
Proceedings of 17th International Conference on Natural Language Processing: Workshop, pages 27–32
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

27

Named Entity Popularity Determination using Ensemble Learning

Vikram Karthikeyan
Department of ISE

BMS College of Engineering
Bangalore, India

vikram.is17@bmsce.ac.in

B Shrikara Varna
Department of ISE

BMS College of Engineering
Bangalore, India

bshrikara.is18@bmsce.ac.in

Amogha Hegde
DDepartment of ISE

BMS College of Engineering
Bangalore, India

amoghahegde.is17@bmsce.ac.in

Govind Satwani
Department of ISE

BMS College of Engineering
Bangalore, India

govind.is18@bmsce.ac.in

Ranjan Samal
Department of Multimodal NLP

Samsung R&D Institute
Bangalore, India

ranjan.samal@samsung.com

Shambhavi B R
Department of ISE

BMS College of Engineering
Bangalore, India

shambhavibr.ise@bmsce.ac.in

Jayarekha P
Department of ISE

BMS College of Engineering
Bangalore, India

jayarekha.ise@bmsce.ac.in

Abstract

Determining the popularity of a Named En-
tity after completion of Named Entity Recogni-
tion (NER) task finds many applications. The
most popular of them being virtual assistants
where disambiguating entities without contex-
tual help is crucial. A single named entity
could belong to multiple domains, making it
necessary for the popularity determination ap-
proach to give accurate results. The more ac-
curate results can be used to improve the func-
tioning of virtual assistants. This work stud-
ies disambiguation of Named Entities (NE) of
Music and Movie domains and resolves popu-
larity considering relevant features like region,
movie/music awards, album count, run time
etc. Decision Trees and Random Forests ap-
proaches are applied on the dataset and the lat-
ter ensemble learning algorithm resulted in ac-
ceptable accuracy.

1 Introduction

Over the years the use of electronic devices for var-
ious tasks and services have become predominant.
These days, services such as E-commerce, video
and music streaming over the internet are common.
Thus, it is crucial that these services provide the
users with what they require and also give rele-
vant recommendations. Moreover, search engines
should know what results to show based not only on
the query string but also consider other factors like
demographic, geographic location, user’s search
history, etc. Identifying entities in a query string is
termed as Named Entity Recognition (NER). Due
to the vast and diverse collection of data, NER
sometimes alone may not be sufficient. In such
cases Name Entity Popularity Detection can be
used to prioritize results which may be more rel-

28

evant to the user based on various factors. This
is especially used while designing a conversation
smart assistant, to provide the user with the best
results. For example, if the user asks the virtual
assistant to “play wolves” then it has to decide
whether to play the song wolves or play the movie
wolves without any given context or sentence asso-
ciated with. In such a scenario information about
the user’s search history has conventionally been
used to resolve the ambiguity and judge what the
user really wanted. This process of using data other
than the query string to disambiguate between enti-
ties with similar names is known as Named Entity
Popularity Determination (NEPD). Our objective
is to accomplish this task without considering user
history.

2 Problem Statement

NEPD aims at determining the popularity of the
Named Entities. This approach can be extended
for use in Conversation Smart Assistants, helping
the application to understand user speech, disam-
biguate entities and give the best search results.
NEPD involves primarily

• Data Mining of features which help to deter-
mine the popularity of the target NE.

• Designing an algorithm to predict the pop-
ularity from the mined features for various
domains. Music and Movie domains are con-
sidered in our work.

3 Related Work

Several approaches have been put forward to get
better results for NER. Some of these methods in-
volve the use of neural architectures in addition to
Bi-LSTM methods. Lample et al. (2016) has devel-
oped a method based on transition-based parsing
and stack-LSTMs. Building on the approach of
ensemble learning for NER, multiple approaches
have been combined to obtain a better result (Speck
and Ngomo, 2014). The results of various classifier
algorithms were integrated (Florian et al., 2003),
resulting in significant strides in NER performance.

In the work of (Cucerzan, 2007), information ex-
tracted from Wikipedia is stored in two databases,
and the entities are mapped together. After entity
mappings, a disambiguation component is used for
Named Entity Disambiguation (NED). To improve
the performance of NED, in addition to Bi-LSTM;
other models that use GCN and RNN, along with

Figure 1: Correlation Matrix of the features

attention have also been experimented upon (Ce-
toli et al., 2018). Combining graphs and popularity
ranking into a single model is another approach
towards NED (Alhelbawy and Gaizauskas, 2014) ,
(Han and Zhao, 2010), where graphs, knowledge
bases, are used for Entity Generation, Entity rank-
ing and NED. Joint Embeddings have also been
used for improving the results for NED (Yamada
et al., 2016).

To enhance the results of the NER models, En-
tity Popularity models have been proposed (Govani
et al., 2013), (Blanco et al., 2013). These mod-
els use the personal history of the user, create a
ranking of entities, and have resulted in recom-
mendations that are more likely and specifically re-
lated to the concerned user. The ranking of entities
has been improved by increasing the performance
of the Language Model (LM), during Automatic
Speech Recognition (Van Gysel et al., 2020). The
model used for predicting entity popularity in this
paper resulted in improvements of 20% in word
error rate.

4 Dataset and Feature Extraction

The next step in dealing with the sparseness was
building the correlation and covariation matrix.The
correlation matrix, shown in Figure1 helped decide
which features to drop, and which features to retain,
to get a better clarity of the data we had collected.

The initial dataset of entities and the domains to
which they are to be classified into movie/music

29

Feature Name Description Souce
Type Genre (applicable to musicians,songs and

movies only, and not to actress
IMDb, MusicBrainz

Count of Movies Acted The number of movies a person has acted
in (i a significant role)

IMDb

Count of Movies Directed Some artists tend to direct the
movies they work in.

IMDb

tCount of Movies Produced Some artists tend to produce the movies
they work in. Also includes the number of
albums that are self produced by an artist.

IMDb

Release Date The time description of when a particular
song or movie was released. It helps in de-
termining the popularity of that particular
work in that decade.

IMDb, MusicBrainz
and Last.fm

Region Place of release of the movie or album or
location of concert also refers to the region
where an artist is based.

IMDb

Count of Albums The higher the number, the more weigh-
tage for music domain

Last.fm API

cCount of Concerts The number of live concerts held by the
particular artist

Last.fm API

Count of Movie Awards The number of awards a particular person
has in a domain

IMDb

Count of Music Awards The number of awards a particular person
has in a domain

IMDb, MusicBrainz

Run Time Sum of durations of all the songs released
by the person

MusicBrainz

Table 1: Features and their description.

was generated. Considering the domains in the
problem statement, a list of applicable features
along with the source from which the data for that
particular feature can/could be extracted was made.
This decision was based on the considerations that
a person who is active predominantly in one of
the two domains, will have a higher value for the
features pertaining to that domain. Additionally,
people who are active in both the domains will have
values for all the features but some comparatively
higher than the other. The list of features is given
in Table 1.

The problem at hand is finding the popularity
of a person in the domain and identification of the
domain in which the person is more popular if the
person has an existence in both. The idea behind
the selection of a feature was based on this problem.
The popularity of any person in a domain is based
on the works of that person, and the accolades the
person has received for their work in the particular
field. The feature “Run Time” was included in par-

ticular as some of the artists voice for songs in the
movies they have acted in. And hence they might
have a considerable number of songs under them.
This feature will help us to distinguish between a
full-fledged singer (music domain) and actors who
just give voice for a song in a movie.

The data was collected and a .csv file was formed.
Most of the entities in the given dataset were disam-
biguous, and hence the data collected was sparse as
the entity was inclined to one of the domains. To
overcome this problem of sparseness, the dataset
was first divided into two-parts: one file contain-
ing the entities that were the names of the people
and/or music bands, while the other contained the
entities that were the names of the artwork (movie
and/or song tracks). Dividing the single file into
two, helped deal with the sparseness a bit as some
of the features that were not applicable to that par-
ticular category were removed.

There were many challenges in handling the art-
work file. Many artworks pertaining to the same

30

domain had the same name but different artists. A
disambiguation had to be done to select the best
one of these. Consider the song “Bad Guy”. When
we tried to collect data regarding it, the result of the
search query included 280 songs of the same name
in all languages combined. We took the collection
of top 10 searches and the data related to each of
those songs which shared the common name.

The features “Genre”, “Region” and “Release
date” were dropped from consideration. The deci-
sion to drop them was taken based on the fact that
“Genre” didn’t work well with entities belonging
to the movie domain. The “Release Date” isn’t ap-
plicable to persons but only to the artwork. Hence
these features were considered as not needed and
were dropped.

After dropping the not required features from the
dataset, the sparseness that still existed was dealt
by filling them up with default values which was
determined in such a way so as to not change the
dynamics of the dataset (i.e., not change the nature
of the data).

5 Methodology

Flowchart in Figure2 shows the systematic ap-
proach taken. The data collected from IMDb and
MusicBrianz was analyzed. We faced the problem
of excessive sparseness after building our dataset
as some fields were not applicable for a particular
domain and hence had to be left blank. Features
like Number of movies acted, Number of movies
directed, Number of movies produced would not
be applicable for music related entities. Similarly
features like release region, release year would not
be applicable for movie artists.

We realized adding mean/median values to re-
move the sparseness would corrupt the dataset as
the missing values were not applicable for the en-
tity. For entities like number of movies acted, num-
ber of movies directed, number of movies produced
we replaced Null values with zero. For the release
year entity, we replaced Null values with 2015 and
release region with USA to avoid ambiguity as we
didn’t want these values to influence the classify-
ing decision. We replaced the Null values in the
rating columns for movie artists to four to maintain
uniformity. We made sure not to replace any miss-
ing attribute’s value with an extreme value so as to
avoid influencing the classifying decision.

We used Label encoding to encode the attribute
values as decision trees and random forests do not

Collecting data from IMDB and
MƵsicBrainǌ

 to build the dataset

Cleansing our dataset and filling
missing Yalues Zith appropriate

Yalues to tackle sparseness

Performing Label Encoding on the
features

Training our dataset Zith random
forest

Var\ing the number of trees and
test data si]e to obserYe

accurac\

Steps shoZing the approach taken

Finall\ choosing the result
Zhich giYes us the highest

accurac\

Fine tuning
parameters

Figure 2: Flowchart of the System Processes

accept string inputs. We used Label Encoding over
One Hot encoding because we observed One hot
encoding would result in higher data duplication
(Multiple Columns). Initially we used decision
trees after performing label encoding on the dataset
entities. The intuition behind choosing decision
trees was that the algorithm generates rules for
classification. The input data was not sequential for
us to try Machine Learning algorithms like RNN
or LSTM. The decision tree was built using the
scikit-learn library of python. The algorithm used
to build the decision tree was CART, and hence
categorical values weren’t supported and encoding
had to be done. The decision of splitting the node
at a level was based on the gini impurity of the
features.

To improve the accuracy, we used random forest
(Set of decision trees) to reduce overfitting and
give better results for new test data. Random forest
algorithm creates decision trees on data samples
and then gets the prediction from each of them
and finally selects the best solution by means of
voting. It is an ensemble method which is better

31

than a single decision tree because it reduces the
over-fitting by averaging the result and improves
the classification accuracy.

6 Experimental Results

On analyzing our dataset, we decided that a ma-
chine learning approach would work well for the
problem in hand. We initially used decision trees
and achieved an accuracy of 86%. Figure3 rep-
resents the decision tree that was built using the
CART algorithm. The split of nodes at each level
is depicted along with its Gini impurity value.

Figure 3: Decision Tree generated

Algorithm Test Data
(%)

Training
Data (%)

Accuracy
(%)

Decision
Tree

20 80 86

Random
Forest

20 80 89

Random
Forest

30 70 93

Random
Forest

40 60 94.3

Table 2: Experimental Results.

To increase the accuracy of classification and pre-
vent overfitting we decided to use random forest.

Using the random forest, we obtained an accuracy
of 89%. As our dataset was relatively small, in-
creasing the number of trees for random forest did
not yield us with better accuracy, so we increased
the test data size to have larger data to classify from
20% to 40%. Results are tabulated in Table 2. Fi-
nally, we achieved an accuracy of 94.3% percent
using random forest with 100 trees.

7 Conclusion

The problem of Named Entity Popularity Deter-
mination was to be solved without any contextual
data or user history in the domains of music and
movies. In virtual assistants, users usually give
only named entity without context or a statement
associated with it. We built our customized dataset
from IMDb and MusicBrainz. The issue of exces-
sive sparseness was solved by filling the missing
values in the dataset with generic relevant values
and made sure it wouldn’t influence the classifying
decision. With decision trees, an accuracy of 86%
was achieved. To improve the accuracy and prevent
overfitting random forests was used. We finally
achieved an accuracy of 94.3%. The approach used
here to disambiguate ambiguous entities can be
extended to other related domains like TV Shows,
Podcasts and Radios by collecting relevant features.
This approach can be modelled to disambiguate am-
biguous entities between various related domains
without contextual information.

References
Ayman Alhelbawy and Robert Gaizauskas. 2014.

Graph ranking for collective named entity disam-
biguation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 75–80.

Roi Blanco, Berkant Barla Cambazoglu, Peter Mika,
and Nicolas Torzec. 2013. Entity recommendations
in web search. In International Semantic Web Con-
ference, pages 33–48. Springer.

Alberto Cetoli, Mohammad Akbari, Stefano Bragaglia,
Andrew D O’Harney, and Marc Sloan. 2018. Named
entity disambiguation using deep learning on graphs.
arXiv preprint arXiv:1810.09164.

Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on wikipedia data. In Proceed-
ings of the 2007 joint conference on empirical meth-
ods in natural language processing and computa-
tional natural language learning (EMNLP-CoNLL),
pages 708–716.

32

Radu Florian, Abe Ittycheriah, Hongyan Jing, and
Tong Zhang. 2003. Named entity recognition
through classifier combination. In Proceedings of
the seventh conference on Natural language learn-
ing at HLT-NAACL 2003, pages 168–171.

Tabreez Govani, Hugh Williams, Jamie Buckley, Nitin
Agrawal, Andy Lam, and Kenneth A Moss. 2013.
Determining entity popularity using search queries.
US Patent 8,402,031.

Xianpei Han and Jun Zhao. 2010. Structural semantic
relatedness: a knowledge-based method to named
entity disambiguation. In Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 50–59.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

René Speck and Axel-Cyrille Ngonga Ngomo. 2014.
Ensemble learning for named entity recognition. In
International semantic web conference, pages 519–
534. Springer.

Christophe Van Gysel, Manos Tsagkias, Ernest
Pusateri, and Ilya Oparin. 2020. Predicting entity
popularity to improve spoken entity recognition by
virtual assistants. arXiv preprint arXiv:2005.12816.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint learning of the em-
bedding of words and entities for named entity dis-
ambiguation. arXiv preprint arXiv:1601.01343.

