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Abstract

Intent classification is an important task in
natural language understanding systems.
Existing approaches have achieved perfect
scores on the benchmark datasets. However
they are not suitable for deployment on
low-resource devices like mobiles, tablets,
etc. due to their massive model size.
Therefore, in this paper, we present a novel
light-weight  architecture for intent
classification that can run efficiently on a
device. We use character features to enrich
the word representation. Our experiments
prove that our proposed model outperforms
existing approaches and achieves state-of-
the-art results on benchmark datasets. We
also report that our model has tiny memory
footprint of ~5 MB and low inference time
of ~2 milliseconds, which proves its
efficiency in a resource-constrained
environment.

1 Introduction

In a time where consumers and businesses alike
are constantly adopting new technologies in hope
of increasing efficiency and convenience, the
intelligent virtual assistant (IVA) has been an
immediate success®. For a high-quality IVA, it is
very crucial to understand the intentions behind
customer queries, emails, chat conversations, and
more in order to automate processes and get
insights from customer interactions. Thus research
interest in Intent detection is on the rise.

Intent classification is an important task in
Natural Language Understanding (NLU) systems
which is the task of assigning a categorical intent
label to an input utterance. Most IVAs use cloud-
based solutions and mainly focus on accuracy

1 https://www.statista.com/topics/5572/virtual-assistants/

rather than model size. But due to factors like
privacy and personalization, there is a need for
deploying models on device and thus on-device
intent classification is significant. The current
state-of-the-art models are highly accurate on
benchmark datasets. However, most of these
models have a huge number of parameters and use
complex operations. Due to these reasons, they are
not suitable for deployment on low-resource
devices like mobiles, tablets, etc.

Gartner 2 predicts that by 2020, 80% of the
smartphones shipped will have on-device Al
capabilities. For this, there is a need for light-
weight, fast and accurate models that can run
efficiently in a resource-constrained environment.
Thus, in this paper, we propose an on-device intent
classification model.

In our proposed model, we use character
features along with word embeddings to get
enriched word representations. We use Long Short
Term Memory Recurrent Neural Network (LSTM-
RNN) (Hochreiter and Schmidhuber, 1997) to
obtain the context vector for the input utterance.
Further, we benchmark our model against publicly
available ATIS and SNIPS datasets. Our
experiments show that the use of character features
has resulted in improved accuracy on the
benchmark datasets.

The major contributions of this paper are given
below.

e We propose a novel on-device
architecture for Intent Classification
which uses character features along with
word embeddings.

e We benchmark our model against
publicly available ATIS and SNIPS

2 https://www.gartner.com/en/newsroom/press-
releases/2018-03-20-gartner-highlights-10-uses-for-ai-
powered-smartphones
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datasets and achieve state-of-the-art
results.

We measure the system-specific metrics
like RAM usage and inference time and
show that our proposed model is efficient
for low-resource devices.

The rest of the paper is organized as follows. In
section 2, we give a brief overview of existing
approaches for the task. We describe our approach
in detail in section 3. Experimental results are
presented in section 4. In section 5, we conclude

and discuss future work.

2 Related work

Intent classification is the task of predicting an
intent label for the given input text. It is a well-
researched task. Early research include maximum
entropy Markov models (MEMM) by Toutanova
and Manning (2000). Haffner et al. (2003) and
Sarikaya et al. (2011) have approached this task
using Support Vector Machines (SVM).

Another popular model used were CRF based
methods. Lafferty et al. (2001) first proposed
Conditional (CRF) to build probabilistic models
for segmentation and labelling sequence data
which was proved to perform better over MEMMs.
Following this, Triangular-chain conditional
random fields was proposed by Jeong and Lee
(2008) which is used to jointly represent the
sequence and meta-sequence labels in a single
graphical structure. This method outperformed the
base model.

Purohit et al. (2015) have demonstrated the
effectiveness of using knowledge-guided patterns
in short-text intent classification. Sridhar et al
(2019) have proposed the use of semantic hashing
for intent classification for small datasets.

Recently joint models for intent classification
and slot filling have been developed. Taking
inspiration from TriCRF, Xu and Sarikaya (2013)
proposed a CNN-based TriCRF for joint Intent and
Slot filling. This was a neural network version of
TriCRF which outperformed the base model by 1%
for both intent and slot. A joint model using Gated
Recurrent Unit (GRU) and max pooling for intent
detection and slot filling was developed by Zhang
and Wang (2016). Following this, Hakkani-Tur et
al. (2016) and Liu and Lane (2016) also developed
a joint model using recurrent neural networks. To
model the relationship between the intent and slots,
Gooetal. (2018) and Li et al. (2018) have used gate
mechanism. Wang et al. (2018) have proposed Bi-

model based RNN semantic frame parsing network
structures by considering the cross-impact of both
the tasks. Zhang et al. (2019) have used capsule
networks that considers the hierarchical
relationships between words, slots, and intents. E
et al. (2019) have used SF-ID network to provide
bidirectional interrelated mechanism for intent
detection and slot filling tasks. Qin et al (2019)
have used stack-propagation framework to better
model the relationship between slots and intents.
They further use BERT with their approach to
achieve the current state-of-the-art results.

Although above mentioned joint models achieve
impressive results on benchmark datasets, they are
inefficient for the applications where only intent
information is sufficient. Also, their heavy
architecture and large model size make their on-
device deployment difficult. Most of these models
use multiple layers of operations that result in
higher RAM usage and inference time. Our
proposed model is light-weight, fast, and accurate,
which makes it highly efficient for deployment on
low-resource devices.
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Figure 1: Architecture of character feature
extractor
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Figure 2: Illustration of character feature extraction.

3 Approach

In this section, we discuss our approach in detail.
We use a light-weight architecture that can be
efficiently deployed on device. We use character-
level representation along with word embedding to
enrich word-level representation.

Character representation: The use of
character-level features to represent a word has
proven useful for multiple NLP tasks. It has been
used for language modeling (Kim et al., 2015),
parts of speech (POS) tagging (Santos and
Zadrozny, 2014), named entity recognition (NER)
(Santos and Guimaraes, 2015), etc. The use of
character level features makes the model robust
towards spelling mistakes. Since representations
are formed using characters, out-of-vocabulary
(OOV) words also get representation which can be
further fine-tuned. It also helps to get similar
representations for words with common
root/prefix. For example consider the following
three words: petrify, petrifies, and petrifying. These
three words get similar representation using
character features as they share a common prefix
‘petrif’.

The architecture used to get character
representation is depicted in Figure 1. Each word
is a sequence of characters. Character embeddings
are used to encode this information. Character
embeddings are initialized randomly and learned
during training. These character embeddings are
fed to 3 convolution layers. Convolution layers
have different convolution windows which help
them to capture different character features. Max-
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Figure 3: Architecture of proposed model

pooling is performed on the output of convolution
to select dominant features. The output of max-
pooling layers is concatenated to get the character
level representation.

An illustration of the above-mentioned process
is shown using figure 2. For illustration, we use
character embedding size of 5. Convolution
window sizes and filter sizes are set to (3, 5, 7) and
(4, 2, 3) respectively. Max-pooled vectors are
concatenated to get character features.

Word level representation: We use word
embeddings to capture semantic information. They
are initialized with pre-trained embeddings and
fine-tuned during training. Pre-trained word
embeddings are trained on a huge corpus and hence
capture the semantic representation of the word
well, which can be further fine-tuned. The use of
pre-trained word embeddings helps the model to
converge quickly resulting in lower training time.
We use pre-trained glove embeddings (Pennington



Get 39% off on Super Skinny Women Blue Jeans. Hurry up Stock is limited
The more you fall, the more stronger you become for getting up. Never give up no

Intent Example
wish Wish you a very happy birthday James!
invitation You are invited to our wedding. Please attend.
announcement We are going to be parents!
love Love you to the moon and back dear!
thank Thank you for your unconditional love and useful advice!
miss I hope to see you pretty soon as I miss you way too much, dear.
sorry I hope you can accept my apology and get rid of my guilt. Sorry
job posting We are hiring! A Registered Pharmacist, is needed at our Pune office
sale
quotes
matter what.

Table 2: Details of custom datasets.

et al., 2014). Final word-level representation is
obtained by concatenating word embedding with
the character-level representation of the word.
These concatenated embeddings are fed as input to
the encoder.

An encoder is used to get the semantic vector
representation for a given input utterance. We use
Long Short Term Memory Recurrent Neural
Network (LSTM-RNN) as an encoder. LSTM
reads the inputs in the forward direction and
accumulates rich semantic information. As a
complete sentence passes through LSTM, its
hidden layer stores the representation for the entire

input sentence (Palangi et al., 2015). This
sentence representation is used classification.

We use a fully connected layer followed by a
softmax layer for classification. The fully
connected layer learns function from sentence
representation fed to it by the LSTM layer.
Softmax layer gives the output probabilities for
intent labels. We have illustrated this architecture
using figure 3.

4  Experimental Results

In this section, we share the details of the
benchmark and custom datasets, describe the

Attributes ATIS SNIPS
No. of intents 21 7
Vocabulary Size 722 11241
Train set size 4478 13084
Test set size 893 700
Validation set size 500 700

Table 1: Details of benchmark datasets.
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training set-up, present experimental results, and
compare our model with existing baselines.

4,1 Datasets

To compare our model with existing approaches,
we benchmark it against two public data sets. First
is the widely used ATIS dataset (Hemphill et al.,
1990), which contains audio recordings of flight
reservations. The second dataset is the custom-
intent-engines dataset called SNIPS (Coucke et al.,
2018) which is collected by Snips voice assistant.
Details about both the datasets can be found in
table 1. SNIPS dataset is more complex as
compared to ATIS dataset because of multi-domain
intents and relatively large vocabulary. We use the
datasets that are pre-processed by Goo et al. (2018)
with the same partition for train, test, and
validation set.

Custom dataset: We have also curated a
custom dataset. For initial data creation, we use
user trial and scrape webpages. We define 10 intent

Data Distribution

selling, 51408

job posting, 72153

sorry, 314008

Figure 4: Data distribution in custom dataset



labels to annotate custom dataset. These intent
labels and their examples are given in table 2.
However, the size of the data that is collected is not
sufficient to train a neural network. Therefore we
use different data augmentation techniques to
increase data size. We use transformer-based data
augmentation followed by synonyms replacement.
In transformer-based data augmentation, we fine-
tune a pre-trained BERT (Devlin et al., 2018)
model on collected data. We use this fine-tuned
BERT for making predictions on a huge unlabeled
corpus. We only consider sentences that are
classified with high confidence. We verify these
sentences to ensure that predictions by BERT are
correct. Further, we use synonyms replacement for
augmentation. In a sentence, we randomly replace
30% of the words with their synonyms. The final
data distribution is given in figure 4. For testing,
we have curated a set of 100 sentences manually.

4.2 Training

We use the same set of parameters for training
model on both benchmark datasets. We fix
maximum sequence length to 25. We initialize
word embedding with 50 dimensional pre-trained
GloVe embedding. Character embedding size is set
to 15. Kernel sizes are set to 3, 4, and 5 and filter
sizes are set to 10, 20, and 30 in 3 convolution
layers. LSTM layer has 128 units. Categorical
cross-entropy is used for loss computation & Adam
optimizer (Kingma and Ba, 2014) is used to
minimize loss. The batch size is set to 16. Constant
learning rate of 0.001 is used. Models are trained
for 10 epochs.

Following Goo et al. (2018) we use accuracy as
the metric for the evaluation. After each epoch, we
evaluate the performance of the model on
validation set. The model performing best on
validation set is then evaluated on test set. To
address the issue of random initialization, we
repeat this process 20 times and consider the
average accuracy for analysis.

For custom dataset, we use only 50K sentences
per intent label. We also limit word vocabulary size
to 12K most frequent words. Batch size is set to 64.
Rest all parameters and hyper-parameters remains
same as training benchmark datasets.

4.3  On-device deployment

We use TensorFlow (Abadi et al., 2016) to build
all our models. We use Tensorflow Lite (tflite) to
support on-device execution. The trained models
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Model ATIS SNIPS
Joint Seq (Hakkani- | 92.6 96.9
Tur et al., 2016)

Attention BiRNN | 91.1 96.7
(Liu and Lane,

2016)

Slot-Gated Full | 93.6 97.0
Atten (Goo et al.,

2018)

Slot-Gated  Intent | 94.1 96.8
Atten (Goo et al.,

2018)

Self-Attentive 96.8 97.5
Model (Li et al,

2018)

Bi-Model (Wang et | 96.4 97.2
al., 2018)

CAPSULE-NLU 95.0 973
(Zhang et al., 2019)

SF-ID Network (E | 96.6 97.0
et al., 2019)

Stack-Propagation | 96.9 98.0
(Libo et al., 2019)

Stack-Propagation | 97.5 99
+ BERT (Qin et al.,

2019)

Our Model 99.53 98.95

Table 3: Performance of our model compared to
current existing approaches

on SNIPS and ATIS datasets are converted to tflite
format. The size of the models is reduced by post-
training quantization. The final size of our models
trained on ATIS and SNIPS is 172 KB and 686 KB
respectively. The size of the model trained on
custom data set is 786 KB.

4.4 Baselines

We compare our model with existing deep learning
based models for intent classification. They are as
follows: Joint Seq (Hakkani-Tur et al., 2016),
Attention BiRNN (Liu and Lane, 2016), Slot-
Gated Attention (Goo et al., 2018), Self-Attentive
Model (Li et al., 2018), Bi-Model (Wang et al.,

Metrics ATIS SNIPS
Model Size 172 KB 686 KB
Inference Time 1.87 ms 1.9 ms
RAM 4850 KB | 4822 KB

Table 4: On-device model performance
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Figure 5: Accuracy comparison of our model with
current state of the art

2018), Capsule-NLU (Zhang et al., 2019), SF-ID
network (E et al., 2019) and Stack-Propagation
(Qin et al., 2019).

For all the baselines, we utilize the results
reported by Qin et al. (2019).

45 Results

Detailed performance comparison of our model
with existing approaches is shown in table 3. Our
model achieves an average accuracy of 98.95%
and 99.53% on SNIPS and ATIS datasets
respectively. The variance of 0.026 on SNIPS and
0.01 on ATIS datasets prove the robustness of our
model. Our model outperforms the current state-of-
the-art Stack Propagation framework + BERT by
2.03% on ATIS dataset. On SNIPS dataset, our
model achieves results comparable to the state-of-
the-art and outperforms all other approaches. It is
worth noticing that our model has much fewer
parameters as compared to the state-of-the-art
model. The model trained on custom dataset
achieves 98% accuracy on custom test set.

We also measure the system-centric metrics for
our models which are presented in table 4. We use
a Samsung galaxy A51 device (4 GB RAM, 128
GB ROM, Android 11, Exynos 9611) for these
experiments. Inference time includes the time
required to pre-process the input text, tokenization,
model execution, and label determination. We infer
complete test set of datasets on device and report
its average inference time. As stated in table 4, our
models have an inference time of ~2 milliseconds.
We also report maximum RAM usage during on-
device inferencing is less than 5 MB.

All the above-mentioned results prove that our
model is not only accurate but it also has low
inference time and RAM usage. This proves that
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our model is efficient for running on low-resource
devices.

5 Conclusion

In this paper, we present an on-device intent
classification architecture that uses character level
features to enrich the word representation. Our
experiments prove the effectiveness of our model
as it achieves state-of-the-art results on benchmark
datasets. System centric metrics like RAM usage
and inference time shows that our model is fast and
light-weight to be deployed on low-resource
devices. For future work, we want to extend this
approach for slot filling and experiment with a joint
model for on-device intent detection and slot
filling.
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