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Abstract

This paper presents an experiment comparing
six models to identify state-of-the-art models
for Ancient Greek: a morphosyntactic parser
and a lemmatizer that are capable of anno-
tating in accordance with the Ancient Greek
Dependency Treebank annotation scheme. A
normalized version of the major collections of
annotated texts was used to (i) train the base-
line model Dithrax with randomly initialized
character embeddings and (ii) fine-tune Trankit
and four recent models pretrained on Ancient
Greek texts, namely GreBERTa and PhilBERTa
for morphosyntactic annotation and GreTA and
PhilTa for lemmatization. A Bayesian analy-
sis shows that Dithrax and Trankit are practi-
cally equivalent in morphological annotation,
while syntax is best annotated by Trankit and
lemmata by GreTa. The results of the exper-
iment suggest that token embeddings are not
sufficient to achieve high UAS and LAS scores
unless they are coupled with a modeling strat-
egy specifically designed to capture syntactic
relationships. The dataset and best-performing
models are made available online for reuse.

1 Introduction

In recent years, a few open-access annotated An-
cient Greek (AG) corpora, such as Opera Graeca
Adnotata (OGA) (Celano, 2024) and the GLAUx
corpus (Keersmaekers, 2021), have been made
available online. These corpora enable searches for
morphosyntax and lemmata across a wide range
of AG texts, thus filling the gap left by resources
such as the Thesaurus Linguae Graecae, whose
subscription-based query engine is limited to word
forms and lemmata.

Because of the token count in the order of mil-
lions, the morphosyntactic annotation and lemmati-
zation of the above-mentioned open-access corpora
are feasible only if performed automatically. This
raises a number of questions about which recent
technology would be best suited for that purpose.

OGA v0.1.0 annotations (Celano, 2024) relied
on the COMBO parser (Rybak and Wróblewska,
2018), which, despite being accurate,1 was built
on TensorFlow 1 and is not actively maintained
anymore. The GLAUx corpus employed RFTagger
(Schmid and Laws, 2008), Lemming (Müller et al.,
2015), and the Stanford Graph-Based Dependency
Parser (Dozat et al., 2017) for annotation of, re-
spectively, morphology, lemmata, and syntax: the
models perform well (see Keersmaekers, 2021, for
details), but have not been released, and therefore
cannot be reused.

For these reasons, the current paper presents
a comparison of six models to identify and re-
lease state-of-the-art models for morphosyntactic
annotation and lemmatization that can annotate lit-
erary AG sentences according to the annotation
scheme of the Ancient Greek Dependency Tree-
bank (AGDT) and can be used in production to
process a large number of texts. To promote fu-
ture machine learning-based studies on AG, the
models and the normalized version of the AG texts
used for training—and now documented with their
alleged composition dates for the first time—are
released.2,3

In Section 2, related work is reviewed, while
Section 3 describes the dataset used for training. In
Section 4, the experiment and the architectures of
the different models compared are presented: the re-
sults of their training are reported with a Bayesian
statistical analysis in Section 5 and discussed in
Section 6. Finally, concluding remarks are con-
tained in Section 7.

1https://git.informatik.uni-leipzig.de/celano/
combo_for_ancient_greek.

2https://git.informatik.uni-leipzig.de/celano/
morphosyntactic_parser_for_oga.

3https://git.informatik.uni-leipzig.de/celano/
lemmatizer_for_oga.

https://git.informatik.uni-leipzig.de/celano/combo_for_ancient_greek
https://git.informatik.uni-leipzig.de/celano/combo_for_ancient_greek
https://git.informatik.uni-leipzig.de/celano/morphosyntactic_parser_for_oga
https://git.informatik.uni-leipzig.de/celano/morphosyntactic_parser_for_oga
https://git.informatik.uni-leipzig.de/celano/lemmatizer_for_oga
https://git.informatik.uni-leipzig.de/celano/lemmatizer_for_oga
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2 Related work

The explosion of machine learning in NLP has
generated an ever-increasing number of resources,
the reuse of which, however, is often not possible or
straightforward due to the many different variables
involved in each system.

The most recent endeavor comparable to the
work presented here is Keersmaekers and Van Hal
(2023). Building on Keersmaekers (2021), they
documented the parsing and lemmatization of a
large corpus consisting of literary and papyrolog-
ical AG texts annotated according to the AGDT
annotation scheme. Interestingly, they conducted
experiments to increase LAS and UAS scores, in
which the original data were transformed before
training: for example, elliptical nodes were deleted
and the annotation style for coordination modified.
The reported results show some UAS and LAS in-
creases in absolute terms. The models, however,
have not been released.

Most recent systems for morphosyntactic annota-
tion and lemmatization were trained on the Univer-
sal Dependencies data, which consist of two tree-
banks, the Perseus treebank and the PROIEL tree-
bank,4 for a total of about 416K tokens—notably,
the size of the UD treebanks is less than half of that
of the data annotated with the AGDT annotation
scheme used in the present study (see Section 3).

The UD treebanks implement the UD annotation
scheme differently, and therefore creation of a sin-
gle model still represents a challenge: Kostkan
et al. (2023) provided a joint spaCy model for
morphosyntactic annotation and lemmatization that
seems to achieve good overall performance.5

A number of studies reported on the creation
of token embeddings for AG by using the large
amount of texts available online (Singh et al., 2021;
Yamshchikov et al., 2022). Most recently, Riemen-
schneider and Frank (2023) benchmarked a number

4Recently, the PTNK treebank (about 39K tokens) has
been added, but, as far as we are aware, it has not yet been
used for machine learning experiments.

5The scores for the model odyCy_joint on
the UD Perseus treebank test set reported at
https://centre-for-humanities-computing.github.
io/odyCy/performance.html are 95.39 (POS tagging),
92.56 (morphological features), 78.80 (UAS), 73.09 (LAS),
and 83.20 (lemmatization). It is, however, not clear whether
the evaluation script used is that of the CoNLL 2018 Shared
Task (https://universaldependencies.org/conll18/
evaluation.html), which is commonly used in similar
studies, including the present one. Since this script does
not allow for cycles and multiple roots, we suspect that the
reported scores would be lower, if it had been used.

of models for Ancient Greek and Latin. They show
that their pretrained language model GreBERTa
achieves the highest performance scores for UPOS,
XPOS, UAS, and LAS in absolute terms when fine-
tuned on the UD Perseus treebank (95.83, 91.09,
88.20, and 83.98, respectively); lemmatization is
best performed by a T5 model they call GreTa,
which achieves an F1 score of 91.14.

3 The dataset

The dataset used for training, validation, and test-
ing consists of the following treebanks:6 (i) the An-
cient Greek Dependency Treebank7 (Celano, 2019;
Bamman and Crane, 2011), (ii) the Gorman Trees8

(Gorman, 2020), and (iii) the Pedalion Trees.9

All treebanks were natively annotated using the
AGDT annotation scheme, and together they rep-
resent by far the largest morphosyntactically anno-
tated dataset for literary AG texts—and one of the
largest treebanks in absolute terms: the token count
of the texts before normalization is 1, 277, 310 and,
after it, 1, 260, 863.

As Table 1 shows, the final dataset comprises
a plethora of texts of different genres—including
poetry, history, and philosophy—and periods, rang-
ing from about the 9th century BCE to the 4th
century CE (more details are provided in Appendix
E). Even though the dataset is not balanced across
genres and periods, it is still representative of most
text types written in Ancient Greece during the
above-mentioned time span.

3.1 Normalization
Since the final database consists of texts from dif-
ferent sources, which were annotated by many dif-
ferent scholars (sometimes adopting different con-
ventions), automatic normalization of the original
texts was attempted to foster consistency and there-
fore performance of machine learning algorithms.

Before training, all the relevant fields, i.e., word
form, lemma, POS tag, syntactic head and rela-
tion, needed some non-trivial format standardiza-
tion, especially to handle the case of null or clearly
erroneous values. Syntactic trees also had to be
modified if cycles were detected.

6Data licences can be found at the links to the data speci-
fied below.

7https://github.com/PerseusDL/treebank_data/
releases/tag/v2.1_IGDS.

8https://github.com/vgorman1/
Greek-Dependency-Trees.

9https://github.com/perseids-publications/
pedalion-trees.

https://centre-for-humanities-computing.github.io/odyCy/performance.html
https://centre-for-humanities-computing.github.io/odyCy/performance.html
https://universaldependencies.org/conll18/evaluation.html
https://universaldependencies.org/conll18/evaluation.html
https://github.com/PerseusDL/treebank_data/releases/tag/v2.1_IGDS
https://github.com/PerseusDL/treebank_data/releases/tag/v2.1_IGDS
https://github.com/vgorman1/Greek-Dependency-Trees
https://github.com/vgorman1/Greek-Dependency-Trees
https://github.com/perseids-publications/pedalion-trees
https://github.com/perseids-publications/pedalion-trees
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Author Genre Century Tokens
Hesiod, Homer poem −9/8 255, 375

Sappho,
Mimnermus,
Semonides

lyric −7 5, 510

Homeric Hymns hymns −7/6 3, 968

Aesop fable −6 5, 221

Antiphon, Lysias,
Isocrates

oratory −5 30, 679

Aeschylus,
Sophocles,
Euripides

tragedy −5 108, 386

Aristophanes,
Cephisidorus
Comicus

comedy −5 47, 547

Aeneas Tacticus manual −5 7, 207

Herodotus,
Thucydides

history −5 65, 494

Xenophon history −5/4 142, 635

Lysias, Isocrates,
Demosthenes,
Aeschines,
Andocides, Isaeus

oratory −4 153, 088

Aristotle, Plato,
Theophrastus

philosophy −4 51, 906

Menandrus comedy −4 8, 069

Epicurus philosophy −4/3 1, 523

Theocritus lyric −3 304

Septuaginta Bible −3 19, 235

Polybius history −2 105, 693

Ezechiel tragedy −2 1, 939

Batrachomyomachia poem −1 2, 212

Diodorus of Sicily,
Dionysius
of Halicarnassus

history −1 56, 004

Chion epistolary +1 5, 577

Hero of Alexandria science +1 10,321
Josephus Flavius history +1 24, 987

Chariton romance +1/2 6, 265

Plutarch biography +1/2 37, 203

Phlegon of Tralles paradox. +2 5, 642

Apollodorus mythogr. +2 1, 265

Epictetus philosophy +2 7, 204

Lucian novel +2 11, 054

Appianus history +2 25, 665

Athenaeus miscellany +2 45, 653

Longus romance +2/3 672

Sextus Empiricus philosophy +3 16, 218

Paeanius history +4 6, 184

Julian oratory +4 1, 405

Table 1: Statistics for the works contained in the dataset
showing authors, genres, (alleged) centuries of composi-
tion (indicated by Arabic numbers, with + meaning CE
and − BCE), and token counts (before normalization).
Full details in Appendix E.

An often underestimated problem is that of
character encoding for the apostrophe: all
apostrophe-looking characters were converted into

the character MODIFIER LETTER APOSTRO-
PHE (U+02BC), which affected about 50K charac-
ters.

While the vast majority of AG graphic words
corresponds to morphosyntactic tokens,10 this is
questionable for coordinate conjunctions such as
οὐδὲ or εἴτε, which, in the final dataset, were to-
kenized (therefore, οὐ δὲ and εἴ τε, respectively).
Coordination in the AGDT is not only annotated
at the level of the syntactic tree but also at that of
the syntactic label via use of the suffix _CO: to de-
crease the number of syntactic labels and therefore
supposedly improve algorithm performance, this
and similar suffixes, such as _AP, were deleted.

Another related yet different issue is represented
by ellipsis, which poses a representational chal-
lenge. The AGDT annotation scheme allows ellip-
tical nodes to be added whenever they are necessary
to build a syntactic tree. However, the complexity
of the phenomenon and the absence of strict an-
notation rules on this matter have over time led to
the proliferation of various annotation styles: for
example, sometimes the word form of an elliptical
node is specified, sometimes it is not. The position
of elliptical nodes within a sentence is also prob-
lematic both on a theoretical and a representational
level.

While Keersmaekers and Van Hal (2023) pro-
posed deletion of elliptical nodes, Celano’s (2023)
ellipsis modeling is followed in the present study:
elliptical nodes were added at the end of a sentence
(whatever their alleged position was) and, to avoid
uncertainties about their word forms, they were al-
ways encoded with placeholders such as [0], [1],
and so on, depending on their number.11

4 Experiment

A total of six model architectures were compared:
four (i.e., three + baseline) for morphosyntactic pre-
diction and three (i.e., two + baseline) for lemma
prediction. More precisely, the baseline model
called Dithrax12 is able to predict both morphosyn-
tax and lemmata, while the other five models can
predict either one, in that their modeling for char-
acter prediction for lemmatization is kept distinct

10Crasis annotation, which is more elaborate to normalize,
was left untouched.

11Since a model to predict such elliptical nodes is
provided at https://git.informatik.uni-leipzig.de/
celano/ellipsis_Ancient_Greek, new texts can be made
compliant with this ellipsis annotation style.

12The name derives from Dionysius Thrax, the author of
the first extant AG grammar.

https://git.informatik.uni-leipzig.de/celano/ellipsis_Ancient_Greek
https://git.informatik.uni-leipzig.de/celano/ellipsis_Ancient_Greek
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Model POS XPOS Feats AllTags UAS LAS Lemmas
Dithrax 95.55 (0.23) 90.65 (0.32) 94.40 (0.17) 89.80 (0.39) 77.70 (0.62) 70.81 (0.65) 86.85 (0.18)
Trankit 96.18 (0.13) 91.55 (0.21) 94.61 (0.12) 91.21 (0.22) 82.28 (0.27) 76.67 (0.34) N/A
GreBERTa 94.12 (0.54) 89.16 (0.73) 93.21 (0.45) 88.31 (0.85) 58.85 (2.04) 53.41 (2.06) N/A
GreTa N/A N/A N/A N/A N/A N/A 91.17 (0.17)
PhilBERTa 85.34 (24.03) 79.85 (24.3) 86.67 (16.87) 77.8 (27.73) 61.24 (20.64) 54.95 (20.1) N/A
PhilTa N/A N/A N/A N/A N/A N/A 90.09 (0.24)

UD Perseus Trankit 93.97 87.25 91.66 86.88 83.48 78.56 88.52
UD Perseus GreBERTa 95.83 91.09 N/A N/A 88.20 83.98 N/A
UD Perseus GreTa + Chars N/A N/A N/A N/A N/A N/A 91.14
UD Perseus PhilBERTa 95.60 90.41 N/A N/A 86.99 82.69 N/A
UD Perseus PhilTa + Chars N/A N/A N/A N/A N/A N/A 90.66

Table 2: Mean F1 scores + standard deviations in parentheses for the test set results of the 5-fold cross-validation
models (training on each split repeated twice with different random seeds). Best scores are in boldface. Results for
parsers trained on the UD Perseus data are shown only for loose comparison (see Section 5).

from that for word prediction for morphosyntax.
The performance of each model was evaluated

with the official CoNLL 2018 Shared Task script: it
outputs F1 scores for UPOS, XPOS, UFeats, AllT-
ags (i.e., UPOS+XPOS+UFeats), UAS (i.e., HEAD
match), LAS (i.e., HEAD + DEPREL match), and
Lemmas. Since the AGDT tagsets are different,
the above-mentioned metrics are conveniently re-
named: POS, XPOS, Feats, AllTags, UAS, LAS,
and Lemmas.

The original dataset was divided into training,
validation, and test sets (60%, 20%, 20%). Each
model was trained 10 times, using 5-fold cross-
validation, with each training-validation split being
used twice: as a result, 10 models (i.e., 5 splits
× 2 random seeds) were trained for each model
architecture (therefore, 10 final F1 scores were cal-
culated for each of the above-mentioned metrics).
Since the final models were not retrained on the
entire dataset (train + validation sets) for time rea-
sons, the mean scores presented in Table 2 are the
ones obtained on the test set—the best-performing
model was then chosen for use in production (see
Table 3).

The training strategy is motivated by the fact that,
while cross-validation reduces variance by use of
different splits of the dataset, repetition of training
on the same split allows experimentation with dif-
ferent random seeds. Final hyperparameters were
set after a number of preliminary experiments and
are documented in Appendix B.

Model POS XPOS Feats AllTags UAS LAS Lemmas
Trankit 96.41 91.90 94.77 91.56 82.60 77.10 N/A
GreTa N/A N/A N/A N/A N/A N/A 91.41

Table 3: Scores of the best-performing cross-validation
runs evaluated on the test set.

4.1 The statistical framework

The results of the present experiment are inter-
preted through the Bayesian analysis proposed by
Benavoli et al. (2017). More precisely, they pro-
pose a Bayesian correlated t-test to compare cross-
validation scores of two models on one dataset.

The proposed posterior distribution coincides
with the Student distribution used in the frequen-
tist t-test. This means that the probabilities of
the Bayesian correlated t-test coincide with the
p-values of the frequentist correlated t-test: what
changes, however, is the interpretation of such nu-
merical values.

While the frequentist approach returns the prob-
ability of data under the assumption that the null
hypothesis is true, the Bayesian correlated t-test
computes the actual probabilities of the null and
alternative hypotheses.

Benavoli et al.’s (2017) Bayesian correlated t-
test provides three probability scores concerning
the comparison of the models x and y (see Ap-
pendix C for the scores):

(i) P (x = y): the probability of model x be-
ing practically equivalent to model y: this is
the region of practical equivalence (ROPE)
corresponding to an arbitrary interval within
which two models are considered not to dif-
fer in practice. In the present study, this is
[−1, 1], i.e., the posterior probability of the
mean difference of F1 scores less than 1% is
considered to mean practical equivalence.

(ii) P (x ≪ y): the probability that model x is
practically worse than model y, i.e., the poste-
rior probability of the mean difference of F1
scores being practically negative.

(iii) P (x ≫ y): the probability that model x is
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practically better than model y, i.e., the poste-
rior probability of the mean difference of F1
scores being practically positive.

The Bayesian approach provides a more straight-
forward statistical interpretation of data and offers
a solution for the well-known pitfalls of the fre-
quentist framework, which include the fact that
null hypotheses are always false in practice and
sufficiently large datasets can yield statistical sig-
nificance even if the effect size is very small.

4.2 Dithrax: the baseline model

As shown in Figure 1, Dithrax is a multi-output
LSTM model vectorizing morphosyntactic tokens
with randomly initialized character embeddings,
which are used for prediction of both lemmata and,
after further processing through LSTM layers, mor-
phosyntax.

The model is inspired by the COMBO parser
(Rybak and Wróblewska, 2018), which was among
the most accurate parsers at the CoNLL 2018
Shared Task (Zeman et al., 2018).

More precisely, Dithrax proposes a similar mod-
eling strategy for HEAD and DEPREL targets
based on adjacency matrices resulting from dot
products of two rank-2 tensors representing, respec-
tively, heads and dependents of the same sentence,
with each matrix row corresponding to the vector
representation of a token.

4.3 Trankit

Trankit (Nguyen et al., 2021) is a state-of-the-art
transformer-based toolkit for morphosyntactic anal-
ysis and lemmatization. It is designed for UD data,
and is also able to process raw documents, in that
it comprises a tokenizer and sentence splitter. Key
features of Trankit are:

(i) use of the multilingual pretrained transformer
XLM-RoBERTa, whose output is fine-tuned
on new data.

(ii) adapters: feed-forward networks for each ma-
jor component of Trankit (six in total), whose
weights—together with the specific ones for
final predictions—are the only ones updated,
while the pretrained transformer weights re-
main fixed. These make Trankit memory- and
time-efficient.

(iii) syntax is modeled via Dozat and Manning’s
(2017) biaffine attention.

For the purpose of the present experiment, we
trained Trankit’s joint model for part-of-speech tag-
ging, morphological feature tagging, and depen-
dency parsing (i.e., POS, XPOS, Feats, AllTags,
UAS, and LAS scores); the lemmatizer could not
be trained because of an internal code error.13

4.4 Pretrained models: Gre(BERTa|Ta) and
Phil(BERTa|Ta)

The pretrained models GreBERTa and GreTa (for
AG) and PhilBERTa and PhilTa (for AG and Latin)
were fine-tuned for comparison,14 in that they have
recently been argued to perform better than previ-
ous pretrained AG models.

Riemenschneider and Frank (2023) fine-tuned
GreBERTa and GreTa on the Greek data of the
Open Greek and Latin Project, the CLARIN corpus
of Greek Medieval Texts, the Patrologia Graeca,
and the Internet Archive (in total, about 185.1M
tokens). They fine-tuned PhilBERTa and PhilTa
on not only AG but also Latin and English data.
The latter come from the Corpus Corporum project
(167.5M tokens) and a collection of English texts
from different sources (212.8M tokens), whose top-
ics are similar to the ones found in AG and Latin
sources (for example, English translations of AG
and Latin texts), for a total of 565.4M tokens.

GreBERTa and PhilBERTa are encoder-only
transformers providing token embeddings for pre-
diction of word-related targets (i.e., UPOS, XPOS,
UFeats, AllTags, HEAD, and DEPREL). Since not
the original scripts but only the pretrained models
are made available online (see also Section 8), it
was not possible to test the former with the AGDT
dataset (see Section 6): in the present experiment,
therefore, the pretrained token embeddings were
just used as inputs to dense layers outputting the
final probability scores for each token. However,
the parameters of the pretrained models were left
trainable. GreTa and PhilTa are encoder-decoder
transformers for character prediction, and we fine-
tuned them for lemmatization.15

13See https://github.com/nlp-uoregon/trankit/
issues/48.

14We use the names GreBERTa, PhilBERTa, GreTa, and
PhilTa to also name the models obtained by our fine-tuning:
context is sufficient to clarify what these names exactly refer
to.

15We are grateful to Frederick Riemenschneider, who pro-
vided us with a script for lemma prediction similar to the one
used for his paper.

https://github.com/nlp-uoregon/trankit/issues/48
https://github.com/nlp-uoregon/trankit/issues/48
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Figure 1: Main layers of Dithrax, the baseline model architecture. Blue color stands for tanh(linear(x)), while
orange for softmax(linear(x)) (with × meaning dot product and + concatenation).

5 Results

Table 2 shows the mean F1 scores and related stan-
dard deviations16 for the models trained with 5-fold
cross-validation, with each split being used twice
with different random seeds (in total, 10 models for
each architecture). The mean scores are based on
the F1 scores returned by the evaluation script of
the CoNLL 2018 Shared Task applied to the results
outputted by each model when tested on the test
set. The models created by the runs with the best
scores (see Table 3) are made available online.17

Table 2 also displays Riemenschneider and
Frank’s (2023) results for the models trained on UD
Perseus data, i.e., a small subset of the dataset used
for the present study, which were evaluated using
the same CoNLL 2018 Shared Task script.18 Even
if the UD annotation scheme and the AGDT one
are similar, there are differences that are likely to
impact parsing results. For example, Keersmaekers
(2021) argues that UD annotation style of coordi-
nation allows one to achieve higher scores for UAS
and LAS. Moreover, UD data, unlike the AGDT
data used for the present study, do not contain el-
liptical nodes. This means that comparison of F1
scores between UD models and the ones of the
present study can only be loose, especially with
reference to UAS and LAS.

The mean scores for PhilBERTa shown in Ta-
ble 2 are the lowest ones and their related stan-

16SDs have been calculated using numpy.std with
ddof=1.

17See footnotes 2 and 3.
18Results for Trankit are taken from https://trankit.

readthedocs.io/en/latest/performance.html
(Ancient_Greek-Perseus treebank).

dard deviations are remarkably high (>20) be-
cause the model performed very poorly in one
of the runs. However, even if that run were not
considered, the mean scores would still be lower
and the standard deviations would remain rather
high in comparison to the values of the other
models: POS: 92.87 (3.63); XPOS: 87.42 (4.37);
Feats: 91.92 (3.11); AllTags: 86.44 (4.94); UAS:
67.44 (6.9); LAS: 60.94 (7.11).

Figures 2, 3, 4, 5, 6, 7, and 8 show the posterior
distributions of the mean differences of F1 scores
between all models pairwise returned by Benavoli
et al.’s (2017) Bayesian correlated t-test.19

In each of the above-mentioned figures ex-
cept Figure 8, the top-left, top-middle, top-
right, bottom-left, bottom-middle, bottom-right
plots show, respectively, the posteriors for
the pairs Dithrax-Trankit, Dithrax-PhilBERTa,
Dithrax-GreBERTa, Trankit-PhilBERTa, Trankit-
GreBERTa, and GreBERTa-PhilBERTa. In Fig-
ure 8, which visualizes Lemmas scores, the left,
middle, and right plots represent the posteriors for
Dithrax-PhilTa, Dithrax-GreTa, and GreTa-PhilTa,
respectively—as noted above, Trankit could not be
trained for lemmatization because of an internal
code error. Each above-mentioned Figure is cou-
pled with a table (i.e., Tables 5, 6, 7, 8, 9, 10, and
11 in Appendix C), which reports the values of the
areas under the curve.

Each single plot gives information about the
probabilities that the mean differences of F1 scores
between two models are practically negative, prac-
tically equivalent, and practically positive. For

19The Python package documented at https://github.
com/janezd/baycomp was used for the plots and calculations.

https://trankit.readthedocs.io/en/latest/performance.html
https://trankit.readthedocs.io/en/latest/performance.html
https://github.com/janezd/baycomp
https://github.com/janezd/baycomp
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example, the bottom-left plot in Figure 4 and the
corresponding Table 7 show:

• the posterior probability that the mean dif-
ference of F1 scores between PhilBERTa and
Trankit is practically negative, i.e., the integral
of the posterior over the interval (−∞,−1),
equal to ≈0.80. This is the probability that
Trankit is practically better than PhilBERTa.

• the posterior probability that the mean differ-
ence of F1 scores between PhilBERTa and
Trankit is practically equivalent, i.e., the inte-
gral of the posterior over the ROPE interval
[−1, 1], equal to ≈0.06. This is the probabil-
ity that PhilBERTa and Trankit are practically
equivalent.

• the posterior probability that the mean differ-
ence of F1 scores between PhilBERTa and
Trankit is practically positive, i.e., the inte-
gral of the posterior over the interval (1,+∞),
equal to ≈0.14. This is the probability that
PhilBERTa is practically better than Trankit.

6 Discussion

Table 2 seems to suggest that Trankit is the best
model in each morphosyntactic task. This is only
partly confirmed by the Bayesian statistical analy-
sis.

Even if Trankit’s results for POS, XPOS, and
Feats are the highest in absolute terms, its perfor-
mance can be considered to be practically equiv-
alent to that of the baseline model Dithrax with
reference to these metrics. Indeed, the correspond-
ing Tables 5, 6, and 7 show that the area under the
curve within the ROPE is ≈1 for POS and Feats,
and ≈0.88 for XPOS.20

On the other hand, the models PhilBERTa and
GreBERTa perform practically worse than both
Dithrax and Trankit with respect to these same
metrics: there is at least an ≈0.79 probability (see
Dithrax-PhilBERTa in Table 5)21 that Dithrax or
Trankit performs practically better.

This is an interesting result because, unlike
Trankit, PhilBERTa, and GreBERTa, Dithrax does
not rely on pretrained (but randomly initialized)
character embeddings and its architecture has

20A threshold of 0.80 can be chosen when comparing the
models.

210.79 is actually lower than the threshold of 0.80, but the
difference is minimal.

a lower overall number of parameters (see Ta-
ble 4):22 this suggests that classification tasks
such as POS, XPOS, and Feats can be success-
fully addressed without use of more expensive
model architectures—however, as shown in Table
4, Dithrax has a longer training time. The AllT-
ags F1 score is a metric for POS+XPOS+Feats.
Trankit turns out to perform practically better than
any other model (Table 8), including Dithrax.

Syntactic prediction is notoriously more com-
plex, and this is shown in the lower results reported
in Table 2 for UAS and LAS. Trankit’s perfor-
mance is clearly superior to that of any other model,
even if its scores are much lower than the POS and
XPOS ones.

Syntactic analysis is a much more challenging
task because HEAD and DEPREL values heav-
ily depend on contextual information. Even if
a pretrained transformer such as GreBERTa or
PhilBERTa outputs context-aware token embed-
dings, it turns out to predict syntax poorly without
a further modeling strategy.

In the GreBERTa and PhilBERTa models, the
pretrained token embeddings were used as input to
dense layers outputting probabilities for morphol-
ogy and syntax in a multi-output model; however,
while results for morphology are comparable to
those of the other models, those for syntax clearly
are not (see also Section 8): as Table 2 shows, UAS
and LAS scores for GreBERTa and PhilBERTa are
remarkably lower, and there is an ≈0.93 or higher
probability that Dithrax or Trankit performs practi-
cally better than them (Tables 9 and 10).

This can be explained by the fact that, contrary
to GreBERTa and PhilBERTa, Dithrax and Trankit
employ a modeling strategy on top of embeddings:
Dithrax models sentence syntax through adjacency
matrices (Rybak and Wróblewska, 2018), while
Trankit implements Dozat and Manning’s (2017)
biaffine attention mechanism, both of which aim
to capture the complex relationship between heads
and dependents within a sentence.23

Lemmatization is performed best by GreTa.
While Dithrax simply employs LSTM layers
over character embeddings, GreTa and PhilTa are
seq2seq models: Table 11 shows that, while the
seq2seq models perform practically better than
Dithrax (≈1.00), there is an ≈0.75 probability that

22However, Trankit has fewer trainable parameters than
Dithrax.

23To filter syntactic cycles, the Chu-Liu-Edmonds algorithm
is applied to each parser’s output.
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GreTa performs practically better than PhilTa and
an ≈0.25 probability that their performance is prac-
tically equivalent.

If we compare Trankit’s results on the AGDT
dataset with those on the UD dataset (see Table 2),
scores for POS, XPOS, Feats, and AllTags are con-
siderably higher in absolute terms on the AGDT
dataset, with differences of ≈2.21, ≈4.3, ≈2.95,
and ≈4.33, respectively; UAS and LAS scores,
however, are higher on the UD dataset, with dif-
ferences of ≈1.2 and ≈1.89, respectively. Inter-
estingly, UAS and LAS scores do not seem to be
impacted by the much larger size of the AGDT
dataset; however, the model trained on the AGDT
data can be expected to generalize much better than
that trained on the UD data due to the much larger
variety of texts used during training.

7 Conclusions

A comparison of six model architectures (Dithrax,
Trankit, PhilBERTa, GreBERTa, PhilTa, and
GreTa) was documented to select state-of-the-art
models for annotation of morphosyntax and lem-
mata of literary texts according to the AGDT anno-
tation scheme. A Bayesian statistical analysis was
adopted to interpret cross-validation scores, which
suggests that Trankit annotates syntax better than
the other models do, while GreTa’s performance for
lemmatization is the best. The study shows that the
baseline model Dithrax can also achieve state-of-
the-art performance for morphological annotation—
it employs randomly initialized character embed-
dings and a lower overall number of parameters,
but its training time is longer.

A noteworthy finding of the study is that, al-
though pretrained embeddings, such as GreBERTa
and PhilBERTa, rely on complex model architec-
tures vectorizing tokens with embeddings calcu-
lated on a very large collection of AG texts, they do
not perform well for syntactic prediction (i.e., UAS
and LAS scores), unless a further modeling strat-
egy aimed at capturing syntax information within a
sentence is put in place, such as adjacency matrices
or biaffine attention.

8 Limitations

The study aimed to document state-of-the-art mod-
els for morphosyntactic analysis and lemmatization
of Ancient Greek. The dataset used for training
contains manual annotations produced over many
years by different (single) annotators (some were

students, others scholars). Therefore, as is often
the case with manual annotations, annotation con-
sistency within the dataset cannot be guaranteed
because of either annotation errors or different an-
notation styles, the first annotation guidelines24

not being sufficiently specific regarding a number
of morphosyntactic phenomena—it should also be
noted that the morphosyntactic annotation of An-
cient Greek literary texts is arguably much more
complex than that of modern texts.

For this reason, the present study set aside the
question of how annotation quality/consistency af-
fects parsing results. Similarly, no experiment was
conducted with respect to corpus composition, un-
der the assumption that model architectures are
powerful enough to capture distinctions between
texts of different genres and/or composition dates.
Moreover, as stated in Section 1, the focus of the
study was to select a morphosyntactic parser and
a lemmatizer that performed best overall based on
well-known metrics and a statistical analysis: a
model error analysis would be of interest, but lies
beyond the scope of this study.

The reuse of models and model architectures for
comparison was often limited: either they are not
released or the provided code is partial. The latter
case is that of PhilBERTa and GreBERTa: they
achieved state-of-the-art UAS and LAS scores on
the UD Perseus treebank, but the original scripts
have not been released,25 and therefore their orig-
inal model architectures could not be used in the
present study.
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A Model statistics

Model APar TPar TTime
Dithrax 58, 906, 077 58, 906, 077 ≈14.6h
Trankit 283, 463, 421 5, 419, 773 ≈6.9h
GreBERTa 127, 860, 506 127, 860, 506 ≈2.6h
GreTa 247, 539, 456 247, 539, 456 ≈11.4h
PhilBERTa 137, 076, 506 137, 076, 506 ≈2.6h
PhilTa 296, 691, 456 296, 691, 456 ≈12.3h

Table 4: Model statistics consisting of number of all
parameters (APar), trainable parameters (TPar), and
approximate training time (TTime) calculated on an
NVIDIA RTX4500 ADA 24GB GDDR6.

B Model hyperparameters

The present section reports the relevant hyperpa-
rameters for the training of the models. Dithrax
(TensorFlow/Keras): batch size 28, epochs 100
with early stopping (patience 2, best model
saved), and Adam optimizer with clipvalue 4.5,
β1 = 0.9, β2 = 0.9, weight decay 1e−4,
and learning rate using piecewise constant de-
cay with boundaries [15000, 27000] and values
[0.001, 0.0001, 0.00007].

PhilBERTa and GreBERTa (Tensor-
Flow/Keras/Transformers): batch size 28,
epochs 100 with early stopping (patience 2,
best model saved), and Adam optimizer with
clipvalue 4.5, β1 = 0.9, β2 = 0.9, weight
decay 1e−4, and learning rate using piecewise
constant decay with boundaries [10000] and values
[0.001, 0.0001, 0.00007].

Trankit (PyTorch/Transformers): token embed-
dings xlm-roberta-base, batch size 16, epochs
100 (best model saved), and a linear scheduler with
warmup steps 80, training steps 160, and AdamW
optimizer with learning rate 1e−3 and weight de-
cay 1e−4.

PhilTa and GreTa (PyTorch/Transformers):
Seq2SeqTrainingArguments with batch size 128,
epochs 10, learning rate 1e−4, weight decay 1e−3,
gradient accumulation steps 1, generation max
length 30, and generation number of beams 20.

C Scores from the Bayesian correlated
t-tests

Model pair Left ROPE Right
Dithrax-Trankit ≈0.00 ≈1.00 ≈0.00
Dithrax-PhilBERTa ≈0.79 ≈0.04 ≈0.17
Dithrax-GreBERTa ≈0.98 ≈0.02 ≈0.00
Trankit-PhilBERTa ≈0.80 ≈0.04 ≈0.16
Trankit-GreBERTa ≈1.00 ≈0.00 ≈0.00
GreBERTa-PhilBERTa ≈0.75 ≈0.05 ≈0.20

Table 5: Integrals on the intervals (−∞,−1), [−1, 1],
and (1,+∞) for plots in Figure 2 (POS).

Model pair Left ROPE Right
Dithrax-Trankit ≈0.00 ≈0.88 ≈0.12
Dithrax-PhilBERTa ≈0.80 ≈0.04 ≈0.16
Dithrax-GreBERTa ≈0.97 ≈0.03 ≈0.00
Trankit-PhilBERTa ≈0.82 ≈0.04 ≈0.14
Trankit-GreBERTa ≈1.00 ≈0.00 ≈0.00
GreBERTa-PhilBERTa ≈0.76 ≈0.05 ≈0.19

Table 6: Integrals over the intervals (−∞,−1), [−1, 1],
and (1,+∞) for plots in Figure 3 (XPOS).

Model pair Left ROPE Right
Dithrax-Trankit ≈0.00 ≈1.00 ≈0.00
Dithrax-PhilBERTa ≈0.80 ≈0.06 ≈0.14
Dithrax-GreBERTa ≈0.86 ≈0.14 ≈0.00
Trankit-PhilBERTa ≈0.80 ≈0.06 ≈0.14
Trankit-GreBERTa ≈0.98 ≈0.02 ≈0.00
GreBERTa-PhilBERTa ≈0.75 ≈0.07 ≈0.18

Table 7: Integrals over the intervals (−∞,−1), [−1, 1],
and (1,+∞) for plots in Figure 4 (Feats).

Model pair Left ROPE Right
Dithrax-Trankit ≈0.00 ≈0.00 ≈1.00
Dithrax-PhilBERTa ≈0.80 ≈0.04 ≈0.17
Dithrax-GreBERTa ≈0.95 ≈0.05 ≈0.00
Trankit-PhilBERTa ≈0.82 ≈0.03 ≈0.14
Trankit-GreBERTa ≈1.00 ≈0.00 ≈0.00
GreBERTa-PhilBERTa ≈0.76 ≈0.04 ≈0.19

Table 8: Integrals over the intervals (−∞,−1), [−1, 1],
and (1,+∞) for plots in Figure 5 (AllTags).
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Model pair Left ROPE Right
Dithrax-Trankit ≈0.00 ≈0.00 ≈1.00
Dithrax-PhilBERTa ≈0.93 ≈0.02 ≈0.05
Dithrax-GreBERTa ≈1.00 ≈0.00 ≈0.00
Trankit-PhilBERTa ≈0.97 ≈0.01 ≈0.02
Trankit-GreBERTa ≈1.00 ≈0.00 ≈0.00
GreBERTa-PhilBERTa ≈0.36 ≈0.08 ≈0.56

Table 9: Integrals over the intervals (−∞,−1), [−1, 1],
and (1,+∞) for plots in Figure 6 (UAS).

Model pair Left ROPE Right
Dithrax-Trankit ≈0.00 ≈0.00 ≈1.00
Dithrax-PhilBERTa ≈0.93 ≈0.02 ≈0.05
Dithrax-GreBERTa ≈1.00 ≈0.00 ≈0.00
Trankit-PhilBERTa ≈0.98 ≈0.01 ≈0.02
Trankit-GreBERTa ≈1.00 ≈0.00 ≈0.00
GreBERTa-PhilBERTa ≈0.39 ≈0.09 ≈0.52

Table 10: Integrals over the intervals (−∞,−1), [−1, 1],
and (1,+∞) for plots in Figure 7 (LAS).

Model pair Left ROPE Right
Dithrax-PhilTa ≈0.00 ≈0.00 ≈1.00
Dithrax-GreTa ≈0.00 ≈0.00 ≈1.00
GreTa-PhilTa ≈0.75 ≈0.25 ≈0.00

Table 11: Integrals over the intervals (−∞,−1), [−1, 1],
and (1,+∞) for plots in Figure 8 (Lemmas).
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D Posteriors

Figure 2: Posteriors of the Bayesian correlated t-test for all model pairs with reference to POS scores.

Figure 3: Posteriors of the Bayesian correlated t-test for all model pairs with reference to XPOS scores.
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Figure 4: Posteriors of the Bayesian correlated t-test for all model pairs with reference to Feats scores.

Figure 5: Posteriors of the Bayesian correlated t-test for all model pairs with reference to AllTags scores.
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Figure 6: Posteriors of the Bayesian correlated t-test for all model pairs with reference to UAS scores.

Figure 7: Posteriors of the Bayesian correlated t-test for all model pairs with reference to LAS scores.
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Figure 8: Posteriors of the Bayesian correlated t-test for all model pairs with reference to Lemmas scores.

E Texts

The following tables provide details of the texts
used in the training, validation, and test sets
(see also Table 3 for a more concise presen-
tation). The authors, titles, and dates of each
work were retrieved primarily from the file
https://github.com/OperaGraecaAdnotata/
OGA/tree/main/work_chronology/texts/
chronology_greek_works.xml. This file con-
tains work and title metadata derived from
the canonical-greekLit26 and First1KGreek27

GitHub repositories, as well as from the Perseus
Catalogue.28 The dates of the works, expressed
in ISO 8601 format, were manually annotated by
a single annotator,29 who used reference sources
documented in the file mentioned above. All
metadata should be regarded as work in progress.

26https://github.com/PerseusDL/
canonical-greekLit.

27https://github.com/OpenGreekAndLatin/
First1KGreek.

28https://catalog.perseus.org/.
29The annotator is an expert in AG literature and was paid

fairly in accordance with German law.

https://github.com/OperaGraecaAdnotata/OGA/tree/main/work_chronology/texts/chronology_greek_works.xml
https://github.com/OperaGraecaAdnotata/OGA/tree/main/work_chronology/texts/chronology_greek_works.xml
https://github.com/OperaGraecaAdnotata/OGA/tree/main/work_chronology/texts/chronology_greek_works.xml
https://github.com/PerseusDL/canonical-greekLit
https://github.com/PerseusDL/canonical-greekLit
https://github.com/OpenGreekAndLatin/First1KGreek
https://github.com/OpenGreekAndLatin/First1KGreek
https://catalog.perseus.org/
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CTS Author Title Date Tokens

tlg0003.tlg001 Thucydides
History of
the Peloponnesian War

−0430-01/−0410-12 32, 344

tlg0005.tlgxxx Theocritus Fragments −0299-01/−0259-12 304

tlg0006.tlg003 Euripides Medea −0430-01/−0430-12 9, 845

tlg0007.tlg004 Plutarch Lycurgus +0096-01/+0120-12 10, 709
tlg0007.tlg015 Alcibiades +0096-01/+0120-12 11, 439

tlg0007.tlg086
On the Fortunes
of the Romans

+0060-01/+0065-12 5, 232

tlg0007.tlg087
On the Fortune or
the Virtue of
Alexander I and II

+0096-01/+0120-12 9, 823

tlg0008.tlg001
Athenaeus
of Naucratis

The Deipnosophists +0175-01/+0200-12 45, 653

tlg0009.tlg001 Sappho Fragments −0699-01/−0599-12 4, 530

tlg0010.tlg002 Isocrates Against Callimachus −0401-01/−0401-12 4,109
tlg0010.tlg020 To Philip −0345-01/−0345-12 466

tlg0011.tlg001 Sophocles Trachiniae −0449-01/−0449-12 9, 026
tlg0011.tlg002 Antigone −0442-01/−0437-12 8, 990
tlg0011.tlg003 Ajax −0438-01/−0435-12 9, 751
tlg0011.tlg004 Oedipus Tyrannus −0418-01/−0415-12 11, 521
tlg0011.tlg005 Electra −0417-01/−0406-12 10, 806

tlg0012.tlg001 Homer Iliad −0799-01/−0700-12 130, 479
tlg0012.tlg002 Odyssey −0799-01/−0700-12 105, 612

tlg0013.tlg002 Homeric
Hymns

Hymn 2 to Demeter −0624-01/−0574-12 3, 968

tlg0014.tlg001 Demosthenes First Olynthiac −0348-01/−0348-12 2, 194
tlg0014.tlg004 First Philippic −0350-01/−0350-12 3, 951
tlg0014.tlg007 On Halonnesus −0342-01/−0341-12 2, 886

tlg0014.tlg017
On the Treaty
with Alexander

−0330-01/−0330-12 2, 076

tlg0014.tlg018 On the Crown −0329-01/−0329-12 26, 435
tlg0014.tlg027 Against Aphobus I −0363-01/−0362-12 5, 346
tlg0014.tlg036 For Phormio −0349-01/−0348-12 4, 649
tlg0014.tlg037 Against Pantaenetus −0346-01/−0346-12 4, 528
tlg0014.tlg039 Against Boeotus I −0347-01/−0346-12 3, 351
tlg0014.tlg041 Against Spudias −0363-01/−0358-12 2, 333
tlg0014.tlg042 Against Phaenippus −0329-01/−0329-12 2, 624
tlg0014.tlg045 Against Stephanus I −0349-01/−0348-12 6, 839
tlg0014.tlg046 Against Stephanus II −0349-01/−0348-12 2, 168

tlg0014.tlg047
Against Evergus
and Mnesibulus

−0354-01/−0354-12 6, 235

tlg0014.tlg049
Apollodorus
Against Timotheus

−0361-01/−0361-12 5, 005

tlg0014.tlg050
Apollodorus
Against Polycles

−0359-01/−0359-12 5, 306

tlg0014.tlg051 On the Trierarchic Crown −0359-01/−0357-12 1, 580

tlg0014.tlg052
Apollodorus
Against Callippus

−0368-01/−0367-12 2, 490

tlg0014.tlg053
Apollodorus
Against Nicostratus

−0367-01/−0366-12 2, 340
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CTS Author Title Date Tokens
tlg0014.tlg054 Demosthenes Against Conon −0354-01/−0340-12 3, 755
tlg0014.tlg057 Against Eubulides −0345-01/−0344-12 5, 498

tlg0014.tlg059
Theomnestus and
Apollodorus
Against Neaera

−0342-01/−0339-12 10, 489

tlg0016.tlg001 Herodotus Histories −0429-01/−0424-12 33, 150

tlg0017.tlg003 Isaeus The Estate of Pyrrhus −0388-01/−0388-12 4, 959

tlg0019.tlg001 Aristophanes Acharnians −0424-01/−0424-12 8, 984
tlg0019.tlg008 Thesmophoriazusae −0410-01/−0410-12 9, 073

tlg0020.tlg001 Hesiod Theogony −0899-01/−0700-12 8, 234
tlg0020.tlg002 Works and Days −0899-01/−0700-12 7, 116
tlg0020.tlg003 Shield of Heracles −0899-01/−0700-12 3, 934

tlg0026.tlg001 Aeschines Against Timarchus −0345-01/−0344-12 15, 971

tlg0027.tlg001 Andocides On the Mysteries −0399-01/−0398-12 5, 964

tlg0028.tlg001 Antiphon
Against the Stepmother
for Poisoning

−0419-01/−0410-12 2, 046

tlg0028.tlg002 First Tetralogy −0479-01/−0410-12 2, 915
tlg0028.tlg005 On the Murder of Herodes −0417-01/−0417-12 7, 458
tlg0028.tlg006 On the Choreutes −0418-01/−0418-12 4, 014

tlg0032.tlg001 Xenophon Hellenica −0361-01/−0353-12 27, 401
tlg0032.tlg002 Memorabilia −0409-01/−0353-12 27, 840
tlg0032.tlg004 Symposium −0369-01/−0360-12 7, 291
tlg0032.tlg006 Anabasis −0379-01/−0359-12 18, 737
tlg0032.tlg007 Cyropaedia −0368-01/−0365-12 50, 690
tlg0032.tlg008 Hiero −0356-01/−0356-12 6, 953

tlg0032.tlg015
Constitution
of the Athenians

−0442-01/−0405-12 3, 723

tlg0041.tlg001 Chion Epistulae +0001-01/+0100-12 5, 577

tlg0058.tlg001 Aeneas Tacti-
cus

Poliorcetica −0374-01/−0349-12 7, 207

tlg0059.tlg001 Plato Euthyphro −0398-01/−0346-12 6, 349
tlg0059.tlg002 Apology −0398-01/−0389-12 10, 457
tlg0059.tlg003 Crito −0398-01/−0389-12 5, 093
tlg0059.tlg029 Cleiphon −0398-01/−0346-12 1, 875

tlg0060.tlg001 Diodorus of
Sicily

Historical Library −0059-01/−0029-12 25, 692

tlg0061.tlg001 Lucian of
Samosata

Asinus +0125-01/+0180-12 11, 054

tlg0081.tlg001 Dionysius of
Halicarnas-
sus

Antiquitates Romanae −0007-01/−0006-12 30, 312

tlg0085.tlg001 Aeschylus Supplices −0465-01/−0458-12 6, 071
tlg0085.tlg002 Persians −0471-01/−0471-12 6, 381
tlg0085.tlg003 Prometheus Bound −0459-01/−0455-12 7, 222
tlg0085.tlg004 Seven against Thebes −0466-01/−0466-12 6, 372
tlg0085.tlg005 Agamemnon −0457-01/−0457-12 10, 037
tlg0085.tlg006 Libation Bearers −0457-01/−0457-12 5, 846
tlg0085.tlg007 Eumenides −0457-01/−0457-12 6, 518
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CTS Author Title Date Tokens
tlg0086.tlg035 Aristotle Politics −0399-01/−0299-12 19, 867

tlg0093.tlg009 Theophrastus Characters −0316-01/−0316-12 8, 265

tlg0096.tlg002 Aesop Aesop’s Fables −0599-01/−0500-12 5, 221

tlg0255.tlg001 Mimnermus
of Colophon

Fragmenta −0699-01/−0599-12 213

tlg0260.tlg001 Semonides
of Amorgos

Fragmenta −0699-01/−0599-12 767

tlg0343.tlg001 Ezechiel Exagoge −0199-01/−0099-12 1, 939

tlg0429.tlg001 Cephisodorus
Comicus

Fragmenta −0401-01/−0401-12 29, 490

tlg0526.tlg004 Josephus
Flavius

The Jewish War +0075-01/+0075-12 24, 987

tlg0527.tlg001 Septuaginta Genesis −0299-01/−0200-12 19, 235

tlg0537.tlg012 Epicurus Epistula ad Menoeceum −0310-01/−0270-12 1, 523

tlg0540.tlg001 Lysias On the Murder of Eratos-
thenes

−0402-01/−0401-12 2, 834

tlg0540.tlg012 Against Eratosthenes −0402-01/−0402-12 5, 638
tlg0540.tlg013 Against Agoratus −0399-01/−0397-12 5, 641
tlg0540.tlg014 Against Alcibiades 1 −0394-01/−0394-12 2, 801
tlg0540.tlg015 Against Alcibiades 2 −0394-01/−0394-12 688
tlg0540.tlg019 On the Property of Aristo-

phanes
−0386-01/−0386-12 3, 624

tlg0540.tlg023 Against Pancleon −0399-01/−0398-12 896
tlg0540.tlg024 On the Refusal of a Pen-

sion
−0402-01/−0402-12 1, 665

tlg0541.tlg007 Menander of
Athens

Dyscolus −0315-01/−0315-12 8, 069

tlg0543.tlg001 Polybius Histories −0167-01/−0117-12 105, 693

tlg0544.tlg002 Sextus Em-
piricus

Adversus Mathematicos +0201-01/+0300-12 16, 218

tlg0548.tlg001 Apollodorus Library +0101-01/+0200-12 1, 265

tlg0551.tlg017 Appianus of
Alexandria

Civil Wars +0101-01/+0200-12 25, 665

tlg0554.tlg001 Chariton De Chaerea et Callirhoe +0075-01/+0125-12 6, 265

tlg0557.tlg001 Epictetus Discourses +0108-01/+0108-12 7, 204

tlg0559.tlg002 Hero of
Alexandria

De Automatis +0062-01/+0085-12 10, 321

tlg0561.tlg001 Longus Daphnis and Chloe +0101-01/+0300-12 672

tlg0585.tlg001 Phlegon of
Tralles

Book of Marvels +0100-01/+0200-12 5, 642

tlg1220.tlg001 Batrachomyo-
machia

Batrachomyomachia
Homerica

−0099-01/−0029-12 2, 212

tlg2003.tlg001 Julian Panegyric in Honor of the
Emperor Constantinus

+0355-01/+0355-12 1, 405

tlgxxxx.tlgxxx Paeanius Brevarium +0337-01/+0379-12 6, 184
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