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Abstract

This paper presents an experiment comparing
six models to identify state-of-the-art models
for Ancient Greek: a morphosyntactic parser
and a lemmatizer that are capable of anno-
tating in accordance with the Ancient Greek
Dependency Treebank annotation scheme. A
normalized version of the major collections of
annotated texts was used to (i) train the base-
line model Dithrax with randomly initialized
character embeddings and (ii) fine-tune Trankit
and four recent models pretrained on Ancient
Greek texts, namely GreBERTa and PhilBERTa
for morphosyntactic annotation and GreTA and
PhilTa for lemmatization. A Bayesian analy-
sis shows that Dithrax and Trankit are practi-
cally equivalent in morphological annotation,
while syntax is best annotated by Trankit and
lemmata by GreTa. The results of the exper-
iment suggest that token embeddings are not
sufficient to achieve high UAS and LAS scores
unless they are coupled with a modeling strat-
egy specifically designed to capture syntactic
relationships. The dataset and best-performing
models are made available online for reuse.

1 Introduction

In recent years, a few open-access annotated An-
cient Greek (AG) corpora, such as Opera Graeca
Adnotata (OGA) (Celano, 2024) and the GLAUX
corpus (Keersmaekers, 2021), have been made
available online. These corpora enable searches for
morphosyntax and lemmata across a wide range
of AG texts, thus filling the gap left by resources
such as the Thesaurus Linguae Graecae, whose
subscription-based query engine is limited to word
forms and lemmata.

Because of the token count in the order of mil-
lions, the morphosyntactic annotation and lemmati-
zation of the above-mentioned open-access corpora
are feasible only if performed automatically. This
raises a number of questions about which recent
technology would be best suited for that purpose.
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OGA v0.1.0 annotations (Celano, 2024) relied
on the COMBO parser (Rybak and Wréblewska,
2018), which, despite being accurate,! was built
on TensorFlow 1 and is not actively maintained
anymore. The GLAUX corpus employed RFTagger
(Schmid and Laws, 2008), Lemming (Miiller et al.,
2015), and the Stanford Graph-Based Dependency
Parser (Dozat et al., 2017) for annotation of, re-
spectively, morphology, lemmata, and syntax: the
models perform well (see Keersmaekers, 2021, for
details), but have not been released, and therefore
cannot be reused.

For these reasons, the current paper presents
a comparison of six models to identify and re-
lease state-of-the-art models for morphosyntactic
annotation and lemmatization that can annotate lit-
erary AG sentences according to the annotation
scheme of the Ancient Greek Dependency Tree-
bank (AGDT) and can be used in production to
process a large number of texts. To promote fu-
ture machine learning-based studies on AG, the
models and the normalized version of the AG texts
used for training—and now documented with their
alleged composition dates for the first time—are
released.?>

In Section 2, related work is reviewed, while
Section 3 describes the dataset used for training. In
Section 4, the experiment and the architectures of
the different models compared are presented: the re-
sults of their training are reported with a Bayesian
statistical analysis in Section 5 and discussed in
Section 6. Finally, concluding remarks are con-
tained in Section 7.

"https://git.informatik.uni-leipzig.de/celano/
combo_for_ancient_greek.

2https: //git.informatik.uni-leipzig.de/celano/
morphosyntactic_parser_for_oga.

3https: //git.informatik.uni-leipzig.de/celano/
lemmatizer_for_oga.

Proceedings of the First Workshop NLP and Language Models for Digital Humanities associated with RANLP 2025,
pages 48-65, Varna, Bulgaria, Sep 11, 2025.

https://doi.org/10.26615/978-954-452-106-6-005


https://git.informatik.uni-leipzig.de/celano/combo_for_ancient_greek
https://git.informatik.uni-leipzig.de/celano/combo_for_ancient_greek
https://git.informatik.uni-leipzig.de/celano/morphosyntactic_parser_for_oga
https://git.informatik.uni-leipzig.de/celano/morphosyntactic_parser_for_oga
https://git.informatik.uni-leipzig.de/celano/lemmatizer_for_oga
https://git.informatik.uni-leipzig.de/celano/lemmatizer_for_oga

2 Related work

The explosion of machine learning in NLP has
generated an ever-increasing number of resources,
the reuse of which, however, is often not possible or
straightforward due to the many different variables
involved in each system.

The most recent endeavor comparable to the
work presented here is Keersmaekers and Van Hal
(2023). Building on Keersmaekers (2021), they
documented the parsing and lemmatization of a
large corpus consisting of literary and papyrolog-
ical AG texts annotated according to the AGDT
annotation scheme. Interestingly, they conducted
experiments to increase LAS and UAS scores, in
which the original data were transformed before
training: for example, elliptical nodes were deleted
and the annotation style for coordination modified.
The reported results show some UAS and LAS in-
creases in absolute terms. The models, however,
have not been released.

Most recent systems for morphosyntactic annota-
tion and lemmatization were trained on the Univer-
sal Dependencies data, which consist of two tree-
banks, the Perseus treebank and the PROIEL tree-
bank,* for a total of about 416K tokens—notably,
the size of the UD treebanks is less than half of that
of the data annotated with the AGDT annotation
scheme used in the present study (see Section 3).

The UD treebanks implement the UD annotation
scheme differently, and therefore creation of a sin-
gle model still represents a challenge: Kostkan
et al. (2023) provided a joint spaCy model for
morphosyntactic annotation and lemmatization that
seems to achieve good overall performance.’

A number of studies reported on the creation
of token embeddings for AG by using the large
amount of texts available online (Singh et al., 2021;
Yamshchikov et al., 2022). Most recently, Riemen-
schneider and Frank (2023) benchmarked a number

4Recently, the PTNK treebank (about 39K tokens) has
been added, but, as far as we are aware, it has not yet been
used for machine learning experiments.

SThe scores for the model odyCy_joint
the UD Perseus treebank test set reported
https://centre-for-humanities-computing.github.
io/odyCy/performance.html are 95.39 (POS tagging),
92.56 (morphological features), 78.80 (UAS), 73.09 (LAS),
and 83.20 (lemmatization). It is, however, not clear whether
the evaluation script used is that of the CoNLL 2018 Shared
Task (https://universaldependencies.org/conll18/
evaluation.html), which is commonly used in similar
studies, including the present one. Since this script does
not allow for cycles and multiple roots, we suspect that the
reported scores would be lower, if it had been used.

on
at
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of models for Ancient Greek and Latin. They show
that their pretrained language model GreBERTa
achieves the highest performance scores for UPOS,
XPOS, UAS, and LAS in absolute terms when fine-
tuned on the UD Perseus treebank (95.83, 91.09,
88.20, and 83.98, respectively); lemmatization is
best performed by a T5 model they call GreTa,
which achieves an F1 score of 91.14.

3 The dataset

The dataset used for training, validation, and test-
ing consists of the following treebanks:® (i) the An-
cient Greek Dependency Treebank’ (Celano, 2019;
Bamman and Crane, 2011), (ii) the Gorman Trees®
(Gorman, 2020), and (iii) the Pedalion Trees.’

All treebanks were natively annotated using the
AGDT annotation scheme, and together they rep-
resent by far the largest morphosyntactically anno-
tated dataset for literary AG texts—and one of the
largest treebanks in absolute terms: the token count
of the texts before normalization is 1,277, 310 and,
after it, 1,260, 863.

As Table 1 shows, the final dataset comprises
a plethora of texts of different genres—including
poetry, history, and philosophy—and periods, rang-
ing from about the 9th century BCE to the 4th
century CE (more details are provided in Appendix
E). Even though the dataset is not balanced across
genres and periods, it is still representative of most
text types written in Ancient Greece during the
above-mentioned time span.

3.1 Normalization

Since the final database consists of texts from dif-
ferent sources, which were annotated by many dif-
ferent scholars (sometimes adopting different con-
ventions), automatic normalization of the original
texts was attempted to foster consistency and there-
fore performance of machine learning algorithms.

Before training, all the relevant fields, i.e., word
form, lemma, POS tag, syntactic head and rela-
tion, needed some non-trivial format standardiza-
tion, especially to handle the case of null or clearly
erroneous values. Syntactic trees also had to be
modified if cycles were detected.

®Data licences can be found at the links to the data speci-
fied below.

"https://github.com/PerseusDL/treebank_data/
releases/tag/v2.1_IGDS.

8https: //github.com/vgormani/
Greek-Dependency-Trees.

9https: //github.com/perseids-publications/
pedalion-trees.
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Author Genre Century  Tokens
Hesiod, Homer poem —-9/8 255,375
Sappho,

Mimnermus, lyric -7 5,510
Semonides

Homeric Hymns hymns —7/6 3,968
Aesop fable —6 5,221
Antiphon, Lysias, oratory -5 30,679
Isocrates

Aeschylus,

Sophocles, tragedy -5 108, 386
Euripides

Aristophanes,

Cephisidorus comedy -5 47,547
Comicus

Aeneas Tacticus manual -5 7,207
?ﬁflz‘ylzi‘;is history —5 65,494
Xenophon history —5/4 142,635
Lysias, Isocrates,

Demosthenes, -
Aeschines, oratory —4 153,088
Andocides, Isaeus

?ﬁ:;‘l’)ﬁfa Sl: llito’ philosophy ~ —4 51,906
Menandrus comedy —4 8,069
Epicurus philosophy ~ —4/3 1,523
Theocritus lyric -3 304
Septuaginta Bible -3 19,235
Polybius history -2 105,693
Ezechiel tragedy -2 1,939
Batrachomyomachia poem -1 2,212
Diodorus of Sicily,

Dionysius history -1 56,004
of Halicarnassus

Chion epistolary +1 5,577
Hero of Alexandria science +1 10,321
Josephus Flavius history +1 24,987
Chariton romance +1/2 6,265
Plutarch biography +1/2 37,203
Phlegon of Tralles paradox. +2 5,642
Apollodorus mythogr. +2 1,265
Epictetus philosophy +2 7,204
Lucian novel +2 11,054
Appianus history +2 25,665
Athenaeus miscellany +2 45,653
Longus romance +2/3 672
Sextus Empiricus philosophy +3 16,218
Paeanius history +4 6,184
Julian oratory +4 1,405

Table 1: Statistics for the works contained in the dataset
showing authors, genres, (alleged) centuries of composi-
tion (indicated by Arabic numbers, with + meaning CE
and — BCE), and token counts (before normalization).
Full details in Appendix E.

An often underestimated problem is that of
character encoding for the apostrophe: all
apostrophe-looking characters were converted into
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the character MODIFIER LETTER APOSTRO-
PHE (U+02BC), which affected about S0K charac-
ters.

While the vast majority of AG graphic words
corresponds to morphosyntactic tokens,'? this is
questionable for coordinate conjunctions such as
oLdt or eite, which, in the final dataset, were to-
kenized (therefore, o0 6¢ and €l €, respectively).
Coordination in the AGDT is not only annotated
at the level of the syntactic tree but also at that of
the syntactic label via use of the suffix _CO: to de-
crease the number of syntactic labels and therefore
supposedly improve algorithm performance, this
and similar suffixes, such as _AP, were deleted.

Another related yet different issue is represented
by ellipsis, which poses a representational chal-
lenge. The AGDT annotation scheme allows ellip-
tical nodes to be added whenever they are necessary
to build a syntactic tree. However, the complexity
of the phenomenon and the absence of strict an-
notation rules on this matter have over time led to
the proliferation of various annotation styles: for
example, sometimes the word form of an elliptical
node is specified, sometimes it is not. The position
of elliptical nodes within a sentence is also prob-
lematic both on a theoretical and a representational
level.

While Keersmaekers and Van Hal (2023) pro-
posed deletion of elliptical nodes, Celano’s (2023)
ellipsis modeling is followed in the present study:
elliptical nodes were added at the end of a sentence
(whatever their alleged position was) and, to avoid
uncertainties about their word forms, they were al-
ways encoded with placeholders such as [0], [11],
and so on, depending on their number.'!

4 Experiment

A total of six model architectures were compared:
four (i.e., three + baseline) for morphosyntactic pre-
diction and three (i.e., two + baseline) for lemma
prediction. More precisely, the baseline model
called Dithrax!? is able to predict both morphosyn-
tax and lemmata, while the other five models can
predict either one, in that their modeling for char-
acter prediction for lemmatization is kept distinct

10Crasis annotation, which is more elaborate to normalize,
was left untouched.

"Since a model to predict such elliptical nodes is
provided at https://git.informatik.uni-leipzig.de/
celano/ellipsis_Ancient_Greek, new texts can be made
compliant with this ellipsis annotation style.

The name derives from Dionysius Thrax, the author of
the first extant AG grammar.
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Model POS XPOS Feats AllTags UAS LAS Lemmas
Dithrax 95.55 (0.23)  90.65 (0.32)  94.40 (0.17)  89.80 (0.39)  77.70 (0.62)  70.81 (0.65)  86.85 (0.18)
Trankit 96.18 (0.13) 91.55(0.21) 94.61(0.12) 91.21(0.22) 82.28 (0.27) 76.67 (0.34) N/A
GreBERTa 94.12 (0.54)  89.16 (0.73)  93.21 (0.45)  88.31(0.85)  58.85(2.04)  53.41 (2.06) N/A
GreTa N/A N/A N/A N/A N/A N/A 91.17 (0.17)
PhilBERTa 85.34 (24.03) 79.85(24.3) 86.67 (16.87) 77.8(27.73) 61.24 (20.64) 54.95 (20.1) N/A
PhilTa N/A N/A N/A N/A N/A N/A 90.09 (0.24)
UD Perseus Trankit 93.97 87.25 91.66 86.88 83.48 78.56 88.52
UD Perseus GreBERTa 95.83 91.09 N/A N/A 88.20 83.98 N/A
UD Perseus GreTa + Chars N/A N/A N/A N/A N/A N/A 91.14
UD Perseus PhilBERTa 95.60 90.41 N/A N/A 86.99 82.69 N/A
UD Perseus PhilTa + Chars N/A N/A N/A N/A N/A N/A 90.66

Table 2: Mean F1 scores + standard deviations in parentheses for the test set results of the 5-fold cross-validation
models (training on each split repeated twice with different random seeds). Best scores are in boldface. Results for
parsers trained on the UD Perseus data are shown only for loose comparison (see Section 5).

from that for word prediction for morphosyntax.

The performance of each model was evaluated
with the official CoONLL 2018 Shared Task script: it
outputs F1 scores for UPOS, XPOS, UFeats, AlIT-
ags (i.e., UPOS+XPOS+UFeats), UAS (i.e., HEAD
match), LAS (i.e., HEAD + DEPREL match), and
Lemmas. Since the AGDT tagsets are different,
the above-mentioned metrics are conveniently re-
named: POS, XPOS, Feats, AllTags, UAS, LAS,
and Lemmas.

The original dataset was divided into training,
validation, and test sets (60%, 20%, 20%). Each
model was trained 10 times, using 5-fold cross-
validation, with each training-validation split being
used twice: as a result, 10 models (i.e., 5 splits
x 2 random seeds) were trained for each model
architecture (therefore, 10 final F1 scores were cal-
culated for each of the above-mentioned metrics).
Since the final models were not retrained on the
entire dataset (train + validation sets) for time rea-
sons, the mean scores presented in Table 2 are the
ones obtained on the test set—the best-performing
model was then chosen for use in production (see
Table 3).

The training strategy is motivated by the fact that,
while cross-validation reduces variance by use of
different splits of the dataset, repetition of training
on the same split allows experimentation with dif-
ferent random seeds. Final hyperparameters were
set after a number of preliminary experiments and
are documented in Appendix B.

Model POS XPOS Feats AllTags UAS LAS Lemmas
Trankit 96.41 91.90 94.77 91.56  82.60 77.10 N/A
GreTa N/A N/A N/A N/A N/A  N/A 91.41

Table 3: Scores of the best-performing cross-validation
runs evaluated on the test set.
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4.1 The statistical framework

The results of the present experiment are inter-
preted through the Bayesian analysis proposed by
Benavoli et al. (2017). More precisely, they pro-
pose a Bayesian correlated t-test to compare cross-
validation scores of two models on one dataset.

The proposed posterior distribution coincides
with the Student distribution used in the frequen-
tist t-test. This means that the probabilities of
the Bayesian correlated t-test coincide with the
p-values of the frequentist correlated t-test: what
changes, however, is the interpretation of such nu-
merical values.

While the frequentist approach returns the prob-
ability of data under the assumption that the null
hypothesis is true, the Bayesian correlated t-test
computes the actual probabilities of the null and
alternative hypotheses.

Benavoli et al.’s (2017) Bayesian correlated t-
test provides three probability scores concerning
the comparison of the models x and y (see Ap-
pendix C for the scores):

(i) P(x = y): the probability of model z be-
ing practically equivalent to model y: this is
the region of practical equivalence (ROPE)
corresponding to an arbitrary interval within
which two models are considered not to dif-
fer in practice. In the present study, this is
[—1,1], i.e., the posterior probability of the
mean difference of F1 scores less than 1% is
considered to mean practical equivalence.

(ii) P(x < y): the probability that model z is
practically worse than model y, i.e., the poste-
rior probability of the mean difference of F1
scores being practically negative.

(iii) P(x > y): the probability that model x is



practically better than model y, i.e., the poste-
rior probability of the mean difference of F1
scores being practically positive.

The Bayesian approach provides a more straight-
forward statistical interpretation of data and offers
a solution for the well-known pitfalls of the fre-
quentist framework, which include the fact that
null hypotheses are always false in practice and
sufficiently large datasets can yield statistical sig-
nificance even if the effect size is very small.

4.2 Dithrax: the baseline model

As shown in Figure 1, Dithrax is a multi-output
LSTM model vectorizing morphosyntactic tokens
with randomly initialized character embeddings,
which are used for prediction of both lemmata and,
after further processing through LSTM layers, mor-
phosyntax.

The model is inspired by the COMBO parser
(Rybak and Wréblewska, 2018), which was among
the most accurate parsers at the CoNLL 2018
Shared Task (Zeman et al., 2018).

More precisely, Dithrax proposes a similar mod-
eling strategy for HEAD and DEPREL targets
based on adjacency matrices resulting from dot
products of two rank-2 tensors representing, respec-
tively, heads and dependents of the same sentence,
with each matrix row corresponding to the vector
representation of a token.

4.3 Trankit

Trankit (Nguyen et al., 2021) is a state-of-the-art
transformer-based toolkit for morphosyntactic anal-
ysis and lemmatization. It is designed for UD data,
and is also able to process raw documents, in that
it comprises a tokenizer and sentence splitter. Key
features of Trankit are:

(i) use of the multilingual pretrained transformer
XLM-RoBERTa, whose output is fine-tuned
on new data.

(ii) adapters: feed-forward networks for each ma-
jor component of Trankit (six in total), whose
weights—together with the specific ones for
final predictions—are the only ones updated,
while the pretrained transformer weights re-
main fixed. These make Trankit memory- and
time-efficient.

(iii) syntax is modeled via Dozat and Manning’s
(2017) biaffine attention.
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For the purpose of the present experiment, we
trained Trankit’s joint model for part-of-speech tag-
ging, morphological feature tagging, and depen-
dency parsing (i.e., POS, XPOS, Feats, AllTags,
UAS, and LAS scores); the lemmatizer could not
be trained because of an internal code error.!3

4.4 Pretrained models: Gre(BERTalTa) and
Phil(BERTalTa)

The pretrained models GreBERTa and GreTa (for
AG) and PhilBERTa and PhilTa (for AG and Latin)
were fine-tuned for comparison,'# in that they have
recently been argued to perform better than previ-
ous pretrained AG models.

Riemenschneider and Frank (2023) fine-tuned
GreBERTa and GreTa on the Greek data of the
Open Greek and Latin Project, the CLARIN corpus
of Greek Medieval Texts, the Patrologia Graeca,
and the Internet Archive (in total, about 185.1M
tokens). They fine-tuned PhilBERTa and PhilTa
on not only AG but also Latin and English data.
The latter come from the Corpus Corporum project
(167.5M tokens) and a collection of English texts
from different sources (212.8M tokens), whose top-
ics are similar to the ones found in AG and Latin
sources (for example, English translations of AG
and Latin texts), for a total of 565.4M tokens.

GreBERTa and PhilBERTa are encoder-only
transformers providing token embeddings for pre-
diction of word-related targets (i.e., UPOS, XPOS,
UFeats, AllTags, HEAD, and DEPREL). Since not
the original scripts but only the pretrained models
are made available online (see also Section 8), it
was not possible to test the former with the AGDT
dataset (see Section 6): in the present experiment,
therefore, the pretrained token embeddings were
just used as inputs to dense layers outputting the
final probability scores for each token. However,
the parameters of the pretrained models were left
trainable. GreTa and PhilTa are encoder-decoder
transformers for character prediction, and we fine-
tuned them for lemmatization.'>

BSee
issues/48.

'“We use the names GreBERTa, PhilBERTa, GreTa, and
PhilTa to also name the models obtained by our fine-tuning:
context is sufficient to clarify what these names exactly refer
to.

SWe are grateful to Frederick Riemenschneider, who pro-
vided us with a script for lemma prediction similar to the one
used for his paper.

https://github.com/nlp-uoregon/trankit/
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Figure 1: Main layers of Dithrax, the baseline model architecture. Blue color stands for tanh(linear(x)), while
orange for softmax(linear(x)) (with X meaning dot product and + concatenation).

5 Results

Table 2 shows the mean F1 scores and related stan-
dard deviations'® for the models trained with 5-fold
cross-validation, with each split being used twice
with different random seeds (in total, 10 models for
each architecture). The mean scores are based on
the F1 scores returned by the evaluation script of
the CoNLL 2018 Shared Task applied to the results
outputted by each model when tested on the test
set. The models created by the runs with the best
scores (see Table 3) are made available online.!”

Table 2 also displays Riemenschneider and
Frank’s (2023) results for the models trained on UD
Perseus data, 1.e., a small subset of the dataset used
for the present study, which were evaluated using
the same CoNLL 2018 Shared Task script.'® Even
if the UD annotation scheme and the AGDT one
are similar, there are differences that are likely to
impact parsing results. For example, Keersmaekers
(2021) argues that UD annotation style of coordi-
nation allows one to achieve higher scores for UAS
and LAS. Moreover, UD data, unlike the AGDT
data used for the present study, do not contain el-
liptical nodes. This means that comparison of F1
scores between UD models and the ones of the
present study can only be loose, especially with
reference to UAS and LAS.

The mean scores for PhilBERTa shown in Ta-

ble 2 are the lowest ones and their related stan-

5SDs have been calculated using numpy.std with
ddof=1.

7See footnotes 2 and 3.

8Results for Trankit are taken from https://trankit.
readthedocs.io/en/latest/performance.html
(Ancient_Greek-Perseus treebank).
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dard deviations are remarkably high (>20) be-
cause the model performed very poorly in one
of the runs. However, even if that run were not
considered, the mean scores would still be lower
and the standard deviations would remain rather
high in comparison to the values of the other
models: POS: 92.87 (3.63); XPOS: 87.42 (4.37);
Feats: 91.92 (3.11); AllTags: 86.44 (4.94); UAS:
67.44 (6.9); LAS: 60.94 (7.11).

Figures 2, 3, 4, 5, 6, 7, and 8 show the posterior
distributions of the mean differences of F1 scores
between all models pairwise returned by Benavoli
et al.’s (2017) Bayesian correlated t-test.1?

In each of the above-mentioned figures ex-
cept Figure 8, the top-left, top-middle, top-
right, bottom-left, bottom-middle, bottom-right
plots show, respectively, the posteriors for
the pairs Dithrax-Trankit, Dithrax-PhilBERTa,
Dithrax-GreBERTa, Trankit-PhilBERTa, Trankit-
GreBERTa, and GreBERTa-PhilBERTa. In Fig-
ure 8, which visualizes Lemmas scores, the left,
middle, and right plots represent the posteriors for
Dithrax-PhilTa, Dithrax-GreTa, and GreTa-PhilTa,
respectively—as noted above, Trankit could not be
trained for lemmatization because of an internal
code error. Each above-mentioned Figure is cou-
pled with a table (i.e., Tables 5, 6, 7, 8, 9, 10, and
11 in Appendix C), which reports the values of the
areas under the curve.

Each single plot gives information about the
probabilities that the mean differences of F1 scores
between two models are practically negative, prac-
tically equivalent, and practically positive. For

"“The Python package documented at https://github.
com/janezd/baycomp was used for the plots and calculations.
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example, the bottom-left plot in Figure 4 and the
corresponding Table 7 show:

* the posterior probability that the mean dif-
ference of F1 scores between PhilBERTa and
Trankit is practically negative, i.e., the integral
of the posterior over the interval (—oo, —1),
equal to ~0.80. This is the probability that
Trankit is practically better than PhilBERTa.

the posterior probability that the mean differ-
ence of F1 scores between PhilBERTa and
Trankit is practically equivalent, i.e., the inte-
gral of the posterior over the ROPE interval
[—1, 1], equal to ~0.06. This is the probabil-
ity that PhilBERTa and Trankit are practically
equivalent.

the posterior probability that the mean differ-
ence of F1 scores between PhilBERTa and
Trankit is practically positive, i.e., the inte-
gral of the posterior over the interval (1, +00),
equal to ~0.14. This is the probability that
PhilBERTa is practically better than Trankit.

6 Discussion

Table 2 seems to suggest that Trankit is the best
model in each morphosyntactic task. This is only
partly confirmed by the Bayesian statistical analy-
sis.

Even if Trankit’s results for POS, XPOS, and
Feats are the highest in absolute terms, its perfor-
mance can be considered to be practically equiv-
alent to that of the baseline model Dithrax with
reference to these metrics. Indeed, the correspond-
ing Tables 5, 6, and 7 show that the area under the
curve within the ROPE is ~1 for POS and Feats,
and ~0.88 for XPOS.?°

On the other hand, the models PhilBERTa and
GreBERTa perform practically worse than both
Dithrax and Trankit with respect to these same
metrics: there is at least an ~0.79 probability (see
Dithrax-PhilBERTa in Table 5)*! that Dithrax or
Trankit performs practically better.

This is an interesting result because, unlike
Trankit, PhilBERTa, and GreBERTa, Dithrax does
not rely on pretrained (but randomly initialized)
character embeddings and its architecture has

%A threshold of 0.80 can be chosen when comparing the
models.

210.79 is actually lower than the threshold of 0.80, but the
difference is minimal.
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a lower overall number of parameters (see Ta-
ble 4):?*> this suggests that classification tasks
such as POS, XPOS, and Feats can be success-
fully addressed without use of more expensive
model architectures—however, as shown in Table
4, Dithrax has a longer training time. The AlIT-
ags F1 score is a metric for POS+XPOS+Feats.
Trankit turns out to perform practically better than
any other model (Table 8), including Dithrax.

Syntactic prediction is notoriously more com-
plex, and this is shown in the lower results reported
in Table 2 for UAS and LAS. Trankit’s perfor-
mance is clearly superior to that of any other model,
even if its scores are much lower than the POS and
XPOS ones.

Syntactic analysis is a much more challenging
task because HEAD and DEPREL values heav-
ily depend on contextual information. Even if
a pretrained transformer such as GreBERTa or
PhilBERTa outputs context-aware token embed-
dings, it turns out to predict syntax poorly without
a further modeling strategy.

In the GreBERTa and PhilBERTa models, the
pretrained token embeddings were used as input to
dense layers outputting probabilities for morphol-
ogy and syntax in a multi-output model; however,
while results for morphology are comparable to
those of the other models, those for syntax clearly
are not (see also Section 8): as Table 2 shows, UAS
and LAS scores for GreBERTa and PhilBERTa are
remarkably lower, and there is an ~0.93 or higher
probability that Dithrax or Trankit performs practi-
cally better than them (Tables 9 and 10).

This can be explained by the fact that, contrary
to GreBERTa and PhilBERTa, Dithrax and Trankit
employ a modeling strategy on top of embeddings:
Dithrax models sentence syntax through adjacency
matrices (Rybak and Wréblewska, 2018), while
Trankit implements Dozat and Manning’s (2017)
biaffine attention mechanism, both of which aim
to capture the complex relationship between heads
and dependents within a sentence.?

Lemmatization is performed best by GreTa.
While Dithrax simply employs LSTM layers
over character embeddings, GreTa and PhilTa are
seq2seq models: Table 11 shows that, while the
seq2seq models perform practically better than
Dithrax (/1.00), there is an ~0.75 probability that

2However, Trankit has fewer trainable parameters than
Dithrax.

2To filter syntactic cycles, the Chu-Liu-Edmonds algorithm
is applied to each parser’s output.



GreTa performs practically better than PhilTa and
an ~(0.25 probability that their performance is prac-
tically equivalent.

If we compare Trankit’s results on the AGDT
dataset with those on the UD dataset (see Table 2),
scores for POS, XPOS, Feats, and AllTags are con-
siderably higher in absolute terms on the AGDT
dataset, with differences of ~2.21, ~4.3, ~2.95,
and ~4.33, respectively; UAS and LAS scores,
however, are higher on the UD dataset, with dif-
ferences of ~1.2 and ~1.89, respectively. Inter-
estingly, UAS and LAS scores do not seem to be
impacted by the much larger size of the AGDT
dataset; however, the model trained on the AGDT
data can be expected to generalize much better than
that trained on the UD data due to the much larger
variety of texts used during training.

7 Conclusions

A comparison of six model architectures (Dithrax,
Trankit, PhilBERTa, GreBERTa, PhilTa, and
GreTa) was documented to select state-of-the-art
models for annotation of morphosyntax and lem-
mata of literary texts according to the AGDT anno-
tation scheme. A Bayesian statistical analysis was
adopted to interpret cross-validation scores, which
suggests that Trankit annotates syntax better than
the other models do, while GreTa’s performance for
lemmatization is the best. The study shows that the
baseline model Dithrax can also achieve state-of-
the-art performance for morphological annotation—
it employs randomly initialized character embed-
dings and a lower overall number of parameters,
but its training time is longer.

A noteworthy finding of the study is that, al-
though pretrained embeddings, such as GreBERTa
and PhilBERTa, rely on complex model architec-
tures vectorizing tokens with embeddings calcu-
lated on a very large collection of AG texts, they do
not perform well for syntactic prediction (i.e., UAS
and LAS scores), unless a further modeling strat-
egy aimed at capturing syntax information within a
sentence is put in place, such as adjacency matrices
or biaffine attention.

8 Limitations

The study aimed to document state-of-the-art mod-
els for morphosyntactic analysis and lemmatization
of Ancient Greek. The dataset used for training
contains manual annotations produced over many
years by different (single) annotators (some were
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students, others scholars). Therefore, as is often
the case with manual annotations, annotation con-
sistency within the dataset cannot be guaranteed
because of either annotation errors or different an-
notation styles, the first annotation guidelines**
not being sufficiently specific regarding a number
of morphosyntactic phenomena—it should also be
noted that the morphosyntactic annotation of An-
cient Greek literary texts is arguably much more
complex than that of modern texts.

For this reason, the present study set aside the
question of how annotation quality/consistency af-
fects parsing results. Similarly, no experiment was
conducted with respect to corpus composition, un-
der the assumption that model architectures are
powerful enough to capture distinctions between
texts of different genres and/or composition dates.
Moreover, as stated in Section 1, the focus of the
study was to select a morphosyntactic parser and
a lemmatizer that performed best overall based on
well-known metrics and a statistical analysis: a
model error analysis would be of interest, but lies
beyond the scope of this study.

The reuse of models and model architectures for
comparison was often limited: either they are not
released or the provided code is partial. The latter
case is that of PhilBERTa and GreBERTa: they
achieved state-of-the-art UAS and LAS scores on
the UD Perseus treebank, but the original scripts
have not been released,?® and therefore their orig-
inal model architectures could not be used in the
present study.

Acknowledgments

This work has been supported by the Ger-
man Research Foundation (DFG project number
408121292).

References

David Bamman and Gregory Crane. 2011. The An-
cient Greek and Latin dependency treebanks. In
Language Technology for Cultural Heritage, pages
79-98, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Zhttps://github.com/PerseusDL/treebank_data/
blob/master/v1/greek/docs/guidelines.pdf; newer
annotated texts should follow the much more specific
annotation guidelines at https://github.com/PerseusDL/
treebank_data/blob/master/AGDT2/guidelines/.

25ht'cps://github.com/Heidelberg—NLP/
ancient-language-models/tree/main.


https://doi.org/10.1007/978-3-642-20227-8_5
https://doi.org/10.1007/978-3-642-20227-8_5
https://github.com/PerseusDL/treebank_data/blob/master/v1/greek/docs/guidelines.pdf
https://github.com/PerseusDL/treebank_data/blob/master/v1/greek/docs/guidelines.pdf
https://github.com/PerseusDL/treebank_data/blob/master/AGDT2/guidelines/
https://github.com/PerseusDL/treebank_data/blob/master/AGDT2/guidelines/
https://github.com/Heidelberg-NLP/ancient-language-models/tree/main
https://github.com/Heidelberg-NLP/ancient-language-models/tree/main

Alessio Benavoli, Giorgio Corani, Janez DemSar, and
Marco Zaffalon. 2017. Time for a change: A tutorial
for comparing multiple classifiers through Bayesian
analysis. Journal of Machine Learning Research,

18(77):1-36.

Giuseppe G. A. Celano. 2019. The dependency tree-
banks for Ancient Greek and Latin. Digital Classical
Philology, pages 279-298.

Giuseppe G. A. Celano. 2023. A neural network ap-
proach to ellipsis detection in Ancient Greek. In
Proceedings of the 6th International Conference on
Natural Language and Speech Processing (ICNLSP
2023), pages 151-158, Online. Association for Com-
putational Linguistics.

Giuseppe G. A. Celano. 2024. Opera Graeca Adnotata:
Building a 34m+ token multilayer corpus for Ancient
Greek. Preprint, arXiv:2404.00739.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In International Conference on Learning Repre-
sentations.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20-30, Vancouver, Canada. Association for
Computational Linguistics.

Vanessa B. Gorman. 2020. Dependency treebanks of
Ancient Greek prose. Journal of Open Humanities
Data, 6(1).

Alek Keersmaekers. 2021. The GLAUx corpus:
methodological issues in designing a long-term, di-
verse, multi-layered corpus of Ancient Greek. In
Proceedings of the 2nd International Workshop on
Computational Approaches to Historical Language
Change 2021, pages 39-50, Online. Association for
Computational Linguistics.

Alek Keersmaekers and Toon Van Hal. 2023. Creating
a large-scale diachronic corpus resource: Automated
parsing in the Greek papyri (and beyond). Natural
Language Engineering, pages 1-30.

Jan Kostkan, Marton Kardos, Jacob Palle Bliddal
Mortensen, and Kristoffer Laigaard Nielbo. 2023.
OdyCy — A general-purpose NLP pipeline for An-
cient Greek. In Proceedings of the 7th Joint
SIGHUM Workshop on Computational Linguistics
for Cultural Heritage, Social Sciences, Humanities
and Literature, pages 128—134, Dubrovnik, Croatia.
Association for Computational Linguistics.

Thomas Miiller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schiitze. 2015. Joint lemmatization and mor-
phological tagging with lemming. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2268—2274, Lisbon,
Portugal. Association for Computational Linguistics.

56

Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben Vey-
seh, and Thien Huu Nguyen. 2021. Trankit: A light-
weight transformer-based toolkit for multilingual nat-
ural language processing. In Proceedings of the 16th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 80-90, Online. Association for Com-
putational Linguistics.

Frederick Riemenschneider and Anette Frank. 2023. Ex-
ploring large language models for classical philology.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 15181-15199, Toronto, Canada.
Association for Computational Linguistics.

Piotr Rybak and Alina Wréblewska. 2018. Semi-
supervised neural system for tagging, parsing and
lemmatization. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 45-54, Brussels,
Belgium. Association for Computational Linguistics.

Helmut Schmid and Florian Laws. 2008. Estimation of
conditional probabilities with decision trees and an
application to fine-grained POS tagging. In Proceed-
ings of the 22nd International Conference on Com-
putational Linguistics (Coling 2008), pages 777-784,
Manchester, UK. Coling 2008 Organizing Commit-
tee.

Pranaydeep Singh, Gorik Rutten, and Els Lefever. 2021.
A pilot study for BERT language modelling and mor-
phological analysis for Ancient and Medieval Greek.
In Proceedings of the 5th Joint SIGHUM Workshop
on Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature, pages
128-137, Punta Cana, Dominican Republic (online).
Association for Computational Linguistics.

Ivan P. Yamshchikov, Alexey Tikhonov, Yorgos Pantis,
Charlotte Schubert, and Jiirgen Jost. 2022. BERT in
Plutarch’s shadows. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6071-6080, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Potthast,
Milan Straka, Filip Ginter, Joakim Nivre, and Slav
Petrov. 2018. CoNLL 2018 shared task: Multilingual
parsing from raw text to Universal Dependencies. In
Proceedings of the CoNLL 2018 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Depen-
dencies, pages 1-21, Brussels, Belgium. Association
for Computational Linguistics.


http://jmlr.org/papers/v18/16-305.html
http://jmlr.org/papers/v18/16-305.html
http://jmlr.org/papers/v18/16-305.html
https://doi.org/10.1515/9783110599572-016
https://doi.org/10.1515/9783110599572-016
https://aclanthology.org/2023.icnlsp-1.15
https://aclanthology.org/2023.icnlsp-1.15
https://arxiv.org/abs/2404.00739
https://arxiv.org/abs/2404.00739
https://arxiv.org/abs/2404.00739
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.5334/johd.13
https://doi.org/10.5334/johd.13
https://doi.org/10.18653/v1/2021.lchange-1.6
https://doi.org/10.18653/v1/2021.lchange-1.6
https://doi.org/10.18653/v1/2021.lchange-1.6
https://doi.org/10.1017/S1351324923000384
https://doi.org/10.1017/S1351324923000384
https://doi.org/10.1017/S1351324923000384
https://doi.org/10.18653/v1/2023.latechclfl-1.14
https://doi.org/10.18653/v1/2023.latechclfl-1.14
https://doi.org/10.18653/v1/D15-1272
https://doi.org/10.18653/v1/D15-1272
https://doi.org/10.18653/v1/2021.eacl-demos.10
https://doi.org/10.18653/v1/2021.eacl-demos.10
https://doi.org/10.18653/v1/2021.eacl-demos.10
https://doi.org/10.18653/v1/2023.acl-long.846
https://doi.org/10.18653/v1/2023.acl-long.846
https://doi.org/10.18653/v1/K18-2004
https://doi.org/10.18653/v1/K18-2004
https://doi.org/10.18653/v1/K18-2004
https://aclanthology.org/C08-1098
https://aclanthology.org/C08-1098
https://aclanthology.org/C08-1098
https://doi.org/10.18653/v1/2021.latechclfl-1.15
https://doi.org/10.18653/v1/2021.latechclfl-1.15
https://doi.org/10.18653/v1/2022.emnlp-main.407
https://doi.org/10.18653/v1/2022.emnlp-main.407
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001

A Model statistics

C Scores from the Bayesian correlated
t-tests

Model APar TPar TTime Model pair Left ROPE Right
Dithrax 58,906,077 58,906,077 ~14.6h Dithrax-Trankit ~0.00 =~1.00 =0.00
Ny op iAol DA TS O Dithrax-PhilBERTa ~ ~0.79 ~0.04 ~0.17
GreTa 247,539,456 247,539,456 ~11.4h Dithrax-GreBERTa  ~0.98  ~0.02  ~0.00
PhilBERTa 137,076,506 137,076,506  ~2.6h Trankit-PhilBERTa ~0.80 ~0.04 =0.16
PhilTa 296,691,456 296,691,456 ~12.3h Trankit-GreBERTa ~1.00 ~0.00 ~0.00

GreBERTa-PhilBERTa  ~0.75 ~0.05 ~0.20

Table 4: Model statistics consisting of number of all
parameters (APar), trainable parameters (TPar), and
approximate training time (TTime) calculated on an
NVIDIA RTX4500 ADA 24GB GDDR6.

B Model hyperparameters

The present section reports the relevant hyperpa-
rameters for the training of the models. Dithrax
(TensorFlow/Keras): batch size 28, epochs 100
with early stopping (patience 2, best model
saved), and Adam optimizer with clipvalue 4.5,
51 0.9, B 0.9, weight decay le—4,
and learning rate using piecewise constant de-
cay with boundaries [15000,27000] and values
[0.001,0.0001, 0.00007].

PhilBERTa and GreBERTa (Tensor-
Flow/Keras/Transformers): batch size 28,
epochs 100 with early stopping (patience 2,
best model saved), and Adam optimizer with
clipvalue 4.5, f; 0.9, B9 0.9, weight
decay le—4, and learning rate using piecewise
constant decay with boundaries [10000] and values
[0.001,0.0001, 0.00007].

Trankit (PyTorch/Transformers): token embed-
dings x1m-roberta-base, batch size 16, epochs
100 (best model saved), and a linear scheduler with
warmup steps 80, training steps 160, and AdamW
optimizer with learning rate 1e—3 and weight de-
cay le—4.

PhilTa and GreTa (PyTorch/Transformers):
Seg2SeqTrainingArguments with batch size 128,
epochs 10, learning rate 1e—4, weight decay le—3,
gradient accumulation steps 1, generation max
length 30, and generation number of beams 20.
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Table 5: Integrals on the intervals (—oo, —1), [—1, 1],
and (1, +o0) for plots in Figure 2 (POS).

Model pair Left ROPE Right
Dithrax-Trankit ~0.00 =0.88 =~0.12
Dithrax-PhilBERTa ~0.80 =0.04 =~0.16
Dithrax-GreBERTa ~0.97 =0.03 =0.00
Trankit-PhilBERTa ~0.82 =0.04 =~0.14
Trankit-GreBERTa ~1.00 =0.00 =0.00
GreBERTa-PhilBERTa ~0.76 ~0.05 =~0.19

Table 6: Integrals over the intervals (—oo, —1), [—1, 1],
and (1, +o0) for plots in Figure 3 (XPOS).

Model pair Left ROPE Right
Dithrax-Trankit ~0.00 =1.00 =0.00
Dithrax-PhilBERTa ~0.80 =0.06 =~0.14
Dithrax-GreBERTa ~0.86 =0.14 =0.00
Trankit-PhilBERTa ~0.80 =0.06 ~0.14
Trankit-GreBERTa ~0.98 =~0.02 =0.00
GreBERTa-PhilBERTa =~0.75 =0.07 =~0.18

Table 7: Integrals over the intervals (—oo, —1), [—1, 1],
and (1, +o0) for plots in Figure 4 (Feats).

Model pair Left ROPE Right
Dithrax-Trankit ~0.00 =~0.00 =1.00
Dithrax-PhilBERTa ~0.80 =0.04 =~0.17
Dithrax-GreBERTa ~0.95 =0.05 =0.00
Trankit-PhilBERTa ~0.82 =0.03 =0.14
Trankit-GreBERTa ~1.00 =0.00 =0.00
GreBERTa-PhilBERTa =0.76 ~0.04 =0.19

Table 8: Integrals over the intervals (—oo, —1), [—1, 1],
and (1, +o00) for plots in Figure 5 (AllTags).



Model pair Left ROPE Right
Dithrax-Trankit ~0.00 =0.00 =1.00
Dithrax-PhilBERTa ~0.93 =0.02 =~0.05
Dithrax-GreBERTa ~1.00 =0.00 =0.00
Trankit-PhilBERTa ~0.97 =0.01 =~0.02
Trankit-GreBERTa ~1.00 =0.00 =~0.00
GreBERTa-PhilBERTa =~0.36 =0.08 =~0.56

Table 9: Integrals over the intervals (—oo, —1), [—1, 1],
and (1, 4+o0) for plots in Figure 6 (UAS).

Model pair Left ROPE Right
Dithrax-Trankit ~0.00 =0.00 ~1.00
Dithrax-PhilBERTa ~0.93 =0.02 =~0.05
Dithrax-GreBERTa ~1.00 =0.00 =0.00
Trankit-PhilBERTa ~0.98 =0.01 =0.02
Trankit-GreBERTa ~1.00 =~0.00 =0.00
GreBERTa-PhilBERTa ~0.39 =0.09 ~0.52

Table 10: Integrals over the intervals (—oo, —1), [—1, 1],
and (1, 4+o0) for plots in Figure 7 (LAS).

Model pair Left ROPE Right
Dithrax-PhilTa =0.00 =~0.00 =1.00
Dithrax-GreTa =0.00 ~0.00 =1.00
GreTa-PhilTa  ~0.75 =0.25 =0.00

Table 11: Integrals over the intervals (—oo, —1), [—1, 1],
and (1, 4+o00) for plots in Figure 8 (Lemmas).
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Figure 2: Posteriors of the Bayesian correlated t-test for all model pairs with reference to POS scores.
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Figure 3: Posteriors of the Bayesian correlated t-test for all model pairs with reference to XPOS scores.
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Figure 4: Posteriors of the Bayesian correlated t-test for all model pairs with reference to Feats scores.
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Figure 5: Posteriors of the Bayesian correlated t-test for all model pairs with reference to AllTags scores.
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Figure 6: Posteriors of the Bayesian correlated t-test for all model pairs with reference to UAS scores.
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Figure 8: Posteriors of the Bayesian correlated t-test for all model pairs with reference to Lemmas scores.

E Texts

The following tables provide details of the texts
used in the training, validation, and test sets
(see also Table 3 for a more concise presen-
tation). The authors, titles, and dates of each
work were retrieved primarily from the file
https://github.com/OperaGraecaAdnotata/
OGA/tree/main/work_chronology/texts/
chronology_greek_works.xml. This file con-
tains work and title metadata derived from
the canonical-greekLit’*® and First1KGreek?’
GitHub repositories, as well as from the Perseus
Catalogue.”® The dates of the works, expressed
in ISO 8601 format, were manually annotated by
a single annotator,”” who used reference sources
documented in the file mentioned above. All
metadata should be regarded as work in progress.

Phttps://github.com/PerseusDL/
canonical-greekLit.

27h‘ctps ://github.com/OpenGreekAndLatin/
First1KGreek.

28h'ctps ://catalog.perseus.org/.

®The annotator is an expert in AG literature and was paid
fairly in accordance with German law.
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CTS Author Title Date Tokens
. History of
tlg0003.t1g001 | Thucydides the Peloponnesian War —0430-01/-0410-12 32,344
tlg0005.tlgxxx | Theocritus Fragments —0299-01/-0259-12 304
tlg0006.tlg003 | Euripides Medea —0430-01/-0430-12 9,845
tlg0007.t1g004 | Plutarch Lycurgus +0096-01/+0120-12 10,709
tlg0007.t1g015 Alcibiades +0096-01/+0120-12 11,439
1g0007.t1g086 On the Fortunes +0060-01/+40065-12 | 5,232
of the Romans
On the Fortune or
tlg0007.t1g087 the Virtue of +0096-01/+0120-12 9,823
Alexander I and II
(12000801001 | ~E3EUS 1 py peipnosophists +0175-01/40200-12 | 45,653
of Naucratis
tlg0009.tlg001 | Sappho Fragments —-0699-01/-0599-12 4,530
tlg0010.tIg002 | Isocrates Against Callimachus —0401-01/-0401-12 4,109
tlg0010.t1g020 To Philip —0345-01/-0345-12 466
tlg0011.t1g001 | Sophocles Trachiniae —-0449-01/-0449-12 9,026
tlg0011.t1g002 Antigone —0442-01/-0437-12 8,990
tlg0011.t1g003 Ajax —0438-01/-0435-12 9,751
tlg0011.tlg004 Oedipus Tyrannus —0418-01/-0415-12 11,521
tlg0011.t1g005 Electra —0417-01/-0406-12 10, 806
tlg0012.t1g001 | Homer Iliad —-0799-01/-0700-12 | 130,479
tlg0012.t1g002 Odyssey —0799-01/-0700-12 | 105,612
tlg0013.tIg002 | Homeric Hymn 2 to Demeter —0624-01/-0574-12 3,968
Hymns
tlg0014.t1g001 | Demosthenes | First Olynthiac —0348-01/-0348-12 2,194
tlg0014.t1g004 First Philippic —0350-01/-0350-12 3,951
tlg0014.t1g007 On Halonnesus —0342-01/-0341-12 2,886
On the Treaty
tlg0014.t1g017 with Alexander —-0330-01/-0330-12 2,076
tlg0014.t1g018 On the Crown —0329-01/-0329-12 26,435
tlg0014.t1g027 Against Aphobus I —0363-01/-0362-12 5,346
tlg0014.t1g036 For Phormio —0349-01/-0348-12 4,649
tlg0014.t1g037 Against Pantaenetus —0346-01/-0346-12 4,528
tlg0014.t1g039 Against Boeotus I —0347-01/-0346-12 3,351
tlg0014.t1g041 Against Spudias —-0363-01/-0358-12 2,333
tlg0014.t1g042 Against Phaenippus —-0329-01/-0329-12 2,624
tlg0014.t1g045 Against Stephanus I —0349-01/-0348-12 6,839
tlg0014.t1g046 Against Stephanus II —0349-01/-0348-12 2,168
Against Evergus
tlg0014.t1g047 and Mnesibulus —0354-01/-0354-12 6,235
Apollodorus
tlg0014.t1g049 Against Timotheus -0361-01/-0361-12 5,005
Apollodorus
tlg0014.t1g050 Against Polycles —0359-01/-0359-12 5,306
tlg0014.t1g051 On the Trierarchic Crown | —0359-01/-0357-12 1,580
t120014.t1g052 ﬁgg&:ﬂ‘g;shppus ~0368-01/-0367-12 2,490
t1g0014.t1g053 Apollodorus ~0367-01/-0366-12 | 2,340

Against Nicostratus
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tlg0014.t11g054 | Demosthenes | Against Conon —0354-01/-0340-12 3,755
tlg0014.t1g057 Against Eubulides —0345-01/-0344-12 5,498
Theomnestus and
tlg0014.t1g059 Apollodorus —0342-01/-0339-12 10,489
Against Neaera
tlg0016.t1g001 | Herodotus Histories —-0429-01/-0424-12 33,150
tlg0017.t1g003 | Isaeus The Estate of Pyrrhus —0388-01/-0388-12 4,959
tlg0019.tlg001 | Aristophanes | Acharnians —0424-01/-0424-12 8,984
tlg0019.t1g008 Thesmophoriazusae —-0410-01/-0410-12 9,073
tlg0020.tlg001 | Hesiod Theogony —-0899-01/-0700-12 8,234
tlg0020.t1g002 Works and Days —0899-01/-0700-12 7,116
tlg0020.tlg003 Shield of Heracles —-0899-01/-0700-12 3,934
tlg0026.tIg001 | Aeschines Against Timarchus —0345-01/-0344-12 15,971
tlg0027.tIg001 | Andocides On the Mysteries —-0399-01/-0398-12 5,964
1g0028.0g001 | Antiphon | A4St the Stepmother 410,61/ 041012 | 2,046
for Poisoning
tlg0028.t1g002 First Tetralogy —0479-01/-0410-12 2,915
tlg0028.tlg005 On the Murder of Herodes | —0417-01/-0417-12 7,458
t1g0028.t1g006 On the Choreutes —-0418-01/-0418-12 4,014
tlg0032.t1g001 | Xenophon Hellenica —-0361-01/-0353-12 27,401
tlg0032.t1g002 Memorabilia —0409-01/-0353-12 27,840
tlg0032.t1g004 Symposium —-0369-01/-0360-12 7,291
tlg0032.tIg006 Anabasis —0379-01/-0359-12 18,737
tlg0032.tlg007 Cyropaedia —0368-01/-0365-12 50, 690
tlg0032.t1g008 Hiero —0356-01/-0356-12 6,953
Constitution
tlg0032.t1g015 of the Athenians —0442-01/-0405-12 3,723
tlg0041.t1g001 | Chion Epistulae +0001-01/+0100-12 5,877
tlg0058.tIg001 | Aeneas Tacti- | Poliorcetica —0374-01/-0349-12 7,207
cus
tlg0059.t1g001 | Plato Euthyphro —0398-01/-0346-12 6,349
tlg0059.t1g002 Apology —0398-01/-0389-12 10,457
tlg0059.t1g003 Crito —0398-01/-0389-12 5,093
t1g0059.t1g029 Cleiphon —0398-01/-0346-12 1,875
tlg0060.tlg001 | Diodorus of | Historical Library —0059-01/-0029-12 25,692
Sicily
tlg0061.t1g001 | Lucian  of | Asinus +0125-01/+0180-12 11,054
Samosata
tlg0081.tlg001 | Dionysius of | Antiquitates Romanae —0007-01/-0006-12 30,312
Halicarnas-
sus
tlg0085.t1g001 | Aeschylus Supplices —0465-01/-0458-12 6,071
tlg0085.t1g002 Persians —0471-01/-0471-12 6,381
tlg0085.t1g003 Prometheus Bound —0459-01/-0455-12 7,222
tlg0085.t1g004 Seven against Thebes —-0466-01/-0466-12 6,372
tlg0085.tlg005 Agamemnon —0457-01/-0457-12 10,037
tlg0085.tIg006 Libation Bearers —0457-01/-0457-12 5, 846
tlg0085.t1g007 Eumenides —0457-01/-0457-12 6,518
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tlg0086.t1g035 | Aristotle Politics —0399-01/-0299-12 19,867
tlg0093.tIg009 | Theophrastus | Characters -0316-01/-0316-12 8,265
tlg0096.t1g002 | Aesop Aesop’s Fables —-0599-01/-0500-12 5,221
tlg0255.tIg001 | Mimnermus | Fragmenta —0699-01/-0599-12 213
of Colophon
t1g0260.t1g001 | Semonides Fragmenta —-0699-01/-0599-12 767
of Amorgos
tlg0343.tlg001 | Ezechiel Exagoge —-0199-01/-0099-12 1,939
tlg0429.tIg001 | Cephisodorus | Fragmenta —-0401-01/-0401-12 29,490
Comicus
tlg0526.t1g004 | Josephus The Jewish War +0075-01/+0075-12 24,987
Flavius
tlg0527.tlg001 | Septuaginta | Genesis —-0299-01/-0200-12 19,235
tlg0537.t1g012 | Epicurus Epistula ad Menoeceum —-0310-01/-0270-12 1,523
tlg0540.t1g001 | Lysias On the Murder of Eratos- | —0402-01/-0401-12 2,834
thenes
tlg0540.t1g012 Against Eratosthenes —-0402-01/-0402-12 5,638
tlg0540.t1g013 Against Agoratus —0399-01/-0397-12 5,641
tlg0540.tlg014 Against Alcibiades 1 —0394-01/-0394-12 2,801
t1g0540.t1g015 Against Alcibiades 2 —0394-01/-0394-12 688
tlg0540.t1g019 On the Property of Aristo- | —0386-01/-0386-12 3,624
phanes
tlg0540.t1g023 Against Pancleon —0399-01/-0398-12 896
tlg0540.t1g024 On the Refusal of a Pen- | —0402-01/-0402-12 1,665
sion
tlg0541.tlg007 | Menander of | Dyscolus —-0315-01/-0315-12 8,069
Athens
tlg0543.t1g001 | Polybius Histories -0167-01/-0117-12 | 105,693
tlg0544.t1g002 | Sextus Em- | Adversus Mathematicos +0201-01/+0300-12 16,218
piricus
tlg0548.t1g001 | Apollodorus | Library +0101-01/+0200-12 1,265
tlg0551.t1g017 | Appianus of | Civil Wars +0101-01/+0200-12 25,665
Alexandria
tlg0554.t1g001 | Chariton De Chaerea et Callirhoe +0075-01/+0125-12 6,265
tlg0557.t11g001 | Epictetus Discourses +0108-01/+0108-12 7,204
t1g0559.t11g002 | Hero of | De Automatis +0062-01/+0085-12 10,321
Alexandria
tlg0561.tlg001 | Longus Daphnis and Chloe +0101-01/+0300-12 672
tlg0585.t1g001 | Phlegon of | Book of Marvels +0100-01/+0200-12 5,642
Tralles
tlg1220.tlg001 | Batrachomyo-| Batrachomyomachia —-0099-01/-0029-12 2,212
machia Homerica
tlg2003.t1g001 | Julian Panegyric in Honor of the | +0355-01/4+0355-12 1,405
Emperor Constantinus
tlgxxxx.tlgxxx | Paeanius Brevarium +0337-01/+0379-12 6,184
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