TypePilot: Leveraging the Scala type system for secure LLM-generated
code

Alexander Sternfeld

Institute of Entrepreneurship & Management, HES-SO

Le Foyer, Techno-Pdle 1
Sierre, Switzerland
alexander.sternfeld@hevs.ch

Andrei Kucharavy

Institute of Informatics, HES-SO
Techno-Pdle 3

Sierre, Switzerland
andrei.kucharavy@hevs.ch

Ljiljana Dolamic
Cyber-Defence Campus
armasuisse, Science and Technology
Thun, Switzerland
ljiljana.dolamic@Rarmasuisse.ch

Abstract

Large language models (LLMs) have shown re-
markable proficiency in code generation tasks
across various programming languages. How-
ever, their outputs often contain subtle but
critical vulnerabilities, posing significant risks
when deployed in security-sensitive or mission-
critical systems. This paper introduces Type-
Pilot, an agentic Al framework designed to
enhance the security and robustness of LLM-
generated code by leveraging strongly typed
and verifiable languages, using Scala as a rep-
resentative example. We evaluate the effective-
ness of our approach in two settings: formal
verification with the Stainless framework and
general-purpose secure code generation. Our
experiments with leading open-source LLMs
reveal that while direct code generation of-
ten fails to enforce safety constraints, just as
naive prompting for more secure code, our type-
focused agentic pipeline substantially mitigates
input validation and injection vulnerabilities.
The results demonstrate the potential of struc-
tured, type-guided LLM workflows to improve
the SotA of the trustworthiness of automated
code generation in high-assurance domains.

1 Introduction

In recent years, large language models (LLMs)
have become powerful tools for assisting in soft-
ware development, from generating boilerplate
code to proposing non-trivial algorithmic imple-
mentations (Wang and Chen, 2023; Chen et al.,
2021). Their fluency in natural and programming
languages allows developers to interact with them
without disrupting their workflow, accelerating the
development lifecycle. However, as LLMs are
increasingly used to write production code, con-
cerns have emerged about the reliability and secu-
rity of the generated output. Multiple studies and

95

real-world analyses have shown that LLMs can in-
troduce subtle yet serious vulnerabilities (Pearce
et al., 2025).

This issue becomes particularly acute in the do-
main of mission-critical systems—software sys-
tems whose failure can lead to catastrophic out-
comes, including physical harm, financial loss, ma-
jor operational disruptions, or loss of life (Gabriel
et al., 2022). Such systems are often implemented
in strongly typed, safety-oriented programming
languages like Coq, Scala, or more recently Rust,
where the type system is a central mechanism for
enforcing correctness and preventing classes of
bugs at run time. Despite these safeguards, vulnera-
bilities still surface, often due to logical oversights,
incorrect assumptions, or abstraction mismatches
at boundaries. A well-known example is the 1999
NASA Mars Climate Orbiter failure, where one
subsystem produced output in imperial units while
another expected metric, leading to the spacecraft’s
loss due to an undetected discrepancy at the in-
terface between components (Harish, 2025). A
notable recent example of such a vulnerability in
action occurred in January 2023, when a critical
FAA system failure, later traced to a corrupted con-
figuration file, led to the temporary grounding of
all flights across the United States (reuters, 2023).

While LLMs are increasingly capable of detect-
ing potential code vulnerabilities, they often fall
short in generating robust corrections (Kulsum
et al., 2024; Pearce et al., 2022). Our work ad-
dresses this gap. By focusing on Scala - a widely
used language with extensive codebase on GitHub
and documentation on StackOverflow (O’Grady,
2025), we propose TypePilot, an agentic Al ap-
proach that not only leverages the detection capa-
bilities of LLMs but actively guides them to ex-

Proceedings of the First Interdisciplinary Workshop on OMMM associated with RANLP 2025,
pages 95-103, Varna, Bulgaria, Sep 8-10, 2025.

https://doi.org/10.26615/978-954-452-101-1-011



ploit the expressiveness of the Scala type system to
add safety guarantees. By structuring interactions,
TypePilot guides LLMs to generate and refine code
that adheres to strict safety and correctness proper-
ties.

This paper is structured as follows: Section 2
describes the related literature, after which Sec-
tion 3 outlines the methodology. Next, the results
are presented in Section 4. Last, Section 6 con-
cludes the paper and provides directions for future
research. The code and results related to this paper
are publicly available in this Github Repository.

2 Related work

2.1 LLMs for code generation

The use of large language models for code genera-
tion has grown rapidly, with coding specific mod-
els demonstrating impressive capabilities across a
wide range of programming languages and tasks.
However, several studies have pointed out that
these models often produce code that is syntac-
tically correct but semantically flawed or inse-
cure. For instance, Pearce et al. (2025) shows
that GitHub Copilot produces vulnerabilities in ap-
proximately 40% of test cases based on the top 25
Common Weakness Enumeration list from MITRE.
Similarly, Khoury et al. (2023) show that Chat-
GPT generates vulnerable code in 16 out of 21 test
cases, using a variety of programming languages
targeting a diverse set of vulnerabilities.

There have been attempts to use separate LLMs
in combination with sophisticated prompting strate-
gies to patch such vulnerabilities. However, these
approaches remain brittle, with models often mis-
understanding the root cause or proposing fixes that
break functionality. Kulsum et al. (2024) show
that LLMs have difficulty in patching vulnerabili-
ties that are either complex or linked to the project
design. Similarly, Pearce et al. (2022) show that
LLMs are not yet able to autonomously patch code
vulnerabilities in real-world scenarios.

Our work builds upon these findings by explor-
ing a different method for mitigating vulnerabilities
- leverage the properties of strongly typed coding
languages. We use agentic Al, where LLMs coop-
eratively operate as autonomous agents, which has
been shown to result in better generations (Kumar
et al., 2025; Wang et al., 2025).

96

3 Methodology

We will now describe the methodology that is used
in this research. First, the models that are used
in this research are specified. Then, we consider
the ability of LLMs to generate code using the
formal verification framework Stainless. Last, we
consider the general case of type-system rooted
vulnerabilities.

31

Throughout this research, we use open-source
models, with a focus on specialized coding
models. Specifically, we used the coding models
Owen/Qwen?2.5-Coder—-32B-Instruct,
deepseek-ai/deepseek—coder-33b—

Model usage

instruct and codellama/CodeLlama-
70b-Instruct-hf. Additionally, we
used the regular conversational models

meta—-llama/Meta-Llama—-3-70B,
deepseek-ai/DeepSeek-R1-Distill-
Llama-70B and Qwen/Qwen3—32B.

3.2 Stainless

We first aim to leverage the formal verification
framework Stainless (Lab for Automated Reason-
ing and Analysis, 2025) to improve the robustness
of LLM-generated code. Formal verification refers
to the use of mathematical methods to prove that
a program satisfies certain correctness properties.
Stainless is one of the most widely used verifica-
tion frameworks in Scala, with extensive documen-
tation. Stainless verifies whether Scala code meets
user-specified safety properties by attempting to
construct proofs over the code. To enable this, the
code must explicitly state what is to be proven, and
provide the necessary logical structure for the proof,
using a subset of Scala tailored for verification.

To this end, we use both zero-shot and two-shot
prompting to have a LLM both generate the code
and the conditions. Figure 2 displays the prompt
that is used in the two-shot prompting setting. The
two examples that are given to the LLM are Stain-
less code for finding the maximum between two
values and for returning the size of a list. The exact
examples can be found in the Github Repository.

As displayed in Table 1, we use three simple
tasks for evaluating the LLMs in the context of
formal proofs: calculating Fibonacci number n,
calculating the factorial of an input and assessing
whether list a is a sublist of list . The main vulner-
ability that the generated conditions should prevent


https://github.com/fully-anonymized-submission/secure_scala
https://github.com/fully-anonymized-submission/secure_scala

i leveraging Scala

Coding
question

LLM 1 Initial | LM 2
output |

| Type system
| Vulnerabilities LLM 3 Final code

Figure 1: The full pipeline for the generation of code using TypePilot. After the initial generation of the code, the
vulnerabilities are detected by a separate instance of the LLM. Then, a final LLM is prompted to leverage the Scala
type system to improve the initial code, given the detected vulnerabilities.

are input variables that are invalid, such as a nega-
tive input for a factorial function. Additionally, the
functions should also be robust to inputs that are
too large and may cause an overflow error.

Generation of stainless code

<question> Use the stainless framework to write
verifiable scala code for fewshot example 1 </ques-
tion>

<answer> fewshot answer 1 </answer>

<question> Use the stainless framework to write
verifiable scala code for fewshot example 2 </ques-
tion>

<answer> fewshot answer 2 </answer>

<question> Use the stainless framework to write
verifiable scala code for function description </ques-
tion>

Figure 2: Prompt used to generate the Stainless code.

3.3 General case: type-system rooted
vulnerabilities

As Stainless targets a niche subset of Scala appli-
cations, we also consider a more general setting.
Specifically, we focus on two vulnerability cate-
gories: insufficient input constraints and injection

Code generation in robust setting

You are a scala code generator. You will be given
a task description and you will generate the code
for it. The code should start with “‘scala and end
with “‘. Pay attention to the safety and robustness
of the code, and leverage the Scala type system - for
example ADTs, refined types, traits, sealed traits -
where needed to make the code safer. The task is:
user input

Figure 3: Prompt used to generate the code in the robust
prompting setting.

attacks. In particular, we examine HTML, Bash,
and URL injections—common security risks in
back-end web development, especially when han-
dling user inputs through web forms. The specific
test cases are shown in Table 1. To assess the per-
formance of LLMs on these tasks, we consider the
following settings:

* Baseline: directly prompting a LLM to gen-
erate the code

* Robust prompting: directly prompting a
LLM to generate the code, while emphasizing
that the LLM should leverage the Scala type
system to make the code robust to potential
vulnerabilities.

Stainless

General case: type-system rooted vulnerabilities

Input constraints

Code injection

Calculating a fibonacci number
Calculating the factorial of a number
Asserting if list a is a sublist of list b

Calculating a fibonacci number
Calculating the factorial of a number
Calculating a matrix multiplication
Calculating a matrix convolution

Greeting a user with HTML

Making a list of comments with HTML
Searching a file using bash

Pinging a host using bash

Creating a redirect URL with HTML

Table 1: The test cases used to evaluate the LLMs in each of the settings. The most left column shows the test cases
used to evaluate the performance of LLMs in generating code using the Stainless framework. The second and third
column show the test cases for the general case looking at type-system rooted vulnerabilities.



Code generation using TypePilot

Initial code generation

You are a Scala code generator. You will be given a
task description and you will generate the code for it.
The code should start with “‘scala and end with “‘.
The task is: user input

Vulnerability detection

You will be given a task description and generated
code. Your task is to find potential vulnerabilities in
the code that could lead to security issues or unex-
pected behavior. Solely describe the vulnerabilities,
do not give me any code. Here is the task: user input
Here is the previous code: initial output

Final code generation

You are a Scala code generator. You will be given a
task description, generated code, and vulnerabilities
that should be addressed. Your task is to improve the
code by using the Scala type system - for example
ADTs, refined types, traits, sealed traits - to address
the vulnerabilities. The code should start with “‘scala
and end with “‘. Here is the task: user input. Here
is the previous code: initial output Here are the
vulnerabilities: vulnerabilities

Figure 4: Prompts used to generate the initial code, the
vulnerabilities and the final code in TypePilot. The final
prompt guides the LLM to use the Scala type system to
make the code more robust.

* TypePilot: use the agentic Al framework as

displayed in Figure 1 to generate the code.

After prompting a first LLM to generate the
initial code, we ask a second LLM to detect
the vulnerabilities in this code. We then ask
a third instance of the LLM to improve the
initial code using the Scala type system, to
make it robust to the detected vulnerabilities.

The prompt that is used in the robust generation
setting can be found in Figure 3. Similarly, Figure
4 shows the prompts that are used with TypePilot.
In the baseline setting, we use the same prompt that
is used for the initial code generation in TypePilot.
For each of the models described in Section 3.1 we
run each of the settings.

3.4 Comparison to existing work

Research on secure code generation using large
language models (LLMs) remains limited, despite
growing concerns about vulnerabilities in automati-
cally generated code. A recent survey by Dai et al.
(2025) highlights that most current approaches rely
heavily on training data or static analysis tools, re-
stricting their generalizability. Methods such as
SafeCoder (He et al., 2024) and SVEN (He and
Vechev, 2023) fine-tune LL.Ms with curated secure
code datasets, and are thus inherently dependent
on the availability and quality of specialized train-
ing corpora. Moreover, the fine-tuned LLMs do
not generalize well to unseen vulnerabilities or pro-
gramming languages. Similarly, PromSec (Naz-
zal et al., 2024) optimizes prompts through static

Qwen-2.5-Coder (32B)

CodeLlama (70B) Deepseek-coder (33B)

Baseline Robust TypePilot

Baseline Robust TypePilot Baseline Robust TypePilot

Average age
- Correct for regular input
- Handle empty lists

v v 4
v v v
- Handle negative ages X X v
Fibonacci number N
- Correct for regular input
- Check for negative N

- Handles large values of N

> x \
SNSS
NSNS

Matrix multiplication

- Correct for regular input

- Check for empty matrices

- Check for dimension matching

NSNS

ENENEN
AN

Matrix convolution

- Correct for square matrix input
- Correct for regular matrix input
- Handles rectangular kernels

- Checks for empty kernel

- Checks for empty matrix

v
v
X
X
X
- Handles even sized kernels X

> NN X% NN
AN N N S

4 4 4 4 4 4
v 4 4 v v 4
X X v X X X

> % \
> x \
*x X
> % \
AR AN
SSNSN

RN
x % N
ANESEN
x % N
AN
AN

X X X X X X
X X X X X %
> NN N\ X% X%
*x %X % % N\ N\
x X % % N\
RTINS NN

Table 2: Manual evaluation of the generated code regarding input constraints. For each case, v indicates that the
code is robust to the vulnerability, whereas X indicates that the code is not robust to the vulnerability.

98



Qwen-2.5-Coder (32B) CodeLlama (70B) Deepseek-coder (33B)
Baseline Robust TypePilot Baseline Robust TypePilot Baseline Robust TypePilot

HTML greeting
Correctness and compilation 4 v 4 v 4 v v v X
Robust to injection X ~ v X v v X v v
HTML comments
Correctness and compilation v ~ v v X ~ v v v
Robust to injection X v v X X v X ~ v
Bash file search
Correctness and compilation v v v v v v v v v
Robust to injection X X v X X v X X v
Bash host ping
Correctness and compilation v v v v X v v v v
Robust to injection v 4 4 X X v X 4 4
URL redirect
Correctness and compilation v v v v v v v v 4
Robust to injection X ~ ~ X v v X X v

Table 3: Manual evaluation of the generated code regarding code injection. For each case, v indicates that the code
is robust to the vulnerability, whereas X indicates that the code is not robust to the vulnerability.

analyzers, but also relies on labeled data and an
external code-specific vulnerability scanner.

In contrast, our approach does not rely on task-
specific training data or external static analyz-
ers. Instead, it leverages the expressive power
of strongly typed languages to enforce security
constraints directly in the generated code. Be-
cause most existing methods depend on curated
datasets or vulnerability scanners (as discussed
above), there are few established baselines tailored
to strongly typed languages like Scala or Rust.
Given this gap, it is most appropriate to compare
our method against prompting-based baselines in
addition to the base model. Following Vero et al.
(2025), we include a baseline where the model is
given a general security reminder, which we call
robust prompting. We also evaluate against Self-
Planning, a coding-specific prompting strategy in-
troduced by Jiang et al. (2024). Self-Planning is a
two-stage prompting framework in which the LLM
first generates a high-level plan for the coding task,
after which it implements the plan in code.

4 Results

4.1 Stainless

In general, we see that none of the models is ca-
pable of consistently generating Stainless code
that correctly compiles. Upon manual inspection,
we found two main failure modes across all mod-
els. First, each of the LLMs regularly uses con-

99

cepts that are present in Scala but not available
in Stainless. As Stainless is a verification frame-
work targeting a restricted subset of Scala, many
features of full Scala—such as certain standard li-
brary functions—are unavailable. To illustrate, in
the generated code from Qwen/Qwen3-32B for
the verification of a sublist relation, the function
List.sliding is used. However, the sliding
operation is not defined for Stainless L.i st objects.
Similarly, in a generated code snippet the opera-
tion print1n was used, which is not available in
Stainless. Second, the generated code often con-
tains syntax errors. Whereas syntax errors could
be resolved relatively easily by users, the usage
of Scala components in Stainless is not trivially
repaired. We hypothesize that the lack of perfor-
mance is caused by a lack of training data related
to Stainless, given that it is a niche framework.
This observation is consistent with findings from
other domains, for example, Fan et al. (2025) found
that LLMs struggle to generate verifiable specifi-
cations using the VeriFast verification framework
for C, despite preserving functional behavior. In
appendix B, we provide a notable instance in which
the generation avoids formal verification by using
@library annotations.

4.2 General setting

Given that LLMs are not able to write compilable
Stainless code, we shift our attention to a more gen-
eral Scala setting, as described in Section 3.3. We



consider two types of vulnerabilities: insufficient
input constraints and code injection. The generated
code is available in the anonymized repository.

4.2.1 Input constraints

Table 2 shows the results for each of the test cases
for each of the models. For each of the models, X
indicates that the resulting code was not robust to
the indicated vulnerability. The results show that
in the baseline setting, the models are capable of
generating functions that provide the correct out-
put in a normal setting. However, the models are
not capable of handling edge cases correctly. To
illustrate, none of the models can correctly handle
negative ages or a negative input to a Fibonacci
function. We see that in the robust setting, models
perform slightly better, and tend to be robust to
some of the vulnerabilities. However, for none of
the models the code is fully robust. With TypePilot,
we obtain the best performance, with models gen-
erally being robust to most vulnerabilities related
to input constraints.

When comparing the models, we observe that
Qwen-2.5-Coder (32B) performs the best,
passing all our checks when using TypePilot. In
contrast, CodeLlama (70B) does not perform
well, remaining vulnerable to a number of cases in
each of the settings, highlighting the importance of
study of specific code-generating LLLM models.

4.2.2 Code injection

The second type of vulnerability we consider is
code injection. Table 3 displays the results for each
of the models, where X indicates that the code is

(a) Baseline
object GeneratedFunctions {
def averageAge (ages: List[Int]):
if (ages.isEmpty) 0.0
else ages.sum.toDouble / ages.length }

Double = ({

vulnerable to injection, v indicates that code is ro-
bust to injection, and ~ indicates that the code is
partially robust to injection. The results show that
in the baseline setting virtually all generated code
is vulnerable to code injection. Robust prompt-
ing improves the performance, resulting in fewer
vulnerabilities. As before, TypePilot achieves the
best performance, with robust code generations in
almost all settings.

4.2.3 Usage of the Scala type system

In the new framework, the Scala type system is
used as a central tool to guide the generation of
secure code. By prompting LLMs to leverage fea-
tures such as sealed traits, smart constructors, and
refined return types, we enable the generation of
programs that encode correctness directly into their
type signatures. This stands in contrast to baseline
generations, which operate on unconstrained prim-
itives and rely on ad hoc runtime logic to handle
edge cases and errors.

Figures 5 shows an examples of code generated
in the baseline and in the agentic Al framework, for
the same test case and model. Figure 5 shows that
in the baseline version, the averageAge function
takes a List [Int] and performs a division after
checking for emptiness. While this implementa-
tion is syntactically valid, it permits semantically
invalid inputs—such as negative ages or values far
outside a realistic human range—and silently de-
faults to returning 0.0 when the input list is empty.
In contrast, the enhanced version defines a sealed
trait Age and a case class ValidAge, with a smart
constructor in the Age companion object that en-

(b) TypePilot

object GeneratedFunctions {
sealed trait Age {
def value: Int

} final case class ValidAge (value: Int) extends Age

object Age {

}

def averageAge (ages: List[Age]):

}
}

def apply(value: Int): Option[Age] = {
if (value >= 0 && value <= 120) Some (ValidAge (value))
else None

Option[Double] = {
(ages.isEmpty) None

else {

val (sum, count) = ages.foldLeft ((0L, 0)) {
case ((accSum, accCount), age) =>
(accSum + age.value, accCount + 1)

Figure 5: Comparison of baseline and TypePilot average age function generations from Qwen—-2.5-Coder

(32B)

100



forces domain-specific constraints: only values be-
tween 0 and 120 are permitted. The averageAge
function now accepts a list of validated Age values
and returns an Option[Double], making both
the domain invariants and the possibility of unde-
fined results (e.g., empty lists) explicit at the type
level. This design ensures that all inputs have been
prevalidated before the function executes, reducing
the likelihood of subtle logic bugs and enabling
safer composition in larger systems. A second ex-
ample related to generating a function to search for
files using bash is discussed in appendix C.

In TypePilot, the Scala type system is used not
merely to enforce syntactic correctness but to en-
code domain abstractions rules, constrain behav-
ior, and make failure modes explicit. By doing
so, it transforms what would otherwise be runtime
checks and ad hoc validations into statically en-
forced contracts. This shift leads to code that is
more robust, more predictable, and better aligned
with the principles of secure and maintainable soft-
ware design. In the context of LLM-generated code,
these benefits are particularly important, as they
offer a principled way to guard against common
pitfalls and encourage safer defaults during genera-
tion.

4.3 Vulnerability Analysis

We performed a post-hoc vulnerability analysis by
categorizing the vulnerabilities observed in each
test case. These categories include input con-
straint issues (shape violations, null dereferences
and boundary violations) and code injection risks

(HTML injection, bash injection and path traver-
sal). For each method, we calculated the fraction
of secure outputs and averaged the results across
the three LLMs, which is displayed in Figure 6.

For input constraints, robust prompting offered
limited improvements over the baseline, particu-
larly for shape violations and null dereferences. It
often inserted assertions but did not systematically
enforce data structure correctness. TypePilot re-
duced these errors more effectively, as the presence
of type specifications led the models to generate
code structured around expected data formats rather
than relying on runtime checks.

For code injection, TypePilot also lowered vul-
nerability rates, especially for bash injections
where robust prompting typically altered command
structure without validating input. Results var-
ied between models: Qwen-2.5-Coder (32B) and
Deepseek-Coder (33B) generally applied the type
system consistently, while CodeLlama (70B) some-
times attempted to handle vulnerabilities outside
the type framework. In some cases, type constraints
were only partially used, such as defining a type
for an output value but not for the input values.

Appendix D analyzes attention weights across
the three methods, showing that TypePilot places
greater emphasis on key safety terms during code
generation than robust prompting.

4.4 Comparison to Self-Planning Code
Generation

As an additional validation, we compared Type-
Pilot to the Self-Planning prompting framework,

1.0

o o
o @

o
~

Fraction of safe test cases

0.2

0.0

Baseline Robust Prompting TypePilot

@ (e‘\r_e

.\o\a{\ﬂ“s
o o

'\o\BUO“S
aacy =

e
5‘(\3" ac\)ﬂ

L acto"
nieC
W A

Figure 6: Fraction of secure code generations across vulnerability categories for each of the methods (baseline
prompting, robust prompting, TypePilot). Results are averaged over all evaluated LLMs. Lower bars indicate a
higher frequency of vulnerabilities; higher bars indicate safer generations.

101



o o o I
S > @ °

Fraction of safe test cases

o
o

111

Input Constraints Code Injection

o
°

Self-Planning - Qwen (jJiang et al., 2024) TypePilot - Qwen (ours)
Self-Planning - Llama (jiang et al., 2024) TypePilot - Llama (ours)
mmm Self-Planning - Deepseek (Jiang et al., 2024) === TypePilot - Deepseek (ours)

Figure 7: Comparison of the secure code generation
methods TypePilot (ours) and Self-Planning, as intro-
duced by Jiang et al. (2024).

as discussed in Section 3.4. In the Self-Planning
framework, the model is first asked to outline a
plan for solving the task. Afterwards, it is asked
to write the code by executing the plan, and it is
explicitly instructed to consider safety and security
aspects before writing code. Overall, TypePilot out-
performs self-planning for both the input constraint
and code injection tasks. The difference is largest
for Qwen-2.5-Coder (32B), which more reliably ad-
heres to the type system instructions in TypePilot,
resulting in fewer shape and null-handling issues
compared to the Self-Planning setup.

Manual inspection of the Self-Planning outputs
reveals that, despite explicit prompts to account for
vulnerabilities during the planning and implemen-
tation stages, models frequently overlook or under-
address these concerns. The generated plans may
mention security considerations in abstract terms
but rarely translate them into concrete, protective
measures in the final code. These findings suggest
that simply instructing the model to “think about
safety” is insufficient: introducing a structured in-
termediate step, such as TypePilot’s type-enforced
specification phase, is more effective in steering
the model toward safer code generation.

S Scaling

The primary goal of this work is to show that lever-
aging the type system in strongly typed languages
can substantially mitigate vulnerabilities in LLM-
generated code. While our experiments focus on
relatively simple test cases, practical applications
often involve larger, interconnected codebases with
complex object hierarchies. Scaling our framework
to such scenarios presents new challenges, primar-
ily related to context management and dependency
reasoning across multiple files and modules.

One promising direction is the development of
a hybrid, object-aware prompting system. In this
approach, metadata about each relevant object, in-
cluding its types and invariants, is provided to the
LLM prior to generation. This structured context
could enable the model to reason more accurately
about type interactions and enforce security con-
straints across function boundaries. Additionally,
integrating lightweight symbolic reasoning or type
inference engines could help LLMs maintain global
consistency in larger projects, further reducing the
risk of injection attacks and logical errors.

6 Conclusion

In this work, we aim to improve the security of
LLM generated mission-critical code, focusing on
the Scala strongly typed language. As Scala is
routinely used in mission-critical software and en-
gineers are increasingly often using LLMs to code,
it is essential to ensure that the generated code is
free of vulnerabilities. We first show that LLMs
are not able to autonomously use the static veri-
fication tool Stainless. Therefore, we develop a
more general agentic Al framework that structures
multi-step interactions between LLMs for code gen-
eration. By leveraging the Scala type system, we
significantly improve the quality and safety of gen-
erated code. Crucially, this approach transforms
type systems from passive compile-time enforcers
into active agents of code safety. We study two dif-
ferent classes of vulnerabilities, input constraints
and code injection, and show that in both cases our
framework improves code safety over a baseline
and zero-shot robust prompting setting. We use
the rigidity of the Scala type system to compensate
for the inconsistencies picked up from the training
code by LLMs, which in turn allow an easier inter-
face to access the power of the Scala type system.

We conclude by suggesting two directions for
future research. First, future work should test the
framework’s capabilities in more complex code-
bases. While this study provided a proof of concept
using simple test cases, real-world software tends
to be more complex, so validating our approach in
these environments is important to assess its effec-
tiveness. Second, deploying the framework in an
active development setting would allow engineers
to use it in their daily work and provide valuable
feedback. This real-world input can guide further
improvements and help tailor the framework to bet-
ter meet the needs of software teams.

102



References

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Shih-Chieh Dai, Jun Xu, and Guanhong Tao. 2025. A
comprehensive study of 1lm secure code generation.

Wen Fan, Marilyn Rego, Xin Hu, Sanya Dod, Zhaorui
Ni, Danning Xie, Jenna DiVincenzo, and Lin Tan.
2025. Evaluating the ability of large language models
to generate verifiable specifications in verifast.

Ellie Gabriel, Xenophon Papademetris, Ayesha N.
Quraishi, and Gregory P. Licholai. 2022. Therac-
25: Software that Killed, page 263-267. Cambridge
University Press.

Ajay Harish. 2025. When nasa lost a spacecraft due to
a metric math mistake. Accessed: July 8, 2025.

Jingxuan He and Martin Vechev. 2023. Large language
models for code: Security hardening and adversarial
testing. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS 23, page 1865-1879. ACM.

Jingxuan He, Mark Vero, Gabriela Krasnopolska, and
Martin Vechev. 2024. Instruction tuning for secure
code generation.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024.
Self-planning code generation with large language
models. ACM Trans. Softw. Eng. Methodol., 33(7).

Raphaél Khoury, Anderson R. Avila, Jacob Brunelle,
and Baba Mamadou Camara. 2023. How secure is
code generated by chatgpt? In 2023 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics
(SMC), pages 2445-2451.

Ummay Kulsum, Haotian Zhu, Bowen Xu, and Marcelo
d’ Amorim. 2024. A case study of llm for automated
vulnerability repair: Assessing impact of reasoning
and patch validation feedback. In Proceedings of the
1st ACM International Conference on Al-Powered
Software, Alware 2024, page 103—111, New York,
NY, USA. Association for Computing Machinery.

103

Mayank Kumar, Jiaqi Xue, Mengxin Zheng, and Qian
Lou. 2025. Ttfhe-coder: Evaluating llm-agentic fully
homomorphic encryption code generation.

Lab for Automated Reasoning and Analysis. 2025.
Stainless: A verification framework for scala
programs. https://epfl-lara.github.io/
stainless/index.html.

Mahmoud Nazzal, Issa Khalil, Abdallah Khreishah, and
NhatHai Phan. 2024. Promsec: Prompt optimization
for secure generation of functional source code with
large language models (llms). In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and
Communications Security, CCS *24, page 2266-2280.
ACM.

Stephen O’Grady. 2025. The redmonk programming
language rankings: January 2025. Accessed: July 8,
2025.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan,
Brendan Dolan-Gavitt, and Ramesh Karri. 2025.
Asleep at the keyboard? assessing the security of
github copilot’s code contributions. Commun. ACM,
68(2):96-105.

Hammond Pearce, Benjamin Tan, Baleegh Ahmad,
Ramesh Karri, and Brendan Dolan-Gavitt. 2022. Ex-
amining zero-shot vulnerability repair with large lan-
guage models.

reuters. 2023. Explainer: Why u.s. flights were
grounded by a faa system outage. Accessed: July 8,
2025.

Mark Vero, Niels Miindler, Victor Chibotaru, Veselin
Raychev, Maximilian Baader, Nikola Jovanovié,
Jingxuan He, and Martin Vechev. 2025. Baxbench:
Can llms generate correct and secure backends?

Haoran Wang, Zhenyu Hou, Yao Wei, Jie Tang, and
Yuxiao Dong. 2025. Swe-dev: Building software en-
gineering agents with training and inference scaling.

Jianxun Wang and Yixiang Chen. 2023. A review on
code generation with llms: Application and evalu-
ation. In 2023 IEEFE International Conference on
Medical Artificial Intelligence (MedAl), pages 284—
289.


http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2503.15554
http://arxiv.org/abs/2503.15554
http://arxiv.org/abs/2411.02318
http://arxiv.org/abs/2411.02318
https://www.simscale.com/blog/nasa-mars-climate-orbiter-metric/
https://www.simscale.com/blog/nasa-mars-climate-orbiter-metric/
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1145/3576915.3623175
http://arxiv.org/abs/2402.09497
http://arxiv.org/abs/2402.09497
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3672456
https://doi.org/10.1109/SMC53992.2023.10394237
https://doi.org/10.1109/SMC53992.2023.10394237
https://doi.org/10.1145/3664646.3664770
https://doi.org/10.1145/3664646.3664770
https://doi.org/10.1145/3664646.3664770
http://arxiv.org/abs/2503.12217
http://arxiv.org/abs/2503.12217
https://epfl-lara.github.io/stainless/index.html
https://epfl-lara.github.io/stainless/index.html
https://doi.org/10.1145/3658644.3690298
https://doi.org/10.1145/3658644.3690298
https://doi.org/10.1145/3658644.3690298
https://redmonk.com/sogrady/2025/06/18/language-rankings-1-25/
https://redmonk.com/sogrady/2025/06/18/language-rankings-1-25/
https://doi.org/10.1145/3610721
https://doi.org/10.1145/3610721
http://arxiv.org/abs/2112.02125
http://arxiv.org/abs/2112.02125
http://arxiv.org/abs/2112.02125
https://www.reuters.com/world/us/why-us-flights-were-grounded-by-faa-system-outage-2023-01-11/0
https://www.reuters.com/world/us/why-us-flights-were-grounded-by-faa-system-outage-2023-01-11/0
http://arxiv.org/abs/2502.11844
http://arxiv.org/abs/2502.11844
http://arxiv.org/abs/2506.07636
http://arxiv.org/abs/2506.07636
https://doi.org/10.1109/MedAI59581.2023.00044
https://doi.org/10.1109/MedAI59581.2023.00044
https://doi.org/10.1109/MedAI59581.2023.00044

