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Abstract

Language models can generate lists of salient
literary characters for specific relations but
struggle with long, complete lists spanning en-
tire novels. This paper studies the non-standard
setting of extracting complete entity lists from
full-length books, such as identifying all 50+
friends of Harry Potter across the 7-volume
book series. We construct a benchmark dataset
with meticulously compiled ground-truth, pos-
ing it as a challenge for the research community.
We present a first-cut method to tackle this task,
based on RAG with LLMs. Our method intro-
duces the novel contribution of harnessing IR-
style pseudo-relevance feedback for effective
passage retrieval from literary texts. Experi-
mental results show that our approach clearly
outperforms both LLM-only and standard RAG
baselines, achieving higher recall while main-
taining acceptable precision.

1 Introduction

Motivation and Problem. Analyzing literary texts
often involves entity markup and the extraction of
relations between characters (Piper et al., 2021;
Bamman et al., 2024). For example, to discover
narrative patterns in contemporary or historical fan-
tasy stories, a tool should track character move-
ments across locations and label them by role or
sentiment (Wilkens et al., 2024). Similarly, cultural
studies on gender roles in fiction across different
epochs and regions (Kejriwal and Nagaraj, 2024)
need labeling of character types and relationships.

To this end, tools for NER/NED and relational IE
(RE for short) must be adapted to the specifics of
literary language and narrative structure. In this
paper, we focus on the task of RE: identifying
subject-predicate-object (SPO) triples in fictional
narratives, where S and O are named entities, and
P is a binary relation such as parent, family, friend,
or opponent.
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There is ample work on RE, based on deep neu-
ral networks (Han et al., 2020; Zhao et al., 2024).
Recent methods employ LLMs for encoding in-
put texts (Josifoski et al., 2022; Ma et al., 2023;
Xu et al., 2024). These models are sequence-to-
sequence taggers: given text T and target subject
S, they identify candidate objects O appearing in T,
tag cue words for relation P, and classify each SPO
candidate as valid or invalid. The key limitation is
that texts are short—often single paragraphs, com-
monly from Wikipedia. Thus, there are only a few
O candidates, and the task reduces to classification:
mapping SO candidates onto none, one, or more P.

RE methods perform well when the S and O
entities are salient, the text T is short, and the
language style can be learned upfront via training
on Wikipedia or fine-tuning on a specific corpus.
However, when the input spans an entire book, pre-
training has limited value and fine-tuning is infea-
sible due to the lack of annotated data. Also, the
desired outputs would include long-tailed O’s that
appear only a few times over hundreds of pages. In
contrast to the SO — P approach of standard RE,
we cast this underexplored task as SP — {O}:
given subject S and relation P, extract/generate
a long—ideally complete—Ilist of objects O that
stand in relation P with S. This goal entails two
major research questions:

RQ1: How well are LLMs performing on this chal-
lenge? How much value is added by running
LLMs in RAG mode?

RQ2: How can the outcome of LLM/RAG meth-
ods be further enhanced? How can we boost
recall without losing too much in precision?

To illustrate the problem, consider ene-
mies/opponents of Michael Corleone in The Godfa-
ther books by Mario Puzo. Figure 1 shows book ex-
cerpts with cues about McCluskey, Sollozzo, Roth,
Tommasino and Fabrizzio being in this list (which,
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Hagen spoke quietly. “ ... The police
captain, McCluskey, is a guy who's
been on the take very heavy ...

And he’s greedy and untrustworthy to

And then Don Tommasino had told Michael that
the two shepherds, Fabrizzio and Calo, would go
with him as bodyguards in the Alfa Romeo. 7

do business with. But Sollozzo must
have paid him a big price. “

“I'm OK,” Michael said. “What was

“McCluskey,” Hagen said.

Michael had last seen him that fatal

For example, the late Rocco
Lampone ... would have come in
pretty handy at times like this,
except that for who knows what
that police captain’s name?” reason Michael had used him to

7 take out Hyman Roth. Who sends
a capo to do a hit like that?

“Get the car,” Michael called down to him. “I'll
be leaving in five minutes.” “Calo is having a cup
of coffee,” Fabrizzio said. “Is your wife coming
with you?” 7

Apollonia was sitting in the car ... Michael was
annoyed to see Fabrizzio disappearing through
the gates. What the hell was he doing? 7

night when Clemenza had planted the
gun he had used to assassinate the
police captain and the Turk, SoIIozzo.V

Michael shouted to the girl, “No! No!” But his
shout was drowned in the roar of the tremendous|
explosion as Apollonia switched on the ignition.

Figure 1: Example for the problem of long lists from long narratives. For the subject “Michael Corleone”, we aim
to extract all 40 enemies/opponents, appearing in the books.

according to sources like fan wikis, has 40 peo-
ple). We observe three cases: easy (left), hard
(middle), and challenging (right). The easy cases
are salient entities that are frequently mentioned—
extracting them needs only one or two informative
passages. The hard cases arise for entities that ap-
pear infrequently (like Hyman Roth, who is a minor
figure in the books); here, the issue is finding the
“needle in the haystack™. Finally, the most chal-
lenging cases involve vague and terse cues for the
predicate, requiring deeper inference over multiple,
possibly scattered, passages—such as identifying
Fabrizzio as the culprit behind the car bomb attack
on Michael Corleone’s wife.

Approach and Contributions. We devise a
novel methodology to address this challenging task.
Our method, called L3X (LM-based Long List
eXtraction), operates in two stages:

Stage 1: Recall-oriented Generation. An LLM
is prompted with a subject and predicate from a
book, to generate a long list of candidate objects
by various prompts, including RAG mode, with
passages retrieved from the book text. In contrast
to mainstream RAG, we retrieve a large number
of passages (e.g., 500 for a given SP pair) and
judiciously select the best ones for prompting.

Stage 2: Precision-oriented Scrutinization.
Given a high-recall list of object candidates, we
devise a classifier to corroborate or prune objects.

Since we tackle an unexplored task, we construct
and release a new dataset for evaluation and as a
resource for the NLP community. The data com-
prises 11 books or book series, with 16,000 pages
total. It covers 8 relations of long-tailed nature
(friends, opponents etc.). To use the copyrighted
texts, purchasing the e-books is required.

Salient contributions of this work are: (1) the
new task of extracting a long list of objects for
a given subject and relation from book-length

narrative texts; (2) L3X methodology for this
task, based on retrieval-augmented LLMs and
combining information-retrieval (IR) techniques
with LLM generation; (3) experiments with a
new benchmark, showing that L3X outperforms
LLM-only and LLM-RAG baselines, with an in-
depth analysis of strengths and limitations of dif-
ferent methods. The dataset, licensing details,
code and experimental results are available at
https://anonymous.4open.science/r/13x-9E4A.

2 L3X Methodology

Figure 2 gives an overview of the L3X components
and the data flow between them. The first four
steps form the recall-oriented stage 1, the fifth step
is for the precision-oriented stage 2. The following
presents the full L3X pipeline. Baselines and L.3X
variants are derived from specific configurations
(Sec 4) and given in experimental results (Sec 5).

2.1 Passage Retrieval

Long texts, like books, are chunked into short pas-
sages of 15 sentences, totaling up to 1000 char-
acters. We create all overlapping passages (i.e.,
with shared sentences) to ensure that sentences
with co-references stay connected to named en-
tities in their proximity. Since books often contain
extended direct speech, which may omit explicit
speaker names, we enrich each passage with men-
tions of people and locations from the preceding 10
passages. This metadata annotation ensures that rel-
evant named entity information from prior chunks
remains accessible within the current passage.

On the large pool of enriched passages, indexed
for efficient retrieval, we select the open-sourced
and effective Contriever (Izacard et al., 2022), a
BERT-based dense neural IR method fine-tuned on
MS-MARCO dataset!. The query vector is con-

"https://github.com/facebookresearch/contriever
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Figure 2: Overview of the L3X methodology.

structed from the SP pair; an example is: “enemies
of Michael Corleone.” Moreover, paraphrases of P
and alias names are included, such as “opponents
rivals Don Michael” for ensemble mode.

2.2 Passage Ranking

Default Ranking (def). The default passage rank-
ing is given by the retriever scores. For a given
SP pair, formulated as a natural language query,
the dense retriever ranks top-d passages based on
cosine similarity to the query vector.
Amplification (amp). For this novel re-ranking of
passages, we employ the IR principle of pseudo-
relevance feedback (Zhai, 2008). After extracting
O lists from the initially selected passages (see Sub-
section 2.4), we assess the passage quality based
on the number of distinct O’s the passage yields.
The best s passages are assumed to provide good
cues about relation P in surface form (with hyper-
parameter s). The averaged embedding vectors for
these high-yield passages are the reference against
which all retrieved passages are re-ranked. The
amp technique works in two alternating steps and
iterates them as follows:

1. For each SP pair, we consider the previously
generated O values and the best s high-yield
passages: those from which the LLM could
extract the most objects.

All retrieved passages are re-ranked by the re-
triever’s scoring model based on combining
the original query (about SP) with the selected
high-yield passages. The now highest-ranking
passages go into the next batch of O extraction
via LLM prompting, where each batch consists
of b passages (e.g., b = 4).

For scoring, we utilize the retriever for computing
cosine similarity of passages to a refined query:
convex combination of the original query vector
and the sum of top-s support passages’ vectors:

E(Q) = oE(Q) + (1 — )37 E(S;) with
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embeddings E( ) and hyper-parameter c.

2.3 Passage Batching

For the high cost (or even infeasibility) of aug-
menting a large number of passages (e.g., all 500
retrieved ones) into an LLM, we group the passages
into smaller batches of size b (a hyper-parameter;
typical values being 2, 4, or 6), by default in de-
scending ranking order. Alternatively, passages can
be batched using one of two criteria:

e Named Entity Overlap (neo): passages with

a large overlap in named entity mentions;
e Passage Similarity (sim): passages whose em-
beddings have a high cosine similarity.

For neo, we compute Jaccard similarity using min-
hash sketches of entity sets, while sim uses embed-
ding vectors computed by the retriever. Both strate-
gies process a priority queue of passages as follows:
for each rank r (starting with highest, r=1), find the
b-1 most related passages from lower ranks (1’ >r)
to form a batch and prompt the LLM. Mark all the
batch passages as “done” and proceed with the next
lower rank (r’ >r), which is not yet “done”.

2.4 Prompt-based Object-List Generation

We append passages into the prompt for RAG-
based list generation. As LLMs have limits on
input context (and GPU memory demands increase
with prompt length), we divide the top-k passages
(ranked by retriever scores) into batches of b pas-
sages each (e.g., k=20, b=4 gives 5 batches). The
O values generated from batch-wise processing are
combined by their union for high recall.

Prompts can be zero-shot or few-shot, with the
latter including a small set of demonstration ex-
amples for in-context inference. The examples
explicitly mention SP appearing in books disjoint
from the dataset, along with their complete O lists.
In single-prompt mode, the LLM uses only the
best of these formulations. In ensemble mode, for



each relation, we manually prepare five prompt
templates, and repeat the LLM-based generation
with all templates. The final O list is the union of
the O values generated across all runs. We focus
on the few-ensemble setting for the main results.

2.5 Classifier to Enhance Precision

In the precision-oriented scrutinization stage, we
leverage the fact that, unlike in the first stage, we
have lists of candidate objects. This allows us to
identify the passages from which the corresponding
SPO triples were extracted or where they appear.
Scoring of O Candidates. Each LLM call returns
a list with a score for the entire list, no scores for
individual objects. However, with batch-wise LLM
calls and the ensemble with different prompts, we
can derive a total score for each O candidate (for a
given SP), by a weighted occurrence frequency:
score(O) = 3 pien, €Xp (scorem(L;)) x 1;(0)
where I;(O) is an indicator variable set to 1 if
O occurs in the output list L; for the i*” batch of
passages, and zero otherwise. scorey is the LLM
log probability. This can then be used for direct
pruning by thresholding on scores.
Default Thresholding (thr). The simplest scruti-
nizing technique is to prune O candidates below a
a specified cut-off point in the ranked list of per-O
scores. As the score distribution is often skewed,
we do not truncate by score value, but set the cut-
off point to be the t*" quantile of the cumulative
score distribution, with the default setting t=0.8.
Support Passages as Evidence. While stage 1
starts with SP only, stage 2 has O candidates. This
allows us to search the full book for snippets that
contain cues for the entire SPO triple. For each
SPO, we retrieve the top-p passages, termed sup-
port passages. These passages differ from the high-
yield passages used by amp in stage 1, as they are
retrieved afresh for each SPO. For retrieval, we gen-
erate passage embeddings using the retriever’s text-
to-vector model. The vectors are compared against
embeddings of the concatenated SPO strings, in-
cluding SO alias names and paraphrases of P, using
cosine similarity.
Predicate Classifier (pred). The collection of sup-
port passages, for all SO with the same relation
P, can be used to learn an embedding for P cues,
sort of a “mini-LM” for P. The intuition is that
support passages with indicative phrases, such as
“life-or-death combat with”, “deeply hates” or “I
will destroy you” (in direct speech), can collec-

tively encode a better signal for P. To construct the
classifier, we perform the following steps:

1. For each O, retrieve top-p support passages,
and encode them into embedding vectors.

2. Identify the top-ranked O values with score(O)
above a threshold w.

3. Using the top-ranked O, combine the per-O pas-
sage vectors by a weighted sum, with score(O)
as weights, to obtain a single P-vector.

4. Each SO pair under scrutiny (O below the
threshold w) is tested by comparing the vec-
tor of the top-p support passages for this SPO
candidate against the P-vector computed using
steps 1 to 3.

5. Accept an SO pair if the cosine similarity be-
tween the embeddings is above threshold 6.
We construct a pred classifier for each SP pair, in a
completely self-supervised manner. All classifiers
share hyper-parameters w, p and 6; these are tuned
via withheld train/dev data with SPO ground-truth,

but without any supervised passage labels.

3 Dataset

Extracting long O lists from long books is a new
task, with no suitable datasets available. We con-
structed a new dataset of books and ground-truth O
lists for SP pairs. We selected eleven book series?,
discussed on community websites>. These fan sites
feature lists and infoboxes from which we derived
SPO ground-truth with high confidence (with man-
ual curation). Book length goes up to 10K passages
in epic series like A Song of Ice and Fire.

Since entities often appear under multiple sur-
face forms, we manually constructed an alias name
dictionary. On a per-book basis, we ensured that
certain first names, last names, or nicknames were
uniquely identifiable, e.g., “Daenerys” is unique
but “Targaryen” is ambiguous. So for this en-
tity, aliases include “Dany”, “Daenerys Targaryen”,
“Daenerys Stormborn”, but not “Targaryen”. LLM
outputs like “Targaryen” alone are counted as false.

Our dataset comprises 764 distinct SP pairs for
8 relations. In total, it covers ca. 5,300 entities, ref-
erenced under ca. 12,000 alias names. While the S
entities are prominent book characters, their associ-
ated O lists are long and dominated by rarely men-

’A Song of Ice and Fire Series, Godfather Series, Harry
Potter Series, Outlander Series, Little Women, Malibu Rising,
Pride and Prejudice, Steve Jobs, The Girl with the Dragon
Tattoo, Wuthering Heights, The Void Trilogy

3Swww.cliffsnotes.com, www.bookcompanion.com,
www.fandom.com
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tioned, long-tail entities. To highlight the gap with
standard RE, we examined the Wikidata knowledge
graph (KG) for triples involving the 30 Harry Potter
characters used as target S. While the KG includes
most of our predicates, it lacks substance beyond
metadata (e.g., featured-in-media, library IDs). It
is also extremely sparse: it lists only 2 of Harry’s
enemies, compared to 50+ in our ground truth—a
trend consistent across other subjects and relations.
Relation Difficulty. The chosen 8 predicates
include 3 easy relations with a limited number of
O values (parent, child, and sibling) and 5 hard
relations with long O lists (family, friend, opponent,
placeHasPerson (i.e., people being at a place), and
hasMember (i.e., members of orgs. or events).

4 Experimental Setup

Evaluation Metrics. By the design rationale of
L3X, we use different metrics for stage 1 and stage
2. For the recall-oriented stage 1, the obvious mea-
sure of interest is Recall: the fraction of ground-
truth object (O) values correctly generated. For
stage 2, neither precision nor recall alone reflect
our objective, and F1 would merely be a generic
compromise. Instead, we aim to achieve high re-
call while keeping precision at an acceptable level.
Therefore, our key metric—computed from the fi-
nal ranked lists— is Recall@PrecisionX (R@Px),
where x is the precision to be guaranteed (e.g., x
being 50% or, ideally, 80%). R @Px metric reflects
the need for high-coverage outputs worthwhile for
downstream applications such as tool-supported lit-
erature analysis, while avoiding too many errors as
these entail manual curation. For both stages, we
also report precision values and the precision-recall
area under the curve, AUC.

All reported numbers are macro-averaged per-
centage scores, computed in three steps. For each
SP pair, we first compute the precision and recall of
the generated O list against the ground-truth. These
are then averaged across all SP pairs for each P. Fi-
nally, the results are averaged across all relations.
System Configurations and Baselines. The L.3X
methodology comes with options for components
and configurations. For our main experiments, we
operate in the few-ensemble prompt setting and
focus on the following choices:

e LLM-only: directly prompting the LLM with-
out passages (Subsection 2.4). For stage 2, we
apply thr pruning with t=0.8.

e RAG: restricting L3X to the Retriever (Subsec-
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tion 2.2) and LLM prompting, leads to standard
RAG, with def passage ranking at stage 1 and
thr (t=0.8) for stage 2.

L3X-amp-thr: a configuration with amp for
re-ranking, and thr (t=0.8) for pruning.
L3X-amp-pred: a configuration with amp
for re-ranking, and the pred classifier in two
variants: pred(g) with globally tuned hyper-
parameters and pred(p) with predicate-specific
hyper-parameter values (see below).
L3X-amp-neo: a configuration with neo batch-
ing and a pruning classifier (thr or pred).
L3X-amp-sim: a configuration with sim batch-
ing and a pruning classifier (thr or pred).
Hyper-Parameters. L3X includes several tunable
hyper-parameters; Optimal values are identified us-
ing withheld train/dev data. To this end, we split
the entire dataset into three folds (30:20:50), via
stratified sampling over books and SP pairs, ensur-
ing equal representation of varying O-list lengths.
For each S in train/dev, the complete O list is taken
in the ground-truth to avoid information leakage
into the test set. Hyper-parameters are tuned via
grid search, maximizing the recall metric in stage 1
and R@P50 metric in stage 2. This is done in two
modes: a single global value per hyper-parameter,
or per-predicate values, specific to each P.

5 Results

We present the main findings on the long list gener-
ation task.

5.1 RQ1: Performance of LLMs and RAG

Table 1 reports macro-averaged results for the
LLM-only setting with three widely used mod-
els (GPT-3.5%, Llama3.1-8B, Llama3.1-70B>) and
RAG results with the best of these (Llama3.1-70B).
All are in few-shot ensemble mode, and all use thr
(t=0.8) for stage 2.

LLM-only performance is poor, achieving less
than 50% recall after stage 1, with mediocre preci-
sion. Llama-70B and GPT-3.5 perform comparably,
while Llama-8B substantially lags behind. In RAG
mode (with def ranking of passages), results im-
prove: 84% recall after stage 1, but precision stays
low even after thr-based scrutinization. The best
R@P50 number is 40.2%. As a reference, we es-
timate an oracle upper bound of 88% by counting

*platform.openai.com/docs/models/gpt-3.5-turbo
huggingface.co/meta-llama/Llama-3.1-8B,
huggingface.co/meta-llama/L.lama-3.1-70B
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the distinct O values from ground truth that appear
in at least one of the retrieved top-500 passages.

The insight here is that LLMs can recall only
a fraction of O’s from pre-training, and add many
false positives. Equipped with book passages, the
recall is improved, but false positives remain a ma-
jor challenge for this very difficult task.

5.2 RQ2: Added Value of L.3X Configurations

Table 2 compares different L3X configurations,
contrasting them with Llama3.1-70B model in
RAG mode. Adding smart re-ranking (amp) and
batching to RAG pays off very well, and the so-
phisticated classifier (pred) also enhances scrutiny.
After stage 1, the recall by L3X variants is similar
to the RAG, but we observe a notable improvement
in AUC, reaching 27.5%. This signals a higher con-
centration of true positives among the top-ranked
O values—an important asset for stage 2.

The L3X amp method for iterative re-ranking
achieves the biggest boost over the RAG base-
line: moving R@P50 close to 50% and R@P80
to around 36%. Combining it with one of the two
batching techniques does not add value, as amp by
design is already judicious in picking its batches.
Replacing the thr pruning with the sophisticated
pred classifier further enhances the performance a
bit. Again, drill-down by predicate shows higher
gains for some of the hard P, indicating potential
for more. The influence of hyper-parameter tuning
for pred is discussed below.

The bottom line is that L3X amp adds substantial
benefits over LLM-only and standard RAG meth-
ods, highlighting the crucial role of judicious pas-
sage ranking. The final R@P results—reflecting
the benefit/cost ratio for downstream usage—are
promising, but still fall short of being fully satisfy-
ing. This emphasizes the challenging nature of the
new task explored in this paper.
Hyper-parameter Tuning for pred. The pred
classifier has three hyper-parameters. Setting their
values by global grid search with train/dev data in
a self-supervised manner leads to the best results,
with w=20, p=5, and #=0.75. As various P exhibit
different characteristics, we would expect further
gains with per-predicate grid search. Indeed, this
led to rather different predicate-specific values, e.g.,
for Sibling, the best values are w=10, p=2, §=0.9,
but for Friend we get w=50, p=1, §=0.55. Neverthe-
less, pred(p) did not achieve significant improve-
ments over the globally tuned variant pred(g). We
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attribute this to the fact that the simpler configura-
tions are already close to the best possible outputs
given the inherent difficulty of the task.
Comparison to Other Classifiers. We explored
two alternative approaches for stage 2 scrutiniza-
tion. First, we used the LLM itself to elicit its
own confidence (Wang et al., 2023). For each SPO,
we included the support passages along with all
named entities into the prompt for in-context infer-
ence: “Given this information, is [SPO] a correct
statement?”. This approach performed poorly. For
example, with the L3X amp, it has 46.6% preci-
sion, 44.7% recall, 19.0% AUC, 31.7% R@P50
and 20.4% R @PS80.

Second, we evaluated standard relational IE
methods that classify an SO pair to a given predi-
cate P. We fine-tuned two state-of-the-art models—
GenlE (Josifoski et al., 2022) and DREEAM (Ma
et al., 2023)—on our train/dev folds. However,
both models performed very poorly, with recall be-
low 5% and precision no higher than 10%. This
highlights the difficulty of our task: these models
were trained on Wikipedia-style text, very different
from long and complex fiction.

6 Discussion

6.1 Drill-Down and Sensitivity

Predicate Drill-Down. While results are macro-
averaged over all relations, some predicates are
easier than others (see Section 3). We analyzed
performance per predicate using the best configu-
rations after stage 1 and 2. Stage 1 recall is fairly
consistent across predicates (75-90%), but stage 2
R@P numbers vary widely:“easy” relations with
short, well-defined lists perform well, while “hard”
relations—those with longer lists and vaguer cues—
show a significant drop. As expected, Opponent
is the most difficult predicate, where even our best
method reaches only ca. 32% of R@P50. Full
per-predicate scores after both stages is in Table 3.

Entity Popularity. We further analyzed perfor-
mance by splitting ground-truth O entities in the
test set into head and tail groups, based on their
frequency in the book. Entities above the 75"
percentile were labeled as head, the rest as tail.
This results in four combinations: (easy P, head),
(easy P, tail), (hard P, head), and (hard P, tail). We
observe that L3X-amp consistently outperforms
standard RAG across all four cases. However, in
the most challenging setting—hard P with tail O—
performance drops sharply.



Stage 1

Stage 2 (thr, t=0.8)

LLM Config
P R AUC P R AUC R@P50 R@P80
GPT-3.5 LLM-only 43.6 439 21.3 415 314 174 254 20.2
Llama-8B  LLM-only 21.2 319 115 212 27.8 105 16.9 12.4
Llama-70B LLM-only 34.1 47.7 20.5 37.0 395 205 314 21.9
Llama-70B RAG 120 843 229 146 828 227 40.2 26.1
Table 1: Results for LLM-only and RAG in few-shot ensemble mode.
L3X Config Stage 1 Stage 2
P R AUC P R AUC R@P50 R@PS80
RAG-thr 12.0 843 229 14.6 82.8 22.7 40.2 26.1
amp-thr 13.7 83.6 275 16.0 81.0 274 48.6 359
amp-neo-thr 14.1 834 27.1 16.7 81.6 269 47.7 35.4
amp-sim-thr 14.1 834 27.1 16.0 80.5 26.3 47.0 33.8
amp-pred(p) 13.7 83.6 275 235 773 280 48.7 36.2
amp-pred(g) 13.7 83.6 27.5 204 804 28.1 49.7 36.5
amp-neo-pred(p) 14.1 834 27.1 221 764 274 48.0 354
amp-neo-pred(g) 14.1 834 27.1 19.8 79.9 27.6 48.7 35.7

Table 2: Results for L3X configurations with Llama-70B in few-shot ensemble mode.

Stage 1 Stage 2
Relation RAG L3X-amp RAG-pred(g) L3X-amp-pred(g)
P R AUC P R AUC P R AUC R@P50 P R AUC R@P50

parent 259 756 255 (298 762 260 |382 714 273 577 | 427 762 279 61.3
children 20.7 865 276 | 19.6 825 32.1 | 337 839 28.1 60.9 | 30.7 820 365 72.3
sibling 269 872 349 |36.6 862 47.7 | 382 858 38.0 654 | 453 852 477 79.4
avg. EasyP 245 83.1 293 |28.7 81.6 353|367 804 31.1 61.3 39.6 81.1 373 71.0
family 55 79.8 252 | 51 798 333|115 772 252 34.0 124 763 33.1 448
friend 7.1 854 201 | 75 855 24.1 |11.7 803 19.7 27.1 11.7 803 238 355
opponent 41 80.8 17.7 | 44 81.1 189 | 72 736 176 29.3 86 743 189 324
hasMember 2.6 89.0 165 | 2.8 86.6 20.8 | 55 82.1 165 25.7 55 834 207 325
placeHasPer 3.0 89.8 154 | 34 907 168 | 5.6 820 14.7 30.3 6.0 853 165 39.6
avg. HardP 45 850 190 | 47 847 228 | 83 79.0 18.7 29.3 88 799 226 37.0
avg. All P 120 843 229 | 137 83.6 275|189 795 234 413 | 204 804 28.1 49.7

Table 3: Drill-Down Recall Results by Predicate for Stage 1 and Stage 2.

Role of LLM’s Parametric Memory. To as-
sess the influence of pre-training, we compared
LLM-only to L3X-amp on the Void Trilogy—a
series with minimal Web coverage, for which we
invested great effort in compiling ground truth. Re-
sults show that LLM-only fails completely on this
case: 12% recall and just 5% precision, whereas
L3X-amp gets 82% recall after stage 1, and 34.1%
R@P50 and 38.3% R@P80 with thr in stage 2.

Sensitivity of Hyper-Parameters. We con-
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ducted extensive experiments to assess the sensitiv-
ity of hyper-parameters, specifically the no. of top-
k retrieved passages and batch size b. We observe
that increasing k improves recall, but with dimin-
ishing returns and higher LLM cost. Batch size b
matters more when k is large—Ilarger batches boost
recall by providing more context, but also increases
prompt length and cost. Reducing the number of
retriever query reformulations hurts both recall and
R@P, highlighting the value of query diversity.



6.2 Error Cases.

We observed recurring error types and discuss three
of the most notable cases.

Hallucinations. LLM calls often return huge lists
of O’s, including names that do not occur in the
respective books. Even in RAG mode, the LLM
does not necessarily restrict its outputs to entities
present in the input passages—a case of unfaithful
generation. To quantify the effect, we compute
the no. of generated O’s that do not appear in the
respective book, normalized by the total no. of gen-
erated O values. Hallucination rates after stage 1
were: LLM-only: 55.3%, RAG: 51.7%, L3X-amp:
40.7%, L3X-amp-neo: 38.1%. Hallucinations in-
clude made-up names and non-entity phrases. This
underlines the importance of stage 2 scrutinization.
Confusing Predicates. LLMs generate valid O
values that are related to subject S, but under the
wrong relation P. A notable case is when O belongs
to a different ground-truth predicate Q (# P) (e.g.,
Dumbledore appearing as Harry Potter’s parent
instead of friend), We computed the #P x#P confu-
sion matrix, counting Os generated under P when
their true relation is Q. With L3X-amp-pred(g), we
observed a 60:30:10 ratio: correct TPs, predicate-
confused TPs, and false positives (FPs). This shows
that most SO pairs are reasonable, but predicate ac-
curacy at high recall remains a challenge.
Missing True Positives in the Low Ranks. The
majority of TPs are at high ranks, followed by a
long tail of mostly FPs but sprinkled with TPs at
lower ranks. To assess how well stage 2 recovers
low-ranked TPs, we use the R@P50 cut-off rank to
count the missing TPs below this threshold—those
misclassified as false negatives. Even with our
best methods, about 16% of all the ground-truth O
values fall into this low-rank, missed-TP category.

7 Related Work

Relation Extraction. A core task in IE is extract-
ing the relation P between two entities, subject S
and object O, where P comes from a predefined
set of predicates. State-of-the-art methods (Han
et al., 2020; Wang et al., 2020; Cabot and Navigli,
2021; Josifoski et al., 2022; Ma et al., 2023) typi-
cally operate on single passages using a multi-label
classifier or sequence tagger. Recent works (Zhao
et al., 2024; Xu et al., 2024) have advanced the
scope of the extractors’ input under the theme of
“long-distance IE”, extending beyond single sen-
tences or passages. However, techniques like graph
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neural networks or LLM-powered generative IE are
geared for short news or encyclopedic texts, and
cannot cope with book-length texts. Even the pop-
ular document-level benchmarks, DocRED (Yao
etal., 2019) and REBEL (Cabot and Navigli, 2021),
limit inputs to single Wikipedia paragraphs.

Retrieval-Augmented Generation. LLMs excel
in QA and IE tasks by drawing from their exten-
sive parametric knowledge (pretrained over mas-
sive contents), particularly with few-shot in-context
inference (Zhao et al., 2023; Minaee et al., 2024).
However, they are still susceptible to hallucinations,
especially for long-tail entities and facts (Ji et al.,
2022). To improve the overall task accuracy, re-
cent work has focused on integrating relevant text
snippets into in-context prompts through the RAG
paradigm (Lewis et al., 2020; Guu et al., 2020; Cai
et al., 2022; Asai et al., 2023; Wang et al., 2023;
Gao et al., 2023). However, the effectiveness of
RAG crucially depends on the retriever policy, and
the case of long novels has not been studied so far.
Information Extraction from Books. Prior
works (Bamman et al., 2019; Stammbach et al.,
2022; Chang et al., 2023) pursue LLM-supported
IE about characters from fiction books. But these
methods focus on NER-like generation of single
names from single passages. Bamman et al. (2024)
considers usage of LLMs for cultural analytics, and
Piper and Bagga (2024) shows LLMs for character-
izing and annotating narrative texts. None of these
works addresses full-fledged RE from entire books.

8 Conclusion

We introduced the task of extracting long lists of
objects from long documents, and proposed the
L3X methodology, comprising LLM prompting, re-
trieval augmentation, passage re-ranking and batch-
ing, and classifier-based pruning. Extensive ex-
periments demonstrate that L3X significantly out-
performs baselines in both recall and R@P. Our
best performing L3X configuration amp-pred(g),
leveraging pseudo-relevance feedback and a tuned
classifier, achieves remarkable performance of ca.
85% recall and ca. 37% R@P80 on full-length
books. However, drill-down analyses by relation
and entity popularity reveal substantial gaps in the
hard cases. This highlights the core challenge of
our task: while scattered textual cues across long
books may be intuitive for humans, they remain dif-
ficult for Al systems, including LLMs, to reliably
detect and extract.
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