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Abstract

Vision-Language Models (VLMs) achieve im-

pressive multimodal performance but often in-

herit gender biases from their training data.

This bias might be coming from both the vi-

sion and text modalities. In this work, we dis-

sect the contributions of vision and text back-

bones to these biases by applying targeted de-

biasing—Counterfactual Data Augmentation

(CDA) and Task Vector methods. Inspired by

data-efficient approaches in hate speech clas-

sification, we introduce a novel metric, De-

gree of Stereotypicality (DoS), and a corre-

sponding debiasing method, Data Augmenta-

tion Using DoS (DAUDoS), to reduce bias

with minimal computational cost. We curate a

gender-annotated dataset and evaluate all meth-

ods on the VisoGender benchmark to quantify

improvements and identify the dominant source

of bias. Our results show that CDA reduces the

gender gap by 6% and DAUDoS by 3% but

using only one-third the data. Both methods

also improve the model’s ability to correctly

identify gender in images by 3%, with DAU-

DoS achieving this improvement using only

almost one-third of training data. From our

experiments, we observed that CLIP’s vision

encoder is more biased whereas PaliGemma2’s

text encoder is more biased. By identifying

whether the bias stems more from the vision

or text encoders, our work enables more tar-

geted and effective bias mitigation strategies

in future multi-modal systems. We release

our code public at https://github.com/

vivekhruday05/VLM_bias

1 Introduction

The integration of visual and textual modalities

in VLMs has led to remarkable advances in mul-

timodal AI (Radford et al., 2021; Steiner et al.,

2024; Li et al., 2022, 2023; Achiam et al., 2023;

Team et al., 2023). VLMs have demonstrated ex-

ceptional capabilities across various tasks, includ-

ing image retrieval (Xue et al., 2022; Bai et al.,

2023), captioning (Li et al., 2022, 2023; Liu et al.,

2024; Steiner et al., 2024). However these models

often inherit gender biases present in their train-

ing data (Su et al., 2019) thus making them not

suitable/reliable for real world deployment. Such

biases also arise from stereotypical representations

in both text and images, resulting in skewed per-

ceptions that can propagate through downstream

tasks.
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Figure 1: Different modalities posses different level of

bias. We aim to show which one exhibits more bias.

In this work, we address these challenges by

applying targeted debiasing techniques for both

modalities. Specifically for a given VLM we de-

bias a particular modality sub-module on a curated

dataset and evaluate it for gender bias using Viso-

Gender (Hall et al., 2023) to determine impact of

each modality on gender bias. For this purpose we

use the CelebA-Dialog dataset (Jiang et al., 2021)

and curate the samples from the same. We an-

notate the data for gender based on the pronouns

used in the caption and stereotypicality based on

the statistical distribution of the data and insights

from previous works (Fitousi, 2021; Muthukumar

et al., 2018). To determine if a particular modality

has higher influence in model’s bias we evaluate

it across multiple methods on our dataset. (i) We

use CDA (Wu and Dredze, 2020; Webster et al.,

2021; Zmigrod et al., 2019) a technique that miti-

gates bias by incorporating counterfactual data into

the training process. (ii) We adapt Task Vector

Unlearning (Dige et al., 2024; Ilharco et al., 2023;

https://github.com/vivekhruday05/VLM_bias
https://github.com/vivekhruday05/VLM_bias
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Zhang et al., 2023) for debiasing. (iii) We propose

a data-efficient debiasing approach, DAUDoS. We

propose and do this for both CLIP-like similarity

score based models and captioning type models

and evaluate them across different methods. We

consistently observe across multiple methods that

CLIP’s vision encoder is more biased compared to

text encoder and in case of PaliGemma2, it’s text

encoder is more biased when compared to vision

encoder.

In summary our key contributions are as follows:

• We propose a modality-targeted debiasing

framework that applies CDA and Task-Vector

methods separately to vision and text encoders

to pinpoint each modality’s bias.

• We curate a gender-annotated dataset for this

analysis and evaluate our debiasing methods

using the VisoGender benchmark.

• We propose DoS and introduce DAUDoS,

lightweight debiasing methods that reduce

gender bias on VisoGender with minimal over-

head.

2 Related work

Bias in VLMs. VLMs such as CLIP and

PaliGemma-2 have significantly advanced multi-

modal AI by integrating textual and visual modal-

ities, enabling strong performance across diverse

tasks. However, concerns have emerged regard-

ing their tendency to inherit biases (Abdollahi

et al., 2024; Darur et al., 2024; Xiao et al., 2024;

Wolfe et al., 2023) present in training data, partic-

ularly gender bias. This bias can stem from both

text and image components, as language models

trained on large-scale Internet corpora frequently

encode societal stereotypes, while image datasets

may reinforce skewed gender representations by

over representing specific demographics in certain

professions, emotions, or activities. The interac-

tion between these modalities further complicates

the propagation of bias, making it crucial to deter-

mine whether textual or visual elements contribute

more significantly to gender bias in VLMs. Pre-

vious works such as (Weng et al., 2024) focus on

causal mediation to trace and mitigate gender bias

in GLIP, showing image features contribute most

and proposing input-level blurring to reduce bias.

There are also works such as (Srinivasan and Bisk,

2022) which deal with bias measurement to multi-

modal models, revealing compounded intra and

cross-modal stereotypes in VL-BERT. In contrast

to these, our work targets a particular modality to

find out which of the modalities contribute to a

greater gender bias and whether they differ across

different models and methods.

Bias Evaluation. Several studies have attempted

to quantify and mitigate bias in AI models. Prior

work has shown that word embeddings encode and

perpetuate gender stereotypes in language represen-

tations (Zhao et al., 2019), that multimodal models

like CLIP amplify both gender and racial biases in

their image-to-text mappings (Steed and Caliskan,

2021). There are also existing real-world bench-

marks which measure societal biases in generative

models, emphasizing the need for robust evalua-

tion frameworks (Gehman et al., 2020). Debiasing

techniques focused on text prompts in multimodal

models, indicating that interventions at the textual

level can reduce bias to some extent but may not

fully address the issue in vision-language interac-

tions (Moreira et al., 2024).

Debiasing Techniques. To mitigate gender bias,

researchers have proposed several debiasing tech-

niques, including CDA and Task Vector methods.

CDA works by synthetically generating counter-

factual training data by swapping gendered terms

(e.g., replacing “he” with “she”), thereby balancing

gender representation in textual inputs (Zmigrod

et al., 2020) and Task Vector (Ilharco et al., 2023)

is an unlearning method which has it’s roots orig-

inated from unlearing literature but also used in

bias mitigation (Dige et al., 2024). While effective

in NLP models, its application to VLMs remains

underexplored.

Data-Efficient Debiasing. Training on all coun-

terfactual examples can be computationally expen-

sive and time-consuming. To address this, prior

works (Nejadgholi et al., 2022; Garg et al., 2025)

propose approaches for improving generalization

in hate speech classification while relying on fewer

annotated examples. These methods leverage Con-

cept Activation Vectors (CAVs) and introduce a

novel metric, the Degree of Explicitness, which

quantifies the explicit nature of hateful content.

By assigning explicitness scores to samples, they

selectively fine-tune models on a curated subset

of training instances, thereby enhancing efficiency

without compromising performance. Inspired by

these advances in NLP, we extend these ideas to

the multi-modal setting and propose a novel metric
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termed the Degree of Stereotypicality (DoS), which

quantifies how strongly a sample exhibits stereo-

typical associations. Building on this, we introduce

a data-efficient bias mitigation strategy called Dua-

DOS, which enables targeted augmentation based

on stereotypicality scores. This approach reduces

computational overhead while maintaining or im-

proving model fairness and robustness in multi-

modal AI systems.

3 Dataset

We use the CelebA-Dialog dataset (Jiang et al.,

2021) and curate the samples from the same. This

dataset contains structured annotations describing

different facial attributes of celebrities and rat-

ings of each of the attributes on a scale of 0 to

5. The captions also include gender-specific pro-

nouns such as she, her, he, him, etc., indicating

the possibility of an implicit gender labeling task.

Since, we require gender for each of the data point,

both for applying our methods and evaluation, we

annotate the gender and describe the process in the

following subsections. We also need whether a

data-point is stereotypical or anti-stereotypical, so

that we can use for CDA. Hence, we also annotate

that attribute and describe the process in the follow-

ing subsections. An example of how initial data

looks like is shown in Table 1.

3.1 Data Pre-processing and Annotation

First, we require gender labels for every data point.

To achieve this, we employ a rule-based automatic

labeler. Specifically, we search for gender-related

terms or pronouns such as his/her, he/she, gentle-

man/lady, and male/female. Based on the presence

of these words, we classify the data point as male

or female. If none of these words appears, the an-

notator assigns the label unknown. This approach

results in only 40 data points labeled as unknown,

which is negligible compared to the size of the

dataset, allowing us to prune them.

Next, we annotate the data points for stereo-

type classification. The dataset includes a rating

from 0 to 5 for each data point across attributes

{Bangs, Smiling, No Beard, Young, Eye Glasses}.

Based on these ratings and predefined thresholds

for stereotypical male and female characteristics,

we label data points as either stereotypical or anti-

stereotypical. These thresholds are determined by

referring to prior publications and statistical in-

sights from the dataset (Fitousi, 2021; Muthukumar

Table 1: Examples of raw dataset samples with annota-

tions. Each image is associated with both attribute-wise

and overall captions, along with a numeric rating vector

indicating the prominence of each attribute (e.g., bangs,

eyeglasses, beard, smile, age) in order.

Image

Bangs He has no bangs at

all. Rating: 0

Eyeglasses There are no eye-

glasses on the face.

Rating: 0

Beard This gentleman

doesn’t have any

beard at all. Rating:

0

Smiling This gentleman

looks serious with

no smile on his face.

Rating: 0

Age This person looks

very old. Rating: 5

Overall Caption This man in his

eighties has no mus-

tache, no fringe, and

no smile. He is

not wearing any eye-

glasses.

et al., 2018). An example of a data point after the

annotation is shown in Table 2.

4 Methodology

Our main objective is to determine which modal-

ity—vision or text—contributes more to gender

bias in our selected models. To achieve this, as

shown in the Figure 2, we independently debias the

encoder for each modality while keeping the rest

of the model frozen, and then assess the overall

bias using our evaluation metrics. The modality

that, when debiased separately, leads to a greater re-

duction in bias is considered to be inherently more

biased.

This approach allows us to isolate the bias con-

tributions of each encoder and provides insights
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Figure 2: (a) Shows different layers that will be frozen in different settings we experiment in. (b) Shows an overall

pipeline of our architecture. ”Choose setting” means choosing a setting from one of the settings shown in (a).

Table 2: Data sample after preprocessing. Gender and

stereotype labels are added based on rule-based and

attribute rating analysis, respectively. Remaining at-

tributes such as the ratings and individual captions are

discarded.

Image

Gender Female

Stereotypical False

Overall Caption She has no smile

and no bangs.This is

a young child who

has no eyeglasses.

into which modality is a more significant source

of bias in the integrated VLM. To achieve this, we

use pre-existing debiasing methods that debias the

whole model to independently debias the encoder

for each modality while keeping the rest of the

model frozen. The debiasing methods we use are

CDA and Weighted Task Vector.

4.1 Counter Factual Data Augmentation

As discussed in (Wu and Dredze, 2020; Webster

et al., 2021; Zmigrod et al., 2019), Counterfactual

Data Augmentation (CDA) is a technique that mit-

igates biases by incorporating counterfactual data

into the training process. In this approach, the

model is fine-tuned on augmented data that chal-

lenges stereotypical associations, which helps to

attenuate biased representations.

We define counterfactual data as examples that

contradict prevailing stereotypes. By augmenting

these anti-stereotypical examples, we hypothesize

that the model will better recognize and handle

non-stereotypical patterns, thus reducing inherent

biases. Given that our methodology requires pre-

existing debiasing mechanisms to independently

address biases in the model’s multimodal encoders,

CDA is integrated as one of the experimental set-

tings in our study.

4.2 Task Vector

As discussed in (Dige et al., 2024; Ilharco et al.,

2023; Zhang et al., 2023), the Task Vector is de-

rived by subtracting the weights of a base model

from those of a model fine-tuned on a specific task.

To enhance flexibility in debiasing strength, we in-

troduce a weighted Task Vector method, controlled

by two hyperparameters: α and blend. Specifi-

cally, we adjust the original weights using:

Wdebiased = Woriginal−((1− blend) · α)·∆Wtask

(1)
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Here, α controls the overall intensity of debias-

ing, while blend ∈ [0, 1] interpolates between

the original and fully debiased model. A higher

blend retains more of the original model’s behav-

ior, while a lower value emphasizes debiasing more

strongly.

To identify optimal hyperparameters, we per-

form a random search over α ∈ [0.1, 1.0] and

blend ∈ [0.0, 1.0], guided by a loss that balances

accuracy and fairness:

L = −RAavg + λgap · GenderGap (2)

where RAavg is the average resolution ac-

curacy across male and female identities, and

GenderGap = |RAm − RAf | penalizes disparity.

This formulation promotes both high performance

and equitable behavior by controlling for bias in-

troduced during fine-tuning.

4.3 Data Augmentation Using DoS (DAUDoS)

In this section, we introduce DAUDoS, a targeted

debiasing strategy that leverages the stereotypical-

ity of samples to perform efficient fine-tuning. The

overall process is illustrated in Figure 3.

Anti-Stereotypical 

Data

Model Mean

Concept Vector

Dataset

Cosine 

Similarity

DoS Score for 

each sample

Sort and take 

Top -  K samples
Fine- tune

De-biased 

model

Figure 3: Depicting the method Data Augmentation

Using DoS (DAUDoS). We first compute a concept vec-

tor from anti-stereotypical samples. Then, each dataset

sample is scored based on its similarity to this vector,

giving its Degree of Stereotypicality (DoS). The most

stereotypical samples (more similarity with concept vec-

tor or score nearer to 1) are selected for fine-tuning,

allowing targeted debiasing with minimal data.

The key idea behind DAUDoS is to assign a De-

gree of Stereotypicality (DoS) score to each sample

in the dataset. To do so, we begin by constructing

a small set of anti-stereotypical samples. These

are fed into a pre-trained model to obtain embed-

dings, from which we compute a Concept Acti-

vation Vector (CAV). Formally, if {zi}
n
i=1

are the

model embeddings of the anti-stereotypical sam-

ples, the concept vector vCAV is computed as their

mean:

vCAV =
1

n

n∑

i=1

zi. (3)

Next, for each input sample x, we obtain its

model embedding zx and compute its cosine simi-

larity with vCAV:

DoS(x) = cos(zx,vCAV). (4)

This DoS score captures how closely the sam-

ple aligns with the concept of anti-stereotypicality:

higher scores indicate lower stereotypicality, and

vice versa.

Once scores are assigned, we sort all training

samples by their DoS values and select the top-K

most stereotypical samples for fine-tuning. This

allows us to focus training on the subset of data that

contributes most to bias, thereby making the pro-

cess compute-efficient. These selected samples are

used to fine-tune the model, leading to a debiased

version as shown in Figure 3.

By guiding the data augmentation process with

DoS, DAUDoS minimizes training cost while

retaining effectiveness in bias mitigation across

modalities.

5 Experiments

For CDA we use the anti-stereotypical exam-

ples from the dataset we annotated and fine-tune

openai/clip-vit-base-patch32. Then for task vec-

tor, we used the stereotypical data to finetune the

model and obtain task vector. In DAUDoS, we se-

lected the samples based on the scores irrespective

of what the label of the sample is (whether it is

stereotypical or anti-stereotypical). We do these

methods as discussed previously, in 4 different set-

tings, namely:

Text only. In this setting, we freeze all the mod-

ules in a model except for the text encoder and

projection layers related to text modality. There by

only modifying the weights corresponding to the

text encoder in the back propagation.

Vision Only. In this setting, we freeze all the

modules in a model except for the vision encoder

and projection layers related to vision modality.

There by only modifying the weights correspond-

ing to the vision encoder in the back propagation.

We use Nvidia Geforce 2080 Ti for finetuning

the models on the anti-stereotypical data. We de-

scribe the evaluation pipeline and the results in the

upcoming sections.
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6 Results

To quantify gender bias in VLMs, as proposed in

(Darur et al., 2024), we employ Resolution Accu-

racy (RA) as our primary metric. RA measures

the classification performance for male (RAm) and

female (RAf ) labels by evaluating how accurately

the model assigns gendered labels to images. We

define the Average Resolution Accuracy (RAavg)

as the mean accuracy across male and female clas-

sifications:

RAavg =
RAm +RAf

2
(5)

Additionally, we compute the Gender Gap (GG)

to quantify bias intensity by measuring the differ-

ence in resolution accuracy between male and fe-

male classifications:

GG = |RAm −RAf | (6)

A higher GG indicates stronger gender bias,

whereas a lower GG suggests more balanced per-

formance across genders.

Our evaluation considers model logits and their

corresponding gender preferences on the Viso-

gender benchmark (Hall et al., 2023) in two set-

tings: Occupation-Object (OO) and Occupation-

Participant (OP).

In the OO setting, each instance involves a sin-

gle individual paired with an occupational cue; the

model is tasked with assigning the correct gender

label based solely on the visual representation and

the occupational context. Conversely, the OP set-

ting presents a more complex scenario in which

each sample includes two individuals with differ-

ent roles, requiring the model to simultaneously

predict the gender of multiple participants. This

dual framework enables us to assess the model’s

ability to handle both isolated and relational gender

cues, thereby providing a comprehensive view of

its fairness in gender classification.

After obtaining the gender preference scores and

using the true labels of the dataset, we compute

RAavg and GG for various debiasing configura-

tions. In the following subsections, we report the

results for the CLIP and Paligemma2 models.

6.1 CLIP Results

Table 3 summarizes the performance of CLIP un-

der different debiasing configurations. In the OO

experiments, the Raw Clip baseline achieves an
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Figure 4: GG scores for OO setting in CLIP across de-

biasing configurations. Vision debiasing yields the least

bias (GG = 0.0 by CDA, 0.03 by DAUDoS), similar to

full model debiasing (GG = 0.0 by CDA, 0.05 by DAU-

DoS), indicating greater bias in the vision modality.
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Figure 5: GG scores for OP setting in CLIP across de-

biasing configurations. Vision debiasing shows lowest

bias (GG = 0.08 by CDA, 0.27 by DAUDoS), close

to full model debiasing (GG = 0.07 by CDA, 0.34 by

DAUDoS), again suggesting higher bias in the vision

modality.

RAavg of 0.94 and a moderate GG of 0.06. Debi-

asing the text encoder alone (text only) has almost

same RAavg 0.94 and decreases GG to 0.052. No-

tably, when the vision encoder is debiased (vision

only), CLIP achieves an RAavg of 0.96 with the

gender gap completely eliminated (GG = 0.0000).

A configuration where both encoders are left train-

able (both) mirrors the outcome same as that of the

case when the vision modality is debiased.

In the OP experiments (right columns of Table 3),

the Raw CLIP model demonstrates a much lower

accuracy compared to OO setting with RAavg 0.56

and a high GG of 0.30. Debiasing the text encoder

(text only) improves RAavg to 0.57 and reduces

GG to 0.17. Further improvement occurs when the

vision encoder is debiased (vision only), yielding

RAavg = 0.58 and GG = 0.08. Finally, allowing

both encoders to update (both) provides the highest

RAavg (0.63) with the lowest observed GG (0.06).

Figure 4 and Figure 5 display a plot of GG

across the different debiasing configurations for
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Table 3: Modality-targeted debiasing in CLIP under OO and OP settings. High RA implies better performance, low

GG implies less bias. Debiasing the vision encoder in CLIP (Vision Only) achieves the highest RAavg (0.97) with

GG = 0.00, indicating vision contributes most bias.

CDA

Freeze Type RAm RAf RAavg GG RAm RAf RAavg GG
OO OP

Raw Clip 0.91 0.97 0.94 0.06 0.41 0.65 0.56 0.30
Text Only 0.91 0.97 0.94 0.05 0.48 0.65 0.57 0.17
Vision Only 0.97 0.97 0.97 0.00 0.54 0.62 0.58 0.08
Both 0.97 0.97 0.97 0.00 0.60 0.66 0.63 0.07

Task Vector (α = 0.56, blend = 0.78)

Text Only 0.17 0.75 0.46 0.57 0.10 0.02 0.06 0.08
Vision Only 0.63 0.23 0.43 0.39 0.56 0.22 0.39 0.33
Both 0.07 0.26 0.17 0.19 0.30 0.01 0.15 0.29

DAUDoS

Text Only 0.91 0.98 0.95 0.07 0.38 0.75 0.57 0.37
Vision Only 0.94 0.97 0.96 0.03 0.46 0.74 0.60 0.29
Both 0.93 0.98 0.96 0.05 0.44 0.78 0.61 0.34

Table 4: Modality-targeted debiasing in PaliGemma2 under OO and OP settings. High RA implies better perfor-

mance, low GG implies less bias. Debiasing the text encoder in PaliGemma2 (text only) yields RAavg = 0.99 with

GG = 0.01, showing text is the primary bias source.

CDA

Freeze Type RAf RAm RAavg GG RAf RAm RAavg GG
OO OP

Raw Paligemma 0.79 0.46 0.63 0.33 0.90 0.45 0.68 0.45
Text Only 0.99 0.98 0.99 0.01 0.72 0.78 0.75 0.07
Vision Only 0.42 0.39 0.40 0.03 0.65 0.47 0.56 0.18
Both 0.98 0.97 0.97 0.01 0.76 0.86 0.81 0.10

DAUDoS

Text Only 0.90 0.99 0.94 0.09 0.65 0.87 0.76 0.23
Vision Only 0.48 0.67 0.57 0.19 0.50 0.80 0.65 0.30
Both 0.93 0.99 0.96 0.06 0.52 0.91 0.72 0.39

CLIP, clearly illustrating that interventions aimed

at debiasing the vision encoder (vision only setting)

are particularly effective in lowering the gender gap.

Hence, the more biased encoder in CLIP is vision

encoder. We can observe this result consistently

across methods.

6.2 Paligemma2 Results

Table 4 shows the performance of the Paligemma2

model under similar conditions. In the CDA ex-

periments, configurations such as “text only” and

“both” achieve very high RAavg (approximately

0.97–0.99) while maintaining a very low gen-

der gap (e.g., GG=0.01 for text only). For the

DAUDoS setting, while the RAavg remains high

(around 0.94–0.96), it is important to note that

these results were obtained using only one-third

of the dataset. This aligns with our objective

of achieving competitive performance using mini-

mal data—demonstrating that selective sampling is

both efficient and effective. Using the entire dataset

would defeat the purpose of our sorting and data

reduction strategy.

In the OP experiments (right columns of Table 4),

the Raw model demonstrates similar accuracy com-

pared to OO setting with RAavg 0.68 and a high

GG of 0.45. Debiasing the text encoder (text only)

improves RAavg to 0.75 and reduces GG to 0.07.

But, notably no further improvement occurs when

the vision encoder is debiased (vision only), yield-

ing RAavg = 0.56 and GG = 0.18. Finally, al-

lowing both encoders to update (both) provides the

highest RAavg (0.81) but the Gender Gap GG of

(0.06) is still higher than the gender gap observed

in case of text only setting.

Figure 6 and Figure 7 provide a plot of GG for
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Figure 6: GG scores for OO setting across debiasing

configurations for Paligemma2. Text debiasing yields

lowest bias (GG = 0.03 by CDA, 0.10 by DAUDoS),

similar to full model debiasing (GG = 0.05 by CDA, 0.07

by DAUDoS), suggesting higher bias in text modality.
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Figure 7: GG scores for OP setting across debiasing

configurations for Paligemma2. Text debiasing gives

lowest bias (GG = 0.13 by CDA, 0.36 by DAUDoS),

close to full model debiasing (GG = 0.16 by CDA, 0.47

by DAUDoS), again pointing to text as the more biased

modality.

the Paligemma2 model, reinforcing the trend that

debiasing the text modality (Text Only) is particu-

larly effective in reducing gender bias. Hence the

more biased modality in PaliGemma2 is the text

modality. We can observe this result consistently

across methods.

7 Discussion

Our study investigates gender bias in VLMs by in-

dependently debiasing the text and vision encoders

using methods like CDA and Task Vectors. Experi-

ments on the CelebA-Dialogue dataset and evalua-

tions with the VisoGender benchmark reveal that

targeting individual modalities is more effective

than intervening at the model level. In CLIP, debi-

asing the vision encoder yields lower gender gaps

with minimal impact on accuracy—likely due to

the balanced parameter sizes across modalities. In

contrast, PaliGemma2’s larger text encoder ( 2.5B

parameters vs. 0.5B for vision) makes debiasing

the text modality more impactful.

The findings also underscore that modality-

specific debiasing leads to better bias mitigation

than strategies applied post-encoder, such as pro-

jection layer adjustments, which only offer limited

improvements. Our proposed DAUDoS method

further supports this trend, demonstrating the gen-

eralizability of our approach across models and

settings.

To conclude, we conduct experiments on the

CelebA-Dialogue dataset and evaluate the out-

comes using the VisoGender benchmark. Results

consistently reveal that targeted debiasing of indi-

vidual encoders mitigates gender bias more effec-

tively while preserving overall model performance.

By demonstrating that targeted interventions re-

duce gender bias while preserving performance,

our work contributes practical insights for building

fairer vision-language systems.

Limitations

Despite these contributions, our study has limita-

tions. First, the use of binary gender annotations

excludes non-binary and LGBTQ+ identities, re-

stricting the inclusiveness of our evaluation. Sec-

ond, our focus is limited to gender bias and does

not consider intersectional biases, such as those

related to race or age.

Future Work

In future work, we plan to broaden the scope of

our analysis to address intersectional biases, such

as those involving race, age, and skin tone, which

may interact with gender in complex ways. This

would allow for a more nuanced understanding

of model fairness across diverse identities. Addi-

tionally, investigating the temporal and contextual

dynamics of bias—such as how models adapt to

evolving cultural norms or contextual cues can of-

fer deeper insights into the stability and robustness

of debiasing methods.

Another important direction is exploring bias

mitigation strategies during the pretraining phase,

rather than only through fine-tuning, to assess

whether early interventions result in more systemic

improvements. Finally, we plan to test our methods

in real-world deployment scenarios such as image

captioning, content moderation, and recommenda-

tion systems, to evaluate both fairness and utility

in applied settings.
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Hanwen Zhu, Grace Sodunke, Aleksandar Shtedrit-
ski, and Hannah Rose Kirk. 2023. Visogender: A
dataset for benchmarking gender bias in image-text
pronoun resolution.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2023. Editing
models with task arithmetic.

Yuming Jiang, Ziqi Huang, Xingang Pan, Chen Change
Loy, and Ziwei Liu. 2021. Talk-to-edit: Fine-grained
facial editing via dialog. In Proceedings of Interna-
tional Conference on Computer Vision (ICCV).

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In International conference on ma-
chine learning, pages 19730–19742. PMLR.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In International conference on ma-
chine learning, pages 12888–12900. PMLR.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava-
next: Improved reasoning, ocr, and world knowledge.

Diego A. B. Moreira, Alef Iury Ferreira, Jhessica
Silva, Gabriel Oliveira dos Santos, Luiz Pereira,
João Medrado Gondim, Gustavo Bonil, Helena Maia,
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