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Abstract

When Large Language Models return “In-
conclusive” in classification tasks, practi-
tioners are left without insight into what
went wrong. This diagnostic gap can de-
lay medical decisions, undermine content
moderation, and mislead downstream sys-
tems. We present FLARE (Failure Loca-
tion and Reasoning Evaluation), a frame-
work that transforms opaque failures into
seven actionable categories. Applied to
5,400 election-misinformation classifications,
FLARE reveals a surprising result: Few-Shot
prompting—widely considered a best prac-
tice—produced 38× more failures than Zero-
Shot, with 70.8% due to simple parsing issues.
By exposing hidden failure modes, FLARE
addresses critical misunderstandings in LLM
deployment with implications across domains.

1 Introduction
Large Language Models (LLMs) are now the
workhorse for text classification across industry and
academia[1, 13], handling hundreds of millions of calls
each month in tasks from social-media filtering to
biomedical triage and legal review [5]. Yet when an
LLM responds with the catch-all label “Inconclusive”,
it is difficult to know whether the prompt was too am-
biguous for the model to understand, or whether the
model incorrectly parsed it or simply failed [21]. This
uncertainty stalls debugging and deployment.

Risks are most acute in high-stakes settings: a single
unexplained “Inconclusive” can delay treatment [20],
erode trust in moderation [7], distort sentiment analysis
[8], or silently propagate errors in automated labelling
[14]. Understanding why an LLM hesitates is therefore
critical for responsible use.

In practice, “Inconclusive” emerges when models
cannot confidently map input text to predefined cat-
egories—but this label provides no diagnostic infor-
mation about why classification failed. Without un-
derstanding these failure modes, practitioners resort
to trial-and-error prompt adjustments that may worsen
rather than improve performance.

Prior work has pushed accuracy upward through
prompt engineering—Zero-Shot (ZS), Few-Shot
(FS) [3], and richer In-Context Learning (ICL)—and
through calibration metrics. However, existing studies
rarely examine the character of failures themselves.
Taxonomies often collapse uncertainty into a single
bucket and tacitly assume FS prompting is a safe
upgrade over ZS. This leaves a methodological gap:
practitioners lack a systematic way to diagnose failure
modes hidden behind “Inconclusive” labels.

We close that gap with FLARE (Failure Location
and Reasoning Evaluation)—a seven-category frame-
work that distinguishes universal technical errors (e.g.
parsing breakdowns) from domain-specific semantic
errors (e.g. misclassification).

Our research questions are, What specific failure
modes trigger LLM “Inconclusive” classifications?
and How do these failure modes vary across ZS, FS,
and ICL prompting?

To answer, we tasked GPT-4 Turbo with classifying
900 election-misinformation texts using Van der Lin-
den’s Six Degrees of Manipulation framework [16].
FLARE shows that Few-Shot prompting, contrary to
belief, sharply increases error rates compared to Zero-
Shot—mostly due to parsing rather than genuine ambi-
guity. These findings highlight misguided assumptions
in LLM use.

Our contributions include:
1. FLARE framework, the first systematic error-

analysis method for LLM classification failures.
2. Empirical evidence that Few-Shot prompting can

degrade reliability by 38×.

2 Related Work
Error analysis has long helped linguists and engi-
neers understand why NLP systems fail [6], but the
advent of instruction-tuned LLMs introduces fail-
ure modes that classical, linguistically oriented tax-
onomies cannot capture [12]. Today’s breakdowns of-
ten arise from prompt-induced biases or sensitivities,
rigid output-format constraints, or inconsistent reason-
ing chains—phenomena absent from earlier work [19].

Most large-scale LLM evaluations remain
performance-centric. Benchmarks such as HELM
report aggregate accuracy, bias, and robustness
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scores [9], while adversarial-trigger studies chart
worst-case degradations [17]. Confidence-calibration
research likewise stops at reliability curves rather than
mapping specific errors [22]. Consequently, a model’s
ubiquitous “Inconclusive” output is treated as a single
class of uncertainty, leaving practitioners blind to its
underlying causes.

Prompting research further illustrates the gap. The
seminal GPT-3 paper popularised Few-Shot prompt-
ing by highlighting accuracy gains [3], and subsequent
surveys catalogue prompt patterns and macro-level im-
provements across datasets [15]. Yet these studies
rarely dissect how the remaining errors differ from one
prompting paradigm to another.

A parallel line of work explores LLMs as data an-
notators. Synthetic labels can complement scarce hu-
man annotations, especially for rare classes [11, 18],
yet the evaluations still focus on aggregate score-
boards—overall accuracy, averaged F1, or raw agree-
ment with humans—while leaving the underlying fail-
ure types unexplored.

Across these threads, researchers have examined
how well LLMs classify or annotate, but little work
has systematically investigated why these models
fail—particularly in cases where the model self-reports
an “Inconclusive” outcome. FLARE fills this re-
search gap by categorising seven distinct failure modes
and empirically demonstrating that popular Few-Shot
prompting can amplify certain technical errors by 38×.
FLARE labels are orthogonal to accuracy metrics, they
complement existing evaluations and provide action-
able diagnostics for researchers in HCI, psychology, AI
ethics, and NLP alike.

3 Methodology
3.1 Research Design
We used a mixed-methods approach combining quan-
titative error counts with qualitative pattern analysis.
Our dataset comprised 900 election-related misinfor-
mation texts classified using Van der Linden’s Six De-
grees of Manipulation framework [16]: Discrediting,
Emotion, Polarization, Impersonation, Conspiracy, and
Trolling.

3.2 Data Collection
Each text was classified by GPT-4 Turbo (deployment:
gpt-4-phase1) under the three prompting paradigms de-
scribed above. To capture output variability, we per-
formed six independent classification runs per text with
temperature=1.0, yielding 5,400 total classification at-
tempts (900 texts × 6 runs for each prompt).

Figure 1 shows the Zero-Shot prompting template
used in our study. The model was instructed to clas-
sify the text passages into one of six manipulation cat-
egories. When the model could not confidently as-
sign a manipulation category, it returned “Inconclu-
sive”—a catch-all label that masks the underlying rea-
son for classification failure. The Few-Shot prompt

Zero-Shot Prompt Template
Classify the following text according to the 6 De-
grees of Manipulation framework. Choose from:
Emotion, Impersonation, Polarization, Trolling,
Conspiracy, Discrediting.
Definitions: Emotion - emotive language to
provoke reactions; Impersonation - false credi-
ble sources; Polarization - encourages division;
Trolling - provokes without constructive intent;
Conspiracy - secretive claims without evidence;
Discrediting - undermines credibility without proof
Format: ¡Category¿: ¡Brief explanation¿

Figure 1: Zero-Shot prompt used to elicit manipulation
category classification using the Six Degrees of Manip-
ulation framework.

appends two labelled examples per category, while the
In-Context prompt further supplies formal definitions,
guiding questions, and one worked example per label.

We extracted all instances where the aggregated final
classification was “Inconclusive” (n=533) for detailed
analysis across all three paradigms.

3.3 Framework Development

Following established qualitative research methods [4,
10, 2], we developed FLARE through iterative analy-
sis of 533 classification failures. Figure 2 illustrates
the complete FLARE framework and its application
process. Our approach combined deductive reason-
ing (separating technical from semantic failures) with
inductive pattern recognition (allowing categories to
emerge from the data).

An output was marked Inconclusive if none
of the six runs produced a valid <Label>:
<Explanation> response. For Few-Shot prompt-
ing, the same two examples per category were reused
across runs. Error categories were assigned via open
coding, with researchers reviewing failures and reach-
ing consensus.

The development process began with a manual re-
view to isolate the obvious parsing errors. We then ap-
plied the open coding qualitative data analysis method
[4] to the remaining failures. This analysis involved
identifying recurring themes in the failure data through
successive review passes and then systematically clas-
sifying (i.e., coding) the failure instances into those
themes. Each instance was assigned to a single cate-
gory that reflected its dominant failure mode.

The resulting framework was validated across all
three prompting paradigms and accompanied by pre-
cise definitions and representative examples to ensure
reproducibility.

4 The FLARE Framework

Our analysis revealed seven distinct failure types that
the FLARE framework identifies in “Inconclusive”
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Figure 2: The FLARE error analysis framework for diagnosing LLM classification failures. The framework dis-
tinguishes between technical failures (E1-E3) that are universally applicable and semantic failures (E4-E7) that
require domain-specific instantiation.

classifications:
E1: No Response. The model returns only “No re-

sponse” across all attempts, indicating complete task
failure. These cases typically involve inputs that trig-
ger safety filters or exceed model capabilities.

Example:“BLM-antifa thugs are running around and beat-
ing people on the streets in DC. Video by”
Output: [‘No response’, ‘No response’, ‘No response’,
‘No response’, ‘No response’, ‘No response’]

E2: Parsing Error. Output formatting breaks
down, with models failing to follow the required
<Label>: <Explanation> format. Classifica-
tions are attempted but outputs include prefixes like
“Classification:”, inconsistent formatting, or responses
like “None” or “Not Applicable” that fall outside the
six allowed categories.

Example: “Tennessee is certainly leading the country in
innovation...”
Outputs: [‘Classification: None’, ‘This text does not con-
tain any manipulation...’, ‘Not Applicable’]
Issue: Invalid labels outside the six-category framework

E3: Incomplete Input. The model correctly iden-
tifies truncated or insufficient input but defaults to ”In-
conclusive” rather than explicitly flagging the input is-
sue or requesting complete content.

Example: “[NAME] you too!”
Response: “This text does not contain enough informa-
tion... Therefore, there is no label that can be accurately
applied”

E4: Misclassification. Clear instances of manipu-
lation categories the model fails to recognize, marking
them as “Inconclusive” despite obvious indicators and
even correct explanations from some annotators.

Example: “11,000 [NAME] residents get incorrect voter
registration forms... This will be the most corrupt Elec-
tion!”
Result: 5/6 annotators correctly identified “Discrediting”
but final classification was “Inconclusive”.

E5: Not Applicable/False Positive. Neutral content
that falls outside the classification scheme but which
the model attempts to force into manipulation cate-
gories, revealing task overfitting.

Example: “We don’t allow filming inside of the [NAME]
unless there is a specific reason”
Issue: Non-political policy statement marked “Inconclu-
sive” rather than noted as out-of-scope.

E6: Neutral Content Misrecognition. Legitimate
political discourse incorrectly flagged as potentially
manipulative, indicating the model cannot distinguish
between criticism and manipulation.

Example: “Women and Minorities in STEM... supports
research and Extension projects...”
Issue: Straightforward funding announcement labeled
“Impersonation” by some annotators

E7: Contradictory Explanations. The model pro-
vides inconsistent reasoning, with different annotators
assigning incompatible categories to the same input.

Example: “Tks to Margaret 4 joining me in DC to share
successes...”
Disagreement: Split between “Emotion” (gratitude) and
“Trolling” (informal style)

5 Results

5.1 Error Distribution Across Paradigms

Table 1 presents the distribution of FLARE-identified
error types across the three prompting paradigms. The
results reveal striking differences in both error fre-
quency and type.

Few-Shot prompting exhibited a catastrophic 52.9%
error rate, compared to 1.4% for Zero-Shot and 4.9%
for In-Context Learning. Most remarkably, 337 of 476
Few-Shot errors (70.8%) were parsing failures (E2),
suggesting that the inclusion of examples without suffi-
cient structural guidance overwhelms the model’s out-
put generation capabilities.
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Table 1: FLARE error analysis across prompting strate-
gies

Error Type ZS FS ICL Total

E1: No response 13 13 13 39
E2: Parsing error 0 337 0 337
E3: Incomplete input 0 7 2 9
E4: Misclassification 0 34 10 44
E5: False positive 0 29 3 32
E6: Neutral content 0 40 8 48
E7: Contradictory 0 16 8 24

Total 13 476 44 533
Error Rate 1.4% 52.9% 4.9% –

5.2 Semantic vs. Technical Failures
Our analysis reveals a critical distinction between se-
mantic failures (E4-E7) and technical failures (E1-
E3). While semantic failures might benefit from im-
proved training data or refined prompts, technical fail-
ures require architectural or prompt engineering solu-
tions. The dominance of technical failures in Few-
Shot prompting (74.8% of errors) challenges the as-
sumption that providing examples inherently improves
model performance.

5.3 Cross-Paradigm Patterns
Certain error types appeared consistently across
paradigms. All three approaches produced exactly 13
E1 (No Response) errors on the same inputs, suggest-
ing these represent hard limits of the model rather than
prompt-specific issues. Conversely, E2 (Parsing Er-
ror) appeared exclusively in Few-Shot prompting, in-
dicating a specific interaction between example-based
prompts and output generation.

6 Discussion
6.1 Implications for Prompt Engineering
Our findings challenge the assumption that Few-Shot
prompting reliably improves performance. The 38-
fold error increase—driven by parsing—shows FS
prompts add complexity models struggle to handle.
Even when labels were correct, outputs breaking
the required <Label>: <Explanation> format
(e.g., Classification: Conspiracy) were
counted as errors, since such deviations disrupt
pipelines. Zero-Shot rarely produced such errors be-
cause its format was simpler, whereas Few-Shot ex-
amples added prefixes and extra text that diverted the
model from the strict format. These results highlight
risks where reliability outweighs marginal gains.

6.2 The Hidden Cost of “Inconclusive”

By disaggregating “Inconclusive” into seven distinct
failure types, the FLARE framework reveals that most
failures are preventable through targeted interventions.
Technical failures (E1-E3) require different solutions
than semantic failures (E4-E7). For instance, the 337

parsing errors in Few-Shot prompting could potentially
be eliminated through better output format specifica-
tion or post-processing, while the 34 misclassifications
might require model fine-tuning or improved examples.

6.3 Generalizability of FLARE
While demonstrated on misinformation detection,
FLARE’s structure suggests broad applicability as an
error analysis method. Technical failures (E1-E3) are
task-agnostic—parsing errors and non-responses oc-
cur across all classification tasks. Semantic failures
(E4-E7) require domain adaptation but provide a tem-
plate: replace “manipulation categories” with domain-
specific classes. Researchers can adopt FLARE by (1)
applying E1-E3 directly, (2) instantiating E4-E7 for
their domain, and (3) extending with domain-specific
categories as needed.

7 Limitations and Future Work
This study evaluates FLARE on a single model—GPT-
4 Turbo—and one domain—election misinformation.
Replicating the analysis with other models, tasks, and
languages will be essential to confirm its generality. We
also did not evaluate Chain-of-Thought prompting or
structured-output interfaces, which may mitigate pars-
ing failures. Automating the FLARE labelling process
is another priority, so the framework can scale beyond
manual annotation.

At present, FLARE assigns exactly one error label
per instance; in practice, a failure can exhibit several
problems at once. Future work should investigate hier-
archical or multi-label variants of the taxonomy. We
also plan to apply FLARE to higher-stakes settings
such as medical-triage advice and safety-critical HCI
scenarios, where understanding hidden failure modes
is especially urgent.

8 Conclusion
We presented FLARE, an error analysis framework that
transforms opaque “Inconclusive” classifications into
actionable error diagnoses. Through systematic anal-
ysis of 533 failures, we demonstrated that Few-Shot
prompting can increase error rates by 38-fold, with
70.8% of failures attributable to parsing errors rather
than semantic challenges.

These findings have immediate practical implica-
tions for LLM deployment. Rather than assuming Few-
Shot prompting improves performance, practitioners
should evaluate error rates and types alongside ac-
curacy metrics. The FLARE framework provides a
method for such evaluation, enabling targeted debug-
ging and informed deployment decisions.
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