
extend language coverage of the existing EN-to-
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Annotated data # Pairs

In-domain
EN-to-FI 1,494
EN-to-ZH 1,494
EN-to-UR 1,494

Out-of-domain
EN-to-FI 291
EN-to-ZH 291
EN-to-UR 291

Total 5,355

Table 1: Annotated cancer terminology parallel data

ZH language pair. We assess translation qual-
ity using automatic evaluation metrics (Papineni
et al., 2002; Popović, 2015; Rei et al., 2020) and
human evaluation (Escribe, 2019). We also evalu-
ate generalization using human evaluation on three
manually annotated parallel datasets (EN–FI, EN–
ZH, and EN–UR) curated from the public glossary
on the Peter MacCallum Cancer Centre website
(MacCallum, 2024).

Our paper focuses on improving the trans-
lation quality of cancer terminologies in two
high-resource languages (FI and ZH) and a low-
resource language (UR) to advance cancer pa-
tient education and bridge language challenges to
support improved self-management (Lovis et al.,
1998).

Our contributions can be summarized as fol-
lows:

• Creation of C A N C E R, a manually an-
notated corpus, to advance cancer patient ed-
ucation and self-management in EN-to-FI,
EN-to-ZH, and EN-to-UR language pairs.

• Adaptation of the Opus-mt-en-fi, Opus-mt-
en-zh, Opus-mt-en-ur, and the SMaLL-100
multilingual MT model, through fine-tuning
to improve the translation quality of cancer
terminologies.

• In-depth analysis of automatic performance
metrics, including human evaluation by med-
ical practitioners and native FI, ZH, and UR
speakers provided insights into the transla-
tion quality of the cancer terminologies.

2 Data

In the first data acquisition step, we collected
EN data from Ma et al. (2020) cancer corpus,
which includes cancer terminologies (411 words
and 1,083 phrases) (Table 1) related to cancer pre-
vention, screening, diagnosis, and treatment. Us-

Figure 1: Categories of terminology data in cancer ad-
vocacy colors

ing the existing EN source data, we manually an-
notated the FI and UR references to create two
parallel datasets (EN-to-FI and EN-to-UR) while
extending language coverage with the EN-to-ZH
pair for the training, development, and test splits
(Ma et al., 2020). We excluded sentence-level data
to focus exclusively on terminology-level trans-
lation. The C A N C E R corpus includes data
in six categories: Breast Cancer, Colorectal Can-
cer, Esophageal Cancer, Liver Cancer, Lung Can-
cer, and Stomach Cancer (Figure 1). In the sec-
ond step, we compiled EN data from MacCal-
lum (2024) online glossary that covers commonly
used cancer-related terminologies (182 words and
109 phrases) (Table 1) from A-to-Z during diag-
nosis and treatment, and manually annotated FI,
ZH, and UR references to the source data to cre-
ate three out-of-domain datasets (EN-to-FI, EN-
to-ZH, and EN-to-UR) to assess generalization us-
ing human evaluation (Escribe, 2019). We anno-
tated our five parallel cancer terminology datasets,
leveraging the expertise of medical practitioners
and native FI, ZH, and UR speakers, effectively
addressing the data scarcity gap (Lovis et al.,
1998).

3 Related Work

Translating medical terminologies is a challeng-
ing task. The unique features of different lan-
guages, combined with the complexity of medical
jargon and data scarcity, have further hindered ef-
forts. (Ao and Acharya, 2021) Moreover, medical
institutions have limited specialized health educa-
tors to support self-healthcare in chronic diseases
such as cancer, particularly for non-native English
speakers (Ugas et al., 2024). Existing studies have
sought to improve translation quality across the
medical domain, including work to enhance med-
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ical terminology, without specific emphasis on the
cancer field (Alam et al., 2021). Prior research in-
cluded exploring the time frame required to trans-
late newly introduced or revised medical terminol-
ogy for evaluation by healthcare experts (Skianis
et al., 2020). The Castilla et al. (2005) study also
investigated automated evaluation of medical ter-
minologies using the Unified Medical Language
System to assess cross-lingual information clini-
cal data extracted from Portuguese-language tho-
racic radiology reports. During human evaluation,
the Kasperė et al. (2024) study, however, found
that the translation of medical terminology from
English to Lithuanian was of poor quality, con-
cluding that MT should serve as a supplementary
approach only. In contrast, the Herrera-Espejel
and Rach (2023) study highlighted MT as a po-
tential solution to bridge language barriers in pub-
lic health communication that restrict access to es-
sential information for culturally and linguistically
diverse groups.

In our experiment, we rely on manually an-
notated domain-specific data (Table 1) and fine-
tuning techniques to adapt the Opus-MT models
and the SMaLL-100 multilingual MT model to the
unique morphological characteristics of FI, ZH,
and UR cancer terminologies to advance health
education (Oniani et al., 2023), and support pa-
tients to overcome language barriers, particularly
when taking prescribed medication and navigating
digital platforms (Lorig and Holman, 2003; Mc-
Corkle et al., 2011).

4 Method

We denote, let X = {x1, x2, . . . , xN} as the
source language (EN) consisting of N medical ter-
minologies. Y = {y1, y2, . . . , yN} as its corre-
sponding target-language (FI, ZH and UR). Each
pair (xi, yi) constitutes a parallel medical termi-
nology. The probability of translating the entire
target sequence Y given the source sequence X
can be approximated as:

P (Y | X; θ) ≈
N∏

i=1

P (yi | xi; θ)

OPUS-MT In the first stage of the experiment,
we fine-tuned the Opus-MT models on annotated
parallel training data (EN-FI, EN-ZH, and EN-
UR). We utilized dynamic batching with the Hug-
ging Face DataCollatorForSeq2Seq (Solanki and

Khublani, 2024) and systematically optimized hy-
perparameters by experimenting with batch sizes
8, 16, and 32 (achieving the best performance with
a batch size of 8) and a learning rate grid search
(optimal rate: 6e-04) over three epochs (Ap-
pendix A). Label smoothing (probability = 0.1)
was applied to enhance precision. We evaluated
model performance using the bilingual evaluation
understudy (BLEU) (Vaswani, 2017), CHaRacter-
level F-score (CHRF) (Popović, 2015), and Cross-
lingual Optimized Metric for Evaluation of Trans-
lation (COMET) (Rei et al., 2020) metrics .
SMaLL-100 The second stage of the experi-
ment involved prepending the EN language to-
ken (_en_) to the encoder input in the SMaLL-
100 model to specify the source language explic-
itly. To prompt the decoder to generate trans-
lations in the correct target language, we added
a beginning-of-sequence (BOS) token via the
forced_bos_token_id parameter. We applied sim-
ilar hyperparameter settings (Appendix A) as in
the first experiment to ensure consistency across
model comparisons, using an optimal learning rate
of 7e-05 (achieving the best performance with a
batch size of 8) (Fuady et al., 2024). Native speak-
ers assessed the generated translations on the in-
domain test data from both experiments. To eval-
uate generalization, we selected the models with
the lowest validation loss and assessed transla-
tion quality on out-of-domain datasets using hu-
man evaluation (Escribe, 2019).

5 Results

OPUS-MT The models demonstrated varying lev-
els of translation effectiveness across the EN-
FI, EN-ZH, and EN-UR language pairs. The
Opus-mt-en-fi model achieved the highest BLEU
score (Table 2), suggesting robust translation qual-
ity. CHRF and COMET scores (Appendices B &
C) were also consistently high, indicating strong
alignment with reference translations at the char-
acter and semantic level. The stability highlighted
the capacity of the Opus-mt-en-fi model to adapt
to the intricate morphological structure of the FI
language, reinforcing its suitability for the MT
task. Similarly, the Opus-mt-en-zh model exhib-
ited satisfactory performance across various con-
figurations (Appendices B & C), highlighting the
ability to understand the language patterns. How-
ever, performance dipped with the Opus-mt-en-ur
model, as challenges persist in generalizing across
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EN-FI EN-ZH EN-UR

Batch
Size

Opus-mt-en-fi Opus-mt-en-zh Opus-mt-en-ur SMaLL-100 Multilingual MT Model

BLEU CHRF COMET BLEU CHRF COMET BLEU CHRF COMET BLEU CHRF COMET BLEU CHRF COMET BLEU CHRF COMET

Baseline
8 12.95 51.12 82.06 7.61 24.14 75.77 2.38 16.51 51.26 3.43 13.82 65.30 2.78 6.38 65.62 2.60 1.68 54.87
16 12.73 50.58 81.75 3.67 21.28 75.02 2.17 16.46 51.16 2.40 13.39 64.48 1.43 5.41 64.50 1.34 1.53 53.83
32 11.52 49.81 81.07 2.38 19.05 73.89 2.08 16.44 51.12 1.92 12.81 63.51 1.30 5.24 64.11 1.22 1.51 53.45

Fine-tuned
8 58.25 75.22 92.24 41.28 48.46 86.96 28.60 47.20 68.30 54.40 73.13 88.04 40.92 48.03 85.06 44.93 66.53 80.03
16 57.37 74.24 91.62 44.48 53.15 86.28 27.46 47.98 68.48 54.35 73.18 88.00 41.12 48.81 84.82 45.43 65.30 79.94
32 57.96 75.93 92.01 43.12 53.57 86.80 30.25 49.62 70.68 53.62 72.41 87.63 07.18 26.28 75.18 06.12 29.91 63.56

Table 2: Automatic evaluation metrics for the OPUS-MT models and the SMaLL-100 MT model

the unique linguistic structures of the UR lan-
guage. The reduced scores (Appendices B & C)
indicated the Opus-mt-en-ur model experienced
difficulties in capturing the complexity of the UR
language, likely due to distinct syntactic charac-
teristics.
SMaLL-100 In contrast, the SMaLL-100 model
demonstrated improved performance on the EN-
UR language pair, surpassing the Opus-mt-en-ur
at smaller batch sizes, suggesting better adaptabil-
ity to the unique linguistic structures of UR. How-
ever, performance declined significantly at a batch
size of 32, resulting in low scores. (Appendices B
& C) The model exhibited performance trends
similar to the OPUS-MT models across the EN-
FI and EN-ZH language pairs. On the EN-FI pair,
the model achieved competitive BLEU and CHRF
scores, though slightly lower than the Opus-mt-
en-fi model (Table 2). The SMaLL-100 model
demonstrated comparable performance to Opus-
mt-en-zh on smaller batch sizes, with only a slight
decline in BLEU and COMET scores. Translation
quality declined, however, on the EN-ZH pair at a
batch size of 32. (Appendices B & C)

Based on the results (Table 2, Appendices B
& C), we hypothesize that the Opus-MT mod-
els outperformed the SMaLL-100 model due to
language-specific training, which enabled opti-
mization and improved translation quality.

6 Analysis

Automatic Evaluation Overall, the Opus-mt-en-
fi model demonstrated robust performance on the
EN-FI language pair (Appendices B & D). The
Opus-mt-en-fi achieved the highest BLEU scores
(58.25, 57.37, and 57.97) on the MT task, closely
followed by the SMaLL-100 model. Both mod-
els maintained strong consistency on the EN-FI
language pair (Table 2). Similarly, the Opus-
mt-en-zh model demonstrated satisfactory transla-
tion quality across all batch sizes. The SMaLL-

Language Pair Correct (%) Partially Correct (%) Incorrect (%)

In-domain
EN - FI 67.34 25.17 07.50
EN - ZH 45.85 06.83 47.32
EN - UR 26.57 60.78 12.65

Out-of-domain
EN - FI 54.98 09.62 35.40
EN - ZH 20.27 06.19 73.54
EN - UR 06.19 21.99 71.82

Table 3: Percentage-based human evaluation across
language pairs

100 model matched the performance stability at
smaller batch sizes (8 and 16). However, perfor-
mance declined at batch size 32 on the EN-ZH
corpus, which showed a reduction in effectiveness
and translation quality (Appendix B). Notably, the
SMaLL-100 model demonstrated stronger perfor-
mance than the Opus-mt-en-ur model at smaller
batch sizes (8 and 16), which suggested the mul-
tilingual model was more effective in capturing
the unique language patterns of the UR language.
Performance declined significantly at batch size
32, mirroring patterns observed in the EN-ZH lan-
guage pair. (Appendix B)
Human Evaluation A qualitative analysis guided
the human evaluation to determine whether the
translations were correct, partially correct, or in-
correct (Table 3). The evaluators observed mul-
tiple gold-standard translations (Appendices D, E
& F) and some discrepancies (Appendix G) across
the EN-FI, EN-ZH, and EN-UR language pairs,
highlighting differences in generalization among
the models. In a few cases, the human evaluators
noticed that the models generated synonyms for
some cancer terminologies, skipped translations,
and produced grammatical errors (Appendix G).
Skipped Translations In some instances, no
translation occurred across the language pairs, in-
dicating limitations in the capacity of the Opus-
MT and SMaLL-100 models to convert source
references into the target language due to the
unique morphological structure of each language.
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For instance, the term Topotecan remained in its
EN form, not matching the ZH reference. (Ap-
pendix G)
Grammatical Errors Punctuation and spacing
errors occurred during the translation of some ter-
minologies. While the models translated the can-
cer terminologies accurately, the generated output
did not include the unique grammatical rule of the
specific target language. (Appendix G)
Ambiguous Terms Some translations featured in-
correct word order or introduced extraneous to-
kens, which distorted the intended meaning of the
target reference. Additionally, an extra token gen-
erated during translation distorted the ZH refer-
ence for the term Vancomycin-resistant Enterococ-
cus. Similarly, in the UR language pair, the term
advanced age did not align with the target refer-
ence, reflecting a syntactic and semantic mismatch
of the target language. (Appendix G)

7 Limitations

A significant limitation of the task was the size
of the annotated corpus. The C A N C E R cor-
pus included limited data in only three languages
out of more than 7,000 spoken worldwide, which
restricted the scope of the findings and applica-
bility to broader multilingual contexts. While
model performance was satisfactory overall, the
data constraint likely contributed to the instability
observed in the multilingual SMaLL-100 model at
higher batch sizes, where translation quality de-
graded. Additionally, the UR language presented
unique challenges due to its right-to-left script,
which may have complicated the tokenization pro-
cess. The limitations necessitate the need to ex-
pand the corpus and further experiment with opti-
mizing techniques and models to improve transla-
tion quality across languages.

8 Conclusion and Future Work

In this paper, we took the first step towards
advancing multilingual cancer patient education.
The C A N C E R corpus serves as a benchmark
resource for evaluating the translation of cancer
terminology across languages. The findings in-
form efforts to improve multilingual cancer patient
education, supporting non-native English speak-
ers in understanding critical health information.
We demonstrated that retraining on limited high-
quality parallel data (Shin et al., 2020) can im-
prove translation quality (Table 2). In future work,

we aim to expand the C A N C E R corpus by in-
corporating a broader spectrum of low and high-
resource languages and exploring varying tech-
niques and NMT models to optimize performance,
mainly in underrepresented languages.
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Appendix

A Hyperparameters

Model dropout rate learning rate grid weight decay batch size epochs optimizer

Opus-MT 0.1 1e-05, 3e-05, 5e-05, 7e-05, 1e-
04, 3e-04, 4e-04, 5e-04, 2e-04,
6e-04, 7e-04

0.01 8, 16, 32 3 adamw

SMaLL-100 0.1 1e-05, 3e-05, 5e-05, 7e-05, 1e-
04, 3e-04, 4e-04, 5e-04, 2e-04,
6e-04, 7e-04

0.01 8, 16, 32 3 adamw

Table 4: Fine-tuning hyperparameters, best in bold

B Model Performance

Figure 2: Evaluation metrics of the Opus-MT models and the SMaLL-100 model

Figure 3: Comparison performance of the Opus-MT models and the SMaLL-100 model
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C Automatic Evaluation

Figure 4: Performance metrics across language pairs
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D Gold-Standard EN–FI Translations

Source (EN) Reference (FI) Target (FI)

Abdominal pain vatsakipu vatsakipu
Adverse effect haitallinen vaikutus haitallinen vaikutus
AFP levels AFP-tasot AFP-tasot
Alternative therapy vaihtoehtohoito vaihtoehtohoito
Anastrozole anastrotsoli anastrotsoli
Anatomy anatomia anatomia
Barium enema bariumperäruiske bariumperäruiske
Beckwith-Wiedemann Beckwith-Wiedemann Beckwith-Wiedemann
Blood count verimäärä verimäärä
Breast reconstruction rinnan korjaus rinnan korjaus
Bronchioloalveolar carcinoma pienisoluinen keuhkosyöpä pienisoluinen keuhkosyöpä
Burkitt lymphoma Burkittin imukudossyöpä Burkittin imukudossyöpä
Cancer staging syövän vaiheistus syövän vaiheistus
Chemotherapy kemoterapia kemoterapia
CT Colonography paksusuolen CT-kuvantaminen paksusuolen CT-kuvantaminen
CT imaging CT-kuvantaminen CT-kuvantaminen
diagnostic imaging diagnostinen kuvantaminen diagnostinen kuvantaminen
Digestive system ruoansulatusjärjestelmä ruoansulatusjärjestelmä
Epithelioid Hemangioendothelioma solukudoskasvain solukudoskasvain
Estrogen-only therapy vain estrogeenihoito vain estrogeenihoito
Febrile neutropenia kuumeinen neutropenia kuumeinen neutropenia
Follow-up seuranta seuranta
General anaesthetic yleispuudutus yleispuudutus
Germ cells sukusolut sukusolut
Hodgkin’s lymphoma Hodgkin-lymfooma Hodgkin-lymfooma
High-grade dysplasia korkea-asteinen epänormaali solukasvu korkea-asteinen epänormaali solukasvu
Inflammatory carcinoma tulehdusperäinen syöpä tulehdusperäinen syöpä
Intestinal suolisto suolisto
key hole surgery avainaukkoleikkaus avainaukkoleikkaus
Kaposi sarcoma Kaposi-sarkooma Kaposi-sarkooma
Laparoscopic surgery laparoskooppinen leikkaus laparoskooppinen leikkaus
Lymph glands imusolmukkeet imusolmukkeet
Magnetic resonance imaging magneettikuvaus magneettikuvaus
Medical oncology lääketieteellinen onkologia lääketieteellinen onkologia
Neoadjuvant treatment uusi hoidon tehokkuutta parantava hoito uusi hoidon tehokkuutta parantava hoito
Nuclear medicine isotooppilääke isotooppilääke
Occult carcinoma selittämätön syöpä selittämätön syöpä
Oxaliplatin oksaliplatiini oksaliplatiini
Primary lymphoma ensisijainen imukudossyöpä ensisijainen imukudossyöpä
Palliative therapy palliatiivinen hoito palliatiivinen hoito
Radioactive tracer radioaktiivinen merkkiaine radioaktiivinen merkkiaine
Recurrent cancer uusiutuva syöpä uusiutuva syöpä
Sepsis pathway sepelvaltimointerventioreitti sepelvaltimointerventioreitti
Stage 4 vaihe 4 vaihe 4
Tissue biopsy kudoskoepalan otto kudoskoepalan otto
Tumor location kasvaimen sijainti kasvaimen sijainti
Unknown tuntematon tuntematon
use of statins statiinien käyttö statiinien käyttö
Vascular invasion verisuonen invaasio verisuonen invaasio
Variants muunnokse muunnokset
Weakness heikkous heikkous
Weight gain painonnousu painonnousu
X-ray röntgenkuvaus röntgenkuvaus

Table 5: A subset of accurately translated EN–FI cancer terminologies assessed with human evaluation
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E Gold-Standard EN–ZH Translations

Source (EN) Reference (ZH) Target (ZH)

Adenopathy 腺病 腺病
Anaemia 贫血 贫血
Antibody 抗体 抗体
Anus 肛门 肛门
Artery 动脉 动脉
Assess 评估 评估
Atrophy 萎缩 萎缩
Benign 良性 良性
Cells 细胞 细胞
Colon 结肠 结肠
Dialysis 透析 透析
Diarrhoea 腹泻 腹泻
Embolism 栓塞 栓塞
Excision 切除术 切除术
Faeces 粪便 粪便
Gynaecology 妇科 妇科
Hypertension 高血压 高血压
Hysterectomy 子宫切除术 子宫切除术
Incontinence 失禁 失禁
Isotope 同位素 同位素
Laparoscopy 腹腔镜 腹腔镜
Lymph 淋巴结 淋巴
Lymphoedema 淋巴水肿 淋巴水肿
Lymphoma 淋巴瘤 淋巴瘤
Mastectomy 乳房切除术 乳房切除术
Metastasis 转移 转移
Oedema 水肿 水肿
Oncology 肿瘤学 肿瘤学
Pathology 病理学 病理学
Rectum 直肠 直肠
Recurrence 复发 复发
Relapse 复发 复发
Risk 风险 风险
Sarcoma 肉瘤 肉瘤
Screening 筛查 筛查
Side-effect 副作用 副作用
Specimen 样本 标本
Staging 分期 分期
Surgery 手术 手术
Tissue 组织 组织
Tumour 肿瘤 肿瘤
Urethra 尿道 尿道
adjuvant chemotherapy 辅助化疗 辅助化疗
allergic reaction 过敏反应 过敏反应
carcinoma in situ 原位癌 原位癌
chronic pain 慢性疼痛 慢性疼痛
clinical trial 临床试验 临床试验
digestive system 消化系统 消化系统
germ cells 生殖细胞 生殖细胞
informed consent 知情同意 知情同意
local anaesthetic 局部麻醉 局部麻醉
neoadjuvant treatment 新辅助治疗 新辅助治疗
quality of life 生活质量 生活质量
sentinel node 前哨淋巴结 前哨淋巴结
small bowel 小肠 小肠
soft tissue 软组织 软组织

Table 6: A subset of accurately translated EN–ZH cancer terminologies assessed with human evaluation
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F Gold-Standard EN–UR Translations

Source (EN) Reference (UR) Target (UR)

Ablation Techniques 䩺⠪㈉䗂㬋 䩺⠪㈉䗂㬋
Acute hepatitis ᒭ ៹ ㅎ ␰زش ᒭ ៹ ㅎ ␰زش
alternative therapy ⥲ج 㪆دل ⥲ج 㪆دل
Anorexia ⾒ ㅎ ସک ⾒ ㅎ ସک
Better tolerability (⥲ج) ǖ

Ǖ
ٳداח ǌɟ ਑ (⥲ج) ǖ

Ǖ
ٳداח ǌɟ ਑

Breast Self-examination 䤂㷍 ⁏د ⵇ ᒖᲘ 䤂㷍 ⁏د ⵇ ᒖᲘ
cancer prevention ᏽم روک ㅎ ⇤⟷ن ᏽم روک ㅎ ⇤⟷ن
Chemotherapy risks ῗات ㈉ ⥲ج 䤈㇦ ῗات ㈉ ⥲ج 䤈㇦
chronic pain درد 䣦دا درد 䣦دا
Clinical trials ǌ˄ᄌٱت ⠗ ǌ˄ᄌٱت ⠗
Combination chemotherapy ⥲ج 䤈㇦ ⧏㭯 ⥲ج 䤈㇦ ⧏㭯
Contamination: None 䔽䤈〨 : 㐗د㥀آ 䔽 䤈〨 : 㐗د㥀آ
Contralateral Disease ౄری ⮻⠪ 㜝㰐 ౄری ⮻⠪ 㜝㰐
Diagnostic imaging ŀ

ǔ
ƶǌ ŧǎƷŬاᇘ ŀ

ǔ
ƶǌ ŧǎƷŬاᇘ

Discomfort ዠ ዠ
Dominant Geographical Areas ⵆ⥲ 䤈⮼اៜ ǌѬ⧱ ⵆ⥲ 䤈⮼اៜ ǌѬ⧱
Dose/Trial Drug دوا آز䢯㩕/⁏راک دوا آز䢯㩕/⁏راک
Early pregnancy ἒ 䤈ایا ἒ 䤈ایا
Environmental factors 㻬ا⧋ ᒖ㦈ἶ㩕 㻬ا⧋ ᒖ㦈ἶ㩕
Excessive alcohol use ا⃵ل ⵇ ▧اب ˄ǎٱدہ ز ╌ ➳ورت ا⃵ل ⵇ ▧اب ˄ǎٱدہ ز ╌ ➳ورت
Family history 䧥ٱر

ǖ
˄ 䕉ا䯀Ὗ 䧥ٱر

ǖ
˄ 䕉ا䯀Ὗ

Follow-up ရوی :䮪ᄍ ရوی :䮪ᄍ
General Information About Small Cell Lung Cancer 㩕㸈ت 䂬⦫ 䆀ٱرےǌ˄ ㈉ ⇤⟷ن ㈉ Ⓧ᛭ᵘྟوں 㩕㸈ت 䂬⦫ 䆀ٱرےǌ˄ ㈉ ⇤⟷ن ㈉ Ⓧ᛭ᵘྟوں
Genetic risk factors 㻬ا⧋ ㈉ ῗے ᒖᨤ 㻬ا⧋ ㈉ ῗے ᒖᨤ
Hepatitis B ஗ ␰زش ㅎ ៹ ஗ ␰زش ㅎ ៹
Hoarseness ٱ

ǔ
˄ᜯ ம ⵇ آواز ٱ

ǔ
˄ᜯ ம ⵇ آواز

Incidence and Mortality ا䁡ات اور واⲛت ا䁡ات اور واⲛت
Internal Validity : Fair 㷕ل :ᜠᏠ دا‒ 㷕ل :ᜠᏠ دا‒
International Comparisons 䔙از䁡 䂬اⴑ㑔ا ౉ 䔙از䁡 䂬اⴑ㑔ا ౉
Local radiation therapy ⥲ج 䨮ا ٶی

Ǘ ǎ̔ ر 䂬㹬 ⥲ج 䨮ا ٶی
Ǘ ǎ̔ ر 䂬㹬

Low-birth-weight infants 䔘زا䤘ہ ㈉ وزن 䢯اမ ⽃ 䔘زا䤘ہ ㈉ وزن 䢯اမ ⽃
Male breast cancer is rare 䞈ٱبǎ˄ ٱ

ǔ
˄ ⇤⟷ن ⵇ ᒖᲘ ㈉ 㱇دوں 䞈 ˄ǎٱب ٱ

ǔ
˄ ⇤⟷ن ⵇ ᒖᲘ ㈉ 㱇دوں

Occult NSCLC ⥲ج ⵇ ⑬ 䫡ا ⑬ 䧷ا 䭆ا ດ⚾ہ ⥲ج ⵇ ⑬ 䫡ا ⑬ 䧷ا 䭆ا ດ⚾ہ
Other risk factors 㻬ا⧋ ㈉ ῗے 䫑د 㻬ا⧋ ㈉ ῗے 䫑د

Overdiagnosis ŵǎ Ƹ
ǔ
ŧ
ǕƠ
ǖ
Ʋ
˄ǎٱدہ ز ╌ ➳ورت ŵǎ Ƹ

ǔ
ŧ
ǕƠ
ǖ
Ʋ
˄ǎٱدہ ز ╌ ➳ورت

Palliative therapy ⥲ج Ų
ǔ Ʒǎ ƹľƟ
ǖ
Ʋ ⥲ج Ų

ǔ Ʒǎ ƹľƟ
ǖ
Ʋ

Pathologic Classification ৠی ᣆدر ᒖ⟥㱇 ৠی ᣆدر ᒖ⟥㱇
Patient Evaluation ٳہ

ǔ ǘ
ɟᜯ ⵇ 䩀㱇 ٳہ

ǔ ǘ
ɟᜯ ⵇ 䩀㱇

Physical activity 䂬䯆⇤ 䕉ែ 䂬䯆⇤ 䕉ែ
Population-level interventions ῴا㱄 䯎 ∘ ㅎ آ˄ǌٱدی ῴا㱄 䯎 ∘ ㅎ آ˄ǌٱدی
Presurgical chemotherapy ⥲ج 䤈㇦ ㅎ ຝ╌ ٳی ǌؼ⇤ ⥲ج 䤈㇦ ㅎ ຝ╌ ٳی ǌؼ⇤
Prognosis–legacy ٱ)

ǔ
(䯎ا˄ 䤈㍉ ဲ ٱ)

ǔ
(䯎ا˄ 䤈㍉ ဲ

recurrent rectal cancer ⇤⟷ن ŲůǎƷƪ
ǖ
ƹƟŬ 㑔وا 䗂䜫 ˄ǌٱر ˄ǌٱر ⇤⟷ن ŲůǎƷƪ

ǖ
ƹƟŬ 㑔وا 䗂䜫 ˄ǌٱر ˄ǌٱر

Screening Intervention ῴا㱄䮚≩ا ῴا㱄䮚≩ا
Special Populations آ˄ǌٱدی 㰤ص آ˄ǌٱدی 㰤ص
Stage explanation–legacy ٱ)

ǔ
(䯎ا˄ ǖ̵ و➟ ㅎ ἅ㱇 ٱ)

ǔ
(䯎ا˄ ǖ̵ و➟ ㅎ ἅ㱇

Standard treatment ⥲ج 㸗ری ⥲ج 㸗ری
Study Design: Evidence obtained from large databases 䘧ا⚏ ❅ḝ ╌௤ 䦒ڈ Ǘٳے ǌɟ :䣩ٳا

ǔ
ǎɟڈ ⵇ 㛾㶩 䘧ا⚏ ❅ḝ ╌௤ 䦒ڈ Ǘٳے ǌɟ :䣩ٳا

ǔ
ǎɟڈ ⵇ 㛾㶩

The comparison group was not actively followed 㐔 ㅎ䔽 䕉ا䑨 ⬢ل ㅎ 䯆وپ 䔙از䁡 㐔 ㅎ䔽 䕉ا䑨 ⬢ل ㅎ 䯆وپ 䔙از䁡
The overall 5-year survival rate is 64% 䞈%64 ▧ح ㅎ ࢒ 㥁⁩ 5 ⺵ 䞈 %64 ▧ح ㅎ ࢒ 㥁⁩ 5 ⺵
To assess the efficacy of initial therapy 䲚 ٳہ

ǔ ǘ
ɟᜯ ⵇ 㐗ر⸗دⵇ ㅎ ⥲ج 䤈ایا 䲚 ٳہ

ǔ ǘ
ɟᜯ ⵇ 㐗ر⸗دⵇ ㅎ ⥲ج 䤈ایا

Tumor Characteristics ῄ➄ت ㅎ 㦇␰ر ῄ➄ت ㅎ 㦇␰ر
Weight gain ا➟⮫ 䆀 وزن ا➟⮫ 䆀 وزن
Who is at Risk 䞈 〨ن 䆀ےῗ 䞈 〨ن 䆀ےῗ

Table 7: A subset of accurately translated EN–UR cancer terminologies assessed with human evaluation
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G Translation Errors

Error Type Source Reference Target

Exemestane antineoplastinen lääke exemestane
Skipped Translations radiation therapist 放射治疗师

Deaths: 10,990 10,990 ا䁡ات: 10,99 ا䁡ات:

GP (general practitioner) GP（yleislääkäri） GP(yleinen lääkäri)
Grammatical Errors Consistency: Consistent 一致性：一致 一致性:一致

Ablation Techniques ablaatiotekniikat kudospoistotekniikat
Ambiguous Terms Vancomycin Resistant Enterococcus 万古霉素耐药肠球菌 the霉素抗性肠杆菌

Advanced age 㐗⒕ر ⦞ ⦞ دور

Table 8: Some translation errors observed with human evaluation

209





Author Index

Anikina, Tatiana, 159

Baeumel, Tanja, 159
Barua, Dhruba Jyoti, 149, 172
Beigy, Hamid, 190
Bley, Maximilian, 98
Bloem, Jelke, 90
Brala Vukanovic, Marija, 131
Brkic Bakaric, Marija, 131
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