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Abstract

Vision-Language Models (VLMs) achieve im-
pressive multimodal performance but often in-
herit gender biases from their training data.
This bias might be coming from both the vi-
sion and text modalities. In this work, we dis-
sect the contributions of vision and text back-
bones to these biases by applying targeted de-
biasing—Counterfactual Data Augmentation
(CDA) and Task Vector methods. Inspired by
data-efficient approaches in hate speech clas-
sification, we introduce a novel metric, De-
gree of Stereotypicality (DoS), and a corre-
sponding debiasing method, Data Augmenta-
tion Using DoS (DAUDoS), to reduce bias
with minimal computational cost. We curate a
gender-annotated dataset and evaluate all meth-
ods on the VisoGender benchmark to quantify
improvements and identify the dominant source
of bias. Our results show that CDA reduces the
gender gap by 6% and DAUDoS by 3% but
using only one-third the data. Both methods
also improve the model’s ability to correctly
identify gender in images by 3%, with DAU-
DoS achieving this improvement using only
almost one-third of training data. From our
experiments, we observed that CLIP’s vision
encoder is more biased whereas PaliGemma2’s
text encoder is more biased. By identifying
whether the bias stems more from the vision
or text encoders, our work enables more tar-
geted and effective bias mitigation strategies
in future multi-modal systems. We release
our code public at https://github.com/
vivekhruday05/VLM_bias

1 Introduction

The integration of visual and textual modalities
in VLMs has led to remarkable advances in mul-
timodal AI (Radford et al., 2021; Steiner et al.,
2024; Li et al., 2022, 2023; Achiam et al., 2023;
Team et al., 2023). VLMs have demonstrated ex-
ceptional capabilities across various tasks, includ-
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ing image retrieval (Xue et al., 2022; Bai et al.,
2023), captioning (Li et al., 2022, 2023; Liu et al.,
2024; Steiner et al., 2024). However these models
often inherit gender biases present in their train-
ing data (Su et al., 2019) thus making them not
suitable/reliable for real world deployment. Such
biases also arise from stereotypical representations
in both text and images, resulting in skewed per-
ceptions that can propagate through downstream
tasks.

Female

The gender of the

Male

person in the image
is

Figure 1: Different modalities posses different level of
bias. We aim to show which one exhibits more bias.

In this work, we address these challenges by
applying targeted debiasing techniques for both
modalities. Specifically for a given VLM we de-
bias a particular modality sub-module on a curated
dataset and evaluate it for gender bias using Viso-
Gender (Hall et al., 2023) to determine impact of
each modality on gender bias. For this purpose we
use the CelebA-Dialog dataset (Jiang et al., 2021)
and curate the samples from the same. We an-
notate the data for gender based on the pronouns
used in the caption and stereotypicality based on
the statistical distribution of the data and insights
from previous works (Fitousi, 2021; Muthukumar
et al., 2018). To determine if a particular modality
has higher influence in model’s bias we evaluate
it across multiple methods on our dataset. (i) We
use CDA (Wu and Dredze, 2020; Webster et al.,
2021; Zmigrod et al., 2019) a technique that miti-
gates bias by incorporating counterfactual data into
the training process. (ii) We adapt Task Vector
Unlearning (Dige et al., 2024; Ilharco et al., 2023;
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Zhang et al., 2023) for debiasing. (iii) We propose
a data-efficient debiasing approach, DAUDoS. We
propose and do this for both CLIP-like similarity
score based models and captioning type models
and evaluate them across different methods. We
consistently observe across multiple methods that
CLIP’s vision encoder is more biased compared to
text encoder and in case of PaliGemma?, it’s text
encoder is more biased when compared to vision
encoder.

In summary our key contributions are as follows:

* We propose a modality-targeted debiasing
framework that applies CDA and Task-Vector
methods separately to vision and text encoders
to pinpoint each modality’s bias.

* We curate a gender-annotated dataset for this
analysis and evaluate our debiasing methods
using the VisoGender benchmark.

* We propose DoS and introduce DAUDoS,
lightweight debiasing methods that reduce
gender bias on VisoGender with minimal over-
head.

2 Related work

Bias in VLMs. VLMs such as CLIP and
PaliGemma-2 have significantly advanced multi-
modal Al by integrating textual and visual modal-
ities, enabling strong performance across diverse
tasks. However, concerns have emerged regard-
ing their tendency to inherit biases (Abdollahi
et al., 2024; Darur et al., 2024; Xiao et al., 2024;
Wolfe et al., 2023) present in training data, partic-
ularly gender bias. This bias can stem from both
text and image components, as language models
trained on large-scale Internet corpora frequently
encode societal stereotypes, while image datasets
may reinforce skewed gender representations by
over representing specific demographics in certain
professions, emotions, or activities. The interac-
tion between these modalities further complicates
the propagation of bias, making it crucial to deter-
mine whether textual or visual elements contribute
more significantly to gender bias in VLMs. Pre-
vious works such as (Weng et al., 2024) focus on
causal mediation to trace and mitigate gender bias
in GLIP, showing image features contribute most
and proposing input-level blurring to reduce bias.
There are also works such as (Srinivasan and Bisk,
2022) which deal with bias measurement to multi-
modal models, revealing compounded intra and
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cross-modal stereotypes in VL-BERT. In contrast
to these, our work targets a particular modality to
find out which of the modalities contribute to a
greater gender bias and whether they differ across
different models and methods.

Bias Evaluation. Several studies have attempted
to quantify and mitigate bias in Al models. Prior
work has shown that word embeddings encode and
perpetuate gender stereotypes in language represen-
tations (Zhao et al., 2019), that multimodal models
like CLIP amplify both gender and racial biases in
their image-to-text mappings (Steed and Caliskan,
2021). There are also existing real-world bench-
marks which measure societal biases in generative
models, emphasizing the need for robust evalua-
tion frameworks (Gehman et al., 2020). Debiasing
techniques focused on text prompts in multimodal
models, indicating that interventions at the textual
level can reduce bias to some extent but may not
fully address the issue in vision-language interac-
tions (Moreira et al., 2024).

Debiasing Techniques. To mitigate gender bias,
researchers have proposed several debiasing tech-
niques, including CDA and Task Vector methods.
CDA works by synthetically generating counter-
factual training data by swapping gendered terms
(e.g., replacing “he” with “she”), thereby balancing
gender representation in textual inputs (Zmigrod
et al., 2020) and Task Vector (Ilharco et al., 2023)
is an unlearning method which has it’s roots orig-
inated from unlearing literature but also used in
bias mitigation (Dige et al., 2024). While effective
in NLP models, its application to VLMs remains
underexplored.

Data-Efficient Debiasing. Training on all coun-
terfactual examples can be computationally expen-
sive and time-consuming. To address this, prior
works (Nejadgholi et al., 2022; Garg et al., 2025)
propose approaches for improving generalization
in hate speech classification while relying on fewer
annotated examples. These methods leverage Con-
cept Activation Vectors (CAVs) and introduce a
novel metric, the Degree of Explicitness, which
quantifies the explicit nature of hateful content.
By assigning explicitness scores to samples, they
selectively fine-tune models on a curated subset
of training instances, thereby enhancing efficiency
without compromising performance. Inspired by
these advances in NLP, we extend these ideas to
the multi-modal setting and propose a novel metric



termed the Degree of Stereotypicality (DoS), which
quantifies how strongly a sample exhibits stereo-
typical associations. Building on this, we introduce
a data-efficient bias mitigation strategy called Dua-
DOS, which enables targeted augmentation based
on stereotypicality scores. This approach reduces
computational overhead while maintaining or im-
proving model fairness and robustness in multi-
modal Al systems.

3 Dataset

We use the CelebA-Dialog dataset (Jiang et al.,
2021) and curate the samples from the same. This
dataset contains structured annotations describing
different facial attributes of celebrities and rat-
ings of each of the attributes on a scale of 0 to
5. The captions also include gender-specific pro-
nouns such as she, her, he, him, etc., indicating
the possibility of an implicit gender labeling task.
Since, we require gender for each of the data point,
both for applying our methods and evaluation, we
annotate the gender and describe the process in the
following subsections. We also need whether a
data-point is stereotypical or anti-stereotypical, so
that we can use for CDA. Hence, we also annotate
that attribute and describe the process in the follow-
ing subsections. An example of how initial data
looks like is shown in Table 1.

3.1 Data Pre-processing and Annotation

First, we require gender labels for every data point.
To achieve this, we employ a rule-based automatic
labeler. Specifically, we search for gender-related
terms or pronouns such as his/her, he/she, gentle-
man/lady, and male/female. Based on the presence
of these words, we classify the data point as male
or female. If none of these words appears, the an-
notator assigns the label unknown. This approach
results in only 40 data points labeled as unknown,
which is negligible compared to the size of the
dataset, allowing us to prune them.

Next, we annotate the data points for stereo-
type classification. The dataset includes a rating
from O to 5 for each data point across attributes
{Bangs, Smiling, No Beard, Young, Eye Glasses}.
Based on these ratings and predefined thresholds
for stereotypical male and female characteristics,
we label data points as either stereotypical or anti-
stereotypical. These thresholds are determined by
referring to prior publications and statistical in-
sights from the dataset (Fitousi, 2021; Muthukumar
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Table 1: Examples of raw dataset samples with annota-
tions. Each image is associated with both attribute-wise
and overall captions, along with a numeric rating vector
indicating the prominence of each attribute (e.g., bangs,
eyeglasses, beard, smile, age) in order.

Image

Bangs He has no bangs at

all. Rating: 0

Eyeglasses There are no eye-
glasses on the face.
Rating: 0

This gentleman
doesn’t have any
beard at all. Rating:

0

This gentleman
looks serious with
no smile on his face.
Rating: 0

Beard

Smiling

Age This person looks

very old. Rating: 5

This man in his
eighties has no mus-
tache, no fringe, and

Overall Caption

no smile. He is
not wearing any eye-
glasses.

et al., 2018). An example of a data point after the
annotation is shown in Table 2.

4 Methodology

Our main objective is to determine which modal-
ity—vision or text—contributes more to gender
bias in our selected models. To achieve this, as
shown in the Figure 2, we independently debias the
encoder for each modality while keeping the rest
of the model frozen, and then assess the overall
bias using our evaluation metrics. The modality
that, when debiased separately, leads to a greater re-
duction in bias is considered to be inherently more
biased.

This approach allows us to isolate the bias con-
tributions of each encoder and provides insights
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Figure 2: (a) Shows different layers that will be frozen in different settings we experiment in. (b) Shows an overall
pipeline of our architecture. “Choose setting” means choosing a setting from one of the settings shown in (a).

Table 2: Data sample after preprocessing. Gender and
stereotype labels are added based on rule-based and
attribute rating analysis, respectively. Remaining at-
tributes such as the ratings and individual captions are
discarded.

Image
Gender Female
Stereotypical False

She has no smile
and no bangs.This is
a young child who
has no eyeglasses.

Overall Caption

into which modality is a more significant source
of bias in the integrated VLM. To achieve this, we
use pre-existing debiasing methods that debias the
whole model to independently debias the encoder
for each modality while keeping the rest of the
model frozen. The debiasing methods we use are
CDA and Weighted Task Vector.

4.1 Counter Factual Data Augmentation

As discussed in (Wu and Dredze, 2020; Webster
et al., 2021; Zmigrod et al., 2019), Counterfactual
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Data Augmentation (CDA) is a technique that mit-
igates biases by incorporating counterfactual data
into the training process. In this approach, the
model is fine-tuned on augmented data that chal-
lenges stereotypical associations, which helps to
attenuate biased representations.

We define counterfactual data as examples that
contradict prevailing stereotypes. By augmenting
these anti-stereotypical examples, we hypothesize
that the model will better recognize and handle
non-stereotypical patterns, thus reducing inherent
biases. Given that our methodology requires pre-
existing debiasing mechanisms to independently
address biases in the model’s multimodal encoders,
CDA is integrated as one of the experimental set-
tings in our study.

4.2 Task Vector

As discussed in (Dige et al., 2024; Ilharco et al.,
2023; Zhang et al., 2023), the Task Vector is de-
rived by subtracting the weights of a base model
from those of a model fine-tuned on a specific task.
To enhance flexibility in debiasing strength, we in-
troduce a weighted Task Vector method, controlled
by two hyperparameters: « and blend. Specifi-
cally, we adjust the original weights using:

Webiased = ‘/Voriginal_((1 - blend) : a)'AVVtask
(1)



Here, « controls the overall intensity of debias-
ing, while blend € [0, 1] interpolates between
the original and fully debiased model. A higher
blend retains more of the original model’s behav-
ior, while a lower value emphasizes debiasing more
strongly.

To identify optimal hyperparameters, we per-
form a random search over a € [0.1,1.0] and
blend € [0.0,1.0], guided by a loss that balances
accuracy and fairness:

L = —RAuyg + Agap - GenderGap (2)

where RA, is the average resolution ac-
curacy across male and female identities, and
GenderGap = |RA,,, — RA¢| penalizes disparity.
This formulation promotes both high performance
and equitable behavior by controlling for bias in-
troduced during fine-tuning.

4.3 Data Augmentation Using DoS (DAUDoS)

In this section, we introduce DAUDOoS, a targeted
debiasing strategy that leverages the stereotypical-
ity of samples to perform efficient fine-tuning. The
overall process is illustrated in Figure 3.

Anti-Stereotypical Model i—»
Data

Cz)slne
Slmllarlty

Dataset

Concept Vector

—

De-biased
model

Sort and take
Top - K samples

[—>| Fine-tune [—>

Dos Score for
each sample

Figure 3: Depicting the method Data Augmentation
Using DoS (DAUDoS). We first compute a concept vec-
tor from anti-stereotypical samples. Then, each dataset
sample is scored based on its similarity to this vector,
giving its Degree of Stereotypicality (DoS). The most
stereotypical samples (more similarity with concept vec-
tor or score nearer to 1) are selected for fine-tuning,
allowing targeted debiasing with minimal data.

The key idea behind DAUDOS is to assign a De-
gree of Stereotypicality (DoS) score to each sample
in the dataset. To do so, we begin by constructing
a small set of anti-stereotypical samples. These
are fed into a pre-trained model to obtain embed-
dings, from which we compute a Concept Acti-
vation Vector (CAV). Formally, if {z;}}_, are the
model embeddings of the anti-stereotypical sam-
ples, the concept vector vcay is computed as their
mean:
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Next, for each input sample x, we obtain its
model embedding z, and compute its cosine simi-
larity with vcay:

1
vcav = ﬁ

3)

DoS(z) = cos(zz, vcay)-

“)

This DoS score captures how closely the sam-
ple aligns with the concept of anti-stereotypicality:
higher scores indicate lower stereotypicality, and
vice versa.

Once scores are assigned, we sort all training
samples by their DoS values and select the top- K
most stereotypical samples for fine-tuning. This
allows us to focus training on the subset of data that
contributes most to bias, thereby making the pro-
cess compute-efficient. These selected samples are
used to fine-tune the model, leading to a debiased
version as shown in Figure 3.

By guiding the data augmentation process with
DoS, DAUDoS minimizes training cost while
retaining effectiveness in bias mitigation across
modalities.

S Experiments

For CDA we use the anti-stereotypical exam-
ples from the dataset we annotated and fine-tune
openai/clip-vit-base-patch32. Then for task vec-
tor, we used the stereotypical data to finetune the
model and obtain task vector. In DAUDoS, we se-
lected the samples based on the scores irrespective
of what the label of the sample is (whether it is
stereotypical or anti-stereotypical). We do these
methods as discussed previously, in 4 different set-
tings, namely:

Text only. In this setting, we freeze all the mod-
ules in a model except for the text encoder and
projection layers related to text modality. There by
only modifying the weights corresponding to the
text encoder in the back propagation.

Vision Only. In this setting, we freeze all the
modules in a model except for the vision encoder
and projection layers related to vision modality.
There by only modifying the weights correspond-
ing to the vision encoder in the back propagation.

We use Nvidia Geforce 2080 Ti for finetuning
the models on the anti-stereotypical data. We de-
scribe the evaluation pipeline and the results in the
upcoming sections.



6 Results

To quantify gender bias in VLLMs, as proposed in
(Darur et al., 2024), we employ Resolution Accu-
racy (RA) as our primary metric. RA measures
the classification performance for male (RA,,) and
female (RAy) labels by evaluating how accurately
the model assigns gendered labels to images. We
define the Average Resolution Accuracy (RA,.q)
as the mean accuracy across male and female clas-
sifications:

RA,, + RA;

RAqwg = 5

)
Additionally, we compute the Gender Gap (GG)
to quantify bias intensity by measuring the differ-
ence in resolution accuracy between male and fe-
male classifications:

GG = |RA,, — RA| (6)
A higher GG indicates stronger gender bias,
whereas a lower GG suggests more balanced per-
formance across genders.

Our evaluation considers model logits and their
corresponding gender preferences on the Viso-
gender benchmark (Hall et al., 2023) in two set-
tings: Occupation-Object (00) and Occupation-
Participant (OP).

In the OO setting, each instance involves a sin-
gle individual paired with an occupational cue; the
model is tasked with assigning the correct gender
label based solely on the visual representation and
the occupational context. Conversely, the OP set-
ting presents a more complex scenario in which
each sample includes two individuals with differ-
ent roles, requiring the model to simultaneously
predict the gender of multiple participants. This
dual framework enables us to assess the model’s
ability to handle both isolated and relational gender
cues, thereby providing a comprehensive view of
its fairness in gender classification.

After obtaining the gender preference scores and
using the true labels of the dataset, we compute
RA,yg and GG for various debiasing configura-
tions. In the following subsections, we report the
results for the CLIP and Paligemma?2 models.

6.1 CLIP Results

Table 3 summarizes the performance of CLIP un-
der different debiasing configurations. In the OO
experiments, the Raw Clip baseline achieves an
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Figure 4: GG scores for OO setting in CLIP across de-
biasing configurations. Vision debiasing yields the least
bias (GG = 0.0 by CDA, 0.03 by DAUDoS), similar to
full model debiasing (GG = 0.0 by CDA, 0.05 by DAU-
DoS), indicating greater bias in the vision modality.

0.37

o
w
&

0.30 0.30

0.29
0.17
0.08
. 0.07

base text vision both
only only

N CDA DAUDoS

Gender Gap - OP
o © o o o
i = N N w

G S & 8

o
o

o
o
&

o
o
)

Figure 5: GG scores for OP setting in CLIP across de-
biasing configurations. Vision debiasing shows lowest
bias (GG = 0.08 by CDA, 0.27 by DAUDoS), close
to full model debiasing (GG = 0.07 by CDA, 0.34 by
DAUDoS), again suggesting higher bias in the vision
modality.

RA 44 of 0.94 and a moderate GG of 0.06. Debi-
asing the text encoder alone (text only) has almost
same RAq,4 0.94 and decreases GG to 0.052. No-
tably, when the vision encoder is debiased (vision
only), CLIP achieves an RA,,, of 0.96 with the
gender gap completely eliminated (GG = 0.0000).
A configuration where both encoders are left train-
able (both) mirrors the outcome same as that of the
case when the vision modality is debiased.

In the OP experiments (right columns of Table 3),
the Raw CLIP model demonstrates a much lower
accuracy compared to OO setting with RA,,,4 0.56
and a high GG of 0.30. Debiasing the text encoder
(text only) improves RA,4 to 0.57 and reduces
GG to 0.17. Further improvement occurs when the
vision encoder is debiased (vision only), yielding
RA,vg = 0.58 and GG = 0.08. Finally, allowing
both encoders to update (both) provides the highest
RA g (0.63) with the lowest observed GG (0.06).

Figure 4 and Figure 5 display a plot of GG
across the different debiasing configurations for



Table 3: Modality-targeted debiasing in CLIP under OO and OP settings. High RA implies better performance, low
GG implies less bias. Debiasing the vision encoder in CLIP (Vision Only) achieves the highest RA,,, (0.97) with

GG = 0.00, indicating vision contributes most bias.

CDA
Freeze Type | RA,, RA; RAay GG | RA, RA; RAay GG
00 opP
Raw Clip 0.91 0.97 094 0.06 | 041 0.65 0.56 0.30
Text Only 0.91 0.97 094 0.05 | 048 0.65 0.57 0.17
Vision Only 0.97 0.97 097 0.00 | 0.54 0.62 0.58  0.08
Both 0.97 0.97 0.97 0.00 | 0.60 0.66 0.63 0.07
Task Vector (o = 0.56, blend = 0.78)
Text Only 0.17 0.75 046 057 | 0.10 0.02 0.06 0.08
Vision Only 0.63 0.23 0.43 0.39 0.56 0.22 0.39 0.33
Both 0.07 0.26 0.17 0.19 | 0.30 0.01 0.15 0.29
DAUDoS
Text Only 0.91 0.98 095 007 | 0.38 0.75 0.57 0.37
Vision Only 0.94 0.97 096 0.03 | 0.46 0.74 0.60  0.29
Both 0.93 0.98 096 0.05 | 044 0.78 0.61 0.34

Table 4: Modality-targeted debiasing in PaliGemma?2 under OO and OP settings. High RA implies better perfor-
mance, low GG implies less bias. Debiasing the text encoder in PaliGemma?2 (text only) yields RA,, = 0.99 with

GG = 0.01, showing text is the primary bias source.

CDA
Freeze Type RAy RA, RAay GG | RAf RA,, RAas GG
00 op
Raw Paligemma | 0.79  0.46 0.63 033 | 090 045 0.68 045
Text Only 0.99 0.98 0.99 0.01 | 0.72 0.78 0.75 0.07
Vision Only 042 039 040 003 | 0.65 047 056  0.18
Both 0.98 0.97 0.97 0.01 | 0.76 0.86 0.81 0.10
DAUDoS
Text Only 0.90  0.99 0.94 009 | 0.65 0.87 076  0.23
Vision Only 0.48  0.67 057 019 | 050 0.80 0.65 0.30
Both 093  0.99 096 006 | 052 091 0.72 039

CLIP, clearly illustrating that interventions aimed
at debiasing the vision encoder (vision only setting)
are particularly effective in lowering the gender gap.
Hence, the more biased encoder in CLIP is vision
encoder. We can observe this result consistently
across methods.

6.2 Paligemma2 Results

Table 4 shows the performance of the Paligemma2
model under similar conditions. In the CDA ex-
periments, configurations such as “text only” and
“both” achieve very high RA,,, (approximately
0.97-0.99) while maintaining a very low gen-
der gap (e.g., GG=0.01 for text only). For the
DAUDoS setting, while the RA,,, remains high
(around 0.94-0.96), it is important to note that
these results were obtained using only one-third
of the dataset. This aligns with our objective
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of achieving competitive performance using mini-
mal data—demonstrating that selective sampling is
both efficient and effective. Using the entire dataset
would defeat the purpose of our sorting and data
reduction strategy.

In the OP experiments (right columns of Table 4),
the Raw model demonstrates similar accuracy com-
pared to OO setting with RA,,, 0.68 and a high
GG of 0.45. Debiasing the text encoder (text only)
improves RA,4 to 0.75 and reduces GG to 0.07.
But, notably no further improvement occurs when
the vision encoder is debiased (vision only), yield-
ing RAqyg = 0.56 and GG = 0.18. Finally, al-
lowing both encoders to update (both) provides the
highest RA,4 (0.81) but the Gender Gap GG of
(0.06) is still higher than the gender gap observed
in case of text only setting.

Figure 6 and Figure 7 provide a plot of GG for



0.33 0.33

o
N
S

Gender Gap - 00
2
G

vision
only
s DAUDoS

text

only
mmm CDA

Figure 6: GG scores for QO setting across debiasing
configurations for Paligemma?2. Text debiasing yields
lowest bias (GG = 0.03 by CDA, 0.10 by DAUDoS),
similar to full model debiasing (GG = 0.05 by CDA, 0.07
by DAUDoS), suggesting higher bias in text modality.

0.45 0.45

o ) o
N w IS

Gender Gap - OP

o
o

o
o

vision both

only
DAUDoS

text
only

m CDA

base

Figure 7: GG scores for OP setting across debiasing
configurations for Paligemma?2. Text debiasing gives
lowest bias (GG = 0.13 by CDA, 0.36 by DAUDoS),
close to full model debiasing (GG = 0.16 by CDA, 0.47
by DAUDoS), again pointing to text as the more biased
modality.

the Paligemma?2 model, reinforcing the trend that
debiasing the text modality (Text Only) is particu-
larly effective in reducing gender bias. Hence the
more biased modality in PaliGemma? is the text
modality. We can observe this result consistently
across methods.

7 Discussion

Our study investigates gender bias in VLMs by in-
dependently debiasing the text and vision encoders
using methods like CDA and Task Vectors. Experi-
ments on the CelebA-Dialogue dataset and evalua-
tions with the VisoGender benchmark reveal that
targeting individual modalities is more effective
than intervening at the model level. In CLIP, debi-
asing the vision encoder yields lower gender gaps
with minimal impact on accuracy—likely due to
the balanced parameter sizes across modalities. In
contrast, PaliGemma?2’s larger text encoder ( 2.5B
parameters vs. 0.5B for vision) makes debiasing
the text modality more impactful.
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The findings also underscore that modality-
specific debiasing leads to better bias mitigation
than strategies applied post-encoder, such as pro-
jection layer adjustments, which only offer limited
improvements. Our proposed DAUDoS method
further supports this trend, demonstrating the gen-
eralizability of our approach across models and
settings.

To conclude, we conduct experiments on the
CelebA-Dialogue dataset and evaluate the out-
comes using the VisoGender benchmark. Results
consistently reveal that targeted debiasing of indi-
vidual encoders mitigates gender bias more effec-
tively while preserving overall model performance.
By demonstrating that targeted interventions re-
duce gender bias while preserving performance,
our work contributes practical insights for building
fairer vision-language systems.

Limitations

Despite these contributions, our study has limita-
tions. First, the use of binary gender annotations
excludes non-binary and LGBTQ+ identities, re-
stricting the inclusiveness of our evaluation. Sec-
ond, our focus is limited to gender bias and does
not consider intersectional biases, such as those
related to race or age.

Future Work

In future work, we plan to broaden the scope of
our analysis to address intersectional biases, such
as those involving race, age, and skin tone, which
may interact with gender in complex ways. This
would allow for a more nuanced understanding
of model fairness across diverse identities. Addi-
tionally, investigating the temporal and contextual
dynamics of bias—such as how models adapt to
evolving cultural norms or contextual cues can of-
fer deeper insights into the stability and robustness
of debiasing methods.

Another important direction is exploring bias
mitigation strategies during the pretraining phase,
rather than only through fine-tuning, to assess
whether early interventions result in more systemic
improvements. Finally, we plan to test our methods
in real-world deployment scenarios such as image
captioning, content moderation, and recommenda-
tion systems, to evaluate both fairness and utility
in applied settings.
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