Like a Human? A Linguistic Analysis of Human-written and
Machine-generated Scientific Texts

Sergei Bagdasarov
Saarland University (Germany)
sergeiba@lst.uni-saarland.de

Abstract

The purpose of this study is to analyze lexical
and syntactic features in human-written texts
and machine-generated texts produced by three
state-of-the-art large language models: GPT-
40, Llama 3.1 and Qwen 2.5. We use Kullback-
Leibler divergence to quantify the dissimilarity
between humans and LLMs as well as to iden-
tify relevant features for comparison. We test
the predictive power of our features using bi-
nary and multi-label random forest classifiers.
The classifiers achieve robust performance of
above 80 % for multi-label classification and
above 90 % for binary classification. Our re-
sults point to substantial differences between
human- and machine-generated texts. Human
writers show higher variability in the use of
syntactic resources, while LLMs score higher
in lexical variability.

1 Introduction

The use of Large Language Models (LLMs) in re-
search has become a common practice. Scenarios
in which academia members resort to LLMs are var-
ied, ranging from ideas generation and productivity
enhancement to data analysis and writing (Panda
and Kaur, 2024). 80.88% of researches surveyed
by Liao et al. (2024) used LLMs in their academic
activities, with 61% of researchers having at least
once used LLMs for editing and 41%, for direct
writing. A vast majority of scholars surveyed by
Mishra et al. (2024) consider that LLMs will have
an impact on various stages of the publication pro-
cess.

State-of-the-art LLMs are capable of producing
high-quality texts that are practically indistinguish-
able from human-created content for untrained in-
dividuals. This makes LLMs useful writing assis-
tants, especially for researchers who are not native
speakers of English. Yet numerous studies based
on large enough amounts of data have shown that
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LLMs do write differently in comparison to hu-
mans according to certain measures.

In this study, we aim to analyze human-written
texts (HWT) and machine-generated texts (MGT)
— abstracts of academic papers — and identify lin-
guistic features that can help tell them apart. While
studies on this topic abound, they either do not
focus specifically on academic texts, even though
those might be present in the scrutinized corpora,
or use the older GPT 3.5 model relying on the paper
title and a short text snippet for abstract generation.

We will address these research gaps by using
a large dataset of academic publications with full
texts and human-written abstracts and resorting to
a newer GPT-40 model (OpenAl, 2024). More-
over, we will complement our analysis with two
open-source state-of-the-art models (Llama 3.1 8B
Instruct (Grattafiori et al., 2024) and Qwen 2.5 7B
Instruct (Yang et al., 2025; Team, 2024)). The ra-
tionale behind this decision is that, although Chat-
GPT is the undisputed leader as a chat bot assis-
tant, its use may be associated with data protection
concerns (Ali et al., 2025; Novelli et al., 2024).
Because of this, researchers might choose open-
source LLMs, either running them locally or ac-
cessing them through in in-house university chat
bot solutions. Therefore, the amount of scientific
content potentially generated by open-source mod-
els might be increasing.

Furthermore, most studies comparing HWT and
MGT use a predefined list of features. Instead, we
will rely on Kullback-Leibler divergence, a mea-
sure rooted in information theory, to identify fea-
tures that can reliably distinguish between HWT
and MGT and then test these features in a classifi-
cation task.

The remainder of the paper is structured as fol-
lows. Section 2 offers a brief overview of research
on linguistic features in HWT and MGT. Section 3
describes the dataset and methodology, including
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the procedure for feature selection. Then, Section
4 presents the results for text classification, show-
ing the predictive power of the extracted features.
Section 5 compares HWT and MGT across some
of the selected features, while Section 6 contains a
brief discussion of our findings. Finally, Section 7
offers some concluding remarks and an overview
of future work plans.

2 Related Work

Due to easy accessibility and outstanding output
quality, LLMs have become an integral part of
many workflows, often being used to produce writ-
ten content. This inevitably leads to the prolifera-
tion of machine-generated texts, making the study
of synthetic language an important task.

A common approach for this consists in defining
a set of features (e.g., sentence length, frequencies
of words, part-of-speech categories or specific syn-
tactic patterns, etc.) and comparing them in human-
written texts (HWT) and machine-generated texts
(MGT) (e.g., Zanotto and Aroyehun (2024); Culda
et al. (2025); Mufioz-Ortiz et al. (2024); Georgiou
(2024), etc.).

A general consensus in this field is that MGT
differ considerably from HWT, especially when
it comes to lexical variability, with human writ-
ers being characterized by higher lexical diversity
(e.g. as measured by type-token ratio or amount
of hapax legomena) (Zanotto and Aroyehun, 2024;
Culda et al., 2025). At the same time, Opara (2024)
pointed out that HWT manage to strike a balance
between lexical richness and text length, while
some LLMs seem either to overly restrict or ex-
pand their vocabulary.

Apart from that, LLMs have also been shown
to overuse some stylistic vocabulary not related
to the content of a text. Such overused lexical
items, sometimes referred to as focal words, can
be detected by comparing word frequencies before
and after LLM era and typically include words
like delve, underscore, intricate, pivotal, showcase,
meticulous, etc. (Juzek and Ward, 2024; Kobak
et al., 2025; Gray, 2024; Liang et al., 2024).

From the morphosyntactic perspective, MGT
seem to use shorter sentences, showing however
higher complexity in the constituency structure
(Muiioz-Ortiz et al., 2024). MGT (at least those
generated by GPT models) also tend to favor a
more nominal style of writing, with higher propor-
tion of nouns, nominalizations, phrasal coordina-
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tion and determiners (Reinhart et al., 2025; Liao
et al., 2023). Despite higher proportion of nouns,
LLMs were found to use more general vocabulary
in specialized registers, though, resulting in lower
degree of specificity and higher readability scores
in comparison to HWT (Liao et al., 2023).

Interestingly, HWT tend to convey more negative
emotions on average, while LLMs produce more
positive texts (Mufloz-Ortiz et al., 2024; Culda
et al., 2025). This also holds for conversation-like
texts, where LLMs exceed humans in some com-
municative processes, scoring higher in social be-
havior, politeness and attentional focus. However,
they still do not reach the same level of authenticity
as humans, at least in conversation (Sandler et al.,
2024).

The studies reviewed above rely on a predefined
set of features to explore differences between HWT
and MGT. In contrast, in this study we introduce a
more informed approach to feature selection based
on Kullback-Leibler divergence. Moreover, we use
three syntactic complexity measures, which, to the
best of our knowledge, has not been done yet.

3 Data and Methods

3.1 Data

We use the ACL Anthology Corpus (Rohatgi, 2022)
— a collection of ACL contributions ranging from
1950s to 2022. The reasons for choosing this
dataset were twofold. First, it provides both ab-
stracts and full texts, allowing us to generate ab-
stracts based on full papers and compare them to
HWT. Moreover, since the dataset is limited to pub-
lications prior to 2022, we ensure that no abstracts
in it have been written by LLMs.

Due to the extensive size of the corpus, which
would result in high material and computational
costs, and the presence of noisy data, we selected a
sample of papers that meet the following criteria:
a) both full text and abstract are available; b) pub-
lication year: after 1999; c) language: English; d)
length of the abstract: between 100 and 200 words;
e) length of the full paper: only those within one
standard deviation of the mean length among those
in the interquartile range. After applying the filters,
we obtained a subset of 10,393 papers with their
abstracts.

3.2 Automatic Abstract Generation

We automatically generated abstracts based on
the ACL papers using three LLMs: gpt-40-2024-



08-06 (OpenAl, 2024), Llama-3.1-8B-Instruct
(Grattafiori et al., 2024) and Qwen2.5-7B-Instruct
(Yang et al., 2025; Team, 2024). The GPT model
was prompted using the OpenAl API through the
openai Python library!. To interact with the two
open-source models, we used the huggingface?
transformers text generation pipeline. All models
were prompted using the temperature of 1. Except
for output length, all other parameters were kept at
default values. Number of output tokens was set to
400. Lower values approximating the desired ab-
stract length of 200 words stipulated in the prompt
resulted in a considerable amount of incomplete
outputs by Llama. While the higher output length
in the pipeline parameters helped mitigate the in-
complete output problem, it caused Llama output
to be longer as can be seen in Table 1. However,
this was not critical for further analysis since all
measures are normalized by the size of the subcor-
pora.

The prompt consisted both of a system message
defining the model’s role as academic writing assis-
tant and describing the task as well as a user mes-
sage providing the full text of a paper and giving the
instruction to generate an abstract (see Appendix
A). We included the full text to approximate the
behavior users might exhibit when actually using
the models for paper summarization since newer
models feature much larger input context windows.
The experiments were run at the end of June and at
the beginning of July 2025.

Source Tokens Types Sentences
Human 1,700,972 32,808 64,975
Llama 2,392,988 34,688 83,534
Qwen 1,524,521 29,388 60,018
GPT 2,034,978 32,880 76,710

Table 1: Comparison of abstract sources by tokens,
types, and sentences.

3.3 Methods

We used Kullback-Leibler Divergence (KLD)
(Kullback and Leibler, 1951) to compare HWT
and MGT. KLD (Equation 1) is an information-
theoretic measure that asymmetrically quantifies
(in bits) the divergence between two probability
distributions and allows us to identify the most dis-

Uhttps://pypi.org/project/openai/
“https://huggingface.co/
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tinctive features contributing to the divergence. A
KLD value of 0 means that the distributions are
identical, whereas a value larger than 0, in contrast,
is indicative of a divergence.

We calculated KLD for (a) lemmas to capture
how HWA and MGA diverge on the lexical level as
well as (b) Universal Dependencies part-of-speech
tags, and (c) dependency relations (de Marneffe
et al., 2021) to analyze the syntactic differences.
For the classification task, we used only POS tags
and syntactic relations for which we calculated
normalized document frequencies by dividing the
count of a POS tag or dependency label by the total
number of tokens in the document.

P(x)

Q(x)

We complemented this initial set of features with
variability measures since previous research has
found substantial differences in variability of dif-
ferent elements in HWT and MGT (e.g.,Zanotto
and Aroyehun (2024); Culda et al. (2025); Liao
et al. (2023); Opara (2024), etc.). We operational-
ize variability with Entropy. Entropy is another
information-theoretic measure and is calculated us-
ing the formula in Equation 2. It shows how much
uncertainty there is in a system, with higher entropy
values indicating higher uncertainty. In our context,
higher uncertainty means more variability in lan-
guage use. We calculated document-level entropy
for lemmas, POS tags and dependency relations.

Additionally, we calculated the proportion of
unique items in each selected POS category by
dividing the number of unique items in a POS cat-
egory by the total number of elements in the cate-

gory.

KLD(P || Q) = ¥ P(«)log (1)

n
H = Zpl- x logy pi
i=1

2

We also included three syntactic measures that
are commonly analyzed when examining syntactic
complexity: average dependency length (Gibson,
1998; Jiang et al., 2019), tree depth (Xu and Reit-
ter, 2016), and average branching factor (Xu and
Reitter, 2016).

Average dependency length (aDL) is calcu-
lated by measuring the distance between heads and
their dependents in a syntactic dependency tree, ig-
noring punctuation. For each dependency in a sen-
tence, the length is the absolute difference between



the positions (i.e. token indices) of the head and
the dependent. These lengths are summed across
all dependencies in the sentence and then divided
by the total number of dependencies (i.e.number of
tokens minus one). For example, in the parsed sen-
tence with 8 tokens (excluding punctuation) shown
in Figure 1, the sum of the dependency distances
is 17. The average dependency length (ADL) is
therefore calculated as % = 2.43.

punct

case
amod
;:cun;—. \
PRON"Mod poss NOUN* *""VERBS! (ADP| (ADJ! [CCONJ™““NADJ NOUN) PUNGCT)

Our approach focuses on robust and pratical purposes

Figure 1: Example of parsed sentence.

Average branching factor (ABF) quantifies the
mean number of immediate dependents (children)
per internal node. It captures how syntactic con-
stituents are organized: higher ABF values indicate
greater syntactic parallelism, whereas lower values
suggest more linear or sequential structuring. It is
calculated by dividing the total number of children
of internal nodes (i.e., the total number of nodes
minus one) by the number of internal nodes.

Tree depth (TD) refers to the length of the
longest path from the root node to any leaf node in
a syntactic dependency tree, reflecting the degree
of structural nesting.

As an example, consider the sentence “Anne
lost control and laughed.” Its constituency tree is:
(ROOT (S (NP (NNP Anne)) (VP (VP (VBD lost)
(NP (NN control))) (CC and) (VP (VBD laughed)))
(. .))). The graphical representation of this tree is
provided in Figure 10 in Appendix B.

The total number of nodes (internal nodes and
leaves) is 19, the longest path from the root to any
leaf (tree depth) is 6 (ROOT — S — VP — VP
— NP — NN — leaf), and the average branching
factor is the total number of children of internal
nodes is 18 (i.e., total nodes minus 1) divided by
the number of internal nodes (i.e., 13), giving an
average branching factor of 1.39.

For each abstract (human- or machine-
generated), these measures were calculated for
each sentence and then divided by the number of
sentences to obtain the average value per text.

Finally, we also included word and sentence
length, average count of stop words per text and
a readability measure®. Entropy, dependency rela-
tions counts and the three syntactic measures were

3Coleman-Liau Index (Coleman and Liau, 1975).
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calculated by custom Python scripts. For all other
measures, we used the Linguistic Features ToolKit
(LFTK) (Lee and Lee, 2023). In total, we obtained
a set of 76 features.

We trained random forests classifiers both for
binary and multi-label prediction to test the predic-
tive power of the selected features. First, we only
used the features extracted by KLLD and then the
complete set of features. To train the classifiers,
we used the ranger* R package with the following
settings: number of trees = 500, importance = im-
purity, classification = True, seed =123. For both
classifiers, we used 80% of data for training and
20% for testing.

4 Classification Results

We first focused only on POS tags and dependency
relations that have proven distinctive as per KLD
(53 features in total). Then we used the full set
of 76 features. As shown in Figure 2, these 76
features do allow to identify 4 clusters of texts.
We can see an overlap between GPT and Qwen,
on the one hand, and humans and Llama, on the
other hand, indicating a greater linguistic similarity
of these groups, in line with our KLD results. In
turn, the clusters for GPT and Qwen are clearly
distinguishable from human texts.

Binary | Multilabel
Model Acc. F1 | Ace. F1
NIR 5 - 25 -
KLD featuresonly .92 .89 | .83 .83
All features 94 92| .88 .88

Table 2: Random forests results for binary (human vs ma-
chine) and multi-label (human vs GPT vs Llama vs Qwen)
classification. NIR (no-information rate) shows the model’s
performance if the majority label is always assigned. Here it
is used as baseline.

Precision Recall F1
GPT .87 .90 .88
Human .89 .90 .89
Llama .89 .87 .88
Qwen .89 .86 .87

Table 3: Precision, recall, and Fl-scores for each class in
Random Forest classification based on the full set of features.

Using the two sets of features (the initial one
obtained by KL.D only and the complete one), we
trained random forests classifiers both for binary

*https://cran.r-project.org/package=ranger



and multi-label prediction. As shown in Table 2,
even the initial set of features allows for a robust
predictive power, confirming that KLD is a suit-
able measure to identify relevant linguistic features.
However, additional features do improve the model
performance considerably. The prediction results
are fairly similar across different classes, being
slightly better for human texts and worse for Qwen-
generated texts as measured by F1 score (see Table
3).

S Feature Analysis

5.1 KLD

In line with previous findings, our KLD analysis in-
dicated that HWT differ from MGT both lexically
and syntactically (see Figures 3, 4 and 5). Llama
was closest to humans on all three levels of compar-
ison, while GPT and Qwen turned out to be more
divergent from HWT, showing similar results.

The distinctive features extracted by KLD were
very similar across all groups of comparison. On
the lexical level, HWT are mostly characterized
by function words (determiners, prepositions, par-
ticles, copula verbs and modal verbs), discourse
markers (however, therefore, thus), adverbs (usu-
ally, considerably) and some abbreviations com-
monly used in academic writing (i.e., e.g., etc.).
In contrast, MGT are characterized by the use of
nouns, verbs and adjectives many of which have
stylistic function and are considered "focal words"
typically overused by LLMs (highlight, underscore,
demonstrate, introduce, incorporate, pivotal, sig-
nificant, etc.) (see Table 5). The verb delve, a
prototypical example of such overused vocabulary,
has also been identified as distinctive of all tested
LLMs, especially the GPT model. However, its
contribution to the overall divergence is relatively
low, suggesting that it is not as overused anymore
by GPT-40 as it was by GPT 3.5.

HxGPT HxLlama Hx Qwen

be be we
the this be
of in of
a paper have
we have our

Table 4: Top 5 lemmas distinctive of humans compared
to each of the LLMs.

KLD results for POS tags confirm the more ex-
tended use of function words in HWT observed at
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GPTxH LlamaxH QwenxH
enhance and and
future our author
and approach enhanced
highlight include demonstrate
potential demonstrate  highlight

Table 5: Top 5 lemmas distinctive of each of the LLMs
compared to humans.

HxGPT HxLlama H x Qwen

AUX AUX PRON
DET ADP AUX
ADP ADV ADP
PRON DET DET
ADV ADJ ADV

Table 6: Top 5 UD POS tags distinctive of humans compared
to each of the LLMs.

GPTxH LlamaxH QwenxH

NOUN NOUN NOUN
VERB CCONIJ PUNCT
ADJ VERB VERB
PUNCT PUNCT PROPN
PROPN SCONIJ CCONJ

Table 7: Top 5 UD POS tags distinctive of each of the LLMs
compared to humans.

HxGPT HxLlama H x Qwen

det advmod case
case obl obl
cop case cop
aux:pass det aux
advmod aux:pass advmod

Table 8: Top 5 UD relations distinctive of humans compared
to each of the LLMs.

GPTxH LlamaxH QwenxH

obj obj obj
advcl nmod:poss punct
compound conj compound
amod compound advcl
punct cc amod

Table 9: Top 5 UD relations distinctive of each of the LLMs
compared to humans.

the lexical level (see Table 6). Besides, HWT are
also characterized by the use of adverbs, proper
nouns and numerals. Interestingly, adjectives are
distinctive of HWT when compared to Llama, how-
ever, not when compared to GPT and Qwen. MGT
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Figure 2: t-SNE clustering of HWT and MGT based on a set of 76 features.
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Figure 3: KLD values based on lemmas.
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Figure 4: KLD values based on UD POS tags.

are characterized by POS tags labeling nouns and
verbs as well as punctuation marks, coordinative
conjunctions and subordinative conjunctions (see
Table 7).

At the level of UD syntactic relations, we again
see that one of the most distinctive features of HWT
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Figure 5: KLD values based on UD dependency rela-

tions.

are auxiliaries, determiners and adverbial modi-
fiers. The obl and case labels point to a varied use
of prepositional phrases as oblique arguments, ad-
juncts or nominal modifiers. LLMs, in turn, seem
to favor more compact and dense constructions,
at least in case of nominal modification, leading
potentially to higher phrasal complexity. This is
evident by adjective modifiers, compound nouns
and possessive nominal modifiers being distinctive
of MGT (see Table 9).

In terms of clausal features, HWT are especially
characterized by passive constructions and finite
relative clauses modifying either nouns or whole
sentences. In contrast, LLMs tend to use more
non-finite clausal modifiers (with the exception of
Llama), adverbial clauses and clausal complements.
In general, clausal subordination is more typically
seen in MGT, which is reflected in the more pro-
nounced use of the relation mark.



5.2 Word and Sentence Length

MGT contain longer words than HWT as measured
by the number of syllables, which is in line with
the overall prevalence of function words in HMW
in comparison to MGT as indicated by KLD. In
terms of sentence length (in words), Llama used
the longest sentences as per median value. If
measured in syllables, all LLMs used longer sen-
tences because of a consistently longer word length.
However, human abstracts show greater variabil-
ity in sentence length, while all LLMs, especially
Qwen, consistently produced sentences containing
between approximately 20 and 40 words. (see Fig-
ure 7).

1770
1.706
1.603

1.564

Average word length (in syllables)

human llama qwen gpt

Figure 6: Average word length per document (in sylla-
bles).

EM 0 - E50
/1

Average sentence length (in words)

human llama qwen gpt

Figure 7: Average sentence length per document (in
words).

5.3 Variability

At the level of lemmas, GPT shows the highest
entropy, followed by Llama. Humans and Qwen
are similar in terms of entropy. At the level of POS
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tags and dependency relations, humans have higher
entropy than all LLMs, with Llama-generated texts
being closest to HWT. In contrast, Qwen shows the
lowest variability among the three LLMs across all
three levels of comparison.

: R =L
: R

GPT Uama

Human PoS Qwen  Human

Figure 8: Document entropy for lemmas, UD POS tags
and dependency relations.

5.4 Syntactic Complexity

Figure 9 shows the Kernel Density Estimation
(KDE) analysis of the three syntactic measures con-
sidered in this study: tree depth, average branching
factor, and average dependency length (each av-
eraged per abstract). This method estimates the
probability density function of a continuous vari-
able, providing a smooth curve that represents the
data distribution.

We observe different behaviours for each mea-
sure. GPT and Qwen tend to produce sentences
with lower tree depth and average dependency
length compared to humans, while Llama gener-
ates sentences with higher complexity according
to these two measures. However, in terms of the
average branching factor, all LLMs tend to produce
sentences that exhibit greater syntactic branching.

One characteristic of scientific English is the
frequent use of complex noun phrases, including
pre-modifiers and compound constructions (Hall-
iday and Martin, 2003; Degaetano-Ortlieb, 2021).
These complex nominal phrase structures increase
the ABF of sentences because the pre-modifiers are
all at the same hierarchical level in the syntactic
tree (i.e., children of the same NP node). Thus, it
seems that language models tend to potentialize the
usage of this type of NP.

However, the most striking characteristic of hu-
man abstracts compared to machine-generated ones
is their greater variability in syntactic complexity.
This is evident in the density plots, where human
texts consistently cover a broader range with a less
pronounced peak, while machine-generated texts
exhibit much less variation.
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Figure 9: KDE plots of tree depth, average branching factor, and average dependency length (averaged per abstract).

6 Discussion

In general, our findings stand in line with previ-
ous research suggesting that HWT and MGT differ
considerably both in terms of their lexical and syn-
tactic features (cf. Culda et al. (2025); Zanotto and
Aroyehun (2024); Georgiou (2024)). Given that
GPT was considerably larger than the other two
models and, therefore, was exposed to more train-
ing data, we expected the GPT model to produce
more human-like content. Nevertheless, Llama was
closest to humans both lexically and syntactically,
at least as measured by KLD.

LLMs tend to use more complex phrasal struc-
tures, which is reflected in a higher average branch-
ing factor and a higher typicality of nominal pre-
modifiers. Similar findings for other text registers
and models (Muiioz-Ortiz et al., 2024; Reinhart
et al., 2025) suggest that higher phrasal complex-
ity is a general feature of LLM writing and is not
attributable to the influence of our experimental
setup.

Also in line with previous research, we have
shown that LLMs exhibit lower morpho-syntactic
variability (lower entropy of UD POS tags and syn-
tactic relations as well as a narrower spread of
values for syntactic complexity measures). This
indicates a more repetitive use of patterns as op-
posed to a more varied use of syntactic resources
by human writers.

Surprisingly, we found that MGT exhibit higher
lexical variability than HWT, as measured by
lemma entropy. This may suggest a general ad-
vancement in the lexical creativity of newer mod-
els. However, it could also be a consequence of
our prompting settings — for instance, the models’
exposure to full papers during abstract generation.
Further analysis is needed to better understand this
outcome.
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7 Conclusion and Future Work

In this study, we analyzed the lexical and syn-
tactic features of HWT and MGT. We obtained
HWT from a large dataset of academic publications.
MGT were generated by three state-of-the-art mod-
els (GPT-40, Llama 3.1 and Qwen 2.5) based on
the corresponding full papers.

Adopting a data-driven approach to feature selec-
tion, we employed KLD to identify features that ef-
fectively distinguish between HWT and MGT. The
effectiveness of these features was evaluated us-
ing random forest classifiers, which demonstrated
robust performance both when using only KLD-
selected features and when incorporating an ex-
tended feature set.

Our results indicate that MGT still differ consid-
erably from HWT, with Llama producing outputs
that more closely resemble HWT than other LLMs.
We observed that LLMs tend to generate more com-
plex phrase structures than humans, yet exhibit less
syntactic variability. In contrast, lexical variability
as measured by entropy was higher in MGT.

Future research will explore whether alternative
prompting configurations (e.g., varying tempera-
ture settings or employing few-shot prompting)
lead to more human-like outputs. We also plan to
extend our analysis to additional text types, models,
and model sizes. Additionally, a more qualitative
examination of LLM-generated abstracts and their
perception by human readers would give us a more
complete understanding of models’ performance.

Limitations

LLM output is strongly influenced by the input data
and prompt wording. Experiments based on other
genres or using other prompting techniques might
yield different results. Moreover, the dataset is
limited to one scientific discipline (computational
linguistics). So, we cannot account for linguistic
divergence between different domains of scientific
writing. Our findings might become outdated due



to constant model improvement and release of more
powerful LLMs. Finally, although KLD has proven
to be an effective feature selection technique, we
may have missed some other relevant features that
cannot be identified using KLD.
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