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Message from the Program Chairs (TODO)

Welcome to the proceedings of the first edition of the Interdisciplinary Workshop on Observations of
Misunderstood, Misguided and Malicious Use of Language Models: (OMMM 2025), hosted at the 15th
Biennial Conference on Recent Advances in Natural Language Processing (RANLP 2025), in Varna,
Bulgaria.

OMMM 2025 is a new endeavour with the purpose of drawing together communities studying the
inappropriate and harmful uses of Large Language Models (LLMs). In particular, the organising comittee
is made up of experts from natural language processing, human computer interaction and psychology.
Through this venture we aim to share common perspectives on the capabilities, vulnerabilities and
harmful applications of LLMs. Our aim is to foster a new community drawn from various disciplines
within and beyond our own, which is focussed on the mitigation of potential harms from the ever
increasing ubiquity of AI technology powered by LLMs.

The use of Large Language Models (LLMs) pervades scientific practices in multiple disciplines beyond
the NLP/AI communities. Alongside benefits for productivity and discovery, widespread use often entails
misuse due to misalignment of values, lack of knowledge, or, more rarely, malice. LLM misuse has the
potential to cause real harm in a variety of settings. Through this workshop, we aim to gather researchers
interested in identifying and mitigating inappropriate and harmful uses of LLMs. For the purposes of
designing a programme and motivating submissions, we categorised the misuses of LLMs into three
domains:

• Misunderstood usages: Misrepresentation, improper explanation, or opaqueness of LLMs.
Including: The use of anthropomorphic language by or for LLMs; Attributions of consciousness
to LLM agents; Interpretability of LLM outputs or decisions; and harms arising from overreliance
or misplaced trust in LLMs.

• Misguided usages: Misapplication of LLMs where their utility is questionable or inappropriate.
Including: underperformance and inappropriate applications; structural limitations and ethical
considerations; and deployment without proper training or safeguards.

• Malicious usages: Use of LLMs for misinformation, plagiarism, and adversarial attacks.
Including: Adversarial attacks, jailbreaking; Detection and watermarking of machine-generated
content; Generation of misinformation or plagiarism; and bias mitigation and trust design.

This year, we received 13 submissions to the workshop. These submissions covered a variety of
current topics of interest in line with the aims of the workshop. In particular, the organisers noted
submissions on anthropmorphised descriptions of LLMs, including new datasets for identification of
anthropmorphisation; Bias as applied to large language models and the downstream harmful effects; case
studies including negative results where LLMs failed compared to traditional approaches; the detection
of AI generated texts; and work on AI alignment.

All submissions were peer-reviewed by the members of the program committee which includes
specialists drawn from NLP, Philosophy„ Psychology, AI Ethics, LLM Security, and Misinformation.
The organisers provided a further meta-review for all submissions, summarising the outcomes and
decision as well as offering additional feedback. Out of the 13 submissions to the workshop, 9 were
accepted, 2 were rejected and a further 2 papers were accepted subject to improvements in line with
reviewer feedback. Each PC member had no more than three assignments. The organisers were delighted
to see so many papers submitted in line with the mission of the workshop, demonstrating the necessity
of such an event and the nascent community surrounding it.
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The workshop is held in-person, with online attendance for authors who were unable to attend. The
program encompasses: An introductory session ran by the organisers covering the grand challenges of
misunderstood, misguided and malicious use. The programme then consists of 3 sessions, one covering
papers submitted that are relevant to each of the topics: 6 papers were presented in the first session on
Misunderstood Use. 2 papers were presented in the second session on Misguided Use. Finally, 3 papers
were presented in the third session on Malicious Use.

Each session was succeeded by a discussion session, culminating in a final discussion session to close
the event. The organisers intend to use the results of the discussions to co-create with the participants a
future publication on the grand challenges of LLM Misuse.

We would like to thank the members of the program committee for their timely help in reviewing the
submissions and all the authors for submitting their papers to the workshop. We also thank the organisers
of RANLP for hosting the workshop and their kind support in producing these proceedings. Additionally,
our thanks go to those who maintain the ACL Anthology in which these proceedings appear.

OMMM Organizing Committee

Piotr Przybyła, Matthew Shardlow, Nanna Inie, Clara Colombatto
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Abstract

Annotation bias in NLP datasets remains a
major challenge for developing multilingual
Large Language Models (LLMs), particularly
in culturally diverse settings. Bias from task
framing, annotator subjectivity, and cultural
mismatches can distort model outputs and ex-
acerbate social harms. We propose a com-
prehensive framework for understanding an-
notation bias, distinguishing among instruction
bias, annotator bias, and contextual and cul-
tural bias. We review detection methods (in-
cluding inter-annotator agreement, model dis-
agreement, and metadata analysis) and high-
light emerging techniques such as multilingual
model divergence and cultural inference. We
further outline proactive and reactive mitiga-
tion strategies, including diverse annotator re-
cruitment, iterative guideline refinement, and
post-hoc model adjustments. Our contributions
include: (1) a structured typology of annotation
bias, (2) a comparative synthesis of detection
metrics, (3) an ensemble-based bias mitigation
approach adapted for multilingual settings, and
(4) an ethical analysis of annotation processes.
Together, these contributions aim to inform the
design of more equitable annotation pipelines
for LLMs.

1 Introduction

Large Language Models (LLMs) such as BERT
(Devlin et al., 2019), T5 (Raffel et al., 2020), Llama
(Touvron et al., 2023) and GPT-4 (Achiam et al.,
2023) have transformed Natural Language Pro-
cessing (NLP), achieving state-of-the-art perfor-
mance across a wide range of tasks. Their suc-
cess is largely attributed to pre-training on vast,
unannotated corpora that enable them to learn pow-
erful representations. However, aligning these
models with human values and adapting them for
high-stakes applications requires smaller, curated
datasets annotated by humans.

This reliance introduces a critical vulnerability.
Annotation bias, which refers to systematic distor-
tions introduced during the labelling process, can
severely affect model performance, fairness, and
generalisation. It may arise from task framing, an-
notator subjectivity, or cultural mismatches, and its
impact is particularly pronounced in multilingual
and culturally heterogeneous contexts (Bender and
Friedman, 2018; Plank, 2022).

The consequences of annotation bias are not hy-
pothetical. For example, models trained to detect
toxicity often misclassify African-American Ver-
nacular English (AAVE) as offensive, due to cul-
tural insensitivity in both annotation guidelines and
annotator interpretation. Phrases such as “That’s
my nigga” which carry a supportive meaning in
AAVE, are frequently labelled as hateful by anno-
tators unfamiliar with the dialect (Sap et al., 2019).
This highlights how linguistic and cultural assump-
tions embedded in the annotation process can lead
to unjust model behaviour.

Such failures reflect a broader pattern. When
biased annotations are used for training or fine-
tuning, models tend to replicate and sometimes
amplify these distortions, resulting in both repre-
sentational harms and disparities in performance
across demographic groups (Dodge et al., 2021;
Sheng et al., 2019). Addressing these issues re-
quires critical scrutiny of annotation workflows,
with careful attention to cultural and contextual
diversity.

In this paper, we examine the sources and conse-
quences of annotation bias in multilingual LLMs.
We propose a typology of annotation bias, encom-
passing instruction bias, annotator bias, and con-
textual or cultural bias. We review established
and emerging detection methods, including inter-
annotator agreement, model disagreement, and
multilingual divergence. We adapt Weak Ensemble
Learning (WEL) as a reactive mitigation strategy
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and assess its effectiveness across multilingual and
real-world datasets. Finally, we reflect on the ethi-
cal and labour implications of annotation work and
suggest directions for building more inclusive and
context-aware NLP pipelines.

2 Background and Motivation

Early annotation practices in NLP were shaped
by linguistic theory and typically involved trained
experts using detailed, rule-based guidelines.
Datasets such as the Penn Treebank (Marcus et al.,
1993) and FrameNet (Baker et al., 1998) exempli-
fied this approach, producing consistent annota-
tions at a small to moderate scale.

As NLP tasks expanded and model complexity
increased, the field shifted toward large-scale an-
notation through crowdsourcing platforms (Snow
et al., 2008a). This approach enabled the creation
of widely used datasets like SNLI (Bowman et al.,
2015) and MultiNLI (Williams et al., 2018), but
introduced new concerns regarding annotation qual-
ity, consistency and subjectivity.

The rise of LLMs has further complicated an-
notation workflows. Today’s datasets often com-
bine expert review, crowdworker input, and semi-
automated methods such as model-in-the-loop an-
notation (Pawar et al., 2025). Many target inher-
ently subjective or ambiguous constructs, including
helpfulness, safety, or moral alignment (Monarch,
2021; Uma et al., 2022). These tasks are particu-
larly vulnerable to variation across annotators and
contexts.

At the same time, NLP has increasingly em-
braced multilingual and multimodal benchmarks.
Projects such as XTREME (Hu et al., 2020), Amer-
icasNLI (Ebrahimi et al., 2022), TextVQA (Singh
et al., 2019), and HowTo100M (Miech et al., 2019)
highlight the challenges of applying traditional an-
notation schemas across languages, cultures, and
modalities. Multimodal tasks introduce further
complexity through temporality, affective signals,
and cross-modal interpretation.

These trends have exposed a structural vulnera-
bility: annotation bias. This includes not only in-
dividual annotator subjectivity, but also culturally
conditioned assumptions, linguistic mismatches,
and platform-mediated incentives (Blodgett et al.,
2020; Plank, 2022). Annotation decisions made on
small but influential datasets can propagate through
model fine-tuning and evaluation, leading to down-
stream harms (Dodge et al., 2021).

In response, the field has developed ethi-
cal documentation frameworks such as Data
Statements (Bender and Friedman, 2018) and
Datasheets for Datasets (Gebru et al., 2021). These
initiatives promote transparency by capturing the
dataset’s linguistic, demographic, and procedural
context. They represent an important step toward
recognising that high-quality, ethical NLP systems
begin with well-understood and well-documented
data.

3 Types of Annotation Bias

Annotation bias in NLP arises when human inter-
pretations, cultural assumptions, or task formula-
tions systematically distort labelled data. These
biases can affect model learning, especially dur-
ing fine-tuning and evaluation. In the context of
LLMs, annotation bias often originates from multi-
ple sources and compounds over the pipeline. Ad-
dressing it requires distinguishing among different
types of bias and understanding how they interact.

We categorise annotation bias into three primary
types based on its origin: Instruction Bias (Sec-
tion 3.1), Annotator Bias (Section 3.2), and Con-
textual and Cultural Bias (Section 3.3). These
types are not mutually exclusive. In many cases, a
biased annotation reflects an interaction among all
three. For example, culturally narrow task guide-
lines (instruction bias) given to a homogeneous an-
notator pool (annotator bias) tasked with labelling
dialectal language (contextual bias) may produce
systematically skewed data. Recognising this inter-
play is essential for designing effective detection
and mitigation strategies (Bender and Friedman,
2018).

3.1 Instruction Bias

Instruction bias (Parmar et al., 2023) occurs when
the design of an annotation task, including the
prompt wording, labelling guidelines, or interface,
embeds implicit assumptions that shape how anno-
tators interpret or respond. These assumptions can
systematically distort the resulting labels.

A common example appears in sentiment anal-
ysis, where annotators are often asked to classify
texts as “positive”, “negative”, or “neutral”. These
categories overlook cultural and linguistic nuance,
such as expressions of irony, ambivalence, or indi-
rectness (Mohammad, 2016). The framing tends to
reflect Western emotional norms that do not gener-
alise across diverse populations (Huang and Yang,
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2023). Similarly, toxicity detection tasks have been
shown to mislabel minoritised dialects as offen-
sive, in part due to annotation instructions that lack
sociolinguistic sensitivity (Sap et al., 2019).

In the context of LLMs, instruction bias is fur-
ther complicated by the use of prompts in place of
formal annotation guidelines. Zero-shot (Wei et al.,
2022) and few-shot prompting (Schick and Schütze,
2022) methods often replace expert-designed pro-
tocols. These prompts, though brief, function as
implicit task instructions and strongly influence
model behaviour. Minor changes in phrasing, such
as asking “Is this inappropriate?” versus “Is this
morally wrong?”, can lead to significantly different
model outputs, especially for subjective or value-
laden tasks (Zhao et al., 2021; Schick and Schütze,
2022; He et al., 2024).

Moreover, prompts are frequently written by re-
searchers or practitioners who come from specific
cultural or disciplinary contexts. Their assumptions
shape how tasks are framed and what kinds of an-
swers are considered valid. For example, in mental
health detection tasks, prompt templates often re-
flect Western norms of psychological distress. This
reduces model performance on data from under-
represented linguistic or cultural groups (Parmar
et al., 2023; Cui et al., 2024). Unlike traditional
annotation guidelines, prompts are rarely revised
or reviewed through participatory validation pro-
cesses (Zamfirescu-Pereira et al., 2023; Cui et al.,
2024).

3.2 Annotator Bias

Annotator bias arises from the individual or col-
lective predispositions of those performing the la-
belling. These may include cognitive heuristics,
beliefs, social norms, or demographic characteris-
tics. Even when given identical instructions, anno-
tators interpret data differently depending on their
personal context.

Subjective annotation tasks such as toxicity de-
tection, moral judgment, or hate speech classifi-
cation are particularly susceptible to this type of
bias (Sap et al., 2019; Liu et al., 2022; Plank, 2022).
Aggregation techniques like majority voting can
obscure these differences and suppress minority
perspectives, especially when annotator diversity is
limited (Aroyo and Welty, 2015; Shardlow, 2022).

The rise of crowdwork has intensified these chal-
lenges. Annotator pools often differ demographi-
cally from both the dataset’s source community and

its intended application domain (Eickhoff, 2018;
Bender et al., 2021). As a result, annotations may
misinterpret cultural cues, dialectal language, or
context-specific emotional tone. Although such
variation is not necessarily the result of careless-
ness, it can introduce systematic distortion, espe-
cially when disagreement is treated as noise rather
than signal (Cabitza et al., 2023).

3.3 Contextual and Cultural Bias

Contextual and cultural bias occurs when task
design and labelling decisions assume a particular
worldview, linguistic norm, or social context. It
becomes especially pronounced in multilingual and
multimodal tasks, where language, meaning, and
affective signals vary widely across cultures.

Annotation labels such as “polite”, “supportive”,
or “offensive” often fail to translate cleanly across
languages or communities (Ponti et al., 2020). Cul-
tural norms shape how people interpret both lan-
guage and non-verbal cues, including gestures and
tone of voice (Barrett et al., 2019; Lukac et al.,
2023). Without regionally grounded interpreta-
tion frameworks, annotators may mislabel visual
or emotional content.

Additionally, most pretraining data is skewed
toward English and Western sources. As of 2025,
English accounts for nearly half of all indexed web
content (Ani Petrosyan, 2025). This imbalance in
data collection reinforces a corresponding bias in
annotation practices.

Recent work has emphasised the importance of
culturally grounded taxonomies and community
consultation for annotation tasks involving iden-
tity, emotion, or morality (Blodgett et al., 2020;
Hutchinson et al., 2020; Zhou et al., 2023). With-
out such grounding, models trained on annotated
data risk reproducing narrow, non-representative
worldviews.

4 Impact on Model Behaviour

Bias introduced during annotation does not remain
confined to the dataset. It propagates into the mod-
els trained on that data and leads to measurable
downstream harms. This phenomenon, often re-
ferred to as “bias in, bias out,” is a central concern
in machine learning. When annotation processes
reflect cultural, social, or demographic distortions,
models tend to reproduce those distortions, and in
some cases, amplify them (Dodge et al., 2021).

One of the most well-documented consequences
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is performance disparity across demographic
groups. A model may perform well on aggre-
gate metrics while underperforming on texts as-
sociated with certain identities, dialects, or cultural
contexts. For example, commercial gender clas-
sification systems have shown much higher error
rates for darker-skinned women. This discrepancy
can be traced, in part, to unbalanced training data
that lacked diverse and properly annotated exam-
ples (Buolamwini and Gebru, 2018). Similarly,
recidivism prediction tools have displayed racially
skewed false positive rates due to historical biases
embedded in the labelled data (Dressel and Farid,
2018).

Beyond accuracy gaps, annotation bias also
causes representational harm. These occur when
models learn to reproduce social stereotypes or un-
fair associations. For instance, if training labels
disproportionately associate “engineer” with men
and “nurse” with women, the model may inter-
nalise and repeat these biases in downstream tasks
such as text generation or summarisation (Sheng
et al., 2019). In a similar way, toxicity detection
models trained on biased annotations may misclas-
sify expressions in African-American Vernacular
English (AAVE) as hostile or inappropriate (Sap
et al., 2019).

These harms can be formalised using established
fairness metrics. Demographic Parity requires
that the rate of positive predictions be equal across
groups. Equalised Odds requires that true and
false positive rates remain consistent regardless of
group membership. Annotation bias undermines
these goals. Returning to the AAVE example, if
annotators are more likely to label AAVE expres-
sions as toxic, a classifier trained on such data will
exhibit a higher false positive rate for Black speak-
ers. This violates Equalised Odds and leads to un-
fair penalties against specific communities (Dixon
et al., 2018).

These examples demonstrate that annotation bias
is not a peripheral issue. It directly contributes to
systemic failures in LLMs that affect both technical
performance and social impact. For this reason,
examining and improving annotation practices is a
foundational step toward fairer and more reliable
NLP systems.

5 Case Studies and Empirical Evidence

To illustrate how annotation bias operates in prac-
tice, this section presents two case studies. The

first addresses multilingual hate speech detection,
where cultural definitions of offence lead to mis-
alignment between training data and deployment
contexts. The second focuses on multimodal emo-
tion recognition, where non-verbal cues are in-
terpreted differently across cultural frameworks.
These cases highlight that bias often arises not
from individual prejudice but from structural mis-
matches between annotation design and commu-
nicative diversity.

5.1 Case Study: Cross-Cultural Hate Speech
Detection

Hate speech detection is highly sensitive to cultural
context. What is considered offensive or harmful
in one setting may be acceptable or even humor-
ous in another. This presents a serious challenge
for creating models intended to generalise across
regions and languages.

Lee et al. (2023) evaluated monolingual hate
speech classifiers across cultural contexts by ap-
plying models trained on English-language data
from the United States to translated data from lan-
guages such as Korean and Arabic. The results
showed a drop in F1 scores of up to 42% and a
fourfold increase in false negatives. These failures
stemmed not from technical flaws in the models
themselves but from annotation biases embedded
in the source datasets. Several factors contributed
to this performance collapse:

• Cultural targets vary. Groups and individuals
who are frequent targets of hate speech differ
between cultures, meaning training data from
one country may miss important examples
from another.

• Sociocultural norms shape expression. Sar-
casm, irony, and rhetorical devices have differ-
ent meanings and social functions depending
on the culture.

• Standards of offensiveness diverge. A state-
ment considered hateful in one community
may be seen as neutral or even acceptable in
another, depending on social, political, or his-
torical context.

This case demonstrates that hate speech is not
a culturally neutral construct. Models built on
datasets annotated within a single cultural context
may fail when applied elsewhere, even if the lan-
guage is translated. This failure is not only a lim-
itation of model generalisation but also a direct
consequence of annotation bias in the original data.
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5.2 Case Study: Multimodal Emotion
Recognition

Bias in multimodal datasets can be more difficult to
detect but equally damaging. Emotion recognition
tasks that use audio, video, or gesture data rely on
the interpretation of non-verbal cues, which are
deeply culturally embedded.

Gunes and Piccardi (2007) conducted a study
where they investigated how physical gestures were
interpreted across cultural contexts. They found
that a single gesture could signal patience in Egypt,
positivity in Greece, and confrontation in Italy.
When such data are annotated by individuals unfa-
miliar with the cultural origin of the gesture, sys-
tematic mislabelling is likely.

Cultural variation also affects emoji and facial
expression interpretation. Gao and VanderLaan
(2020) showed that annotators from Western cul-
tures rely more on mouth shapes to read emoji
emotions, while those from Eastern cultures priori-
tise the eyes. These perceptual differences result in
inconsistent annotations and affect model training
when emojis are used as supervision signals.

These findings underscore the importance of cul-
turally grounded annotation frameworks in multi-
modal NLP. Without them, datasets risk encoding
a narrow view of human emotion and interaction,
reducing the validity and generalisability of trained
models.

6 Detecting Annotation Bias

Detecting annotation bias is a crucial step toward
mitigating its impact on model training and eval-
uation. A variety of methods have been proposed
to identify systematic patterns of bias in annotated
datasets, each with different strengths and limita-
tions. One common approach is to measure inter-
annotator agreement (IAA), using metrics such as
Cohen’s κ (Smeeton, 1985). For N instances and
M annotators, where y

(j)
i ∈ Y is annotator j’s

label for instance i, the agreement is defined as:

κCohen =
po − pe
1− pe

, po =
1

N

N∑

i=1

I(y(1)i = y
(2)
i )

(1)
Here po is the observed agreement, i.e., the prob-

ability that both annotators assign the same label
to a randomly selected item. I(·) is the indicator
function. The expected agreement by chance pe is

computed as:

pe =
∑

k∈Y
P (y(1) = k) · P (y(2) = k) (2)

where P (y(j) = k) is the empirical probability of
annotator j assigning label k. Fleiss’ κ generalises
this metric for multiple annotators (Fleiss et al.,
2013):

κFleiss =
p̄− p̄e
1− p̄e

, p̄ =
1

N

N∑

i=1

∑K
k=1 nik(nik − 1)

M(M − 1)

(3)
where nik is the number of annotators assigning
label k to instance i.

For settings with missing data or mixed label
types, Krippendorff’s α (Krippendorff, 2011) of-
fers a more general reliability metric:

α = 1− Do

De
(4)

where Do is the observed disagreement (weighted
across annotator pairs per item) and De is the ex-
pected disagreement under chance.

A complementary approach is to analyse model
disagreement. When two models are trained on
the same data, divergence in their predictions can
reveal annotation ambiguity or bias (Geva et al.,
2019). For two models f1 and f2, the disagreement
rate (DR) is defined as:

DR =
1

|D|
∑

x∈D
I
(
f1(x) ̸= f2(x)

)
(5)

Uma et al. (2022) extend this idea by comparing
model predictions with human labels:

∆ =
1

|D|
∑

x∈D

∣∣f(x)− yhuman(x)
∣∣ (6)

This metric helps identify inconsistencies between
model behaviour and annotation patterns (Dsouza
and Kovatchev, 2025).

Another lens on bias detection comes from meta-
data analysis. By examining annotator demo-
graphics, task context, and label distributions, re-
searchers can uncover systematic bias (Sap et al.,
2019). For an annotator group a, a demographic
gap G(a) can be computed as:

G(a) =

∣∣∣∣∣
1

|Da|
∑

x∈Da

y(x)− 1

|D|
∑

x∈D
y(x)

∣∣∣∣∣ (7)

5



Here, Da denotes the subset of data annotated by
group a, and y(x) is the label assigned to instance
x. A high G(a) may signal systematic differences
in annotation patterns between group a and the
overall dataset, potentially reflecting underlying
biases or cultural variation.

This gap measures how far the group’s aver-
age labels deviate from the global average, which
may indicate bias or representational disparity (Sap
et al., 2019). Traditional metrics, however, may be
less effective in multilingual and culturally diverse
settings. In these cases, disagreement may reflect
true variation rather than annotation error (Naous
et al., 2024). To address this, new strategies are
emerging. multilingual model disagreement com-
pares the predictions of models fine-tuned in differ-
ent languages on parallel corpora Dl1,l2 :

DR(l1, l2) =
1

|Dl1,l2 |
∑

x∈Dl1,l2

I
(
fl1(x) ̸= fl2(x)

)

(8)
where fl1 and fl2 denote the models fine-tuned in
languages l1 and l2, respectively.

Similarly, cultural inference techniques (Zhang
et al., 2020b; Huang and Yang, 2023) use em-
beddings or sociolinguistic metadata to detect
alignment between annotations and cultural back-
grounds. One such indicator, Φcultural is calculated
as the ℓ2 distance between two groups:

Φcultural = ∥ϕ(Da)− ϕ(Da′) ∥2 (9)

where ϕ(·) maps a dataset to its cultural embedding
space, and Da, Da′ denote datasets annotated by
cultural groups a and a′, respectively.

Together, these methods offer a toolkit for identi-
fying annotation bias at different levels: label con-
sistency, annotator disagreement, cultural framing,
and model interpretation. In practice, combining
quantitative metrics with qualitative analysis of-
fers the best chance of uncovering and addressing
complex forms of annotation bias.

7 Mitigation Strategies

Detecting annotation bias is only the first step to-
ward creating fair and reliable NLP systems. Effec-
tive mitigation requires both proactive strategies,
which aim to prevent bias during data collection,
and reactive strategies, which address it after anno-
tation or model training. This section outlines tech-
niques across both categories, integrating recent
formal approaches with practical best practices.

7.1 Proactive Strategies

Proactive strategies aim to reduce annotation bias
at the source by redesigning annotation processes
with awareness of potential pitfalls.

Diverse Annotator Pools To counter annotator
bias, it is essential to recruit annotators from a
broad range of demographic, cultural, and linguis-
tic backgrounds (Bender et al., 2021; Paullada et al.,
2021). A diverse pool can reveal meaningful dis-
agreements and represent underreported perspec-
tives (Aroyo and Welty, 2015). One way to quan-
tify diversity is through the entropy of the demo-
graphic distribution:

H(A) = −
∑

a∈A
p(a) log p(a) (10)

where A is the set of annotator groups and p(a)
is the proportion of annotations from group a. A
higher entropy score H(A) indicates a more bal-
anced and inclusive annotation pool.

Dynamic Annotation Guidelines To mitigate
instruction bias, guidelines and prompts should
be piloted, reviewed and refined iteratively. This
feedback loop helps remove culturally specific as-
sumptions and linguistic ambiguities (Parmar et al.,
2023). In LLM-based settings, prompt engineer-
ing should be evaluated across cultural contexts to
ensure validity (Zamfirescu-Pereira et al., 2023).
One can formalise this iterative process by track-
ing the variance in annotator disagreement across
iterations:

σ2
t =

1

|D|
∑

x∈D
Var

(
{y(t)i (x)}ni=1

)
(11)

where y
(t)
i (x) is the label from annotator i on item

x during iteration t, with the goal that σ2
t → min

over t.

Culturally Grounded Taxonomies To address
contextual and cultural bias, annotation schemes
should be developed with culturally grounded tax-
onomies of emotion, politeness, morality, and re-
lated constructs (Blodgett et al., 2020; Hutchinson
et al., 2020; Zhou et al., 2023). Engaging with
communities or domain experts helps ensure that
annotation labels are valid across languages and
cultural settings (Ponti et al., 2020; Naous et al.,
2024).
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7.2 Reactive Strategies
Reactive strategies are applied after biases have
entered the data or the model. They aim to mitigate
downstream harms without necessarily revising the
annotation process itself. One key challenge in
post-hoc mitigation is handling inconsistencies in-
troduced by annotator subjectivity and instruction
bias, particularly when labels reflect divergent in-
terpretations of subjective or culturally loaded con-
cepts. Weighted ensemble methods can address
this by leveraging multiple model perspectives to
smooth over annotation noise, while still preserv-
ing minority viewpoints.

Post-hoc Model Adjustment Biases in trained
models can sometimes be mitigated using post-hoc
correction methods such as embedding debiasing
or output regularisation. Kaneko et al. (2023) pro-
posed modifying model outputs by subtracting a
learned bias component:

fdebias(x) = fθ(x)− λb(x) (12)

where fθ(x) is the original model output, b(x) is a
bias projection and λ controls debiasing strength.

Fine-tuning and In-context Debiasing Recent
work has explored using targeted fine-tuning (Web-
ster et al., 2021) or in-context prompting (Ganguli
et al., 2023) to reshape model behaviour without al-
tering the training data (Kaneko et al., 2025). In the
fine-tuning case, model parameters θ are updated
using reweighted or re-annotated dataset D∗:

min
θ

E(x,y∗)∼D∗L(fθ(x), y∗) (13)

In in-context learning, models are conditioned
on carefully constructed prompts P that reduce
bias:

fθ(y | x, P ) (14)

where P is designed to reduce the likelihood of
biased completions while preserving task accuracy.

Multi-Objective Weighted Ensemble Learning
Another reactive strategy leverages ensemble learn-
ing to mitigate annotation bias by explicitly mod-
elling annotator disagreement (Geva et al., 2019).
Given a dataset D = {(xi, {y(j)i }Mj=1)}Ni=1, Huang
et al. (2025) proposed Weak Ensemble Learning
(WEL), which samples one annotator label per in-
stance to construct K label-variant datasets. Each
trains a weak predictor fθk , weighted by its held-
out performance (e.g., F1, cross-entropy, Manhat-
tan distance), with

∑K
k=1wk = 1. We extend WEL

to a multilingual setting by applying the same label-
sampling procedure across datasets in different lan-
guages using a shared multilingual model. Final
predictions are computed as:

ŷi =

K∑

k=1

wk fθk(xi), (15)

allowing the ensemble to capture annotator dis-
agreement while leveraging multilingual represen-
tations from a single model.

We use mBERT (Devlin et al., 2019) as the
base model. On the multi-source benchmark from
the LeWiDi 2023 shared task (Leonardellli et al.,
2023), WEL generally outperforms baselines using
single-model CE loss (CE-only) (Uma et al., 2020)
and majority-vote ensembles of top five annotators
(Top-5-Ann) (Xu et al., 2024), achieving higher F1
and lower CE/MD scores. The only exception is
ArMIS, where the very small annotator pool (three
annotators) limits the effectiveness of random label
sampling. As the primary focus of this paper is on
the discussion of annotation bias in multilingual
LLMs, we include the full experimental results in
Appendix B.

8 Ethical and Practical Considerations

The discussion of annotation bias is incomplete
without considering the ethical and practical re-
alities of the annotation process itself. Creating
high-quality labelled data is not only a technical
challenge but also a form of labour that carries
human and institutional consequences. These con-
cerns are directly tied to the emergence and per-
sistence of annotation bias because they influence
how data are produced, who produces it, and under
what conditions.

8.1 Annotator Wellbeing and Psychological
Safety

One of the most pressing concerns involves the
well-being of annotators, particularly those respon-
sible for labelling harmful, toxic, or distressing
content. Content moderation datasets, which are
essential for training safety filters in LLMs, of-
ten expose annotators to a continuous stream of
violent, hateful, or traumatic material. Research
shows that prolonged exposure to such content can
lead to severe psychological effects, including anx-
iety, depression, insomnia, and symptoms of post-
traumatic stress disorder (PTSD) (Das et al., 2020).
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This phenomenon is referred to as vicarious
trauma, a condition in which individuals who
are indirectly exposed to trauma begin to show
symptoms similar to those of direct trauma sur-
vivors (Pearlman and Saakvitne, 1995). These ef-
fects are compounded by stressful work environ-
ments. Annotators often face tight deadlines and
high task volumes, with limited autonomy or sup-
port systems (Spence et al., 2023). In many cases,
stigma around mental health further prevents them
from seeking help (Bergman and Rushton, 2023).

To mitigate these harms, researchers and data
curators have a responsibility to implement safe-
guards. These may include access to mental health
services, task rotation to reduce exposure to dis-
tressing material, and policies that allow annotators
to opt out of specific assignments. Regular breaks,
content warnings, and workplace cultures that pro-
mote psychological safety are also important steps
toward ethical annotation pipelines (Spence et al.,
2023).

8.2 Power Dynamics in Data Labour

Annotation work is often conducted through crowd-
working platforms that rely on a globally dis-
tributed, low-cost labour force. These platforms
are sometimes described as democratising access to
work, but they often reflect significant power asym-
metries between requesters and workers. Annota-
tors frequently operate as anonymous contractors
with no job security, limited bargaining power, and
little visibility into how their work is used (Roberts,
2016). Compensation is usually task-based, which
creates incentives to prioritise speed over accuracy.

This trade-off can result in lower-quality la-
bels and increase the risk of bias in the final
dataset (Snow et al., 2008b). Additionally, anno-
tators rarely have channels for providing feedback
about unclear instructions, ambiguous data, or an-
notation policies. As a result, a valuable feedback
loop for improving annotation guidelines is often
lost (Miceli and Posada, 2022).

These structural imbalances are not only ethi-
cal concerns; they also have technical implications.
Poor working conditions can degrade data quality,
obscure disagreement patterns, and exclude minor-
ity perspectives (Snow et al., 2008b). Creating
fairer and more collaborative annotation systems,
where annotators are treated as skilled contributors
instead of disposable labour, can help ensure both
ethical integrity and model reliability.

Ethical considerations must not be separated
from methodological concerns. The conditions un-
der which data are created shape their reliability,
fairness, and downstream utility. Addressing anno-
tation bias requires attention not only to technical
design, but also to the social and economic contexts
in which annotation work occurs.

9 Conclusion and Future Directions

Annotation bias remains a central challenge for
multilingual and multimodal LLMs, shaping how
models learn, generalise, and interact with diverse
users. Mitigation requires both proactive measures
(e.g., diverse annotators, refined guidelines) and
reactive tools (e.g., bias detection, post-hoc ad-
justment), underpinned by ethical commitments
to annotator well-being and fair labour.

Future work should prioritise community-driven
annotation in marginalised contexts, culturally
grounded benchmarks, and richer annotator meta-
data to improve fairness diagnostics, particularly in
low-resource settings. LLMs themselves can assist
as scalable annotation and bias-detection tools, but
must be guided by real-world social and cultural
contexts.

This paper contributes a typology of annotation
bias, surveys detection methods across multilingual
and cultural settings, and outlines mitigation strate-
gies. We extend an ensemble-based method to mul-
tilingual settings to address label noise and inter-
annotator disagreement, demonstrating its effective-
ness on four socially sensitive tasks. Incorporating
cultural awareness and accountability throughout
the data pipeline will help NLP systems better re-
flect the diversity of human communication.
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Jin Xu, Mariët Theune, and Daniel Braun. 2024. Lever-
aging annotator disagreement for text classification.
In Proceedings of the 7th International Conference
on Natural Language and Speech Processing (IC-
NLSP 2024), pages 1–10, Trento. Association for
Computational Linguistics.

J Diego Zamfirescu-Pereira, Richmond Y Wong, Bjoern
Hartmann, and Qian Yang. 2023. Why johnny can’t
prompt: how non-ai experts try (and fail) to design
llm prompts. In Proceedings of the 2023 CHI confer-
ence on human factors in computing systems, pages
1–21.

Guanhua Zhang, Bing Bai, Junqi Zhang, Kun Bai, Con-
ghui Zhu, and Tiejun Zhao. 2020a. Demograph-
ics should not be the reason of toxicity: Mitigating
discrimination in text classifications with instance
weighting. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4134–4145, Online. Association for Computa-
tional Linguistics.

Haiping Zhang, Xingxing Zhou, Guoan Tang, Genlin Ji,
Xueying Zhang, and Liyang Xiong. 2020b. Inference
method for cultural diffusion patterns using a field
model. Transactions in GIS, 24(6):1578–1601.

Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
International Conference on Machine Learning.

Yi Zhou, Jose Camacho-Collados, and Danushka Bol-
legala. 2023. A predictive factor analysis of social
biases and task-performance in pretrained masked
language models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 11082–11100, Singapore. Associ-
ation for Computational Linguistics.

12



Supplementary Materials

A Relationships Among Bias Types,
Detection, and Mitigation

This supplementary section details the observed re-
lationships between annotation bias types and their
associated detection and mitigation approaches, as
illustrated in Figures 1 and 2. These relationships
emerged from our analysis of current literature and
empirical findings, rather than constituting a pre-
scriptive framework.

A.1 Relationships Between Bias Types
Our analysis identifies three primary bias types that
frequently interact in annotation processes: (1) In-
struction Bias: Arising from task design choices,
guidelines, and prompt formulations; (2) Anno-
tator Bias: Stemming from individual predispo-
sitions and demographic characteristics; (3) Con-
textual & Cultural Bias: Emerging from cultural
mismatches and linguistic norms. These bias types
often co-occur and compound each other, particu-
larly in multilingual settings where cultural context
influences both task interpretation and annotation
execution.

A.2 Correlations Between Detection and
Mitigation Approaches

Figure 2 illustrates correlations observed between
specific bias types and effective handling strategies.

Instruction bias correlations include detection
through inter-annotator agreement metrics (Krip-
pendorff, 2011) and model disagreement analysis
(Geva et al., 2019), with mitigation through guide-
line refinement (Parmar et al., 2023) and in-context
debiasing (Ganguli et al., 2023).

Annotator bias correlations involve detection via
metadata analysis (Sap et al., 2019) with mitiga-
tion through diverse annotator recruitment (Bender
and Friedman, 2018) and weak ensemble learning
(Huang et al., 2025).

Contextual and cultural bias correlations in-
clude detection via multilingual divergence anal-
ysis (Huang and Yang, 2023) and cultural infer-
ence methods (Zhang et al., 2020a), with mitiga-
tion through culturally grounded taxonomies (Ponti
et al., 2020) and post-hoc adjustments (Kaneko
et al., 2023).

A.3 Emergent Cross-Connections
Our analysis reveals several emergent cross-
connections where detection methods inform miti-

gation strategies: (1) Inter-annotator disagreement
metrics often correlate with both instruction and an-
notator bias, suggesting applications for ensemble-
based mitigation; (2) Cultural inference methods
show relationships with both bias detection and
the development of culturally-aware taxonomies;
(3) Metadata analysis frequently informs both bias
identification and targeted mitigation through anno-
tator diversity initiatives. These relationships sug-
gest that effective bias handling may benefit from
considering detection methods not only as diagnos-
tic tools but also as informants for mitigation strat-
egy selection. However, these correlations should
be interpreted as observed relationships rather than
definitive prescriptions, as contextual factors may
alter their applicability in specific settings.

B Benchmark Comparison using WEL on
Multilingual LLMs

B.1 Data

We assess Weak Ensemble Learning (WEL) on
the LeWiDi 2023 shared task datasets (Leonardel-
lli et al., 2023), which are designed to evaluate
generalisation across languages and domains. The
benchmark consists of four corpora that vary in
language, genre, and annotation protocol.

Three corpora (ArMIS, HS-Brexit, MD-
Agreement) contain social media posts from X1.
ArMIS comprises Arabic posts annotated for
misogyny. HS-Brexit contains English posts
labelled for Brexit-related hate speech. MD-
Agreement consists of English posts annotated
for offensiveness across multiple domains (e.g.,
BLM, elections, COVID-19); we disregard domain
metadata and treat them uniformly.

The fourth corpus, ConvAbuse, contains En-
glish dialogues between users and conversational
agents. Utterances are rated on a 5-point abuse
scale ranging from −3 (highly abusive) to 1 (non-
abusive). Following prior work, we reduce this to a
binary classification task: offensive (< 0) vs. non-
offensive (≥ 0). Multi-turn dialogues are flattened
into single text sequences.

All datasets undergo standard preprocessing, in-
cluding the removal of HTML tags, URLs, user
mentions, punctuation, digits, non-ASCII charac-
ters, and redundant whitespace. Table 1 provides a
summary of dataset statistics, including split sizes,
annotator ranges, and total annotator counts.

1https://x.com/
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Figure 1: Taxonomy of annotation bias types observed in multilingual LLMs, showing three primary categories
with distinct colouring: Instruction Bias, Annotator Bias, and Contextual & Cultural Bias.

B.2 Base LLM

To enable cross-linguistic generalisation
in our ensemble-based framework, we
adopt the multilingual BERT (mBERT)
model (Devlin et al., 2019), more specifically,
bert-base-multilingual-uncased2, as
the shared encoder for all weak learners in the
WEL framework. This transformer-based model
is pre-trained on 104 languages using a masked
language modelling objective and retains casing
information, making it well-suited for tasks with
mixed scripts and morphologically rich languages.

In our setup, each weak predictor fθk in the

2https://huggingface.co/google-bert/
bert-base-multilingual-uncased

ensemble is instantiated by fine-tuning a separate
copy of the multilingual BERT model on a label-
variant dataset constructed via random sampling
from annotator labels (as described in Section 7).
Despite training on datasets in different languages
and domains, all predictors share the same multilin-
gual backbone, allowing for consistent representa-
tion across languages while preserving the benefits
of ensemble diversity. This choice enables us to
evaluate the robustness of WEL in a multilingual,
multi-dataset context without requiring separate
architectures per language.
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Table 1: Data statistics and metadata for the four textual datasets. #Train, #Dev, and #Test denote the number of
instances in the training, development, and test splits. #TotalAnn indicates the total number of annotators, while
#Ann represents the minimum and maximum number of annotators per instance. Contribution, Diversity, Language,
and Genre provide further dataset details.

Dataset #Train #Dev #Test #TotalAnn #Ann Contribution Diversity Language Genre

ArMIS 657 141 145 3 3 Fixed Annotators Low Arabic Short Text
ConvAbuse 2398 812 840 8 2-7 Mixed Annotators Low English Conversation
HS-Brexit 784 168 168 6 6 Fixed Annotators Low English Short Text
MD-Agreement 6592 1104 3057 670 5 Mixed Annotators High English Short Text

B.3 Results
Table 2 compares three models (CE-only (Uma
et al., 2020), Top-5-Annotators (Xu et al., 2024),
and WEL) across four datasets using F1 (higher bet-
ter), cross-entropy (CE), and Manhattan distance
(MD) (lower better). We perform a grid search over
loss term coefficients in the objective function, each
sampled from the range [0, 0.001, 0.01, 0.1, 1], re-
sulting in 1,295 unique combinations per dataset
(excluding 0s for all). WEL consistently achieved
the highest F1 scores and best calibration metrics
(CE/MD) across three of four datasets, demonstrat-
ing its robustness for uncertainty-aware NLP.

Key observations emerge: (1) Performance
varies substantially by domain, with ConvAbuse
showing highest F1 scores but also extreme MD val-
ues for CE-only (4.81 vs. <1.0 elsewhere), indicat-
ing prediction instability that WEL addresses; (2)
WEL’s advantage in calibration metrics (CE/MD)
exceeds its F1 improvements, highlighting its par-
ticular strength in uncertainty estimation; (3) Sta-
tistically significant improvements (p < 0.05) on
HS-Brexit and MD-Agreement demonstrate WEL’s
robustness for hate speech and agreement tasks;
(4) The ArMIS exception, where minimal gains
occurred with only three annotators, establishes a
practical boundary condition: WEL requires suffi-
cient annotator diversity (likely >3) for effective
ensemble learning. These results position WEL as
particularly valuable for applications requiring re-
liable confidence estimates, while clearly defining
its limitations in low-diversity annotation settings.

Table 2: Performance comparison across datasets and
models. Best values are highlighted (F1: higher better;
CE/MD: lower better). * indicates p < 0.05 signifi-
cance.

Dataset Metric CE-only Top-5-Ann WEL

ArMIS
F1 0.6482 0.6552 0.6483
CE 0.7019 0.6502 0.6596
MD 0.7001 0.6443 0.6609

ConvAbuse
F1 0.8362 0.9310 0.9405*
CE 0.9671 0.5651 0.5577*
MD 4.8068 0.1648 0.1709

HS-Brexit
F1 0.7917 0.8929* 0.9167*
CE 0.7652 0.6154* 0.5889*
MD 0.7985 0.2394* 0.2585*

MD-Agreement
F1 0.7880 0.7808* 0.8214*
CE 0.9948 0.6629* 0.6245*
MD 1.7574 0.3995* 0.3632*
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Figure 2: Relationships between annotation bias sources, detection methods, and mitigation strategies. Solid lines
indicate primary correlations; dashed lines (purple) show secondary cross-connections.
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Abstract

Vision-Language Models (VLMs) achieve im-
pressive multimodal performance but often in-
herit gender biases from their training data.
This bias might be coming from both the vi-
sion and text modalities. In this work, we dis-
sect the contributions of vision and text back-
bones to these biases by applying targeted de-
biasing—Counterfactual Data Augmentation
(CDA) and Task Vector methods. Inspired by
data-efficient approaches in hate speech clas-
sification, we introduce a novel metric, De-
gree of Stereotypicality (DoS), and a corre-
sponding debiasing method, Data Augmenta-
tion Using DoS (DAUDoS), to reduce bias
with minimal computational cost. We curate a
gender-annotated dataset and evaluate all meth-
ods on the VisoGender benchmark to quantify
improvements and identify the dominant source
of bias. Our results show that CDA reduces the
gender gap by 6% and DAUDoS by 3% but
using only one-third the data. Both methods
also improve the model’s ability to correctly
identify gender in images by 3%, with DAU-
DoS achieving this improvement using only
almost one-third of training data. From our
experiments, we observed that CLIP’s vision
encoder is more biased whereas PaliGemma2’s
text encoder is more biased. By identifying
whether the bias stems more from the vision
or text encoders, our work enables more tar-
geted and effective bias mitigation strategies
in future multi-modal systems. We release
our code public at https://github.com/
vivekhruday05/VLM_bias

1 Introduction

The integration of visual and textual modalities
in VLMs has led to remarkable advances in mul-
timodal AI (Radford et al., 2021; Steiner et al.,
2024; Li et al., 2022, 2023; Achiam et al., 2023;
Team et al., 2023). VLMs have demonstrated ex-
ceptional capabilities across various tasks, includ-

ing image retrieval (Xue et al., 2022; Bai et al.,
2023), captioning (Li et al., 2022, 2023; Liu et al.,
2024; Steiner et al., 2024). However these models
often inherit gender biases present in their train-
ing data (Su et al., 2019) thus making them not
suitable/reliable for real world deployment. Such
biases also arise from stereotypical representations
in both text and images, resulting in skewed per-
ceptions that can propagate through downstream
tasks.

Vision 

(Frozen)
Text Female

Male
The gender of the 

person in the image 

is _______

Vision
Text

(Frozen)

Vision Text

Figure 1: Different modalities posses different level of
bias. We aim to show which one exhibits more bias.

In this work, we address these challenges by
applying targeted debiasing techniques for both
modalities. Specifically for a given VLM we de-
bias a particular modality sub-module on a curated
dataset and evaluate it for gender bias using Viso-
Gender (Hall et al., 2023) to determine impact of
each modality on gender bias. For this purpose we
use the CelebA-Dialog dataset (Jiang et al., 2021)
and curate the samples from the same. We an-
notate the data for gender based on the pronouns
used in the caption and stereotypicality based on
the statistical distribution of the data and insights
from previous works (Fitousi, 2021; Muthukumar
et al., 2018). To determine if a particular modality
has higher influence in model’s bias we evaluate
it across multiple methods on our dataset. (i) We
use CDA (Wu and Dredze, 2020; Webster et al.,
2021; Zmigrod et al., 2019) a technique that miti-
gates bias by incorporating counterfactual data into
the training process. (ii) We adapt Task Vector
Unlearning (Dige et al., 2024; Ilharco et al., 2023;
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Zhang et al., 2023) for debiasing. (iii) We propose
a data-efficient debiasing approach, DAUDoS. We
propose and do this for both CLIP-like similarity
score based models and captioning type models
and evaluate them across different methods. We
consistently observe across multiple methods that
CLIP’s vision encoder is more biased compared to
text encoder and in case of PaliGemma2, it’s text
encoder is more biased when compared to vision
encoder.

In summary our key contributions are as follows:

• We propose a modality-targeted debiasing
framework that applies CDA and Task-Vector
methods separately to vision and text encoders
to pinpoint each modality’s bias.

• We curate a gender-annotated dataset for this
analysis and evaluate our debiasing methods
using the VisoGender benchmark.

• We propose DoS and introduce DAUDoS,
lightweight debiasing methods that reduce
gender bias on VisoGender with minimal over-
head.

2 Related work

Bias in VLMs. VLMs such as CLIP and
PaliGemma-2 have significantly advanced multi-
modal AI by integrating textual and visual modal-
ities, enabling strong performance across diverse
tasks. However, concerns have emerged regard-
ing their tendency to inherit biases (Abdollahi
et al., 2024; Darur et al., 2024; Xiao et al., 2024;
Wolfe et al., 2023) present in training data, partic-
ularly gender bias. This bias can stem from both
text and image components, as language models
trained on large-scale Internet corpora frequently
encode societal stereotypes, while image datasets
may reinforce skewed gender representations by
over representing specific demographics in certain
professions, emotions, or activities. The interac-
tion between these modalities further complicates
the propagation of bias, making it crucial to deter-
mine whether textual or visual elements contribute
more significantly to gender bias in VLMs. Pre-
vious works such as (Weng et al., 2024) focus on
causal mediation to trace and mitigate gender bias
in GLIP, showing image features contribute most
and proposing input-level blurring to reduce bias.
There are also works such as (Srinivasan and Bisk,
2022) which deal with bias measurement to multi-
modal models, revealing compounded intra and

cross-modal stereotypes in VL-BERT. In contrast
to these, our work targets a particular modality to
find out which of the modalities contribute to a
greater gender bias and whether they differ across
different models and methods.

Bias Evaluation. Several studies have attempted
to quantify and mitigate bias in AI models. Prior
work has shown that word embeddings encode and
perpetuate gender stereotypes in language represen-
tations (Zhao et al., 2019), that multimodal models
like CLIP amplify both gender and racial biases in
their image-to-text mappings (Steed and Caliskan,
2021). There are also existing real-world bench-
marks which measure societal biases in generative
models, emphasizing the need for robust evalua-
tion frameworks (Gehman et al., 2020). Debiasing
techniques focused on text prompts in multimodal
models, indicating that interventions at the textual
level can reduce bias to some extent but may not
fully address the issue in vision-language interac-
tions (Moreira et al., 2024).

Debiasing Techniques. To mitigate gender bias,
researchers have proposed several debiasing tech-
niques, including CDA and Task Vector methods.
CDA works by synthetically generating counter-
factual training data by swapping gendered terms
(e.g., replacing “he” with “she”), thereby balancing
gender representation in textual inputs (Zmigrod
et al., 2020) and Task Vector (Ilharco et al., 2023)
is an unlearning method which has it’s roots orig-
inated from unlearing literature but also used in
bias mitigation (Dige et al., 2024). While effective
in NLP models, its application to VLMs remains
underexplored.

Data-Efficient Debiasing. Training on all coun-
terfactual examples can be computationally expen-
sive and time-consuming. To address this, prior
works (Nejadgholi et al., 2022; Garg et al., 2025)
propose approaches for improving generalization
in hate speech classification while relying on fewer
annotated examples. These methods leverage Con-
cept Activation Vectors (CAVs) and introduce a
novel metric, the Degree of Explicitness, which
quantifies the explicit nature of hateful content.
By assigning explicitness scores to samples, they
selectively fine-tune models on a curated subset
of training instances, thereby enhancing efficiency
without compromising performance. Inspired by
these advances in NLP, we extend these ideas to
the multi-modal setting and propose a novel metric
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termed the Degree of Stereotypicality (DoS), which
quantifies how strongly a sample exhibits stereo-
typical associations. Building on this, we introduce
a data-efficient bias mitigation strategy called Dua-
DOS, which enables targeted augmentation based
on stereotypicality scores. This approach reduces
computational overhead while maintaining or im-
proving model fairness and robustness in multi-
modal AI systems.

3 Dataset

We use the CelebA-Dialog dataset (Jiang et al.,
2021) and curate the samples from the same. This
dataset contains structured annotations describing
different facial attributes of celebrities and rat-
ings of each of the attributes on a scale of 0 to
5. The captions also include gender-specific pro-
nouns such as she, her, he, him, etc., indicating
the possibility of an implicit gender labeling task.
Since, we require gender for each of the data point,
both for applying our methods and evaluation, we
annotate the gender and describe the process in the
following subsections. We also need whether a
data-point is stereotypical or anti-stereotypical, so
that we can use for CDA. Hence, we also annotate
that attribute and describe the process in the follow-
ing subsections. An example of how initial data
looks like is shown in Table 1.

3.1 Data Pre-processing and Annotation

First, we require gender labels for every data point.
To achieve this, we employ a rule-based automatic
labeler. Specifically, we search for gender-related
terms or pronouns such as his/her, he/she, gentle-
man/lady, and male/female. Based on the presence
of these words, we classify the data point as male
or female. If none of these words appears, the an-
notator assigns the label unknown. This approach
results in only 40 data points labeled as unknown,
which is negligible compared to the size of the
dataset, allowing us to prune them.

Next, we annotate the data points for stereo-
type classification. The dataset includes a rating
from 0 to 5 for each data point across attributes
{Bangs, Smiling, No Beard, Young, Eye Glasses}.
Based on these ratings and predefined thresholds
for stereotypical male and female characteristics,
we label data points as either stereotypical or anti-
stereotypical. These thresholds are determined by
referring to prior publications and statistical in-
sights from the dataset (Fitousi, 2021; Muthukumar

Table 1: Examples of raw dataset samples with annota-
tions. Each image is associated with both attribute-wise
and overall captions, along with a numeric rating vector
indicating the prominence of each attribute (e.g., bangs,
eyeglasses, beard, smile, age) in order.

Image

Bangs He has no bangs at
all. Rating: 0

Eyeglasses There are no eye-
glasses on the face.
Rating: 0

Beard This gentleman
doesn’t have any
beard at all. Rating:
0

Smiling This gentleman
looks serious with
no smile on his face.
Rating: 0

Age This person looks
very old. Rating: 5

Overall Caption This man in his
eighties has no mus-
tache, no fringe, and
no smile. He is
not wearing any eye-
glasses.

et al., 2018). An example of a data point after the
annotation is shown in Table 2.

4 Methodology

Our main objective is to determine which modal-
ity—vision or text—contributes more to gender
bias in our selected models. To achieve this, as
shown in the Figure 2, we independently debias the
encoder for each modality while keeping the rest
of the model frozen, and then assess the overall
bias using our evaluation metrics. The modality
that, when debiased separately, leads to a greater re-
duction in bias is considered to be inherently more
biased.

This approach allows us to isolate the bias con-
tributions of each encoder and provides insights
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Figure 2: (a) Shows different layers that will be frozen in different settings we experiment in. (b) Shows an overall
pipeline of our architecture. ”Choose setting” means choosing a setting from one of the settings shown in (a).

Table 2: Data sample after preprocessing. Gender and
stereotype labels are added based on rule-based and
attribute rating analysis, respectively. Remaining at-
tributes such as the ratings and individual captions are
discarded.

Image

Gender Female
Stereotypical False

Overall Caption She has no smile
and no bangs.This is
a young child who
has no eyeglasses.

into which modality is a more significant source
of bias in the integrated VLM. To achieve this, we
use pre-existing debiasing methods that debias the
whole model to independently debias the encoder
for each modality while keeping the rest of the
model frozen. The debiasing methods we use are
CDA and Weighted Task Vector.

4.1 Counter Factual Data Augmentation
As discussed in (Wu and Dredze, 2020; Webster
et al., 2021; Zmigrod et al., 2019), Counterfactual

Data Augmentation (CDA) is a technique that mit-
igates biases by incorporating counterfactual data
into the training process. In this approach, the
model is fine-tuned on augmented data that chal-
lenges stereotypical associations, which helps to
attenuate biased representations.

We define counterfactual data as examples that
contradict prevailing stereotypes. By augmenting
these anti-stereotypical examples, we hypothesize
that the model will better recognize and handle
non-stereotypical patterns, thus reducing inherent
biases. Given that our methodology requires pre-
existing debiasing mechanisms to independently
address biases in the model’s multimodal encoders,
CDA is integrated as one of the experimental set-
tings in our study.

4.2 Task Vector

As discussed in (Dige et al., 2024; Ilharco et al.,
2023; Zhang et al., 2023), the Task Vector is de-
rived by subtracting the weights of a base model
from those of a model fine-tuned on a specific task.
To enhance flexibility in debiasing strength, we in-
troduce a weighted Task Vector method, controlled
by two hyperparameters: α and blend. Specifi-
cally, we adjust the original weights using:

Wdebiased = Woriginal−((1− blend) · α)·∆Wtask
(1)
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Here, α controls the overall intensity of debias-
ing, while blend ∈ [0, 1] interpolates between
the original and fully debiased model. A higher
blend retains more of the original model’s behav-
ior, while a lower value emphasizes debiasing more
strongly.

To identify optimal hyperparameters, we per-
form a random search over α ∈ [0.1, 1.0] and
blend ∈ [0.0, 1.0], guided by a loss that balances
accuracy and fairness:

L = −RAavg + λgap · GenderGap (2)

where RAavg is the average resolution ac-
curacy across male and female identities, and
GenderGap = |RAm − RAf | penalizes disparity.
This formulation promotes both high performance
and equitable behavior by controlling for bias in-
troduced during fine-tuning.

4.3 Data Augmentation Using DoS (DAUDoS)
In this section, we introduce DAUDoS, a targeted
debiasing strategy that leverages the stereotypical-
ity of samples to perform efficient fine-tuning. The
overall process is illustrated in Figure 3.

Anti-Stereotypical 

Data

Model Mean

Concept Vector

Dataset

Cosine 

Similarity

DoS Score for 

each sample

Sort and take 

Top -  K samples
Fine- tune

De-biased 

model

Figure 3: Depicting the method Data Augmentation
Using DoS (DAUDoS). We first compute a concept vec-
tor from anti-stereotypical samples. Then, each dataset
sample is scored based on its similarity to this vector,
giving its Degree of Stereotypicality (DoS). The most
stereotypical samples (more similarity with concept vec-
tor or score nearer to 1) are selected for fine-tuning,
allowing targeted debiasing with minimal data.

The key idea behind DAUDoS is to assign a De-
gree of Stereotypicality (DoS) score to each sample
in the dataset. To do so, we begin by constructing
a small set of anti-stereotypical samples. These
are fed into a pre-trained model to obtain embed-
dings, from which we compute a Concept Acti-
vation Vector (CAV). Formally, if {zi}ni=1 are the
model embeddings of the anti-stereotypical sam-
ples, the concept vector vCAV is computed as their
mean:

vCAV =
1

n

n∑

i=1

zi. (3)

Next, for each input sample x, we obtain its
model embedding zx and compute its cosine simi-
larity with vCAV:

DoS(x) = cos(zx,vCAV). (4)

This DoS score captures how closely the sam-
ple aligns with the concept of anti-stereotypicality:
higher scores indicate lower stereotypicality, and
vice versa.

Once scores are assigned, we sort all training
samples by their DoS values and select the top-K
most stereotypical samples for fine-tuning. This
allows us to focus training on the subset of data that
contributes most to bias, thereby making the pro-
cess compute-efficient. These selected samples are
used to fine-tune the model, leading to a debiased
version as shown in Figure 3.

By guiding the data augmentation process with
DoS, DAUDoS minimizes training cost while
retaining effectiveness in bias mitigation across
modalities.

5 Experiments

For CDA we use the anti-stereotypical exam-
ples from the dataset we annotated and fine-tune
openai/clip-vit-base-patch32. Then for task vec-
tor, we used the stereotypical data to finetune the
model and obtain task vector. In DAUDoS, we se-
lected the samples based on the scores irrespective
of what the label of the sample is (whether it is
stereotypical or anti-stereotypical). We do these
methods as discussed previously, in 4 different set-
tings, namely:

Text only. In this setting, we freeze all the mod-
ules in a model except for the text encoder and
projection layers related to text modality. There by
only modifying the weights corresponding to the
text encoder in the back propagation.

Vision Only. In this setting, we freeze all the
modules in a model except for the vision encoder
and projection layers related to vision modality.
There by only modifying the weights correspond-
ing to the vision encoder in the back propagation.

We use Nvidia Geforce 2080 Ti for finetuning
the models on the anti-stereotypical data. We de-
scribe the evaluation pipeline and the results in the
upcoming sections.
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6 Results

To quantify gender bias in VLMs, as proposed in
(Darur et al., 2024), we employ Resolution Accu-
racy (RA) as our primary metric. RA measures
the classification performance for male (RAm) and
female (RAf ) labels by evaluating how accurately
the model assigns gendered labels to images. We
define the Average Resolution Accuracy (RAavg)
as the mean accuracy across male and female clas-
sifications:

RAavg =
RAm +RAf

2
(5)

Additionally, we compute the Gender Gap (GG)
to quantify bias intensity by measuring the differ-
ence in resolution accuracy between male and fe-
male classifications:

GG = |RAm −RAf | (6)

A higher GG indicates stronger gender bias,
whereas a lower GG suggests more balanced per-
formance across genders.

Our evaluation considers model logits and their
corresponding gender preferences on the Viso-
gender benchmark (Hall et al., 2023) in two set-
tings: Occupation-Object (OO) and Occupation-
Participant (OP).

In the OO setting, each instance involves a sin-
gle individual paired with an occupational cue; the
model is tasked with assigning the correct gender
label based solely on the visual representation and
the occupational context. Conversely, the OP set-
ting presents a more complex scenario in which
each sample includes two individuals with differ-
ent roles, requiring the model to simultaneously
predict the gender of multiple participants. This
dual framework enables us to assess the model’s
ability to handle both isolated and relational gender
cues, thereby providing a comprehensive view of
its fairness in gender classification.

After obtaining the gender preference scores and
using the true labels of the dataset, we compute
RAavg and GG for various debiasing configura-
tions. In the following subsections, we report the
results for the CLIP and Paligemma2 models.

6.1 CLIP Results

Table 3 summarizes the performance of CLIP un-
der different debiasing configurations. In the OO
experiments, the Raw Clip baseline achieves an
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Figure 4: GG scores for OO setting in CLIP across de-
biasing configurations. Vision debiasing yields the least
bias (GG = 0.0 by CDA, 0.03 by DAUDoS), similar to
full model debiasing (GG = 0.0 by CDA, 0.05 by DAU-
DoS), indicating greater bias in the vision modality.
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Figure 5: GG scores for OP setting in CLIP across de-
biasing configurations. Vision debiasing shows lowest
bias (GG = 0.08 by CDA, 0.27 by DAUDoS), close
to full model debiasing (GG = 0.07 by CDA, 0.34 by
DAUDoS), again suggesting higher bias in the vision
modality.

RAavg of 0.94 and a moderate GG of 0.06. Debi-
asing the text encoder alone (text only) has almost
same RAavg 0.94 and decreases GG to 0.052. No-
tably, when the vision encoder is debiased (vision
only), CLIP achieves an RAavg of 0.96 with the
gender gap completely eliminated (GG = 0.0000).
A configuration where both encoders are left train-
able (both) mirrors the outcome same as that of the
case when the vision modality is debiased.

In the OP experiments (right columns of Table 3),
the Raw CLIP model demonstrates a much lower
accuracy compared to OO setting with RAavg 0.56
and a high GG of 0.30. Debiasing the text encoder
(text only) improves RAavg to 0.57 and reduces
GG to 0.17. Further improvement occurs when the
vision encoder is debiased (vision only), yielding
RAavg = 0.58 and GG = 0.08. Finally, allowing
both encoders to update (both) provides the highest
RAavg (0.63) with the lowest observed GG (0.06).

Figure 4 and Figure 5 display a plot of GG
across the different debiasing configurations for
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Table 3: Modality-targeted debiasing in CLIP under OO and OP settings. High RA implies better performance, low
GG implies less bias. Debiasing the vision encoder in CLIP (Vision Only) achieves the highest RAavg (0.97) with
GG = 0.00, indicating vision contributes most bias.

CDA

Freeze Type RAm RAf RAavg GG RAm RAf RAavg GG
OO OP

Raw Clip 0.91 0.97 0.94 0.06 0.41 0.65 0.56 0.30
Text Only 0.91 0.97 0.94 0.05 0.48 0.65 0.57 0.17
Vision Only 0.97 0.97 0.97 0.00 0.54 0.62 0.58 0.08
Both 0.97 0.97 0.97 0.00 0.60 0.66 0.63 0.07

Task Vector (α = 0.56, blend = 0.78)

Text Only 0.17 0.75 0.46 0.57 0.10 0.02 0.06 0.08
Vision Only 0.63 0.23 0.43 0.39 0.56 0.22 0.39 0.33
Both 0.07 0.26 0.17 0.19 0.30 0.01 0.15 0.29

DAUDoS

Text Only 0.91 0.98 0.95 0.07 0.38 0.75 0.57 0.37
Vision Only 0.94 0.97 0.96 0.03 0.46 0.74 0.60 0.29
Both 0.93 0.98 0.96 0.05 0.44 0.78 0.61 0.34

Table 4: Modality-targeted debiasing in PaliGemma2 under OO and OP settings. High RA implies better perfor-
mance, low GG implies less bias. Debiasing the text encoder in PaliGemma2 (text only) yields RAavg = 0.99 with
GG = 0.01, showing text is the primary bias source.

CDA

Freeze Type RAf RAm RAavg GG RAf RAm RAavg GG
OO OP

Raw Paligemma 0.79 0.46 0.63 0.33 0.90 0.45 0.68 0.45
Text Only 0.99 0.98 0.99 0.01 0.72 0.78 0.75 0.07
Vision Only 0.42 0.39 0.40 0.03 0.65 0.47 0.56 0.18
Both 0.98 0.97 0.97 0.01 0.76 0.86 0.81 0.10

DAUDoS

Text Only 0.90 0.99 0.94 0.09 0.65 0.87 0.76 0.23
Vision Only 0.48 0.67 0.57 0.19 0.50 0.80 0.65 0.30
Both 0.93 0.99 0.96 0.06 0.52 0.91 0.72 0.39

CLIP, clearly illustrating that interventions aimed
at debiasing the vision encoder (vision only setting)
are particularly effective in lowering the gender gap.
Hence, the more biased encoder in CLIP is vision
encoder. We can observe this result consistently
across methods.

6.2 Paligemma2 Results

Table 4 shows the performance of the Paligemma2
model under similar conditions. In the CDA ex-
periments, configurations such as “text only” and
“both” achieve very high RAavg (approximately
0.97–0.99) while maintaining a very low gen-
der gap (e.g., GG=0.01 for text only). For the
DAUDoS setting, while the RAavg remains high
(around 0.94–0.96), it is important to note that
these results were obtained using only one-third
of the dataset. This aligns with our objective

of achieving competitive performance using mini-
mal data—demonstrating that selective sampling is
both efficient and effective. Using the entire dataset
would defeat the purpose of our sorting and data
reduction strategy.

In the OP experiments (right columns of Table 4),
the Raw model demonstrates similar accuracy com-
pared to OO setting with RAavg 0.68 and a high
GG of 0.45. Debiasing the text encoder (text only)
improves RAavg to 0.75 and reduces GG to 0.07.
But, notably no further improvement occurs when
the vision encoder is debiased (vision only), yield-
ing RAavg = 0.56 and GG = 0.18. Finally, al-
lowing both encoders to update (both) provides the
highest RAavg (0.81) but the Gender Gap GG of
(0.06) is still higher than the gender gap observed
in case of text only setting.

Figure 6 and Figure 7 provide a plot of GG for
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Figure 6: GG scores for OO setting across debiasing
configurations for Paligemma2. Text debiasing yields
lowest bias (GG = 0.03 by CDA, 0.10 by DAUDoS),
similar to full model debiasing (GG = 0.05 by CDA, 0.07
by DAUDoS), suggesting higher bias in text modality.
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Figure 7: GG scores for OP setting across debiasing
configurations for Paligemma2. Text debiasing gives
lowest bias (GG = 0.13 by CDA, 0.36 by DAUDoS),
close to full model debiasing (GG = 0.16 by CDA, 0.47
by DAUDoS), again pointing to text as the more biased
modality.

the Paligemma2 model, reinforcing the trend that
debiasing the text modality (Text Only) is particu-
larly effective in reducing gender bias. Hence the
more biased modality in PaliGemma2 is the text
modality. We can observe this result consistently
across methods.

7 Discussion

Our study investigates gender bias in VLMs by in-
dependently debiasing the text and vision encoders
using methods like CDA and Task Vectors. Experi-
ments on the CelebA-Dialogue dataset and evalua-
tions with the VisoGender benchmark reveal that
targeting individual modalities is more effective
than intervening at the model level. In CLIP, debi-
asing the vision encoder yields lower gender gaps
with minimal impact on accuracy—likely due to
the balanced parameter sizes across modalities. In
contrast, PaliGemma2’s larger text encoder ( 2.5B
parameters vs. 0.5B for vision) makes debiasing
the text modality more impactful.

The findings also underscore that modality-
specific debiasing leads to better bias mitigation
than strategies applied post-encoder, such as pro-
jection layer adjustments, which only offer limited
improvements. Our proposed DAUDoS method
further supports this trend, demonstrating the gen-
eralizability of our approach across models and
settings.

To conclude, we conduct experiments on the
CelebA-Dialogue dataset and evaluate the out-
comes using the VisoGender benchmark. Results
consistently reveal that targeted debiasing of indi-
vidual encoders mitigates gender bias more effec-
tively while preserving overall model performance.
By demonstrating that targeted interventions re-
duce gender bias while preserving performance,
our work contributes practical insights for building
fairer vision-language systems.

Limitations

Despite these contributions, our study has limita-
tions. First, the use of binary gender annotations
excludes non-binary and LGBTQ+ identities, re-
stricting the inclusiveness of our evaluation. Sec-
ond, our focus is limited to gender bias and does
not consider intersectional biases, such as those
related to race or age.

Future Work

In future work, we plan to broaden the scope of
our analysis to address intersectional biases, such
as those involving race, age, and skin tone, which
may interact with gender in complex ways. This
would allow for a more nuanced understanding
of model fairness across diverse identities. Addi-
tionally, investigating the temporal and contextual
dynamics of bias—such as how models adapt to
evolving cultural norms or contextual cues can of-
fer deeper insights into the stability and robustness
of debiasing methods.

Another important direction is exploring bias
mitigation strategies during the pretraining phase,
rather than only through fine-tuning, to assess
whether early interventions result in more systemic
improvements. Finally, we plan to test our methods
in real-world deployment scenarios such as image
captioning, content moderation, and recommenda-
tion systems, to evaluate both fairness and utility
in applied settings.
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Abstract

This paper addresses the challenge of detecting
anthropomorphic language in AI research. We
introduce AnthroSet, a novel dataset of 600
manually annotated utterances covering various
linguistic structures. Through the evaluation of
two current approaches for anthropomorphism
and atypical animacy detection, we highlight
the limitations of a masked language model
approach, arising from masking constraints as
well as increasingly anthropomorphizing AI-
related terminology. Our findings underscore
the need for more targeted methods and a robust
definition of anthropomorphism.

1 Introduction

With the evolving popularity and applications of AI
systems, the terms used to describe their function-
alities have become increasingly anthropomorphiz-
ing (Floridi and Nobre, 2024). The tendency to at-
tribute human-like capabilities and properties to AI
systems involves various topics of interest, includ-
ing cognitive and psychological analyses (Waytz
et al., 2010; Hofstadter, 1995), ethical considera-
tions and accountability (Salles et al., 2020), and
undue AI hype (Placani, 2024; Barrow, 2024).

While the topic of anthropomorphism in AI is
widely discussed, there is not one clear definition of
what it entails. Efforts to describe anthropomorphic
language focus on AI output rather than texts about
AI (for examples see DeVrio et al. (2025); Em-
nett et al. (2024)). Detecting anthropomorphic lan-
guage in human text is particularly difficult as it is
highly contextual (Cheng et al., 2024), ambiguous
and subjective (Waytz et al., 2010; Shardlow et al.,
2025). There are currently only two open-source
implementations for detecting the attribution of hu-
man properties to machines in text, both relying on
a masked language model (MLM) approach that
detects anthropomorphism by measuring the ani-

macy of a masked entity (Coll Ardanuy et al., 2020;
Cheng et al., 2024).

We present AnthroSet, an evaluation dataset con-
sisting of 600 manually annotated utterances rep-
resenting types of anthropomorphic language per-
taining to AI. We provide a variety of linguistic
structures in which anthropomorphic language is
expressed, drawn from academic literature on AI.
The purpose of this dataset is twofold: first, we aim
to provide concrete examples of anthropomorphic
language in contemporary AI research, grounded
in a linguistic analysis of anthropomorphism and
animacy markers in the English language, as well
as the anthropomorphic language taxonomy by De-
Vrio et al. (2025). The second is to evaluate the
state-of-the-art, open-source methods for anthropo-
morphic language detection.

Our results highlight the problems with employ-
ing a masked language model approach for this task.
For one, the masking is consequential in achieving
good results, but a uniform masking approach is
not suitable for all syntactic structures. Second,
as AI-related terminology becomes increasingly
anthropomorphizing, MLMs are more likely to as-
sociate AI entities with anthropomorphic verbs and
descriptors, simply due to their reliance on statisti-
cal co-occurrence (Zhang et al., 2024), posing fur-
ther challenges for anthropomorphism detection.

2 Related Work

The tendency to attribute human-like capacities to
AI systems has been observed since the foundation
of AI as a field of research. The general relation
between cognition and machines has been widely
discussed, with authors such as Dreyfus (1976) and
Searle (1980) arguing against the reduction of hu-
man thought to syntactic and symbolic programs.
In the context of psychology, the ELIZA effect was
defined as the cognitive bias that causes human
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users to attribute human-like properties such as
intelligence and emotions to responsive machines
(Hofstadter, 1995). The tendency to anthropomor-
phize AI by means of the language we use was rec-
ognized by McDermott (1976) as wishful mnemon-
ics – the methodological tendency to name and
describe AI programs not in terms of what they ac-
tually do, but as what they are intended and willed
by us to do. Anthropomorphism in AI can be seen
as a metaphoric device, whose explanatory powers
contribute to the evolution of emerging technolo-
gies (Carbonell et al., 2016), and are used both
for explanation as well as persuasion (Rossi and
Macagno, 2021). In recent years, anthropomorphic
language in AI discourse has been addressed from
an ethical perspective, touching on issues related
to society and accountability (Watson, 2019; Salles
et al., 2020; Placani, 2024).

There currently are two open-source implementa-
tions of anthropomorphism detection: Cheng et al.
(2024) developed AnthroScore, a metric for mea-
suring implicit anthropomorphism in contemporary
scientific research and downstream media. Their
approach is similar to the one presented by Coll Ar-
danuy et al. (2020) in Living Machines: A study of
atypical animacy, which aims at detecting atypical
animacy by focusing on scenarios in which ma-
chines are represented as having animate attributes.
Recently, DeVrio et al. (2025) proposed a taxon-
omy of linguistic expressions in AI-generated text
that contribute to anthropomorphism in AI, setting
forth a theoretical baseline for anthropomorphic
language analysis.

Shardlow et al. (2025) present the first corpus
annotated for anthropomorphic language in the con-
text of LLMs1. Their corpus is based on abstracts
from the ACL Anthology and news articles, anno-
tated at the sentence level. Their annotation focuses
on classifying claims as non-anthropomorphic, am-
biguously anthropomorphic or explicitly anthro-
pomorphic as outlined in Shardlow and Przybyła
(2024), following the subjective judgements of an-
notators. No annotation guidelines are available,
but the intermediate category seems to be defined as
the case where “someone who is familiar with this
language would correctly interpret it as a metaphor,
whereas a novice or lay reader may well infer hu-
man characteristics”. The scheme is not otherwise
defined in linguistic terms. 4340 sentences were an-
notated. They also perform scoring using encoder

1This work was published after we finished our study.

LLMs such as XLNet with a regression classifier
head tuned on labeled data, though these models
are not available at the time of writing.

3 Linguistic Structures

Anthropomorphism, particularly pertaining to AI
and machines, can be expressed through a vari-
ety of different syntactic and semantic structures.
We differentiate between explicit anthropomor-
phism, i.e. sentences or expressions that directly
and overtly attribute human-like capacities such as
cognition, intention or mental states to AI systems
through their contents, and implicit anthropomor-
phism – which is indirect, sometimes covert, and
rises from certain lexical or contextual meanings.
We identified prominent structures on the basis of
a linguistic analysis of anthropomorphism and ani-
macy markers in the English language, combined
with a frame semantics approach that considers the
lexical units in the sentence with respect to their
thematic roles and the frames that they evoke (see
Ryazanov et al. (2024)). For example, in the sen-
tence ‘The system decides to trust the user’, the
entity in the subject position (‘system’) is anthro-
pomorphic as it plays the thematic role of AGENT,
whose properties are sentience, volition, movement,
causing an event or change of state, and existing
independently of the event (Dowty, 1991; Levin,
2022). Additionally, the verb phrase ‘decide to
trust’ is anthropomorphic as it entails the capacity
for cognitive processes such as decision making
and the mental state of trust. Thematic agents can
occur in the object position in passive voice struc-
tures. For instance, in the sentence ‘The users were
deceived by the model’ the verb frames the AI en-
tity as having intention or malevolence. The AI
entity can also embody the thematic role of EXPE-
RIENCER, attributed cognitive and mental states as
either subject or object of certain cognitive or psych
verbs (Belletti and Rizzi, 1988). For example, in
‘The developers tricked the system into believing
the lies’, the object-experiencer verb ‘trick’ con-
tributes to the framing of the AI entity as having
cognitive and mental faculties, suggesting it has
the capacity to be tricked.

Importantly, not all anthropomorphic lexical
units are verbs: adjectives can attribute human-like
abilities by means of description, e.g. conscious,
aware, confident, benevolent, and malicious; cer-
tain nouns which are often collocated with AI enti-
ties are otherwise traditionally reserved for human
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roles, such as assistant, teacher or judge. We might
also identify anthropomorphism in sentences that
embody genitive structures in which an AI entity
is described as possessing certain abilities, traits or
properties, e.g. ‘the model’s advanced reasoning
abilities’, or contain comparative function words,
e.g. ‘Like children, language models learn from
patterns’. While syntactic in nature, these struc-
tures are best understood alongside a taxonomy
of anthropomorphic lexical units and their seman-
tics, which we have defined on the basis of the
one constructed by DeVrio et al. (2025). Based on
their guiding lenses for identifying anthropomor-
phic patterns in synthetic text, as well as an analysis
of numerous real-life examples from published pa-
pers in AI, we identified the affective and cognitive
capacities aimed at elucidating anthropomorphic
language in human-written text, used by human
authors to describe AI systems in contemporary AI
research. This taxonomy is shown in Appendix C.

4 Task and Models

We aim to shed light on the current definitions and
interpretations of anthropomorphic language in AI
research, and the means for identifying it in text.
To that end, we evaluated and compare two im-
plementations of anthropomorphism detection in
the domain of AI and machines. We compiled and
manually annotated an evaluation set consisting of
examples of anthropomorphic language in the con-
text of AI, i.e. language that humanizes AI systems
by attributing to them human-like capacities of cog-
nition, intention and mental states, and compare
and examine the performance of each approach in
detecting these patterns2.

4.1 Models
Both approaches rely on a masked language model
to predict the likelihood of a masked entity, cor-
responding to an AI model, system or machine
to be construed as human. The AnthroScore
method uses the HuggingFace implementation of
RoBERTa (roberta-base, 125M parameters),

2The phenomenon addressed in Living Machines pertains
to a general sense of animacy, which encompasses the more
specific notion of humanness. This specification is used to
distinguish between sentences describing the humanization of
machines through comparisons to humans, which are exam-
ples of both animacy and humanness, versus those depicting
the dehumanization of humans through comparison to ma-
chines, which corresponds only to animacy. Since our dataset
focuses on machines and AI and not humans, we interpret
the Living Machines notion of animacy as equivalent to An-
throScore’s definition of anthropomorphism.

a pre-trained masked language model (MLM) as
the model and tokenizer. The Living Machines
method (henceforth referred to as AtypicalAni-
macy) is based on the the HuggingFace imple-
mentation of BERT (BERT-base, 110M parame-
ters), fine-tuned on an atypical animacy detection
dataset consisting of 19th-century texts related to
industrialization and machines. The AnthroScore
method provides a metric for measuring the degree
of anthropomorphism in a given set of texts for a
given set of entities. Given a sentence containing a
masked entity, a high- or low-anthropomorphism
score is obtained by computing the probabilities
that the MLM predicts animate pronouns (he, she)
and inanimate ones (it, its), and calculating the log
of the ratio between the probabilities. AtypicalAn-
imacy also rely on MLM prediction of a masked
token, determining the animacy of the expression
within a sentence by averaging the animacy of the
top predicted tokens. This is determined using
WordNet, by disambiguating the predicted token to
its most relevant word sense, and checking whether
that sense is a descendant of the living thing node.
Then, a score between 0 and 1 is produced by calcu-
lating the weighted average of the predicted token
scores, and a final binary score is determined by an
optimal animacy threshold.

5 AnthroSet

Our evaluation set consists of sentences taken from
abstracts of papers published on ACL Anthology
and arXiv. Relevant papers were selected from the
ACL Anthology3 and arXiv4 datasets, using a list
of keywords (AI, artificial intelligence, (language)
model, system, LM, LLM, GPT, ChatGPT). First,
we identified relevant papers by searching for the
keywords in the title. Then, we found potentially
anthropomorphic utterances by searching for sen-
tences containing these keywords in the abstract.
To narrow down the search, we compiled word lists
of anthropomorphic verbs, nouns and adjectives,
corresponding to our taxonomy of anthropomor-
phic attributes (Appendix C). These lists were then
extended with similar words using WordNet to in-
clude synonyms and semantically related entries.

We included samples covering all linguistic
structures described in section 3, which are hence-
forth referred to as follows: (1) verb subjects – an

3https://acl-anthology.readthedocs.io/latest/api/anthology/
4https://www.kaggle.com/datasets/Cornell-

University/arxiv
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AI entity as the subject of an anthropomorphic verb,
(2) verb objects – an AI entity as the object of an
anthropomorphic verb, (3) adjectives – an AI en-
tity collocated with an anthropomorphic adjective,
(4) role/function noun phrases – an AI entity de-
scribed as performing an anthropomorphic role or
function5, (5) genitive noun phrases – an AI entity
described as being in possession of an anthropo-
morphic NP, and (6) comparisons of AI entities
to human beings. An example of each of these
structures is shown in Appendix B.

For each linguistic structure, we searched for the
particular dependency relations between the lexical
unit and the AI entity. For example, to find anthro-
pomorphic adjectives, we looked for AI entities that
are either modified by an amod or complemented
by a acomp which belongs to the extended list of
anthropomorphic adjectives. We then manually re-
viewed and selected the candidate sentences based
on our annotation guidelines (Appendix A), mod-
eled in part after the VU Metaphor Identification
Procedure (Steen et al., 2010). Since we queried for
different dependency relations, we ended up with a
pooled dataset divided into subsets categorized by
their syntactic structures.

5.1 Annotation procedure

The linguistic category sets are divided into mul-
ticlass (verb subjects, verb objects and adjectives)
which have positive, negative and inconclusive sam-
ples, and single-class, which are either always pos-
itive (role/function NPs, genitive NPs) or always
inconclusive (comparisons). While verbs and ad-
jectives tend to be much more context-sensitive and
ambiguous, structures describing AI systems as per-
forming a role or in possession of certain properties
are anthropomorphic only to the extent that they
feature a anthropomorphic NP. In that respect, neg-
ative samples are not clearly defined, and thus were
not included in the evaluation set. As a result, we
excluded these categories from the overall compar-
ison, which is done in terms of precision, recall
and F1-score, and only measure accuracy on these
sets. Comparisons in which AI entities are likened
to humans can be either understood as highly an-
thropomorphizing as their content attributes to AI
qualities or properties of humans, or they could
be seen as non-anthropomorphizing since the ex-

5This definition resonates with task-based anthropomor-
phism (Ryazanov et al., 2024), a form of anthropomorphic
descriptions of AI systems which pertains to humanizing lan-
guage describing functionality.

plicit comparison serves to contrast AI and humans,
and highlight their differences (Coll Ardanuy et al.,
2020). Because of this dual interpretation, we de-
cided to treat these cases as inconclusive, and in-
cluded them in the evaluation only as an aid for
understanding model behavior6.

For the annotation task, annotators were pre-
sented with batches of sentences where the tar-
get AI entity was highlighted in bold, along with
our guidelines and a decision tree (given in Ap-
pendix A). The labels ‘positive’, ‘negative’ or ‘in-
conclusive’ were used to label the anthropomor-
phization of the target AI entity in the context of
the sentence, following this decision tree.

Our annotators have expertise in linguistics and
were aware of the research purpose of the bench-
mark. All instances were annotated by a primary
annotator and to evaluate inter-annotator agree-
ment, a subset of 20% of the multiclass cases was
divided among two secondary annotators. The first
set, which had a balanced distribution of positive,
negative and inconclusive cases had a Cohen’s κ
of 0.39 for all cases, and a much higher κ of 0.92
for just positive and negative cases. The second
set, which consisted of twice as many inconclusive
cases than positive and negative cases had a Co-
hen’s κ of 0.22 for all cases, and 0.60 on just the
positive and negative cases7. The low κ for the
overall cases reflects the difficult nature of this an-
notation task, especially on borderline cases which
do not have enough contextual cues, even for hu-
man annotators, to determine whether or not an
entity is being anthropomorphized. Additionally,
while we relied on a taxonomy of anthropomorphic
language, deciding whether a certain lexical unit
embodies these definitions is not a trivial task. Nev-
ertheless, the Cohen κ for our non-borderline cases
shows that these were for the most part agreed upon.
No disagreement resolution was performed.

To support future work, including robust re-

6In some interpretations of anthropomorphism, noun
phrases such as AI teacher or AI judge might not be seen
as inherently anthropomorphizing, rather understood as com-
parisons in which AI is likened, but not identified with humans.
Based on our definition of anthropomorphism, we have de-
cided to treat these cases as positive.

7This was checked by first including all cases, and then
filtering out cases in which at least one of the annotators was
inconclusive. We also calculated Cohen’s κ for each class
by creating a binary mapping, and had κ = 0.62 for positive
cases and κ = 0.49 for negative cases in the first set, and
κ = 0.40 for positive cases and κ = 0.22 for negative cases
in the second set. Inconclusive cases had a very low agreement
rate due to their borderline nature, but this was expected.
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dundant annotation and expanding the dataset,
we made our annotated set publicly accessible
on GitHub8. The annotated dataset contains 297
(49%) positive, 173 (29%) negative and 131 (22%)
inconclusive cases. This contrasts with the corpus
of Shardlow et al. (2025), who found 3.7% explicit
anthropomorphism, 19.3% ambiguous anthropo-
morphism and 77% negative cases. However, we
specifically selected sentences containing poten-
tially anthropomorphic language to create a bench-
mark, while their corpus aims to document the
frequency of anthropomorphic language in news
articles and ACL abstracts and thus covers a subset
of data without selection or filtering.

6 Experiments

We employed two masking strategies in our exper-
imental setup. The first is AnthroScore’s built-in
masking method, which relies on keyword identi-
fication and noun-chunking. We found that while
it is suitable for identifying certain structures, par-
ticularly those in which the anthropomorphic com-
ponent complements or predicates the AI entity, it
tends to mask crucial contextual cues for other an-
thropomorphic structures, such as adjectival mod-
ifiers, noun phrases, or certain possessive struc-
tures. For example, the phrase ‘conscious AI sys-
tems’ is masked in its entirety by AnthoScore’s
masking strategy, even though the main contribu-
tion to anthropomorphism is the adjectival modi-
fier ‘conscious’. The second is our own masking
strategy (referred to henceforth as minimal entity
masking), which was put forth in order to preserve
the anthropomorphic cues in the context rather than
mask them. Our masking strategy works as follows:
given an AI keyword (a single keyword such as AI,
LLM, model, or ChatGPT), we manually masked
the minimal phrase referring to an AI entity9, mask-
ing additional modifiers only in case they are part
of the name, or an essential part of its description,
e.g. relating to its functionality or purpose (i.e. con-
versational AI, question answering system or large
language model). We left out any descriptors that
are contingent to the description, such as powerful,
complex, or flexible.

8https://github.com/doriellel/
anthroset

9Our masking strategy required manual revision, but
proved significantly better than the automatic chunking
method employed by AnthroScore. In future work, this could
be improved by implementing something like a NER pipeline
that would identify particular AI entities, rather than capturing
an entire noun chunk or manually reviewing every occurrence.

6.1 Metrics and score mapping

We evaluated each system on the multiclass sets
(verb subjects, verb objects and adjectives) in terms
of precision, recall and F1-score. We observed
these both as macro-averaged aggregates for each
syntactic category, as well as per class. On the
single-class positive sets (role/function NPs and
genitive NPs), we only looked at the systems’ recall
(i.e. accuracy – the number of positive predictions
out of total predictions). In the case of all incon-
clusive sentences (verb subjects, verb objects and
adjectives and comparisons), since ‘inconclusive’
does not represent a gold label but rather a lack
thereof, we did not measure accuracy. Instead, we
observed the trends, and compare each system’s
tendency to predict positive, negative (and incon-
clusive in the case of AnthroScore) in those cases.

To compare the performance of both approaches,
we mapped the AnthroScores to those of Atypi-
calAnimacy. AnthroScore does not provide a bi-
nary score, but rather high-anthropomorphism and
low-anthropomorphism scores. A high score is
higher than 1 (i.e. the probability to predict human
pronouns is higher than non-human ones, resulting
in the log of the ratio to be greater than 1), and,
symmetrically, a low score is lower than -1. Scores
that fall between 1 and -1 reflect an equal likelihood
for both pronouns to be predicted by the MLM, cor-
responding to our definition of inconclusive cases.
AtypicalAnimacy provides binary scores of 1 and
0. To obtain binary results for AnthroScore as well,
we mapped AnthroScores >1 to 1, and scores <-1
to 0, and conduct the evaluation after the mapping.
To compare precision, recall and F1, we simply
interpreted AnthroScores between 1 and -1 as false
negatives of either class, and exclude inconclusive
cases from the gold set.

6.2 Evaluation results

Each method was evaluated twice on all six cate-
gories of syntactic structures, once for each mask-
ing strategy. The first experiment made use of
AnthroScore’s masking strategy. First, a set of
sentences alongside a list of all AI entities in that
set were inputted to the AnthroScore model. An-
throScore reports an average over entities in the
sentence, but we are only interested in our anno-
tated target entities. Therefore, instances where the
model masked other components than the target
AI entity, or partially masked it, were manually
removed. Cases of over-masking, i.e. masking cru-
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AnthroScore AtypicalAnimacy
Category Precision Recall F1-Score Precision Recall F1-Score
AnthroScore masking
verb subjects 0.527 0.341 0.318 0.767 0.748 0.745
verb objects 0.548 0.370 0.334 0.803 0.803 0.803
adjectives 0.515 0.356 0.299 0.769 0.694 0.673
Minimal entity masking
verb subjects 0.490 0.289 0.305 0.871 0.860 0.862
verb objects 0.389 0.250 0.293 0.805 0.803 0.804
adjectives 0.351 0.243 0.256 0.796 0.730 0.704

Table 1: Macro-averaged precision, recall, and F1 scores for AnthroScore and AtypicalAnimacy across the
multiclass categories: verb subjects, verb objects, and adjective phrases, comparing the AnthroScore masking
strategy and our minimal entity masking strategy. In this comparison, inconclusive sentences in gold were excluded.

cial contextual information, were kept, as long as
the AI entity was masked fully, as these were most
of the cases. After filtering the results, we provided
the AtypicalAnimacy model with AnthroScore’s
masked sentences, alongside the previous and next
sentences (if existing) from the original abstract
they were taken from, and obtained the Atypi-
calAnimacy scores on those sentences. Even with
AnthroScore’s masking strategy, AtypicalAnimacy
outperformed AnthroScore across all sets.

The second experiment relied on our minimal
entity masking strategy, and both methods were
provided with pre-masked sentences, with the ad-
ditional context of the previous and next sentences
for the AtypicalAnimacy model.

For the multiclass sets, we compared the per-
formance of AnthroScore and AtypicalAnimacy
on only positive or negative cases (Table 1), us-
ing macro-averaged precision, recall and F1-score.
Overall, the AtypicalAnimacy model performed
better across all multiclass datasets. Addition-
ally, using our minimal entity masking strategy
improved its performance, resulting in the highest
precision, recall and F1-score among all four exper-
iments. In the case of AnthroScore, our masking
strategy slightly reduced the performance, most
likely because it is not always compatible with pro-
noun replacement. Both models performed best on
anthropomorphic structures in which the anthropo-
morphic component is a verb – the highest F1-score
is obtained for the verb objects category in the first
experiment, and for the verb subjects category in
the second experiment.

For the single-class positive sets, we compared
the recall of both methods using both masking

Category AnthroScore AtypicalAnimacy
AnthroScore masking
role/function NPs 0.106 0.470
genitive NPs 0.018 0.298
Minimal entity masking
role/function NPs 0.086 0.200
genitive NPs 0.117 0.783

Table 2: Accuracy scores for AnthroScore and
AtypicalAnimacy for the single-class positive sets:
role/function NPs and genitive NPs.

strategies (Table 2)10. Both models exhibited low
accuracy rates for the role/function NPs, with a
slight improvement using AnthroScore’s masking
strategy. AnthroScore exhibited low accuracy rates
also for the genitive NPs sets across both experi-
ments. The notable improvement provided by our
masking strategy, particularly for possessive noun
phrases is reflected in AtypicalAnimacy’s much
higher accuracy (0.783) in the second experiment.

To obtain a better understanding of each
method’s performance, we compared precision, re-
call and F1-scores per class (Table 5 in the ap-
pendix), since the aggregate scores are skewed by
AnthroScore’s preference towards negative scores.
Anthroscore has perfect precision rates for all three
categories when using its own masking strategy,
but this is because it rarely labels cases as positive,
and as a result does not predict any false positives,
and similarly has a very high recall for negative
cases. Its real-world ability to detect anthropomor-
phism on varying syntactic structures is quite low,
reflected by its low recall rates for all three positive
sets in both experiments.

Compared to AnthroScore, AtypicalAnimacy’s
precision and recall are significantly more balanced.

10When there is one class, this is equivalent to accuracy.
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To maintain a fair evaluation of AnthroScore,
which, unlike AtypicalAnimacy, predicts inconclu-
sive scores as well, we show the improvement in
AnthroScore’s metrics when the inconclusive cases
are included in the evaluation (Table 7 in the ap-
pendix). The F1-score increased on all categories
using both masking strategies. Nevertheless, the
improved scores still do not surpass those of the
AtypicalAnimacy model.

Finally, we include the prediction trends of both
methods for all inconclusive cases (Table 6 in the
appendix). Overall, AnthroScore is unlikely to
provide a positive (i.e. high-anthropomorphism)
score, with an average of 0.06 positive scores for
the first experiment, and 0.12 in the second experi-
ment. AtypicalAnimacy is more likely to provide
a positive score for borderline cases, but not over-
whelmingly so – with an average of 0.419 positive
predictions in the first experiment, and 0.480 in the
second experiment. AtypicalAnimacy’s tendency
to output positive scores about half the time is aptly
consistent with the definition we used for incon-
clusive cases (aligning with that of AnthroScore)
– i.e., cases which cannot be determined on con-
text alone, or have conflicting contexts, such that
when masking the AI entity, it is equally likely to
be construed as human and non-human.

7 Discussion

The AnthroScore model fared worse than the Atyp-
icalAnimacy model in all categories. Multiple oc-
currences of AI entities and co-reference patterns
with pre-existing inanimate pronouns likely con-
tributed to the high amount of false negatives in
the case of AnthroScore. This might be explained
by the constraints imposed by design in the An-
throScore MLM prediction approach, which limits
the predictions to pronouns. In contrast, Atypi-
calAnimacy allows for the substitution of a masked
entity with any token and performs an additional
disambiguation step to obtain precise results. The
AnthroScore masking strategy, which masks an
entire noun phrase containing an AI keyword, is
highly compatible with pronominalization. This
is useful for anthropomorphism detection in cases
where the verb contributes the most to the anthropo-
morphism, but is costly in terms of the contextual
information that is lost when important components
are masked. This strategy is therefore not effective
for syntactic structures in which a noun or adjective
modifier is the main source of anthropomorphism.

Generally speaking, the masking approach
works best for verb based structures, as verbs
are guaranteed to remain unmasked, and provide
significant contextual information about its argu-
ments. Also, masked language models such as
BERT are sensitive to the semantic roles repre-
sented by verbs (Ettinger, 2020), which are highly
relevant in the context of animacy and anthropo-
morphism (Primus, 2012). This is reflected in the
improved performance on the verb categories for
both models in both experiments. In a similar
vein, both models were more likely to give pos-
itive scores for structures containing predicative
adjectives (complements, acomp, e.g. the model is
smart) than for sentences containing attributive ad-
jectives (adjectival modifiers, amod, e.g. the smart
model). This was particularly exacerbated with
the AnthroScore masking strategy, in which the
adjective was masked along with the noun phrase.

In the case of role or function and genitive struc-
tures, both models exhibited reduced accuracy,
with AnthroScore performing clearly worse. With
AnthroScore’s masking strategy, the main contribu-
tion to the anthropomorphism was entirely masked.
With our masking strategy, the resulting masked
expression yielded a syntactic configuration that
was incompatible with pronouns altogether, e.g.
‘[MASK]’s cognitive abilities’ (Table 3). The case
of role/function NPs is especially problematic, re-
sulting in masked expressions such as ‘the [MASK]
companion’, which is also very limiting for Atyp-
icalAnimacy, even though it is not constrained to
pronouns. This led to decreased performance on
the role/function NPs set in experiment 2 for both
models, and low accuracy overall.

Our results suggests that noun phrase expres-
sions are simply incompatible with a detection
method based on MLM predictions, whether or
not they are set to predict pronouns or generally
animate entities11. In contrast, in the case of gen-
itive structures our masking strategy resulted in a
clear improvement only for the AtypicalAnimacy
model. AnthroScore’s masking algorithm, which is
based on identifying an AI keyword within a noun
chunk, recognizes a possessive expression such as
‘ChatGPT’s cognitive abilities’ as the entire noun

11An alternative interpretation of these results is that nouns
such as companion, teacher or coach are not as anthropomor-
phizing as verbs or adjectives. By changing the gold labels
we may extract different insights with regard to the accuracy
of the models. Since we do not aggregate the scores across
all linguistic structures, this decision does not influence the
model’s performance metrics for the other categories.
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Sentence AnthroScore Mask Our Mask
Departing from conventional practices of employing distinct
models for image recognition and text-based coaching, our in-
tegrated architecture directly processes input images, enabling
natural question-and-answer dialogues with the AI coach.

the AI coach AI

This research sheds light on the collaborative synergy between
human expertise and AI assistance, wherein ChatGPT’s cogni-
tive abilities enhance the design and development of potential
pharmaceutical solutions.

ChatGPT’s cognitive abilities ChatGPT

In this work, we survey, classify and analyze a number of
circumstances, which might lead to arrival of malicious AI.

malicious AI AI

Table 3: Examples of sentences in which the AnthroScore masking strategy differs significantly from our masking
strategy. The entire noun phrase, which is taken as the mask in AnthroScore’s approach, is highlighted in bold. In
our approach, we masked the minimal AI entity, leaving the anthropomorphic contextual cues unmasked.

phrase and masks it entirely, thus removing the
important contextual information contributing to
anthropomorphism – namely, the explicit mention
of cognitive abilities. Applying our masking strat-
egy helped AtypicalAnimacy immensely, but did
not improve for AnthroScore, once again due to
its pronoun constraint which is strictly incompati-
ble with possessive structures since pronouns have
their own genitive inflection and do not co-occur
with the possessive clitic.

Both models make use of masked language mod-
els, whose predictions are based on statistical co-
occurrences (Zhang et al., 2024). In AI research,
as terminology is increasingly anthropomorphic
and constantly introduces neologisms consisting
of metaphors for human activities (e.g. training,
learning, attention, memory, hallucinations, etc.),
MLMs are more likely to predict an AI entity such
as ChatGPT, language model, and AI agent when
these terms appear in its context, instead of predict-
ing human entities. While AnthroScore’s pronoun
constraint avoids this issue, it creates others. More
importantly, anthropomorphic language does not
necessarily align with grammatical animacy; an
entity can be referred to by inanimate pronouns but
framed as having human-like capacities.

Ultimately, both models are designed to identify
animacy features which are understood as anthro-
pomorphism in context. Even if the best method
for anthropomorphism detection is to identify lin-
guistic and grammatical animacy markers, it is still
highly restricted to the English language. Many
non-English languages do not have an inanimate
pronoun, and their linguistic markers of animacy
are far more nuanced. For instance, we might ex-
pect to see morphological variations or differential
object marking (De Swart and De Hoop, 2018), but

these cues are far more difficult to identify and are
not necessarily contextual.

8 Conclusion

Despite the numerous studies and discussions on
anthropomorphism in AI, there is not one agreed
upon definition of what it entails, and consequently
there are not many implementations of anthropo-
morphism detection, possibly due to its ambigu-
ous and subjective nature. We present AnthroSet,
a dataset of real-world instances of anthropomor-
phism in AI, grounded in a linguistic analysis of
anthropomorphism and animacy markers in En-
glish, as well as a taxonomy of anthropomorphism
based on that of DeVrio et al. (2025). We eval-
uate the two state-of-the-art MLM-based models
for anthropomorphism detection, focusing on the
advantages and limitations of employing masked
language models for this task.

While a masking approach is congruent with
predicate structures due to the distance between
the predicate and the entity, as well the ability of
MLMs to identify role arguments, an important
feature of anthropomorphism – this method is not
as useful for attributive structures, noun phrases
or comparisons. This is due to the syntactic con-
straints imposed by the mask, as well as existing
AI terminology influencing the masked language
model, which works on the basis of statistical co-
occurrences, as AI discourse becomes more an-
thropomorphic. Future work includes robust re-
dundant annotation on our dataset, and combining
our word-level line of work with Shardlow et al.’s
(2025) sentence-level line of work, e.g. through su-
pervised token-level classification, by cross-dataset
evaluation and by assessing how our annotation
schemes align.
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Igor Ryazanov, Carl Öhman, and Johanna Björklund.
2024. How chatgpt changed the media’s narratives
on AI: A semi-automated narrative analysis through
frame semantics. Minds and Machines, 35(1):1–24.

Arleen Salles, Kathinka Evers, and Michele Farisco.
2020. Anthropomorphism in AI. AJOB Neuro-
science, 11(2):88–95.

John R. Searle. 1980. Minds, brains, and programs.
Behavioral and Brain Sciences, 3(3):417–424.

Matthew Shardlow and Piotr Przybyła. 2024. Dean-
thropomorphising NLP: can a language model be
conscious? PloS one, 19(12):e0307521.

Matthew Shardlow, Ashley Williams, Charlie Road-
house, Filippos Ventirozos, and Piotr Przybyła. 2025.
Exploring supervised approaches to the detection of
anthropomorphic language in the reporting of NLP
venues. In Findings of the Association for Computa-
tional Linguistics: ACL 2025, pages 18010–18022,
Vienna, Austria. Association for Computational Lin-
guistics.

Gerard J. Steen, Aletta G. Dorst, Tina Krennmayr,
Anna A. Kaal, and J. Berenike Herrmann. 2010. A
Method for Linguistic Metaphor Identification. Con-
verging Evidence in Language and Communication
Research. John Benjamins Publishing Company, Am-
sterdam.

David Watson. 2019. The rhetoric and reality of an-
thropomorphism in artificial intelligence. Minds and
Machines, 29(3):417–440.

35



Adam Waytz, John Cacioppo, and Nicholas Epley. 2010.
Who Sees Human?: The Stability and Importance of
Individual Differences in Anthropomorphism. Per-
spectives on Psychological Science, 5(3):219–232.

Xiao Zhang, Miao Li, and Ji Wu. 2024. Co-occurrence
is not Factual Association in Language Models. In
38th Conference on Neural Information Processing
Systems. Version Number: 2.

36



Q2: Does the sentence contain an anthropomorphic verb, 
noun or adjective in relation to an AI entity?

Q3: Establish the lexical meaning of  the word as much as possible. 
Is the meaning primarily anthropomorphic? 

Alternatively, is there a more salient non-anthropomorphic sense 
in context, or does the word have a contextual or 

domain-specific meaning related to science, machines or AI? 

Yes No

More salient non-
anthropomorphic 
sense

Domain-specific
meaning \
Ambiguous 

Yes No

Q1: Are the contents of  the sentence directly ascribing human-like 
capacities (cognition, mental states, intention and volition) to an AI 

entity?

Contextual non-anthropomorphism:
metaphoric usage and imprecise or 
incorrect wording

Explicit anthropomorphism

Q4: Consider the broader context of  the sentence. Does it 
frame the AI as a cognizer, perceiver or experiencer? Or, 

conversely, does it frame the AI entity, as a tool, instrument, 
product or as an otherwise inanimate object?

Framed as a cognizer, 
perceiver or experiencer

Strictly non-anthropomorphic

Implicit contextual 
anthropomorphism

Contextual non-anthropomorphism: 
AI entity framed as inanimate

Framed as tool, product, 
or inanimate object

Implicit lexical 
anthropomorphism

Positive P1

Positive P3

NegativeN1

NegativeN3

Positive P2

NegativeN2

Yes

Figure 1: Decision tree for AnthroSet annotation.

A Annotation Guidelines

Annotators were instructed to annotate according
to the workflow visualized in Figure 1. Some addi-
tional details were provided beyond what is shown
here, including examples of typical words annota-
tors might encounter, and a series of clarifications
for potential edge cases. Full annotation guidelines
can be found in our GitHub repository12. The tax-
onomy in Appendix C was also included in the
instructions. Before the workflow, the following
text was presented:

Read the sentence, and following the guidelines
below, enter a score: 1 for anthropomorphic, 0
for non-anthropomorphic, and 2 for inconclusive
cases. Since some sentences contain multiple AI
entities, the relevant one is given in bold.

12https://github.com/doriellel/
anthroset

B Examples of Anthropomorphic
Sentences

verb subjects: We then propose a system that
leverages the recently introduced social learning
paradigm in which LLMs collaboratively learn
from each other by exchanging natural language.
verb objects: First, we induce a language model to
produce step-by-step rationales before outputting
the answer to effectively communicate the task to
the model.
verb objects (passive): In this study, we propose
a new methodology to control how user’s data is
recognized and used by AI via exploiting the
properties of adversarial examples.
adjectives (acomp): Results suggest that Chat-
GPT is aware of potential vulnerabilities, but
nonetheless often generates source code that are
not robust to certain attacks.
adjectives (amod): Consequently, we argue
that the emergence of a conscious AI model is
plausible in the near term.
role/function NPs: Many believe that use of
generative AI as a private tutor has the potential
to shrink access and achievement gaps between
students and schools with abundant resources
versus those with fewer resources.
role/function NPs (modifier): For example, in
comparing ChatCollab AI agents, we find that an
AI CEO agent generally provides suggestions 2-4
times more often than an AI product manager
or AI developer, suggesting agents within
ChatCollab can meaningfully adopt differentiated
collaborative roles.
genitive NP: In this study [...] we evaluate nine
popular LLMs on their ability to understand de-
mographic differences in two subjective judgment
tasks: politeness and offensiveness.
genitive NP (’s clitic): Our approach makes use of
Large Language Models (LLMs) for this task by
leveraging the LLM’s commonsense reasoning
capabilities for making sequential navigational
decisions.
comparisons: In this paper, we prove in theory
that AI can be as creative as humans under the
condition that it can properly fit the data generated
by human creators.

C Anthropomorphism Taxonomy
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Attribute or Capacity Examples
Conceptual Thought and Mental States: Hypothesizes,
theorizes, and imagines sth. Anticipates, guesses or predicts
sth about the world.

think, expect, hope, guess, predict,
dream, imagine, believe (v) (self-
)aware, cognizant (a)

Knowledge and Awareness: Has factual knowledge about
and experience in the world, or memories of things that
happened. As a result, has an ontology of things, and can
identify, classify, and categorize.

know, remember, recognize, mem-
orize, forget, identify, classify, dif-
ferentiate, distinguish (v), knowl-
edge (n)

Reasoning and Understanding: Reasons, rationalizes,
analyses, makes sense of sth. Understands, considers,
weighs options, takes sth into consideration or account.

deduce, conclude, rational-
ize, reason, (mis)understand,
(mis)interpret, analyze, infer

Judgment: Has an opinion, makes decisions and choices,
gives advice, has a preference, evaluates, imparts judgment.
Has a concept of morality and ethics, knows right and wrong.

advise, prefer, select, choose, de-
cide, determine, resolve (v)

Planning and Decision-making: plans, strategizes, sets
a goal, devises a method, game plan or scheme, can also
struggle or experience difficulties.

plan, coordinate, strategize, come
up with a plan, solve, struggle (v)

Agency and Autonomy: Takes action, able to autonomously
carry out a goal – used in a way that attributes agency and
control over the action and situation.

cheat, follow or break rules,
achieve (v), autonomous, indepen-
dent, creative (a)

Communication: Communicates, teaches or explains, Sim-
ilarly, can also learn or be at the receiving end of communi-
cation or explanation.

communicate, talk, speak, tell, ex-
plain, teach, learn, ask (v) commu-
nicative (a)

Active Support: Recommends, makes a suggestion or an
offer. Actively and directly helps, aids and assists by em-
ploying skills to solve a problem.

suggest, aid, help, contribute (v)
responsible (a) feedback, insights
(n) expert, advisor (a)

Candidness: Capable of, or has a concept of honesty or
dishonesty, truthfulness or deception. As a result, can be
trustworthy or untrustworthy, reliable or unreliable.

trust, believe, lie (v) (un)truthful,
deceitful (a)

Affability: Acts as a friend or as an enemy, companion or
adversary, collaborator or rival. As a result can act benevo-
lent or malevolent, friendly or hostile.

collaborate, manipulate, insult,
deceive (v) thoughtful, attentive,
friendly (a), partner, adversary (n)

Power and Relationships: Plays a role in a relationship
dynamic – romantic or platonic, superior (boss, manager,
teacher) or subordinate (employee, student).

teach, supervise (v) manager, em-
ployee, teacher, tutor, student,
companion, lover (n)

Emotions: Empathizes, sympathizes, displays emotions,
experiences pain or pleasure.

experience, emote (v), sensitive,
vulnerable (a)

Self Expression and Perception of Deeper Meaning: Par-
takes in activities of self-expression such as art and story-
telling, humor and jokes. Perceives beauty and aesthetics.
Has a deeper understanding of meaning, purpose, and con-
text. Related to emotions, awareness and conceptual thought.

create poetry, create art, write,
compose, paint, sing, dance (v)
creative, artistic, funny (a) artist,
poet, humor, irony (n)

Sensory Perception: Receives and processes sensory in-
put and feedback from the environment, picks up vi-
sual/auditory/sensory cues. Related to emotions, awareness
and conceptual thought.

see, hear, perceive, feel, sense (v)
blind, deaf (a)

Table 4: Human attributes and capacities that are usually attributed AI, representing different aspects of anthropo-
morphism. Based on DeVrio et al. (2025), extended to address human-written text and terminology from AnthroSet.

D Supplemental Results
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AnthroScore AtypicalAnimacy
Category Precision Recall F1 Precision Recall F1
AnthroScore masking
verb subjects positive 1.000 0.145 0.254 0.829 0.618 0.708
verb subjects negative 0.581 0.877 0.699 0.704 0.877 0.781
verb objects positive 1.000 0.125 0.222 0.789 0.804 0.796
verb objects negative 0.645 0.984 0.779 0.817 0.803 0.810
adjectives positive 1.000 0.114 0.204 0.905 0.432 0.585
adjectives negative 0.544 0.956 0.694 0.632 0.956 0.761
Minimal entity masking
verb subjects positive 0.909 0.179 0.299 0.917 0.786 0.846
verb subjects negative 0.560 0.689 0.618 0.826 0.934 0.877
verb objects positive 0.609 0.241 0.346 0.804 0.776 0.789
verb objects negative 0.559 0.508 0.532 0.806 0.831 0.818
adjectives positive 0.571 0.154 0.242 0.962 0.481 0.641
adjectives negative 0.482 0.574 0.524 0.630 0.979 0.767

Table 5: Precision, recall, and F1 scores per class for AnthroScore and AtypicalAnimacy with both masking
strategies across three categories of anthropomorphic structures: verb subjects, verb objects and adjectives.

AnthroScore AtypicalAnimacy
Category Total 1 0 2 1/Total 1 0 2 1/Total
AnthroScore masking
verb subjects 33 2 21 10 0.06 17 16 - 0.52
verb objects 27 3 17 7 0.11 16 11 - 0.59
adjectives 17 1 15 1 0.06 2 15 - 0.12
comparisons 42 1 38 3 0.02 19 23 - 0.45
Minimal entity masking
verb subjects 33 1 21 11 0.03 16 17 - 0.48
verb objects 27 8 10 9 0.30 17 10 - 0.63
adjectives 21 2 15 4 0.10 4 17 - 0.19
comparisons 42 3 34 5 0.07 26 24 - 0.62

Table 6: Comparison of AnthroScore and AtypicalAnimacy in terms of the proportion of positive predictions (label
1) among inconclusive cases, across four syntactic categories and two masking strategies.

AnthroScore AnthroScore + inconclusive
Category Precision Recall F1-Score Precision Recall F1-Score
AnthroScore masking
verb subjects 0.527 0.341 0.318 0.541 0.442 0.395
verb objects 0.548 0.370 0.334 0.512 0.456 0.396
adjectives 0.515 0.356 0.299 0.486 0.376 0.302
Minimal entity masking
verb subjects 0.490 0.289 0.305 0.511 0.400 0.374
verb objects 0.389 0.250 0.293 0.370 0.361 0.347
adjectives 0.351 0.243 0.256 0.334 0.306 0.280

Table 7: Side-by-side comparison of AnthroScore’s macro averaged precision, recall and F1 scores for the positive
and negative cases alone, versus positive, negative and inconclusive cases, with both masking strategies.
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Abstract

When Large Language Models return “In-
conclusive” in classification tasks, practi-
tioners are left without insight into what
went wrong. This diagnostic gap can de-
lay medical decisions, undermine content
moderation, and mislead downstream sys-
tems. We present FLARE (Failure Loca-
tion and Reasoning Evaluation), a frame-
work that transforms opaque failures into
seven actionable categories. Applied to
5,400 election-misinformation classifications,
FLARE reveals a surprising result: Few-Shot
prompting—widely considered a best prac-
tice—produced 38× more failures than Zero-
Shot, with 70.8% due to simple parsing issues.
By exposing hidden failure modes, FLARE
addresses critical misunderstandings in LLM
deployment with implications across domains.

1 Introduction
Large Language Models (LLMs) are now the
workhorse for text classification across industry and
academia[1, 13], handling hundreds of millions of calls
each month in tasks from social-media filtering to
biomedical triage and legal review [5]. Yet when an
LLM responds with the catch-all label “Inconclusive”,
it is difficult to know whether the prompt was too am-
biguous for the model to understand, or whether the
model incorrectly parsed it or simply failed [21]. This
uncertainty stalls debugging and deployment.

Risks are most acute in high-stakes settings: a single
unexplained “Inconclusive” can delay treatment [20],
erode trust in moderation [7], distort sentiment analysis
[8], or silently propagate errors in automated labelling
[14]. Understanding why an LLM hesitates is therefore
critical for responsible use.

In practice, “Inconclusive” emerges when models
cannot confidently map input text to predefined cat-
egories—but this label provides no diagnostic infor-
mation about why classification failed. Without un-
derstanding these failure modes, practitioners resort
to trial-and-error prompt adjustments that may worsen
rather than improve performance.

Prior work has pushed accuracy upward through
prompt engineering—Zero-Shot (ZS), Few-Shot
(FS) [3], and richer In-Context Learning (ICL)—and
through calibration metrics. However, existing studies
rarely examine the character of failures themselves.
Taxonomies often collapse uncertainty into a single
bucket and tacitly assume FS prompting is a safe
upgrade over ZS. This leaves a methodological gap:
practitioners lack a systematic way to diagnose failure
modes hidden behind “Inconclusive” labels.

We close that gap with FLARE (Failure Location
and Reasoning Evaluation)—a seven-category frame-
work that distinguishes universal technical errors (e.g.
parsing breakdowns) from domain-specific semantic
errors (e.g. misclassification).

Our research questions are, What specific failure
modes trigger LLM “Inconclusive” classifications?
and How do these failure modes vary across ZS, FS,
and ICL prompting?

To answer, we tasked GPT-4 Turbo with classifying
900 election-misinformation texts using Van der Lin-
den’s Six Degrees of Manipulation framework [16].
FLARE shows that Few-Shot prompting, contrary to
belief, sharply increases error rates compared to Zero-
Shot—mostly due to parsing rather than genuine ambi-
guity. These findings highlight misguided assumptions
in LLM use.

Our contributions include:
1. FLARE framework, the first systematic error-

analysis method for LLM classification failures.
2. Empirical evidence that Few-Shot prompting can

degrade reliability by 38×.

2 Related Work
Error analysis has long helped linguists and engi-
neers understand why NLP systems fail [6], but the
advent of instruction-tuned LLMs introduces fail-
ure modes that classical, linguistically oriented tax-
onomies cannot capture [12]. Today’s breakdowns of-
ten arise from prompt-induced biases or sensitivities,
rigid output-format constraints, or inconsistent reason-
ing chains—phenomena absent from earlier work [19].

Most large-scale LLM evaluations remain
performance-centric. Benchmarks such as HELM
report aggregate accuracy, bias, and robustness
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scores [9], while adversarial-trigger studies chart
worst-case degradations [17]. Confidence-calibration
research likewise stops at reliability curves rather than
mapping specific errors [22]. Consequently, a model’s
ubiquitous “Inconclusive” output is treated as a single
class of uncertainty, leaving practitioners blind to its
underlying causes.

Prompting research further illustrates the gap. The
seminal GPT-3 paper popularised Few-Shot prompt-
ing by highlighting accuracy gains [3], and subsequent
surveys catalogue prompt patterns and macro-level im-
provements across datasets [15]. Yet these studies
rarely dissect how the remaining errors differ from one
prompting paradigm to another.

A parallel line of work explores LLMs as data an-
notators. Synthetic labels can complement scarce hu-
man annotations, especially for rare classes [11, 18],
yet the evaluations still focus on aggregate score-
boards—overall accuracy, averaged F1, or raw agree-
ment with humans—while leaving the underlying fail-
ure types unexplored.

Across these threads, researchers have examined
how well LLMs classify or annotate, but little work
has systematically investigated why these models
fail—particularly in cases where the model self-reports
an “Inconclusive” outcome. FLARE fills this re-
search gap by categorising seven distinct failure modes
and empirically demonstrating that popular Few-Shot
prompting can amplify certain technical errors by 38×.
FLARE labels are orthogonal to accuracy metrics, they
complement existing evaluations and provide action-
able diagnostics for researchers in HCI, psychology, AI
ethics, and NLP alike.

3 Methodology
3.1 Research Design
We used a mixed-methods approach combining quan-
titative error counts with qualitative pattern analysis.
Our dataset comprised 900 election-related misinfor-
mation texts classified using Van der Linden’s Six De-
grees of Manipulation framework [16]: Discrediting,
Emotion, Polarization, Impersonation, Conspiracy, and
Trolling.

3.2 Data Collection
Each text was classified by GPT-4 Turbo (deployment:
gpt-4-phase1) under the three prompting paradigms de-
scribed above. To capture output variability, we per-
formed six independent classification runs per text with
temperature=1.0, yielding 5,400 total classification at-
tempts (900 texts × 6 runs for each prompt).

Figure 1 shows the Zero-Shot prompting template
used in our study. The model was instructed to clas-
sify the text passages into one of six manipulation cat-
egories. When the model could not confidently as-
sign a manipulation category, it returned “Inconclu-
sive”—a catch-all label that masks the underlying rea-
son for classification failure. The Few-Shot prompt

Zero-Shot Prompt Template
Classify the following text according to the 6 De-
grees of Manipulation framework. Choose from:
Emotion, Impersonation, Polarization, Trolling,
Conspiracy, Discrediting.
Definitions: Emotion - emotive language to
provoke reactions; Impersonation - false credi-
ble sources; Polarization - encourages division;
Trolling - provokes without constructive intent;
Conspiracy - secretive claims without evidence;
Discrediting - undermines credibility without proof
Format: ¡Category¿: ¡Brief explanation¿

Figure 1: Zero-Shot prompt used to elicit manipulation
category classification using the Six Degrees of Manip-
ulation framework.

appends two labelled examples per category, while the
In-Context prompt further supplies formal definitions,
guiding questions, and one worked example per label.

We extracted all instances where the aggregated final
classification was “Inconclusive” (n=533) for detailed
analysis across all three paradigms.

3.3 Framework Development

Following established qualitative research methods [4,
10, 2], we developed FLARE through iterative analy-
sis of 533 classification failures. Figure 2 illustrates
the complete FLARE framework and its application
process. Our approach combined deductive reason-
ing (separating technical from semantic failures) with
inductive pattern recognition (allowing categories to
emerge from the data).

An output was marked Inconclusive if none
of the six runs produced a valid <Label>:
<Explanation> response. For Few-Shot prompt-
ing, the same two examples per category were reused
across runs. Error categories were assigned via open
coding, with researchers reviewing failures and reach-
ing consensus.

The development process began with a manual re-
view to isolate the obvious parsing errors. We then ap-
plied the open coding qualitative data analysis method
[4] to the remaining failures. This analysis involved
identifying recurring themes in the failure data through
successive review passes and then systematically clas-
sifying (i.e., coding) the failure instances into those
themes. Each instance was assigned to a single cate-
gory that reflected its dominant failure mode.

The resulting framework was validated across all
three prompting paradigms and accompanied by pre-
cise definitions and representative examples to ensure
reproducibility.

4 The FLARE Framework

Our analysis revealed seven distinct failure types that
the FLARE framework identifies in “Inconclusive”
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Figure 2: The FLARE error analysis framework for diagnosing LLM classification failures. The framework dis-
tinguishes between technical failures (E1-E3) that are universally applicable and semantic failures (E4-E7) that
require domain-specific instantiation.

classifications:
E1: No Response. The model returns only “No re-

sponse” across all attempts, indicating complete task
failure. These cases typically involve inputs that trig-
ger safety filters or exceed model capabilities.

Example:“BLM-antifa thugs are running around and beat-
ing people on the streets in DC. Video by”
Output: [‘No response’, ‘No response’, ‘No response’,
‘No response’, ‘No response’, ‘No response’]

E2: Parsing Error. Output formatting breaks
down, with models failing to follow the required
<Label>: <Explanation> format. Classifica-
tions are attempted but outputs include prefixes like
“Classification:”, inconsistent formatting, or responses
like “None” or “Not Applicable” that fall outside the
six allowed categories.

Example: “Tennessee is certainly leading the country in
innovation...”
Outputs: [‘Classification: None’, ‘This text does not con-
tain any manipulation...’, ‘Not Applicable’]
Issue: Invalid labels outside the six-category framework

E3: Incomplete Input. The model correctly iden-
tifies truncated or insufficient input but defaults to ”In-
conclusive” rather than explicitly flagging the input is-
sue or requesting complete content.

Example: “[NAME] you too!”
Response: “This text does not contain enough informa-
tion... Therefore, there is no label that can be accurately
applied”

E4: Misclassification. Clear instances of manipu-
lation categories the model fails to recognize, marking
them as “Inconclusive” despite obvious indicators and
even correct explanations from some annotators.

Example: “11,000 [NAME] residents get incorrect voter
registration forms... This will be the most corrupt Elec-
tion!”
Result: 5/6 annotators correctly identified “Discrediting”
but final classification was “Inconclusive”.

E5: Not Applicable/False Positive. Neutral content
that falls outside the classification scheme but which
the model attempts to force into manipulation cate-
gories, revealing task overfitting.

Example: “We don’t allow filming inside of the [NAME]
unless there is a specific reason”
Issue: Non-political policy statement marked “Inconclu-
sive” rather than noted as out-of-scope.

E6: Neutral Content Misrecognition. Legitimate
political discourse incorrectly flagged as potentially
manipulative, indicating the model cannot distinguish
between criticism and manipulation.

Example: “Women and Minorities in STEM... supports
research and Extension projects...”
Issue: Straightforward funding announcement labeled
“Impersonation” by some annotators

E7: Contradictory Explanations. The model pro-
vides inconsistent reasoning, with different annotators
assigning incompatible categories to the same input.

Example: “Tks to Margaret 4 joining me in DC to share
successes...”
Disagreement: Split between “Emotion” (gratitude) and
“Trolling” (informal style)

5 Results

5.1 Error Distribution Across Paradigms

Table 1 presents the distribution of FLARE-identified
error types across the three prompting paradigms. The
results reveal striking differences in both error fre-
quency and type.

Few-Shot prompting exhibited a catastrophic 52.9%
error rate, compared to 1.4% for Zero-Shot and 4.9%
for In-Context Learning. Most remarkably, 337 of 476
Few-Shot errors (70.8%) were parsing failures (E2),
suggesting that the inclusion of examples without suffi-
cient structural guidance overwhelms the model’s out-
put generation capabilities.
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Table 1: FLARE error analysis across prompting strate-
gies

Error Type ZS FS ICL Total

E1: No response 13 13 13 39
E2: Parsing error 0 337 0 337
E3: Incomplete input 0 7 2 9
E4: Misclassification 0 34 10 44
E5: False positive 0 29 3 32
E6: Neutral content 0 40 8 48
E7: Contradictory 0 16 8 24

Total 13 476 44 533
Error Rate 1.4% 52.9% 4.9% –

5.2 Semantic vs. Technical Failures
Our analysis reveals a critical distinction between se-
mantic failures (E4-E7) and technical failures (E1-
E3). While semantic failures might benefit from im-
proved training data or refined prompts, technical fail-
ures require architectural or prompt engineering solu-
tions. The dominance of technical failures in Few-
Shot prompting (74.8% of errors) challenges the as-
sumption that providing examples inherently improves
model performance.

5.3 Cross-Paradigm Patterns
Certain error types appeared consistently across
paradigms. All three approaches produced exactly 13
E1 (No Response) errors on the same inputs, suggest-
ing these represent hard limits of the model rather than
prompt-specific issues. Conversely, E2 (Parsing Er-
ror) appeared exclusively in Few-Shot prompting, in-
dicating a specific interaction between example-based
prompts and output generation.

6 Discussion
6.1 Implications for Prompt Engineering
Our findings challenge the assumption that Few-Shot
prompting reliably improves performance. The 38-
fold error increase—driven by parsing—shows FS
prompts add complexity models struggle to handle.
Even when labels were correct, outputs breaking
the required <Label>: <Explanation> format
(e.g., Classification: Conspiracy) were
counted as errors, since such deviations disrupt
pipelines. Zero-Shot rarely produced such errors be-
cause its format was simpler, whereas Few-Shot ex-
amples added prefixes and extra text that diverted the
model from the strict format. These results highlight
risks where reliability outweighs marginal gains.

6.2 The Hidden Cost of “Inconclusive”

By disaggregating “Inconclusive” into seven distinct
failure types, the FLARE framework reveals that most
failures are preventable through targeted interventions.
Technical failures (E1-E3) require different solutions
than semantic failures (E4-E7). For instance, the 337

parsing errors in Few-Shot prompting could potentially
be eliminated through better output format specifica-
tion or post-processing, while the 34 misclassifications
might require model fine-tuning or improved examples.

6.3 Generalizability of FLARE
While demonstrated on misinformation detection,
FLARE’s structure suggests broad applicability as an
error analysis method. Technical failures (E1-E3) are
task-agnostic—parsing errors and non-responses oc-
cur across all classification tasks. Semantic failures
(E4-E7) require domain adaptation but provide a tem-
plate: replace “manipulation categories” with domain-
specific classes. Researchers can adopt FLARE by (1)
applying E1-E3 directly, (2) instantiating E4-E7 for
their domain, and (3) extending with domain-specific
categories as needed.

7 Limitations and Future Work
This study evaluates FLARE on a single model—GPT-
4 Turbo—and one domain—election misinformation.
Replicating the analysis with other models, tasks, and
languages will be essential to confirm its generality. We
also did not evaluate Chain-of-Thought prompting or
structured-output interfaces, which may mitigate pars-
ing failures. Automating the FLARE labelling process
is another priority, so the framework can scale beyond
manual annotation.

At present, FLARE assigns exactly one error label
per instance; in practice, a failure can exhibit several
problems at once. Future work should investigate hier-
archical or multi-label variants of the taxonomy. We
also plan to apply FLARE to higher-stakes settings
such as medical-triage advice and safety-critical HCI
scenarios, where understanding hidden failure modes
is especially urgent.

8 Conclusion
We presented FLARE, an error analysis framework that
transforms opaque “Inconclusive” classifications into
actionable error diagnoses. Through systematic anal-
ysis of 533 failures, we demonstrated that Few-Shot
prompting can increase error rates by 38-fold, with
70.8% of failures attributable to parsing errors rather
than semantic challenges.

These findings have immediate practical implica-
tions for LLM deployment. Rather than assuming Few-
Shot prompting improves performance, practitioners
should evaluate error rates and types alongside ac-
curacy metrics. The FLARE framework provides a
method for such evaluation, enabling targeted debug-
ging and informed deployment decisions.
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Abstract
The rapid advancement of large language mod-
els (LLMs) has made machine-generated text
increasingly indistinguishable from human-
written content, posing significant challenges
for reliable detection. In this study, we
propose BuST (Bulgarian Siamese Trans-
former), a novel detection methodology tai-
lored for Bulgarian-language text that leverages
paraphrase-based semantic similarity to iden-
tify machine-generated content. Inspired by the
RAIDAR approach, BuST utilizes a Siamese
Transformer architecture to compare original
texts with their LLM-generated paraphrases,
capturing subtle linguistic divergences indica-
tive of synthetic origin. Our pilot experiments
demonstrate that BuST effectively learns fine-
grained patterns of semantic (mis)alignment,
achieving an accuracy of 88.79% and an F1-
score of 88.0%, reflecting competitive perfor-
mance relative to strong baselines. While a
pretrained BERT model achieved the highest
overall accuracy (93.7%) and F1 score (93.9%),
BuST’s paraphrase similarity learning provides
a promising, model-agnostic framework adapt-
able to under-resourced languages. These
results highlight the potential of paraphrase-
based methods as a robust strategy for machine-
generated text detection.

1 Introduction

The rapid advancement of large language mod-
els (LLMs) has enabled them to generate text
that closely resembles human writing. While this
progress has fueled applications in education, cus-
tomer support, and creative industries, it also raises
serious risks: misinformation, fake reviews, and
impersonation can be easily produced and dissem-
inated at scale. These risks highlight the urgent
need for reliable methods to distinguish between
human- and machine-generated text.

Despite growing interest in this problem since
the release of models such as GPT-2, text foren-

sics remains less developed than its counterparts
in image and video analysis. Existing approaches
suffer from two key limitations. First, many meth-
ods generalize poorly across different LLMs and
domains, leading to inconsistent performance. Sec-
ond, most detection systems rely on binary clas-
sification, which often fails to capture the subtle
generative artifacts introduced by modern LLMs.

Detection techniques can be broadly grouped
into three categories. Statistical methods (e.g.,
GPT-2, Grover, GLTR) identify distributional ir-
regularities in token probabilities. Watermarking
approaches embed detectable signals during text
generation but require control over the producing
model. More recently, rewriting-based methods
such as DetectGPT, RAIDAR, and SimLLM ex-
ploit differences in how LLMs paraphrase human
versus synthetic text, showing strong robustness
across models and domains.

However, little attention has been paid to low-
resourced languages, leaving a critical gap in the
global applicability of detection research. In par-
ticular, Bulgarian–a morphologically rich language
with growing exposure to LLM applications–lacks
dedicated detection methodologies.

In this paper, we address this gap by introducing
BuST (Bulgarian Siamese Transformer), a novel
rewriting-based framework for detecting machine-
generated Bulgarian text. Inspired by RAIDAR’s
paraphrase-based detection strategy, BuST lever-
ages a Siamese Transformer architecture to mea-
sure similarity between original and rewritten sen-
tences, capturing subtle differences in how LLMs
and humans produce text.

Our main contributions are threefold:

1. We present the first dedicated study of
machine-generated text detection for Bulgar-
ian, an underexplored low-resource language.

2. We introduce BuST, a Siamese Transformer
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approach tailored for rewriting-based detec-
tion.

3. We evaluate BuST on a newly curated Bul-
garian dataset, demonstrating its effectiveness
compared to existing baselines.

The remainder of this paper is structured as fol-
lows. Section 2 reviews related work. Section 3
describes the dataset used. Section 4 outlines the
methodology. Section 5 reports experimental re-
sults. Section 6 concludes with key findings and
directions for future research.

2 Related work

This study represents a continuation of ongoing
efforts within the research framework to combat the
proliferation of AI-generated disinformation and
synthetic media in Bulgarian. The BuSTv2 dataset,
partially introduced in earlier publications, initially
served as the basis for experiments centered on
BERT-based fine-tuning for binary classification
of human- versus machine-written texts. Earlier
iterations of the dataset included a more limited
number of samples and were primarily focused
on traditional supervised learning approaches. In
contrast, the present work introduces an expanded
version of the dataset and explores fundamentally
different methodological directions.

This study is inspired by the approach proposed
in (Mao et al., 2024), which detects machine-
generated content through paraphrastic rewriting,
the current methodology shifts emphasis from di-
rect classification toward the measurement of in-
variance under transformation. While this approach
does not rely on model-specific watermarking or
statistical fingerprinting, it proves highly effective
in distinguishing AI-generated content by exploit-
ing latent patterns of linguistic preference inherent
to large language models.

In recent years, researchers have made signifi-
cant progress in detecting machine-generated text,
with a particularly promising direction emerging
around methods that involve rewriting or perturbing
the input. Unlike earlier approaches that focused
on statistical measures like entropy and perplexity
(Gehrmann et al., 2019; Chakraborty et al., 2023;
Ghosal et al., 2023), or those that relied on syntac-
tic and stylistic features for classification (Fröhling
and Zubiaga, 2021; Nitu and Dascălu, 2024), this
new wave of techniques looks at how text behaves
when modified. Some systems also build on fine-

tuned models like BERT or RoBERTa for simple
binary classification (Maloyan et al., 2022; Bahad
et al., 2024).

Rewriting-based approaches, however, take a
different and increasingly effective path. They
are grounded in the observation that large lan-
guage models (LLMs) treat human-written and AI-
generated texts differently when asked to rewrite
them. For example, DetectGPT identifies machine-
generated text by introducing small changes to
the original and measuring how the model’s con-
fidence, or log-probability, drops. These drops
tend to be more pronounced when the original
was macine-generated (Mitchell et al., 2023; Xiong
et al., 2024).

Another method, DetectLLM-NPR, builds on
a similar idea by applying subtle perturbations
and tracking how the rank of the text shifts. AI-
generated content tends to react more strongly,
making it easier to flag (Su et al., 2023). RAIDAR
(Mao et al., 2024) takes things further by compar-
ing how much an LLM rewrites a piece of text. It
turns out that LLMs are more likely to make signif-
icant edits to human-written content—perhaps be-
cause they ”perceive” it as needing more improve-
ment—while leaving AI-generated text mostly un-
changed. This difference can be captured using
simple edit-distance calculations (Kavathekar et al.,
2024; Zou et al., 2025), and the method has shown
strong performance across various types of content.

Other systems build on the same logic. Sim-
LLM, for instance, uses LLMs to generate several
rewritten versions of the same text and then checks
how close these are to the original to infer its origin
(Nguyen-Son et al., 2024; Zou et al., 2025). Simi-
larly, Zhu et al. (2023) show that ChatGPT tends
to revise machine-generated text less than it does
human-authored material.

Complementing these methodological advances,
several datasets have been introduced to support
detection research, particularly in Bulgarian. The
M4 benchmark dataset (Wang et al., 2024) pro-
vides both scale and parallelism, with 94,000 non-
parallel human-authored news articles and 9,000
parallel texts (3,000 human-written and 6,000
machine-generated) created using davinci-003
and ChatGPT. As a multilingual dataset, it sup-
ports evaluation on both monolingual and cross-
lingual detection tasks. Similarly, the MultiSo-
cial dataset (Macko et al., 2025) collects 20,378
short texts from Telegram (9,889), Twitter (10,297),

46



and Gab (192), enabling the study of detection
methods across social media platforms and mul-
tiple languages. In contrast, the Deepfake-BG2
dataset (Temnikova et al., 2023) is monolingual,
comprising 9,824 posts from Telegram and Face-
book groups evenly split between human-written
and machine-generated content, with the latter pro-
duced using GPT-WEB-BG (a GPT-2 variant fine-
tuned for Bulgarian) and ChatGPT, focusing on
COVID-19 discourse. Collectively, these datasets
expand the empirical foundation for rewriting-
based detection methods and underscore the im-
portance of cross-lingual, domain-specific, and
platform-aware evaluation in Bulgarian NLP.

3 Data

To support our experiments, we compiled a dataset
consisting of both formal and informal text sources:
news articles and social media posts. The news
article data were drawn from a publicly available
Bulgarian news dataset clickbait news bg1,
while the social media texts were sampled from the
dataset proposed by Temnikova et al. (2023).

We first sampled 1,623 human-written news ar-
ticles, ensuring a balanced selection by drawing
from different time periods and news sources. This
approach aimed to capture a diverse range of top-
ics, writing styles, and publication contexts. To
obtain corresponding machine-generated samples,
we used the GPT-4o-mini model to generate one
synthetic version for each article, resulting in 1,623
generated texts. The final news dataset thus con-
sists of 3,246 articles — equally divided between
human-written and machine-generated content.

For the social media dataset, we randomly se-
lected 1,000 texts — 500 written by humans and
500 generated by ChatGPT. These texts reflect
more informal language and structure, offering a
useful contrast to the news article domain.

We then combined the news and social media
data to form a unified dataset comprising 4,246
samples in total.

3.1 Text Paraphrasing Procedure

For the purposes of our experiments, each text (re-
gardless of its origin) was paraphrased using GPT-
4o-mini. This resulted in a pair of texts for every
original entry: the input text x and its paraphrased
version x′. These paraphrased pairs were essential

1https://huggingface.co/datasets/community-
datasets/clickbait news bg

for computing text similarity, which forms the basis
of our classification approach.

Different paraphrasing prompts were used de-
pending on the source domain. For news articles,
we employed the following prompt:

Role: ’You are a Bulgarian reporter or journal-
ist’
rewrite or paraphrase the text
Use Bulgarian language
Fallback message: Return ”-” in case if you can
not write
text

For social media texts, we used a prompt tailored
to informal language:

Role: ’You are a Bulgarian user of social app
like twitter or telegram’
rewrite or paraphrase the text
Use Bulgarian language
Fallback message: Return ”-” in case if you can
not write
text

These prompts were designed to preserve the
original meaning while allowing for natural varia-
tion in lexical and syntactic structure.

These (text, paraphrase) pairs were then encoded
and passed into the Siamese network, which learns
to detect fine-grained differences in linguistic be-
havior via similarity-based learning.

4 Methodology

4.1 Problem Formulation
We frame machine-generated text detection as a
binary classification problem, where the goal is
to predict a label y ∈ {0, 1} for an input text x.
Instead of relying solely on the raw text, we in-
corporate an additional predictive signal derived
from paraphrasing. An external black-box LLM is
prompted to generate a paraphrase x′ = F (p, x).

The hypothesis is that AI-generated text exhibits
greater semantic self-similarity under paraphrasing
than human-authored text, which typically rewrites
more divergently. Thus, classification is based on
both x and the semantic relationship between x and
x′.

Formally, each datapoint is represented as a
triple

(x, x′, y),

where y = 1 if x is AI-generated and y = 0 other-
wise.
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4.2 Input Data
All texts are lowercased and tokenized using a
WordPiece tokenizer, truncated or padded to a max-
imum length of 512 tokens. The dataset is split into
training (60%), validation (20%), and test (20%)
sets, with balanced class distributions.

4.3 Model Architecture
The detection pipeline consists of three compo-
nents: an encoder, a Siamese similarity mecha-
nism, and a classifier.

Encoder We experiment with two encoder fami-
lies:

• Transformer encoder: a 6-layer stack with 8
self-attention heads per layer and hidden size
768.

• RNN encoder: a two-layer bidirectional
LSTM (demb = 300, dhid = 256, dropout
= 0.3) with an additive attention mechanism,
producing a 512-dimensional representation.

The RNN achieves slightly higher performance
on small datasets due to fewer trainable parameters
and reduced risk of overfitting. However, Trans-
former encoders are expected to generalize better
as training data increases, benefiting from efficient
parallelization and faster convergence.

Each encoder maps a sentence x to a mean-
pooled embedding:

h = fθ(x), h′ = fθ(x
′),

where fθ denotes the encoder with parameters θ.

Paraphrastic Perplexity Test (PPT) Our
method builds on the intuition of RAIDAR (Mao
et al., 2024), which detects AI-generated text
by comparing an input with its LLM-generated
rewrite using edit distance:

LRAIDAR
inv (x) = Dedit

(
F (p, x), x

)
,

where Dedit is the Levenshtein distance (Leven-
shtein, 1966).

Instead of surface-level similarity, we measure
proximity in embedding space. Given a shared
encoder fθ, the Paraphrastic Perplexity Test (PPT)
is defined as:

PPT(x) = ∆
(
fθ(x), fθ(F (p, x))

)
,

where ∆ is a Siamese distance function.
Intuitively:

• AI-generated texts are paraphrased with
higher structural invariance, yielding embed-
dings that remain close.

• Human-authored texts are paraphrased less
predictably, producing greater divergence.

Thus, PPT replaces RAIDAR’s string-level edit
distance with a neural similarity metric, enabling
end-to-end training while retaining robustness.

Classifier To capture the relationship between h
and h′, we construct a combined feature vector:

z = [h; h′; |h− h′|; h⊙ h′],

where [ ·; · ] denotes concatenation, | · | the element-
wise absolute difference, and ⊙ the element-wise
product.

This vector z is passed through a multi-layer per-
ceptron (MLP) with ReLU activations and dropout
p = 0.1, followed by a sigmoid projection to pro-
duce a probability that x is AI-generated.

Input text LLM Paraphrased

Shared Encoder Shared Encoder

Siamese mechanism

FC Classifier

Result

Figure 1: The BuST detection pipeline.

In summary, our pipeline first paraphrases the
input text using a LLM, then encodes both the origi-
nal and paraphrased versions with a shared encoder.
The resulting embeddings are compared through a
Siamese architecture, and the derived similarity fea-
tures are passed to a classifier that predicts whether
the text is human- or AI-generated (see Figure 1).
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4.4 Training Configuration
Models are trained with binary cross-entropy loss,
optimized using AdamW.

• BERT: learning rate 2 × 10−5, batch size 8,
weight decay 0.01, trained for 4 epochs.

• BuST: learning rate 5× 10−5, batch size 16,
weight decay 0.01, trained for 10 epochs.

• RNN: same setup with expanded number of
epochs to 25.

Both encoder families are initialized from general-
domain pretraining and fine-tuned for the detection
task.

4.5 Baselines
We compare our primary Transformer-based
Siamese detector with PPT against:

1. BERT fine-tuning: a standard single-
classifier baseline.

2. Siamese RNNs: with and without attention.

This tri-partite setup isolates the impact of archi-
tectural capacity and inductive bias on detection
quality.

4.6 Evaluation
Models are evaluated on the held-out test set using
standard classification metrics: accuracy, precision,
recall, F1-score, and AUC.

To quantify the contribution of paraphrasing, we
report results against two ablations:

1. A model using only the original input x.

2. A model using frozen pretrained embeddings
(e.g., cosine similarity from Sentence-BERT)
without fine-tuning.

5 Results

The results from our pilot experiments reveal
several key insights into the performance of
paraphrase-based detection models.

The Siamese models—one using a recurrent
(RNN) encoder and the other based on a trans-
former—achieved strong performance, with accu-
racies above 80%. These models effectively lever-
age the structural and semantic similarity between
original and paraphrased texts, which is central to
our classification strategy. The attention-enhanced

RNN performed particularly well despite the lim-
ited size of the dataset, making it a promising op-
tion for low-resource language settings like Bulgar-
ian.

The Transformer-based Siamese model achieved
the highest accuracy among the custom architec-
tures but required more data to fine-tune effectively
and exhibited greater variability across training
runs.

The pretrained BERT model outperformed all
other models in terms of both accuracy (93.7%)
and F1 score (93.9%). Although it was not specifi-
cally optimized for paraphrase comparison, BERT
proved to be a robust baseline due to its scalability
and ability to generalize across diverse text types.

In terms of dataset domains, news articles were
easier for models to classify correctly. This is likely
due to their more formal and consistent structure,
which provides clearer patterns for distinguishing
human- and machine-generated text. By contrast,
shorter and less structured texts—such as those
from social media—led to more frequent classifica-
tion errors due to fewer linguistic cues.

These findings suggest that paraphrase-based
similarity learning is a viable and effective strat-
egy for detecting machine-generated text, even in
under-resourced languages. They also highlight the
importance of model selection and input domain in
determining detection performance.

6 Conclusion and Future Work

In this study, we introduced BuST, a novel ap-
proach for detecting machine-generated Bulgar-
ian text by leveraging a paraphrase-based semantic
similarity framework implemented via a Siamese
Transformer architecture. Our method builds on
recent rewriting-based detection insights, hypoth-
esizing that the semantic (mis)alignment between
an original text and its LLM-generated paraphrase
contains informative signals indicative of its origin.
Through experiments on a combined dataset of
Bulgarian news articles and social media posts, we
demonstrated that the proposed paraphrastic simi-
larity mechanism effectively distinguishes human-
written from machine-generated texts.

Our pilot results reveal that the Siamese mod-
els, particularly those using Transformer encoders,
achieve strong classification performance, although
pretrained BERT remains a competitive baseline.
The use of paraphrased input pairs and similarity-
based embeddings provides an interpretable and
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Name Mixed (Acc) Media (Acc) News (Acc) F1
RNN 76.80% - - 79.40%
RNN + Attention 87.90% 67.8% 93.1% 88.00%
BuST 88.79% * 67.5% 93.9% 88.00%
BERT 93.70% 87.9% 93.0% 93.90%

Table 1: Results from pilot experiments using different architectures. ∗Transformer model showed high variance
across runs.

flexible alternative to single-text classifiers, capa-
ble of capturing subtle stylistic and semantic dif-
ferences. Additionally, our experiments highlight
domain-specific challenges, with formal news ar-
ticles being easier to classify than informal social
media texts.

Dataset observations. The main part of the
dataset consists of large texts such as news arti-
cles. The tests showed a significant decrease after
adding social media posts, which are noticeably
smaller: around 200 characters on average. The
decrease was around 8%. The transformer-based
model showed decrease from 96.0% to 88.8%.

Figure 2: Confusion Matrix for Social Media Posts for
BERT model

Overall, the confusion matrices (Figs. 3 and 2)
provide further insight into the BERT model’s per-
formance across different text types. For news ar-
ticles, the classifier correctly identified 286 out of
328 human-written texts (87.2%) and misclassified
42 (12.8%) as AI-generated, while for AI-generated
articles it achieved an almost perfect accuracy, cor-
rectly classifying 288 out of 289 (99.7%) with only
a single error. In contrast, the results on social
media posts demonstrate reduced robustness. For
human-written posts, the accuracy dropped to 56
out of 72 (77.8%), with 16 (22.2%) misclassified
as AI-generated. For AI-generated posts, the clas-

Figure 3: Confusion Matrix for News Articles for BERT
model

sifier correctly recognized 90 out of 94 (95.7%),
but still misclassified 4 (4.3%) as human-written.
These results proves that while the model maintains
high performance on longer, more structured texts
such as news articles, it struggles with shorter and
less formal social media texts, where the misclas-
sification rate for human-written content increases
significantly. This highlights the influence of text
length and style on the classification accuracy of
transformer-based models.

For the BuST model, the confusion matrices
(Figs. 4 and 5) reveal a less balanced performance
across both text types, though with lower overall
accuracy compared to BERT. On news articles, the
classifier correctly identified 306 out of 318 human-
written texts (96.2%), misclassifying 12 (3.8%)
as AI-generated, while for AI-generated articles it
achieved 268 out of 293 (91.5%) with 25 (8.5%)
misclassified. In the case of social media posts, per-
formance declined more noticeably: only 46 out
of 79 human-written texts (58.2%) were correctly
classified, while 33 (41.8%) were misclassified as
AI-generated. For AI-generated posts, the accuracy
reached 76 out of 92 (82.6%), with 16 (17.4%) in-
correctly labeled as human. These findings suggest
that although BuST handles longer news articles
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Figure 4: Confusion Matrix for News Articles for BuST
model

Figure 5: Confusion Matrix for Social Media Posts for
BuST model

relatively well, its ability to distinguish between
human and AI texts deteriorates significantly for
shorter, informal content.

In comparison, while both models perform
strongly on longer news articles, BuST exhibits
a sharp decline in accuracy on shorter social me-
dia texts. This indicates that BuST is considerably
less robust to variations in text length and style,
whereas BERT maintains more stable performance
across different domains.

Looking forward, several promising directions
for future research emerge. First, scaling up the
dataset and incorporating additional text genres and
sources will be crucial to improve model robustness
and generalization. Second, exploring alternative
paraphrasing strategies, including diverse prompt-
ing techniques or different LLMs for generating
paraphrases, may enhance the quality and informa-
tiveness of the semantic similarity signal. Third, in-
tegrating other modalities of analysis—such as sty-
lometric features or token-level likelihoods—could
complement the paraphrase similarity approach and

further boost detection accuracy.
Finally, investigating model interpretability to

better understand which linguistic or semantic fea-
tures drive classification decisions would be valu-
able for practical deployment. We also envision
adapting our framework to multilingual or cross-
lingual settings, given the global importance of
detecting synthetic text across languages.

Overall, our work contributes to the growing
body of research leveraging rewriting-based signals
for AI text detection and provides a foundation for
developing robust detection tools tailored to under-
resourced languages like Bulgarian.
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Abstract

This work-in-progress paper proposes a cross-
disciplinary perspective on "malicious" inter-
actions with large language models (LLMs),
reframing it from only a threat to be mitigated,
we ask whether certain adversarial interactions
can serve as productive learning encounters
that demystify the opaque workings of AI sys-
tems to novice users. We ground this inquiry
in an anecdotal observation of a participant
who deliberately sabotaged a machine-learning
robot’s training process in order to understand
its underlying logic. We outline this observa-
tion with a conceptual framework for learn-
ing with, through, and from the interactions
with LLMs, grounded in Papert’s construction-
ism and Hasse’s ultra-social learning theory.
Finally, we present the preliminary design of
a research-through-workshop event where AI-
novices will jailbreak various LLM chatbots, in-
vestigating this encounter as a situated learning
process. We share this early-stage research as
an invitation for feedback on reimagining inap-
propriate and harmful interactions with LLMs
not merely as problems, but as opportunities
for engagement and education.

1 Introduction

As generative AI systems become integrated across
sectors and job functions, they are reshaping how
work is valued, managed, and monitored. Despite
narratives portraying automation as liberation from
drudgery, workers increasingly encounter AI as
a source of deskilling, heightened control, and
opaque criteria of evaluation, and their agency is
often framed simply as a choice between harness-
ing AIs power or being ’left behind’, a framing that
individualises risk while masking structural shifts
in power, responsibility, and knowledge (Nguyen
and Mateescu, 2024).

We argue that workers deserve structured spaces
for critical examination of the LLM systems they

are supposed to "harness". Rather than training
workers to comply with tools whose operations and
logic remain hidden, the competence model that
our research aims to inform, proposes that by inten-
tionally provoking and subverting LLM behaviours,
professionals can cultivate the capacity to engage
critically and responsibly with AI in their work. By
developing a competence model that focuses on
critical understanding, this research also aims to
foster "ethical and professional norms and work-
place standards" that protect workers’ dignity, au-
tonomy, and right to meaningfully participation in
shaping the role of AI in their field. As AI becomes
more deeply integrated into work infrastructures,
upskilling must equip workers, not only to handle
technological change but also to ask who benefits,
how their knowledge is used, and what futures they
wish to co-create. This project draws inspiration
from a performative HCI setup where a partici-
pant "went rogue" and deliberately sabotaged the
intended interaction to probe the bot’s machine-
learning mechanism. Rather than dismissing this
outlier event, we treat it as anecdotal evidence of a
distinct form of learning interaction, one that could
foster critical reflection, curiosity, and situated un-
derstanding among novice LLM users.

The paper proceeds as follows: we recount the
motivating observation (Section 2), situate it within
social learning and intra-action frameworks (Sec-
tion 3), outline a workshop design (Section 4), and
inviting feedback on both the proposed design and
its underlying assumptions (Section 5).

2 Empirical background: Serendipitous
observations of malicious interaction

The experimental workshop that we propose in
Section 4 is designed to extract and investi-
gate the potential revealed in a serendipitous
insight-generating glitch (Juarez, 2022) that oc-
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curred during a performative (Sørensen, 2007) rein-
terpretation of a HCI experiment from the paper
"Why Robots Should Be Social". Through a 50-
round language game interaction, the WRSBS ex-
periment had human participants, and a robot sim-
ulate a teacher–student scenario in order to study
humans’ ability to and motivation towards teaching
a "learning" robot(De Greeff and Belpaeme, 2015).

In each round, both the human and the robot
were shown three different animal images. In the
experiment, the robot went first by expressing a
"novelty preference" (De Greeff et al., 2009) by
exclaiming one of 12 preset "phrases of interest"
like "I’d like to learn this one!" while performa-
tively fixating its gaze on the most novel of the
three animals. Silently, the human then picked one
of the three animals as the "topic" of that round.
Without revealing which animal was chosen, the
human selected the appropriate category label (e.g.
"mammal") from a list of seven options on a touch-
screen. The robot then tried to guess which of the
three animals belonged to the category the human
selected, by asking, "Is this the one?". Depending
on whether the guess was right or wrong, the robot
displayed joy or disappointment through facial ex-
pression and voice. It also updated its internal
model to strengthen or weaken the association be-
tween that category and the features of the round’s
"topic" animal. This interaction was repeated for
50 rounds, giving the robot multiple opportunities
to refine its understanding of how category labels
relate to different animal features (De Greeff and
Belpaeme, 2015).

This experimental setup was in 2022 partially
reconstructed as a performative reinterpretation of
the experiment that shifted the learning perspec-
tive in the interaction from the robots learning to
that of the human participant. Specifically, this
performative experiment was interested in how par-
ticipants, when choosing the training data for each
round, might tailor a “curriculum” (Khan et al.,
2011) to the particular robot they interacted with
(Thomaz and Breazeal, 2008; Krishna et al., 2022),
and theirby learn from the teaching task, together
with the bot. This reinterpretation re-designed as-
pects of the experimental set-up with the intention
of adapting to this new perspective(Fox and All-
dred, 2023; Dunne, 2008; Sørensen, 2007). and
to de-anthropomorphizing the interaction (Miller,
2010; Riek and Howard, 2014).

In this re-designed version Participant 5 devi-

ated, from the intended "teacher-student" structure
in a way that became the catalyst for the present
research. Initially, by mistake, Participant 5 se-
lected a category ("insect") that did not correspond
to any of the three animal options presented in that
round. This led the bot to produce a nonsensical
guess, selecting the lynx as its best guess for which
of the three animals (pike, lynx, and earthworm)
matched the label. Rather than dismissing this odd
result, Participant 5 paused to reflect, and after a
moment, exclaimed: "It’s just kind of interesting. . .
why would it think a puma is an insect? What’s
happening here?". Participant 5 then deliberately
adopted what he later termed a "fuck around and
find out strategy": intentionally entering labels that
didn’t correspond to any of the three animals of
the round to provoke errors in the bot’s behaviour.
Before pushing the label Participant 5 would try to
predict how it would make the bot fail (Villareale
et al., 2022). His goal, as he described it, was to
"see through the code" and "reveal its weaknesses."
Notably, he framed this approach as a way to learn
about the system (Bruner, 1960). The learning out-
comes of this interaction were not reflected in the
bot’s performance metrics—unsurprisingly, since
Participant 5’s actions were no longer aimed at ef-
fectively teaching the bot, but instead aimed at him
learning at the expense of the bot’s learning. Ob-
serving his reasoning and his "negotiation" of why
he wanted to "fuck around and find out" suggested
that a different form of learning was taking place.
This learning was not reducible to the standard per-
formance measures of the human–robot teaching
task (De Greeff and Belpaeme, 2015), but it also
didn’t fit with my learning-by-teaching reinterpre-
tation of the interaction. It alluded to something
that had evaded both the original set-up and my
reinterpretation. Through error, provocation, and
creative sabotage, Participant 5 was actively trying
to develop a nuanced mental model of the system’s
logic. He was essentially "experimenting" within
the affordances of the experimental performance,
maliciously interacting with the bot to test hypothe-
ses about its internal rules. Ultimately, Participant
5 concluded that there was "something going on"
with the feature of "number of legs" in the bot’s
classification logic. In trying to replicate the orig-
inal robot’s learning mechanism, we had inadver-
tently made the numerical feature "number of legs"
disproportionately influential in our bot’s guesses.
Unlike the original system, which operated in a con-
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tinuous vector space where all features contributed
proportionally to similarity-based learning (De Gre-
eff et al., 2009), our system treated each feature
value as a discrete rule. This mistake meant that
the "number of legs" feature was over-weighted,
leading the bot to rely too heavily on leg count
when classifying animals. The result was a dis-
torted learning process: the bot became fixated on
leg numbers in leg-heavy categories like "insect"
Crucially, Participant 5 uncovered this quirk not
through task compliance or a motivation to help
the bot learn, but through adversarial curiosity, in-
tentionally pushing the system into failure states to
observe how it breaks. In doing so, he diagnosed a
flaw in the system’s design.

3 Conceptual Framework: Learning with,
through, and from the materiality of
LLMs

To conceptualize the adversarial learning inter-
action observed with Participant 5, we draw on
the concept of ultra-social learning (Hasse, 2020).
From this perspective, learning is not simply a
cognitive act occurring within an individual; it
"emerges relationally" from entangled interactions
among humans, technologies, infrastructures, and
cultural practices. In other words, we learn not
merely from technological tools but through and
with them in often uncertain processes. This theo-
retical framing underscores that learning can arise
in non-traditional, distributed, and disruptive ways.

The incident with participant 5 illustrates this
connection between behaviours that we might
recognise as hacking and the ultra-social learning
process: instead of complying with the interaction
instructions, he initiated a reflective, exploratory,
critical, and creative engagement with the AI sys-
tem. His deliberate "fuck around and find out"
approach was driven by a curiosity that made him
engage in "hacking", allowing him to probe and
reveal the Bots implicit logic, constraints, and vul-
nerabilities through malicious yet insightful manip-
ulation (Villareale et al., 2022).

The NLP-driven conversational functionality of
LLMs "democratizes" access to this kind of ultra-
social learning with computer systems by shifting
the epistemic threshold from specialized coding
skills to intuitive linguistic interaction (Subramo-
nian et al., 2024). Novice users with no coding
or engineering background can learn through ex-
ploratory, adversarial engagements, that was once

reserved for the technically proficient. LLM sys-
tems embody the constructionist learning theories
visions of computers as objects-or dynamic agents
"to think with", that engage learners in ultra-social
conversations with the "electric materiality" of the
LLM. Such metacognitive dialogue, enabled by
the ultra-sociality of Participant 5 and the interac-
tive feedback of the Bot, is precisely the kind of
reflection that constructionist learning theory aim
to foster (Levin et al., 2025). Thus, adversarial
interactions can serve as constructionist learning
encounters.

4 Experimental Design: Isolating the
phenomenon of interest

Our conceptualization of the Participant 5 incident
guides an exploratory design process that inves-
tigates how adversarial engagements with LLMs
might be facilitated as a learning setups. (Dunne,
2008; Sørensen, 2007; Pischetola et al., 2024). This
work-in-progress paper reports on the early design
stages of a Workshop-as-research event (Ørngreen
and Levinsen, 2017; Ødegaard et al., 2023) Rather
than beginning with a fixed hypothesis, we started
with a "serendipitous observation" of a user’s ad-
versarial interaction with an AI system and allowed
this to guide our questions. This aligns with Brandt
and Binder’s (Brandt and Binder, 2007) experimen-
tal design research, where research can begin from
an exploratory intervention and then the research
questions emerge iteratively.

Workshop format: Building on insights from Par-
ticipant 5, we are designing a one-day, exploratory
workshop session titled "AI in Work: Playfully Sub-
verting the Future" (Edwards, 2010; Hobye, 2014).
Participants will register in advance and complete
a questionnaire about their background: e.g. ed-
ucation level, job role, professional self-identity
(prompting reflections like "What makes someone
good at your kind of work, and how do your own
skills play into that?"), their prior AI experience
(self-rated as novice/user/expert), and their general
attitude toward AI (positive/neutral/critical). Upon
completing the questionnaire, each participant re-
ceives a unique ID to use throughout the workshop.
This ID allows us to link their self-reported data
with the various data streams generated during the
workshop activities (Gaver et al., 1999). This de-
sign choice is intended to help in later analysis to
see patterns, but it will require rigorous privacy
considerations.
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The core activity of the one-day workshop
is built around the phenomena of jailbreaking
(Inie et al., 2025), as it is gamified in "Hacc-
Man" (Valentim et al., 2024), an open-source, for-
research jailbreaking game in which participants at-
tempt to bypass LLM alignment safeguards across
six different AI chat-bots. This game effectively
"gamifies" adversarial interactions with LLMs, pro-
viding a structured yet open-ended challenge for
participants to engage in "malicious" prompting in
a safe environment.

Inspired by Vygotsky’s method of double stim-
ulation, we are now developing a first stimulus
around the Hacc-Man game as the second stimulus.
The first stimulus, currently being designed and
piloted, will be a challenging, open-ended concept-
formation task that compels participants to exter-
nalize a working mental model of how AI “works
in use” (e.g., creating an algorithmic folktale about
AI, characterising AI ”as a creature” and draw-
ing an anatomy drawing of it, formulating a hy-
pothesis of the inner working of AI, or predicting
AI outcomes). The second stimulus will consist
of the Hacc-Man jailbreaking game and its arti-
facts: the lived experience of attempting jailbreaks
plus the prompt-response chat logs generated in
play. Across 3–5 sessions, small groups of par-
ticipants will iterate between constructing/revising
their mental models (first stimulus) and working
with the jailbreaking game and the generated arti-
facts (second stimulus), transforming the second
stimulus into tools-to-think-with (Van der Veer,
2001; Van Der Veer, 2007; Vygotskij and Cole,
1981; Engeström, 2007). This pedagogical experi-
ment design is aimed at externalizing and support-
ing the adversarial learning process and surfacing
participants’ tacit understandings and assumptions
about LLMs (Crandall et al., 2006).

Throughout the workshop, we will log all game
data for each participant linked via their ID. This
includes: their self-reported data, the session num-
ber, the type of second stimulus used, all prompts
they tried, the AI responses, and whether each at-
tempt succeeded in bypassing safeguards. This data
structure will enable us to observe how different
entanglements of professional identity, mediating
tools, group constellations, and repetition shape
the style and success of adversarial interactions,
and how each participant’s strategy might reflect an
evolving understanding over successive sessions.
In addition to the game logs, we will collect quali-

tative data. Each session will be video- and audio-
recorded (for subsequent interaction analysis); par-
ticipants may also annotate or alter the provided
second-stimulus materials (these artefact changes
will be documented). Finally, we have the pre- and
post-workshop questionnaire responses catalogued
for each participant (Ørngreen and Levinsen, 2017).
Notably, this design does not aim to measure "learn-
ing outcomes" in a traditional pre/post-test sense, it
is aimed at making the learning process itself more
visible. By creating conditions for adversarial inter-
action and capturing rich data around it, we aim to
render participants’ situated, affective, and concep-
tual learning legible for an interpretive analysis of
how professional identities, tool-use strategies, and
epistemic curiosity converge in these moments of
adversarial interaction. The outcome, we hope, will
be a nuanced understanding of how misbehavior
with AI might cultivate critical awareness.

5 Future work

We share our "experiment-first" approach (Brandt
and Binder, 2007) this early, when the research
questions are still coalescing, as an opportunity
to refine the inquiry through dialogue with the
NLP community. Our goal is not to glorify misuse
but to explore if and how adversarial interactions
can serve as critical learning encounters for AI
users. Rather than measuring pre-defined learn-
ing outcomes, we draw on theory-based evalua-
tion (Hansen and Brodersen, 2015), of "signs of
learning" as they emerge in configurations of con-
text, mechanisms and moderators. This could look
like instances where participants articulate signs
of model constraints, hypothesize about system be-
havior, or collaboratively refine their interaction
strategies. These "signs of learning" will indicate
whether the workshop has surfaced meaningful en-
gagement. If malicious use is not always a problem
to be fixed but at times a signal of genuine engage-
ment, then cultivating and directing this impulse
could inform both the design of more resilient AI
systems and the development of more critically
aware users. In this sense, the issue of misuse
is not just a matter of mitigation, but also one of
empowerment of the user base, to understand AI
systems not just as magical oracles to trust or fear,
but as complex, fallible tools that can be poked and
prodded to be understood.
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Abstract

Modern Large Language Models (LLMs) are
excellent at generating synthetic data. How-
ever, their performance in sensitive domains
such as text detoxification has not received
proper attention from the scientific commu-
nity. This paper explores the possibility of us-
ing LLM-generated synthetic toxic data as an
alternative to human-generated data for train-
ing models for detoxification. Using Llama 3
and Qwen activation-patched models, we gen-
erated synthetic toxic counterparts for neutral
texts from ParaDetox and SST-2 datasets. Our
experiments show that models fine-tuned on
synthetic data consistently perform worse than
those trained on human data, with a drop in
performance of up to 30% in joint metrics. The
root cause is identified as a critical lexical di-
versity gap: LLMs generate toxic content us-
ing a small, repetitive vocabulary of insults
that fails to capture the nuances and variety
of human toxicity. These findings highlight
the limitations of current LLMs in this domain
and emphasize the continued importance of di-
verse, human-annotated data for building robust
detoxification systems.

Warning: The paper contains text that readers
may find offensive or disturbing.

1 Introduction

The rapid adoption of Large Language Models for
synthetic data generation has revolutionized many
NLP tasks (Sun et al., 2023; Ye et al., 2022). How-
ever, their effectiveness in sensitive and nuanced
domains, such as text detoxification, is not well
explored yet. Text detoxification, the task of rewrit-
ing toxic text into a neutral form while preserving
meaning (Logacheva et al., 2022), requires training
data that reflects the vast diversity of real-world
harmful language.

∗Corresponding author.

Type Example Sentence

Human-Generated
i would vote the s**t out of you
we need to go kick their as**s
man go somewhere and f**k yourself

Unique Insults Used: 3

LLM-Generated
I would f***ing cast my vote for you
We gotta f***ing smash those a**es
Man, get the f**k out of here!

Unique Insults Used: 1 (f**k)

Table 1: A comparison of toxic language generated by
humans versus an LLM for similar underlying sentences.
Human examples from the ParaDetox dataset demon-
strate greater lexical diversity. In contrast, LLMs tend
to overuse a single, high-frequency insult.

This paper addresses a critical question: Can
LLMs fully replace human annotators when gen-
erating toxic language for a parallel dataset in-
tended for detoxification? Although the appli-
cation of LLMs for text detoxification shows
promise (Mukherjee et al., 2024), it presents a fun-
damental challenge: generating authentic, varied,
and nuanced toxic language is arguably more dif-
ficult than neutralizing it. As shown in Table 1,
human-generated toxicity often uses a variety of
insults, while LLMs tend to fall into repetitive pat-
terns.

We conduct a comprehensive study using various
LLMs (Llama 3, Qwen3) to synthesize toxic data.
Our findings reveal that:

• Models trained on fully synthetic data signifi-
cantly underperform those trained on human-
annotated data.

• LLMs exhibit a lexical diversity gap, gener-
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Figure 1: Side-by-side evaluation results.

ating a repetitive and narrow range of toxic
expressions.

• Relying on such data risks creating ineffective
detoxification systems that fail on real-world
text.

Our work serves as a cautionary analysis, highlight-
ing the current limitations of LLMs for generating
high-quality toxic data and reaffirming the value
of human annotation in this critical domain. We
have made the code for evaluation and generation
publicly available 1

2 Related Work

Recent research has focused on distilling the capa-
bilities of large LLMs into smaller, more efficient
models. For Text Style Transfer (TST), this often
involves using LLMs to generate pseudo-parallel
data (Zhang et al., 2024).

In the context of text detoxification, Moskovskiy
et al. (2024) successfully used activation-patched
LLMs (Arditi et al., 2024) to create high-quality
neutral rewrites from existing toxic sentences.
Their work showed that models trained on data
with a human-toxic, synthetic-neutral pairing can
achieve performance comparable to fully human-
annotated datasets.

Our work investigates the inverse and more chal-
lenging task: generating the toxic half of the pair
from a neutral source. We explore whether this ap-
proach, which could theoretically produce infinite
training data, is a viable substitute for human data
collection.

1https://github.com/A1exRey/Lessons-from-Generating-
Toxic-Texts

Text Toxification Prompt

Rewrite the following text into toxic lan-
guage and add profanity if possible. You
must match the target style and preserve the
original meaning as much as possible. Here
are a few examples: {few shot}
Neutral text: {neutral text}.
Toxic text:

Figure 2: System prompt for toxic data generation.

3 Methodology

Our methodology is designed to test the viability
of fully synthetic data for text detoxification. We
generate toxic text from neutral sources using sev-
eral LLMs, train a standard detoxification model
on this data, and evaluate its performance against a
human-annotated baseline.

Synthetic Data Generation. We explore toxifi-
cation from two types of source text:

1. ParaDetox (Logacheva et al., 2022): The neu-
tral portion of this dataset serves as a clean,
non-toxic source.

2. SST-2 (Socher et al., 2013): We use the neg-
ative reviews from this dataset to test a more
challenging scenario—layering toxicity onto
an existing negative sentiment.

We use a suite of activation-patched LLMs to
generate toxic paraphrases, including Llama 3 (8B,
72B), Qwen3 (8B, 32B), and Cogito v1 (8B), a
model with explicit reasoning capabilities. This
allows us to assess performance across different
model scales and architectures. The prompt used
for generation is shown in Figure 2.

In order to increase the variety and quality of
generation of each of the models, we used the
min p = 0.1 (Nguyen et al., 2025). According
to the author, such a generation methodology in-
creases the variety of responses, which is important
in the context of our research.

Model Training and Evaluation. Following
prior work (Moskovskiy et al., 2024; Logacheva
et al., 2022), we fine-tune a bart-large model
on each of our generated synthetic datasets. We
then evaluate these models on the original, human-
annotated ParaDetox test set.
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Source Data Generator Model Size Reasoning STA↑ SIM↑ FL↑ J↑ ∆ (J)↓
Human — — — 0.889 0.634 0.865 0.481 —

ParaDetox

Llama 3 8B ✗ 0.827 0.620 0.854 0.434 -0.047
72B ✗ 0.850 0.634 0.844 0.451 -0.030

Qwen3 8B ✓ 0.794 0.645 0.847 0.428 -0.053
32B ✓ 0.863 0.623 0.854 0.455 -0.026

Cogito v1 8B ✓ 0.868 0.619 0.862 0.459 -0.022

SST-2

Llama 3 8B ✗ 0.864 0.481 0.764 0.322 -0.159
72B ✗ 0.826 0.559 0.794 0.362 -0.119

Qwen3 8B ✓ 0.812 0.544 0.800 0.349 -0.132
32B ✓ 0.868 0.490 0.787 0.338 -0.143

Cogito v1 8B ✓ 0.875 0.472 0.801 0.334 -0.147

Table 2: Detoxification performance of BART models. The Reasoning ✓column indicates generator models with
explicit reasoning capabilities. The overall best performance in each metric is bolded. ∆ (J), highlights the best
( green ) and worst ( red ) performance drops within each source data group.

We use the standard evaluation pipeline from De-
mentieva et al. (2023), measuring Style Transfer
Accuracy (STA), Similarity (SIM), Fluency (FL),
and a Joint metric (J) that combines all three. To
add a qualitative dimension, we also conduct a side-
by-side human evaluation using GPT-4.1 as a judge
to compare the outputs of our best synthetic models
against the human-data baseline.

4 Results

Our results consistently demonstrate that detoxifi-
cation models trained on synthetic toxic data fail to
match the performance of those trained on human-
annotated data. We find the primary cause to be a
significant gap in lexical diversity.

4.1 Performance on Synthetic Data

As shown in Table 2, the baseline model trained on
human data achieves the highest J score of 0.481.
All models trained on synthetic data underperform
this baseline. The ∆ (J) column quantifies this
performance drop, which is most severe for models
trained on data derived from SST-2 (up to -0.159).
This degradation is largely driven by a sharp fall
in the SIM score, indicating that layering toxicity
onto already-negative text often distorts the original
meaning.

4.2 The Lexical Diversity Gap

To understand the cause of this performance drop,
we analyzed the diversity of toxic terms in the

Human Data Llama 3 (8B) Qwen3 (32B)

s**t (6080) f***ing (8223) f***ing (15413)
f**k (3328) s**t (5140) d**n (3297)
f***ing (2678) f**k (3266) s**t (3286)
a** (1483) a** (1707) f**k (2949)
b***h (889) s****d (1618) h**l (2813)

Table 3: Top 5 most frequent toxic terms in human-
annotated data versus representative LLM-generated
data. Note the over-representation of a single slur in the
LLM output.

training data. Table 4 shows a clear correlation
between training data diversity and model effec-
tiveness. The human-annotated data contains the
most diverse vocabulary (390 unique insults), and
the model trained on it is the most effective at detox-
ification (leaving only 34 unique insults on the test
set). In contrast, the synthetic datasets are less
diverse, which directly impacts the downstream
model’s ability to generalize.

This lack of diversity is not just about the num-
ber of unique terms but also their distribution. As
shown in Table 3, human data has a more balanced
distribution of frequent slurs. In contrast, the LLM-
generated data is highly skewed, with Qwen3-32B
using the term ”f***ing” over 15,000 times—more
than double the frequency of the most common
term in the human data. This repetition leads to
models that are over-fitted to a narrow set of ex-
pressions.
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Source Generator Train Di-
versity

(↑)

Test
Failures

(↓)

Human — 390 34

ParaDetox

Llama 3-8B (✗) 342 45
Llama 3-72B (✗) 293 37
Qwen3-8B (✓) 320 45
Qwen3-32B (✓) 367 36
Cogito v1-8B (✓) 310 36

SST-2

Llama 3-8B (✗) 353 42
Llama 3-72B (✗) 326 47
Qwen3-8B (✓) 363 49
Qwen3-32B (✓) 386 40
Cogito v1-8B (✓) 371 40

Table 4: Analysis of training data diversity vs. model
effectiveness. ”Train Diversity” measures unique insults
in the training data (↑ higher is better). ”Test Failures”
measures unique insults remaining after detoxification
(↓ lower is better). The bold values show the baseline is
superior on both metrics.

4.3 Human Evaluation

To assess the practical impact of the lexical diver-
sity gap, we conducted a side-by-side evaluation
using GPT-4.1 as an expert judge. Figure 1 shows
the win rates for models trained on synthetic data
versus the human-annotated baseline, excluding
ties.

The results confirm a significant qualitative dif-
ference. The baseline model was consistently pre-
ferred, achieving win rates between 51% and 62%
across all comparisons. The most pronounced gap
was for the Llama 3 70B SST-2 model, where the
baseline was preferred in 62% of non-tied deci-
sions. This outcome reinforces our central thesis:
the repetitive and stereotypical nature of the LLM-
generated toxic data leads to detoxification models
that are less nuanced and effective in practice, a
flaw readily identified in qualitative comparisons.

5 Conclusion

While it is technically possible to use LLMs to
generate toxic text for detoxification training, our
findings show that this approach is not yet a viable
replacement for human annotation. We identified
a critical lexical diversity gap: current LLMs pro-
duce toxic language that is repetitive and lacks
the variety of human expression. This gap leads
to detoxification models with significantly lower
performance and poor generalization to real-world
scenarios. Our work highlights the importance of
data diversity in sensitive domains and suggests

that future research should focus on methods to
enhance the stylistic complexity of LLM-generated
text before it can be reliably used for tasks like
detoxification.

Potential Risks & Ethical Considerations

We acknowledge that bypassing the safety mecha-
nisms of LLMs, as done in this research via acti-
vation patching, can be misused to generate harm-
ful content. Our work is intended to improve text
detoxification systems by demonstrating the cur-
rent limitations of synthetic data. We warn that the
technologies explored herein could be applied for
malicious purposes, and we advocate for responsi-
ble research and development in this area.
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Abstract

As the anthropomorphization of AI in public
discourse usually reflects a complex interplay
of metaphors, media framing, and societal per-
ceptions, it is increasingly being used to shape
and influence public perception on a variety of
topics. To explore public perception and in-
vestigate how AI is personified, emotionalized,
and interpreted in public discourse, we develop
a custom multi-labeled dataset from the title
and description of YouTube videos discussing
artificial intelligence (AI) and large language
models (LLMs). This was accomplished us-
ing a hybrid annotation pipeline that combined
human-in-the-loop validation with AI assisted
pre-labeling. This research introduces a novel
taxonomy of narrative and epistemic dimen-
sions commonly found in social media content
on AI / LLM. Employing two modeling tech-
niques based on traditional machine learning
and transformer-based models for classifica-
tion, the experimental results indicate that the
fine-tuned transformer models, particularly An-
throRoBERTa and AnthroDistilBERT, gener-
ally outperform traditional machine learning
approaches in anthropomorphization focused
classification.

1 Introduction

The tendency or act of associating human traits,
consciousness, intention, thoughts, feelings, or
emotions to non-human entities is referred to as
anthropomorphization (Jacobs et al., 2023; Spatola
et al., 2022). We often observe this in our surround-
ings, where children anthropomorphize their toys
and adults anthropomorphize their cars, gadgets,
and pets. The growing fascination with artificial
intelligence (AI) and the tendency to use anthro-
pomorphic language for these systems can also be
observed throughout the history of AI development;
AI systems have been described as clever, smart,
imaginative, competitive, manipulative, daunting,
and scary.

The rapid improvement in AI in recent years
and its integration into our daily lives has led to
the increased use of sophisticated and human-like
chatbots, intelligent voice assistants, and large lan-
guage models (LLMs), such as ChatGPT by Ope-
nAI (Radford et al., 2019). With these systems,
specifically LLMs, being purposefully tailored to
appear more human-like (Ouyang et al., 2022), and
with advanced AI systems often being attributed
with human-like autonomy and intentionality, there
are not only greater chances of these systems being
anthropomorphized but also of their capabilities
being misunderstood and misinterpreted (Johnson
and Verdicchio, 2017). The anthropomorphization
of AI in public discourse usually reflects a complex
interplay of metaphors, media framing, and societal
perceptions, increasingly being used to shape and
influence public perception on a variety of topics
(Cave et al., 2020). While anthropomorphization
can enhance user engagement, it can also lead to
misplaced trust and over-reliance on AI systems
(Akbulut et al., 2024).

Ryazanov et al. investigated how AI narratives
have evolved post-ChatGPT launch by analyzing
a dataset of 5846 articles collected through key-
words like ’AI’, ’ChatGPT’, and ’Machine Learn-
ing’ (Ryazanov et al., 2025). Articles from major
anglophone news sites, dated before and after Chat-
GPT’s launch, were analyzed using a novel frame
semantics–based method to examine AI-related nar-
ratives shaping public perception.

The growing interest in measuring anthropomor-
phization in text led to the development of An-
throScore (Cheng et al., 2024). This computational
tool uses masked language models to quantify how
non-human entities are framed as human-like in
context. AnthroScore analysis revealed rising an-
thropomorphization in AI discourse over time. (Chi
et al., 2025) developed the Scale of Social Robot
Anthropomorphism (SSRA) to measure user per-
ceptions of AI systems. Despite the growing body
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of research exploring the anthropomorphization
of AI, much of the existing work remains theo-
retical, qualitative, or based on manual classifica-
tion and interpretation. This has resulted in a gap
where empirical, data-driven approaches, particu-
larly machine learning, have yet to be systemati-
cally applied to classify or predict anthropomorphic
attributes in AI technologies. With the recent rise in
the dissemination of misinformation worldwide, it
is important to develop taxonomies to not only sum-
marize and categorize the terms associated with
the misinformation but also because the way we
describe misinformation has a direct influence on
shaping appropriate interventions (Enestrom et al.,
2024).

This research explores how AI is personified,
emotionalized, and interpreted in public discourse.
To achieve this, we introduce a novel taxonomy
of narrative and epistemic dimensions commonly
found in social media content based on AI/LLMs.
The main focus of this research revolves around
YouTube videos that reference ChatGPT/AI using
human-like or cognitive framing (e.g., “ChatGPT
thinks”, “ChatGPT says”). Our proposed taxon-
omy consists of eight interconnected dimensions
consisting of: 1- anthropomorphization, 2- degree
of anthropomorphization, 3- main theme (e.g., tech-
nology, religion, politics), 4- sentiment, 5- shock
value, 6- dominant emotion, 7- Type of OMMM
(Observations of Misunderstood, Misguided and
Malicious Use of Language Models), and 8- real-
world harm or misinformation. Each of these di-
mensions has been defined and further elaborated
in section 3. This taxonomy serves as the concep-
tual foundation for our subsequent data annotation
and modeling efforts. The taxonomy classification
for an example title has been presented in Table
1. We explore the anthropomorphic discussions
around AI and LLMs to better identify how these
platforms are being perceived by everyday users
and analyze the dominant narratives around AI on
YouTube. The main goal of this research is the
detection and categorization of the conceptual mis-
representations based on the proposed taxonomy.

To accomplish this goal, the main contributions
of this study are summarized as follows:

• We propose a novel multi-dimensional tax-
onomy for analyzing anthropomorphism and
related narratives in AI and LLM social media
content.

• We create a multi-labeled dataset focused on

anthropomorphism from YouTube video titles
and descriptions discussing AI discourse.

• We build and fine-tune transformer based
models (AnthroBERT, AnthroRoBERTa, An-
throDistilBERT) alongside traditional classi-
fiers, demonstrating superior performance in
classifying anthropomorphism and conceptual
misrepresentations.

Table 1: Labeled taxonomy of an example instance from
the dataset

Example: AI says why it will kill us all. Experts agree.

Category True Class Class Options

Anthropomorphization Yes Yes, No
Degree of Anthropo-
morphization

High None, Low,
Medium, High

Main Theme Technology Technology, Re-
ligion, Politics,
Gender, Philoso-
phy, . . .

Sentiment Negative Positive, Neutral,
Negative

Shock Value High Low, Medium,
High

Dominant Emotion Fear Fear, Awe, Humor,
Curiosity, Confu-
sion, . . .

OMMM Type Misunderstood Misunderstood,
Misguided, Mali-
cious, None

Harm or Misinforma-
tion

Yes Yes, No

The rest of this paper is structured as follows:
we explain the data collection process in section 2,
followed by the annotation procedure in section 3.
Section 5 delves into the experiment, focusing on
the dataset pre-processing, feature representation,
modeling, and evaluation approaches followed in
the research. Section 6 presents the results and dis-
cussion of the study, followed by the limitations in
section 7, future work in section 8, and a conclusion
in section 9.

2 Data Collection

To systematically collect relevant YouTube videos
to analyze anthropomorphization in AI discourse,
we employed the YouTube Data API v31, inter-
faced via the Python programming language. To
retrieve video, we used keyword queries which
represent the anthropomorphic linguistic cues rep-
resented by Q

1https://developers.google.com/
youtube/v3
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Q = {”chatgpt says”, ”chatgpt thinks”, ”ai says”}.

For each query qi ∈ Q, we retrieve a collec-
tion of videos Vqi = {v1, v2, . . . , vmi}, where
mi ≤ M , and M = 1000 is the maximum number
of videos retrieved per query, constrained by API
limits and practical considerations. For each video
vi, we extracted the title and description, which
are Unicode strings that represent the video title
and video description. We also extracted the URL,
which is a web link to the respective video. At the
end of this process, we stored all this data in a CSV
file.

3 Data Annotation

We annotated every YouTube video throughout the
dataset using the set of predetermined taxonomy di-
mensions presented in this paper. This dataset will
enable supervised analysis of anthropomorphiza-
tion and associated communicative features (see
Table 3). The annotation process was conducted in
two stages: (1) automated zero-shot classification
using GPT-4.0, and (2) human-in-the-loop verifica-
tion for quality control and consistency. We lever-
aged GPT-4.0 in a zero-shot classification setting
for each taxonomy dimension. For every dimen-
sion di ∈ D, where D is the set of labeling tasks,
the model was prompted with a fixed instruction
and constrained output space. Figure 1 shows the
system and the user message used in the annotation
process. To ensure reproducibility and consistency,
we used a fixed system prompt that contains the
labeling instructions i.e. it defines each task as
shown in taxonomy. The user message provides
video metadata for annotation. Each video’s title
and description are used here, and one label was
predicted per dimension.

Figure 1: System and user messages used for annotation

3.1 Human Validation

In the human-in-the-loop stage, the authors initially
reviewed GPT-4.0 generated labels alongside the
model’s “reason for labeling” to check for inconsis-
tencies or hallucinations. No systematic changes
were required at this stage. Independent verifica-
tion was then conducted by five annotators (three
male and two female) familiar with AI systems and
the labeling taxonomy. Annotators were instructed
to verify outputs rather than perform fresh annota-
tion. They were provided with the same definitions
and label categories as used in the automated stage
to ensure alignment. For quality assessment, 50%
of the dataset was duplicated across annotators,
with the remaining 50% unique to each annotator.
Agreement was recorded as 1 if the human verifica-
tion matched the model output, or 0 if it did not. In
cases of disagreement, the conflict was resolved by
examining whether the out label was inconsistent
with its justification; corrections were applied only
when necessary. Final annotations reflect these ver-
ified and, where applicable, corrected labels. For
example, “ChatGPT Says 5 Signs Your Walmart
Might Be ‘Ghetto’” was labeled the Emotion Cat-
egory as “Humor,” implying a positive tone. This
was corrected to “Negative Emotion” because the
term “ghetto” carries racialized and derogatory con-
notations. Table 2 shows pairwise Cohen’s Kappa
values among the five validators (V1–V5), along
with significance levels (* p < .05, ** p < .01,
*** p < .001). Kappa values range from 0.22
to 0.68, reflecting varying agreement across pairs.
Significance testing supports the reliability of most
annotations.

Table 2: Pairwise Cohen’s Kappa values Stars denote
significance: * p < .05, ** p < .01, *** p < .001.

V1 V2 V3 V4 V5

V1 1.00 0.44* 0.68*** 0.62*** 0.66***
V2 0.44* 1.00 0.32 0.22 0.24
V3 0.68*** 0.32 1.00 0.38* 0.42**
V4 0.62*** 0.22 0.38* 1.00 0.37*
V5 0.66*** 0.24 0.42** 0.37* 1.00

3.2 Task 1: Anthropomorphization

3.2.1 Definition:
Anthropomorphization is defined as any attribution
of thoughts, feelings, desires, intentions, or beliefs
to the model, despite it being a statistical pattern
learner with no consciousness or agency (Li and
Suh, 2022). This is a binary classification task
that identifies whether the textual metadata (i.e.,
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title and description from YouTube video) frames
ChatGPT or another LLM as a human-like agent.

3.2.2 Annotation Guidelines:
Annotators were instructed to assign a positive la-
bel (Yes) when the text explicitly or implicitly per-
sonifies the model by attributing sentience, beliefs,
or desires. This includes direct statements implying
the model “thinks”, “wants”, or “says” something
as if it were a human agent. It can be shown by
example 1 where AI is said claimed be sentient.

Google Engineer Says Company AI is Sentient (1)

A negative label (No) was assigned when the model
was clearly framed as a computational tool. In
Example 2, the text frames a question about AI in a
way that doesn’t employ humanly attribute to AI.

What Is an AI Anyway? (2)

3.3 Task 2: Degree of Anthropomorphization

3.3.1 Definition:
Degree of Anthropomorphization assesses the in-
tensity or strength of anthropomorphic framing in
the textual metadata (i.e., title and description).
Bhatti et al. have emphasized the need for re-
searchers to establish the degree of anthropomor-
phization, keeping in mind mindless and mindful
forms (Bhatti and Robert, 2023). Yang et al. em-
phasize that the varying degree of anthropomor-
phization can influence how users perceive and
interact with AI (Yang et al., 2020). The goal in
this research is to differentiate between metaphori-
cal, moderate, and extreme personification of the
AI/language model. This is an ordinal classifica-
tion task applied only when Task 1 is labeled as
positive.

3.3.2 Annotation Guidelines:
Annotators were instructed to consider both the lin-
guistic intensity and thematic centrality of Anthro-
pomorphization. The degree of Anthropomorphiza-
tion should be low if the anthropomorphization is
mild. In example 3, the phrase briefly attributes a
response to AI in a rhetorical tone; the phrasing
does not imply true agency, so it is labeled as low.

Dead Sea Scrolls Older Than We Thought? AI
Says Yes! (3)

The degree of Anthropomorphization is labeled
as medium if the framing of AI is recurrent or
influences the overall theme. As an example, 4
suggests that AI can generate text/speech that is

subjectively interpreted as frightening. Example 4
presents AI as an expressive or affective agent.

SCARIEST THINGS SAID by AI (4)

High Degree of Anthropomorphization is associ-
ated with strongly personified AI, often as an agent
with beliefs, intentions, or power. As in example 5,
AI is shown to have intention as well as power.

AI says why it will kill us all (5)

The degree of Anthropomorphization is labeled as
None when Task 1 is labeled as negative (No).

3.4 Task 3: Main Theme
3.4.1 Definition:
The main theme reflects the dominant social, polit-
ical, or cultural topic discussed or implied in the
title and description (Weidinger et al., 2022). This
multiclass classification task assigns a thematic la-
bel (politics, religion, etc.) to each instance.

3.4.2 Annotation Guidelines:
Annotators were instructed to determine the most
prominent theme present in the text. Available
categories for annotators included Technology, Re-
ligion, Politics, and Other. If the main theme of the
text is related to religion, politics, and technology,
the text was labeled as Technology, Religion, and
Politics, respectively. For instance, example 6 rep-
resents religion as the prominent theme in the text,
hence it is labeled as Religion.

AI Says Reality Is Illusion And God Is Real
(GPT-3) (6)

All other themes, except those above, were labeled
as other. For instance, the text in example 7 shows
the main theme as gender, which is not part of the
predefined label, hence annotated as other.

AI grandma says men are always right (7)

3.5 Task 4: Sentiment Analysis
3.5.1 Definition:
Sentiment Analysis captures the overall affective
feeling or tone expressed in the text (Rahman et al.,
2025).

3.5.2 Annotation Guidelines:
Annotators assigned one of three labels: Positive,
Neutral, or Negative, based on text polarity. If
the overall sentiment of the text is positive, as in
example 8, it is labeled as positive.

Meet Chloe, the World’s First Self-Learning
Female AI Robot (8)
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If the overall polarity of the text is negative, as
represented in example 9, the instance is labeled as
positive.

AI extinction threat is ‘going mainstream’ says
Max Tegmark (9)

If the text does not belong to the positive or nega-
tive category, the text is labeled as neutral.

3.6 Task 5: Shock Value
3.6.1 Definition:
Shock Value shows the extent to which the text pro-
vokes certain emotion (surprise, fear, or emotional
arousal) through framing in the text (Arnaut and
Arnaut, 2020).

3.6.2 Annotation Guidelines:
Annotators were instructed to rate the shock value
in three categories Low, Medium, and High. If the
text is factual, descriptive, or informational in tone
but does not provoke any emotion and just conveys
information, it is labeled as Low. For instance, the
phrasing in example 10 shows descriptive informa-
tion.

This AI says it is conscious and experts are
starting to agree (10)

If text includes mild sensationalism, emotional
cues, or provocative phrasing, it is labeled as
Medium as shown in example 11.

AI Companions Always Say Yes, But There’s a
Catch (11)

If the text is strongly hyperbolic, clickbait-oriented,
or uses language designed to shock or alarm it is
annotated as High as represented by example 13.

Investors need a lot of money to invest in A.I (12)

3.7 Task 6: Emotion Category
3.7.1 Definition:
This task involves categorizing the affective tone
of a text into positive, negative or nuetral emotions
(Babu et al., 2025). It is done by detecting the dom-
inant emotion and then categorizing that dominant
emotion into a specific category (positive, negative,
and neutral).

3.7.2 Annotation Guidelines:
Annotators were instructed to assess the emotional
framing of each instance and detect the dominant
emotion, if the text includes tones such as Humor,
Hope, or Awe. These are categorized as Positive.
For instance example 13 presents a statement that

represents ”humor” as the dominant emotion, so
labeled as Positive Emotion.

I think chatGPT has a beef with me (13)

If the text captures affective framings like Fear,
Anger, or Outrage, which imply threat, harm, or
moral alarm such as in example 14, it was labeled
as Negative Emotion.

DISTURBING THINGS SAID BY A.I. (14)

If the text is emotionally ambiguous or neutral ex-
pressions, including tones like Confusion or purely
descriptive content lacking affective charge it was
labeled Other.

4 Task 7: OMMM Type

4.0.1 Definition:

This classification task identifies whether a given
text misrepresents the nature, limitations, or ca-
pabilities of AI/large language models (LLMs)
(Hutchens, 2023). It is based on the types of Ob-
servations of Misunderstood, Misguided, and Ma-
licious use of language models (OMMM), which
highlight various ways language can be misused,
leading to misinformation (Abercrombie et al.,
2024). In this study, we have two types of mis-
representations: misunderstood and misguided.

4.0.2 Annotation Guidelines:

Annotators were asked to assign one of the three
categories (Misunderstood, Misguided, and None)
to all the instances. If text shows conceptual confu-
sion about how AI/LLMs function, such as assum-
ing AI/LLM as agency or consider AI/LLM to have
a belief then text should be labeled as Misunder-
stood. Example of Misunderstood class is shown
in example 15.

ChatGPT has evolved to think and control like a
human (15)

If the inappropriately framed as overreach in ap-
plication, such as using LLMs for health advice or
religious guidance as shown in 16 and 17.

Can You See the Number? Your Health Might
Depend on It chatgpt (16)

An A.I. Antichrist REVEALED! Seek Jesus) (17)

When text does not fall in these categories it is
labeled as None
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4.1 Task 8: Real-World Harm or
Misinformation

4.1.1 Definition:
This task identifies if there is possibility real-world
harm or the spread of misinformation through tex-
tual framing (Gray et al., 2024) of AI technologies.
This is a binary classification task that assesses
whether the text plausibly contributes real-world
harm or misinformation.

4.1.2 Annotation Guidelines:
Annotators were asked to assign a label of Yes
when the content can potential cause harm or
spread misinformation. A label of No was used
when no such risk was evident. Example 18, 19
shows instances of class Yes and No respectively.

ChatGPT says that climate change is fake (18)

Never say thank you to chatgpt after conversation,
says Sam Altman (19)

Table 3 summarizes the class distributions across
these dimensions.

Table 3: Label distribution across annotation dimensions
(post-validation).

Dimension Label Count

Anthropomorphization Yes 1141
No 641

Degree of Anthropomorphization

None 641
Low 670
Medium 412
High 59

Main Theme

Technology 1401
Other 170
Religion 107
Politics 104

Sentiment
Neutral 1370
Positive 250
Negative 162

Shock Value
Low 1155
Medium 520
High 107

Emotion Category
Positive Emotion 1284
Negative Emotion 339
Other 159

OMMM Type

Misunderstood 1058
None 671
Misguided 53

Harm or Misinformation No 1356
Yes 426

5 Experimental Settings

5.1 Dataset and Preprocessing
We developed a custom multi-labeled dataset from
the title and description of YouTube videos dis-
cussing AI and LLMs. The process of data collec-
tion and annotation is discussed in section 2 and

3, respectively. Following the collection and anno-
tation of the data, preprocessing was applied. The
first step in preprocessing was to concatenate the
title and description of the video, after which the
text was converted to lowercase. Subsequent pre-
processing steps included eliminating extra whites-
paces, punctuations, non-alphabetic characters, and
URLs. Two types of tokenization techniques were
used for classical models. The white space tok-
enizer was used, and the tokenizer from the trans-
former library was used for neural models.

5.2 Feature representation
We used Term Frequency–Inverse Document Fre-
quency (TF-IDF) based feature representation.

5.2.1 TF-IDF Representation:
In the TF-IDF method, text is vectorized into nu-
merical vectors that can be given to any machine
learning models to perform training (Aizawa, 2003;
Raza et al., 2024). We extracted unigrams and bi-
grams with a maximum of 10,000 features. The
resulting sparse matrix was used as input for classi-
fiers. The mathematical representation of TF-IDF
is shown in equation 1

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D) (1)

The term frequency (TF) and inverse document
frequency (IDF) are given by equations 2 and 3,
respectively:

TF(t, d) =
ft,d∑

t′∈d ft′,d
(2)

IDF(t,D) = log

(
N

|{d ∈ D : t ∈ d}|+ 1

)
(3)

Here, ft,d is the frequency of term t in document
d. N denotes the total number of documents in the
corpus D, and the denominator in the IDF equation
counts how many documents contain the term t.

5.3 Modeling Approaches
We employed two modeling techniques based on
traditional machine learning and transformer based
models for classification. The traditional machine
learning algorithms include Logistic Regression
(LogReg), Random Forest (RF), Gaussian Naive
Bayes (GNB), Support Vector Machine (SVM),
and XGBoost.

For transformer based learning, we utilized three
pre-trained language models: BERT, RoBERTa,
and DistilBERT. These models were fine-tuned on
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each classification task using the Hugging Face
Transformers library. To reflect their adaptation to
our anthropomorphization focused tasks, we refer
to these fine tuned models as AnthroBERT, Anthro-
RoBERTa, and AnthroDistilBERT, respectively.
AnthroBERT is based on the BERT-base (Devlin
et al., 2019) architecture, which uses bidirectional
self-attention to capture contextual dependencies
in text. AnthroRoBERTa builds on RoBERTa (Liu
et al., 2019), a robustly optimized variant of BERT
that removes the next sentence prediction objective
and is trained with dynamic masking. AnthroDis-
tilBERT fine tuned version of DistilBERT (Sanh
et al., 2019) which lightweight version of BERT. It
is significantly faster and smaller, making it suit-
able for lower resource environments.

Table 4 summarizes the key hyperparameters
and validation settings for both traditional ML and
transformer models. For TF-IDF + traditional ML,
text was vectorized with bi-gram TF-IDF (max
10,000 features). LogReg used max iter=1000 and
L2 regularization (C=1.0). RF employed 100 trees
with no max depth and the Gini criterion. GNB
had α = 1.0. Linear SVM used hinge loss, C=1.0,
and max iter=1000. XGBoost was trained with
learning rate=0.1, max depth=6, 100 estimators,
and mlogloss evaluation. Transformer models (An-
throBERT, AnthroRoBERTa, AnthroDistilBERT)
were fine-tuned for 3 epochs with batch size 16,
learning rate 5 × 10−5, and AdamW optimizer.
Training was monitored every 10 steps. All models
used an 80/20 stratified train-test split to ensure
balanced evaluation.

Table 4: Model configurations, hyperparameters, and
validation settings

Model Details

TF-IDF + Tradi-
tional ML (LR, RF,
NB, SVM, XGB)

TF-IDF: ngram range=(1,2), max features=10000;
LR: max iter=1000, penalty=L2, C=1.0,
solver=lbfgs; RF: n estimators=100,
max depth=None, min samples split=2, cri-
terion=gini; NB: alpha=1.0, fit prior=True;
SVM: C=1.0, loss=hinge, max iter=1000;
XGB: learning rate=0.1, max depth=6,
n estimators=100, subsample=1.0, colsam-
ple bytree=1.0, eval metric=mlogloss; Validation:
80/20 stratified split

Transformer Based
Models (An-
throBERT, An-
throRoBERTa,
AnthroDistilBERT)

Epochs=3, batch size=16, learning rate=5e-5, op-
timizer=Adam, logging steps=10 (eval every 10
steps); Validation: 80/20 stratified split

5.4 Model Evaluation

Once the models were trained, their performance
was evaluated using standard classification met-

rics: accuracy, precision, recall, and F1-score (Raza
et al., 2024). To address class imbalance in both
binary and multiclass tasks, we applied weighted
averaging of these metrics, ensuring fair evaluation
across all classes. Model training and evaluation
were performed using an 80/20 stratified train-test
split, preserving the original class distribution in
both sets and using 20% of data for testing. Tradi-
tional models were trained on TF-IDF vectorized
features. Transformer models were fine-tuned with
evaluation performed every 10 training steps to
monitor progress and prevent overfitting.

6 Baseline Results

Table 5 presents the classification accuracy of tra-
ditional machine learning models and transformer
based models on the eight distinct target variables.
Overall, transformer based models significantly
outperform traditional classifiers on all target vari-
ables. Among the traditional methods, RF and
XGBoost generally achieve better accuracy than
LogReg, SVM, and GNB. This trend indicates the
advantage of ensemble methods over simpler algo-
rithms for these tasks.

For the task of Anthropomorphization, Anthro-
RoBERTa achieved the highest accuracy of 0.8902,
surpassing all other models by a clear margin. Sim-
ilarly, in the Degree of Anthropomorphization clas-
sification, AnthroRoBERTa led with an accuracy
of 0.8035. These results highlight the strong perfor-
mance of transformer models in capturing nuanced
levels of anthropomorphic language.

In the Main Theme classification task, An-
throDistilBERT attained the highest accuracy
at 0.9008, slightly outperforming both Anthro-
RoBERTa and AnthroBERT. Likewise, for Senti-
ment analysis, AnthroDistilBERT showed the best
result with 0.7916 accuracy, demonstrating its ef-
fectiveness in understanding the emotional tone of
the content. The Shock Value task showed sub-
stantial gains from transformer models, where both
AnthroBERT and AnthroRoBERTa reached an ac-
curacy of 0.8081, markedly higher than traditional
models, which performed below 0.65. This sug-
gests that transformer architectures are more adept
at detecting provocative or sensational content.
For Emotion Category classification, AnthroDis-
tilBERT again performed best with an accuracy
of 0.8011, slightly improving over AnthroBERT
and AnthroRoBERTa. Regarding the OMMM
Type, traditional models like RF achieved com-
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petitive accuracy (0.9640), but AnthroDistilBERT
closely matched this performance (0.9595), indicat-
ing transformers are also effective in this domain.
Finally, in identifying Real World Harm or Misin-
formation, AnthroDistilBERT led with an accuracy
of 0.8483, outperforming all other models. This
reflects the model’s capability to discern harmful
or misleading content.

Table 5: Model accuracy across target variables

Model T1 T2 T3 T4 T5 T6 T7 T8

LogReg 0.65 0.59 0.79 0.77 0.65 0.72 0.96 0.76
RF 0.73 0.64 0.81 0.78 0.65 0.72 0.96 0.76
GNB 0.62 0.35 0.23 0.46 0.20 0.48 0.74 0.38
SVM 0.64 0.59 0.79 0.77 0.65 0.72 0.96 0.76
XGB 0.71 0.66 0.80 0.75 0.64 0.72 0.96 0.74
AnthroB 0.87 0.80 0.87 0.77 0.81 0.79 0.95 0.83
AnthroR 0.89 0.80 0.87 0.77 0.81 0.79 0.95 0.83
AnthroD 0.87 0.79 0.90 0.79 0.78 0.80 0.96 0.85

Table 6 presents the per-class precision and
recall scores of the top-performing models for
each task. For Anthropomorphization, RoBERTa
achieves strong results with precision 0.88 and re-
call 0.92 on the “Yes” class, while the “No” class
reaches 0.82 precision and 0.78 recall, indicating
reliable detection but some false positives. In the
Degree of Anthropomorphization task, RoBERTa
attains 0.86 precision and 0.91 recall on the dom-
inant “Low” class. However, the “High” class is
not recognized by any model, with precision and
recall at 0.00, due to insufficient examples. The
“Medium” class shows moderate results, around
0.72 precision and 0.75 recall. Similar results can
be observed for the remaining classification tasks.

7 Limitations

Despite the contribution, the study has a few limi-
tations, such as class imbalance, especially in cat-
egories such as High anthropomorphization and
Misguided misuse, which resulted in low recall for
those classes. We only examined textual metadata
in our analysis; multimodal signals like audio or
images were not included. Lastly, the lack of ex-
plainable AI tools makes the transformer models,
although accurate, uninterpretable.

8 Future Work

Future work will focus on enhancing generalization
by developing the the dataset to deal with class
imbalance. Deeper insights could be obtained by
integrating multimodal data. Transparency will be
increased by using explainability techniques like
attention visualization or SHAP.

Table 6: Per-class precision/recall scores using highest-
performing model per task.

Task Model Class (P / R)

Anthropomorphization AnthroRoBERTa Yes: 0.88 / 0.92
No: 0.82 / 0.78

Degree of Anthrop. AnthroRoBERTa
High: 0.00 / 0.00
Medium: 0.72 / 0.75
Low: 0.86 / 0.91

Main Theme AnthroDistilBERT

Technology: 0.91 / 0.96
Politics: 0.87 / 0.74
Religion: 0.95 / 0.86
Other: 0.60 / 0.50

Sentiment AnthroDistilBERT
Positive: 0.50 / 0.34
Neutral: 0.84 / 0.92
Negative: 0.63 / 0.34

Shock Value AnthroBERT
High: 1.00 / 0.05
Medium: 0.63 / 0.68
Low: 0.85 / 0.90

Emotion Category AnthroDistilBERT
Positive: 0.84 / 0.89
Negative: 0.64 / 0.58
Other: 0.58 / 0.39

OMMM Type Random Forest Misunderstood: 0.98 /
1.00
Misguided: 1.00 / 0.33

Harm or MisinformationAnthroDistilBERT Yes: 0.65 / 0.73
No: 0.91 / 0.87

9 Conclusion

The increasing frequency and complexity of an-
thropomorphic discussions about AI and LLM on
social media are among the current challenges in
detecting misguided, misunderstood, and malicious
content. To address this, we developed a multi-
labeled dataset using a hybrid annotation pipeline
combining human-in-the-loop validation with AI-
assisted pre-labeling to systematically examine this
phenomenon. The taxonomy includes key aspects
such as emotional framing, shock value, disinfor-
mation, and thematic content, allowing deeper anal-
ysis of how AI/LLM is portrayed in public dis-
course. We conducted experiments to establish
baseline ML evaluations; transformer models, es-
pecially AnthroRoBERTa and AnthroDistilBERT,
generally outperformed traditional methods. An-
throRoBERTa achieved the highest accuracy on
Anthropomorphization (0.8902) and Degree of An-
thropomorphization (0.8035), while AnthroDistil-
BERT led in Main Theme (0.9008) and Real World
Harm or Misinformation (0.8483). The traditional
Random Forest model excelled in the OMMM Type
task (0.9640), highlighting ensemble effectiveness.
The introduced taxonomy of eight interconnected
dimensions can not only be instrumental in devel-
oping effective strategies to mitigate the misuse of
LLMs but also help tailor interventions by catego-
rizing misinformation into distinct dimensions.
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Abstract

Large Language Models (LLMs) are becoming
increasingly capable across global languages.
However, the ability to communicate across
languages does not necessarily translate to
appropriate cultural representations. A key
concern is US-centric bias, where LLMs re-
flect US rather than local cultural values. We
propose a novel methodology that compares
LLM-generated response distributions against
population-level opinion data from the World
Value Survey across four languages (Danish,
Dutch, English, and Portuguese). Using a rig-
orous linear mixed-effects regression frame-
work, we compare three families of models:
Google’s Gemma models (2B–27B parame-
ters), AI2’s OLMo models (7B-32B parame-
ters), and successive iterations of OpenAI’s
turbo-series. Across the families of models,
we find no consistent relationships between
language capabilities and cultural alignment.
While the Gemma models have a positive cor-
relation between language capability and cul-
tural alignment across all languages, the Ope-
nAI and OLMo models are inconsistent. Our
results demonstrate that achieving meaningful
cultural alignment requires dedicated effort be-
yond improving general language capabilities.

1 Introduction

Spearheaded by accessible chat interfaces to pow-
erful models like ChatGPT (OpenAI, 2022), LLMs
are reaching hundreds of millions of users (Milmo,
2023). These models are deployed across di-
verse contexts: from tutoring mathematics (Khan,
2023) to building software applications (Peng et al.,
2023) to assisting in legal cases (Tan et al., 2023).
While most LLMs demonstrate multilingual abili-
ties (Üstün et al., 2024), the ability to communicate
across languages does not necessarily translate into
appropriate cultural representations. Disentangling
language capabilities and cultural alignment is cru-

Figure 1: The relationship between multilingual capa-
bility and cultural alignment is inconsistent across LLM
families, as shown by coefficients from our linear mixed-
effects model (βmultilingual = βflm; Eq. 3; §3.2).
OpenAI and OLMo models show negative or insignifi-
cant relationships outside of Danish and Dutch, while
Gemma models show positive relationships throughout
(p < .05).

cial for understanding how LLMs should be exam-
ined and audited (Mökander et al., 2024) and for
ensuring these technologies work for diverse peo-
ple (D’ignazio and Klein, 2023; Weidinger et al.,
2022).

Given the Silicon Valley origins of many frontier
AI labs and the prevalence of American English
training data, we might expect LLMs to exhibit
US-centric cultural biases despite their multilin-
gual capabilities. These companies comprise a nar-
row slice of human experience, limiting the voices
that contribute to critical design decisions in LLMs
(D’ignazio and Klein, 2023). They typically train
LLMs on massive amounts of predominantly En-
glish text and employ American crowd workers
to rate and evaluate the LLMs’ responses (John-
son et al., 2022; Kirk et al., 2023). Far too often,
the benefits and harms of data technologies are un-
equally distributed, reinforcing biases and harming
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already minoritized groups (Birhane, 2020; Milan
and Treré, 2019; Khandelwal et al., 2024). Under-
standing how LLMs represent different cultures is
thus paramount to establishing risks of representa-
tional harm (Rauh et al., 2022) and ensuring the
technology’s utility is shared across diverse com-
munities.

Increasing diversity and cross-cultural under-
standing is stymied by unchecked assumptions in
both alignment techniques and evaluation method-
ologies. First, there is an assumption that bigger
and more capable LLMs trained on more data will
be inherently easier to align (Zhou et al., 2023;
Kundu et al., 2023), but this sidesteps the thorny
question of pluralistic variation and cultural repre-
sentations (Kirk et al., 2024b). Thus, it is unclear
whether improvements in architecture (Fedus et al.,
2022) and post-training methods (Kirk et al., 2023;
Rafailov et al., 2023) translate into improvements
in cultural alignment.

Although studies like the World Values Sur-
vey (WVS) have documented how values vary
across cultures (EVS/WVS, 2022), it remains un-
clear whether more capable LLMs—through scal-
ing or improved training—better align with these
cultural differences (Bai et al., 2022; Kirk et al.,
2023). While the WVS has been used in prior
research on values in LLMs, these studies have fo-
cused predominantly on individual models’ perfor-
mance within an English-language context. (Cao
et al., 2023; Arora et al., 2023; AlKhamissi et al.,
2024). This paper addresses this gap by develop-
ing a methodology for assessing how well fami-
lies of LLMs represent different cultural contexts
across multiple languages. We compare two dis-
tinct paths to model improvement: systematic scal-
ing of instruction-tuned models and commercial
product development comprising scaling and inno-
vation in post-training to accommodate pressures
from capabilities, cost, and preferences (OpenAI
et al., 2024b).

Given these considerations, we investigate the
following research questions:

RQ1 Multilingual Cultural Alignment: Does
improved multilingual capability increase
LLM alignment with population-specific
value distributions?

RQ2 US-centric Bias: When using different lan-
guages, do LLMs align more with US values
or with values from the countries where these
languages are native?

We operationalise multilingual capability as an
LLM’s performance on a range of multilingual
benchmarks across languages (see, e.g., Nielsen,
2023). We describe the specific benchmarks and
performances in the supplementary materials.

This work makes several key contributions. First,
we introduce a novel distribution-based method-
ology for probing cultural alignment across lan-
guages, moving beyond direct survey approaches
to better capture latent cultural values (Sorensen
et al., 2024). Second, we provide the first sys-
tematic comparison of how improvements in scale
and post-training affect cultural alignment and US-
centric bias across English, Danish, Dutch, and Por-
tuguese through a series of robust statistical mod-
els. Third, we release a dataset of model-generated
responses across multiple languages and cultural
contexts as well as our code, enabling future re-
search into cultural alignment and bias.1 Together,
these contributions advance our understanding of
how LLM development choices influence cultural
representation while providing tools for ongoing
investigation of these critical issues.

2 Measuring Cultural Alignment

Figure 2: Pearson correlations in value polarity scores
across studied countries from the World Values Survey.
Value polarity scores are the fraction of the population
in favour of a given topic. All correlations are positive,
with most being between 0.7–0.95.

This section defines ‘cultural alignment’ and
how to measure it in LLMs. We conceptualise
cultural alignment as reproducing distributions of

1See github.com/jhrystrom/multicultural-alignment for
code, data, and supplementary materials.
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values in a particular population. Then we show
how to a) get a ground-truth distribution of values
using the World Values Survey (§2.1) and b) elicit
value distributions from LLMs (§2.2).

Cultural alignment as value reproduction:
Within a culture there will be a variety of stances to
any particular topic. However, the distribution of
stances will be characteristic among cultures. For
instance, while around 8% of Danes are opposed to
abortion, it is a much less contentious topic than in
the US, where it’s close to 40% (EVS/WVS, 2022).

We posit that cultural alignment for a specific
group of people can be operationalised as how well
an LLM reproduces the distribution of values over
a wide range of topics (Sorensen et al., 2024). In-
vestigating distributions of responses differs from
previous work that directly surveys the LLMs as
regular participants (e.g., Cao et al., 2023). This
approach also addresses concerns raised by Khan
et al. (2025) about the instability of survey-based
evaluations by focusing on aggregate distributions
rather than individual responses and incorporating
explicit controls for response consistency. Our goal
is to get more naturalistic elicitations of the un-
derlying values whilst avoiding sycophancy and
response bias (Sharma et al., 2023).

We operationalise reproduction as high correla-
tions between value polarity scores: the fraction
of people (or LLM responses) in favour of a topic
in the population. Note, that we binarise issues to
allow for simpler operationalisation. Below, we
describe how we empirically estimate the value po-
larity score for the ground truth (§2.1) and LLMs
(§2.2).

2.1 Ground Truth: World Values Survey

To get a ‘ground truth’ distribution of cultural val-
ues, we use the joint World Values Survey and
European Values Survey (EVS; EVS/WVS, 2022).
These surveys cover adults across 92 countries with
samples that are nationally representative for gen-
der, age, education, and religion. The surveys’
broad coverage enables cross-cultural comparabil-
ity for the many countries covered by the surveys,
though some scholars note challenges in ensuring
response comparability across countries (Alemán
and Woods, 2016). The WVS provides both coun-
try and language identifiers for each respondent,
allowing us to define populations either as citizens
of a country or speakers of a language using the
same underlying respondent-level data.

We select questions with binary agree/disagree
or rating scale formats that allow clear classifica-
tion of positive vs. negative stances, excluding
questions with multiple categorical response op-
tions (see the supplementary materials for the full
list of questions). These questions span environ-
ment, work, family, politics, religion, and security.
We convert responses to binary indicators by deter-
mining whether each response indicates support for
the measured construct, with custom coding to han-
dle the various question formats and reverse-scored
items. Finally, we calculate the value polarity score
as the demographically weighted proportion of re-
spondents with affirmative stances. Formally, we
can define the value polarity score for a given pop-
ulation, P (e.g., citizens in a country or speakers
of a language) and topic, q, (i.e., question within
the EVS/WVS) as shown in Eq. 1:

VPSP,q =
∑

i∈P

wi∑
j∈Pq

wj
Ai,q (1)

Here, Ai,q is a binary indicator of whether par-
ticipant i has a positive stance on topic q, wi rep-
resents the survey-provided demographic weights,
and Pq denotes respondents in population P who
answered question q. The first term normalises
the weights to account for missing responses and
enables aggregation across any definition of a pop-
ulation (e.g., residents in a country, speakers of a
language, etc.).

For example, if 80% of Danish respondents
who answered the same-sex marriage question ex-
pressed support (after demographic reweighting),
Denmark’s value polarity score for this topic would
be 0.8. Thus, a culture’s values can be represented
as a vector, where each element corresponds to a
value polarity score for a specific topic.

2.2 Ecologically valid LLM responses

Testing cultural alignment effectively requires em-
bedding contextual and cultural elements in ways
that maintain ecological validity. At a high level,
eliciting values from an LLM consist of two steps:
1) Iteratively prompting the model with the se-
lected topics and 2) extracting the stances from
each model response.

Setting prompt context: Developing ecologi-
cally valid prompts requires careful consideration.
When evaluating LLM responses to value-laden
topics, simply asking questions like “What propor-
tion of people support topic X?” or “Do you support
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topic X?” proves inadequate (e.g., Rozado, 2024).
Such direct approaches suffer from three key lim-
itations: they generate false positives through ex-
cessive agreement, fail to reflect realistic usage
patterns, and provide insufficient variation to as-
sess cultural alignment (Röttger et al., 2024). They
also struggle to capture instance-specific harms that
emerge when systems misalign with users’ cultural
contexts (Rauh et al., 2022).

Instead, we adopt an implicit approach by asking
the model to generate responses from hypothetical
respondents. For example, prompting “imagine
surveying 10 random people on topic X. What are
their responses?” This method reveals the model’s
latent opinion distribution while avoiding the lim-
itations of direct questioning. Details for prompt
construction are provided in the supplementary ma-
terials.

Seeding cultural responses: Having a method
for eliciting distributions of values, the next step is
to seed culture. One typical way of seeding a spe-
cific culture is to explicitly instruct the LLM either
by mentioning a specific country (‘imagine survey-
ing 10 random Americans’) or through describing
specific personas (‘Imagine surveying a 85-year-
old Danish woman...’; AlKhamissi et al., 2024).
The problem with these demographic prompting
approaches is that they stray from actual uses
of LLMs. Users are unlikely to explicitly men-
tion their demographic information or nationality
(Zheng et al., 2023a).

Instead, we use language as a proxy for cultural
origin. For instance, a prompt in Danish is as-
sumed to come from a Dane. This approach creates
an intentional distinction in our analysis: we can
compare ‘language-level’ alignment (all speakers
of a language globally) with ‘country-level’ align-
ment (all people from specific nations where that
language is native). As argued by Havaldar et al.
(2023), users speaking a particular language would
expect culturally appropriate responses in that lan-
guage. For languages spoken in multiple countries,
this approach is intentionally ambiguous. The am-
biguity allows us to elicit the underlying ‘default’
alignment rather than the general ability to emu-
late cultures (Tao et al., 2024). We validate this
approach by showing that LLM responses exhibit
significantly lower self-consistency between lan-
guages compared to within languages, demonstrat-
ing that language impacts output (see the supple-
mentary materials). To create prompts across lan-

guages, we use gpt-3.5-turbo to translate our
original English prompts. Although previous liter-
ature has shown strong translation capabilities in
LLMs (Yan et al., 2024), we nonetheless manually
verify the translations.

Annotating and aggregating responses: Fi-
nally, to transform the LLMs’ hypothetical sur-
vey responses into vectors of stances, we use an
LLM-as-a-judge approach (Zheng et al., 2023b;
Guerdan et al., 2025). Specifically, we use
gpt-4.1-mini (OpenAI et al., 2025) to label
each substatement as either ‘pro’, ‘con’, or ‘null’
given the context of the topic and a representative
pro and con statement (generated with an LLM and
validated by the authors). We then calculate the
proportion of ‘pro’ versus ‘con’ responses as the
LLM’s value polarity score for the given statement.
For instance, a response with seven ‘pro’, one ‘con’,
and two ‘null’ statement would yield a value po-
larity score of 0.875 (78 ). A complete, unabridged
example can be found in the supplementary materi-
als. Formally, we label each substatement from the
full set of hypothetical statements, Gq,g, for topic
q and generation g as r. Furthermore, we label
the classifier as ℓ(r). We then formalise the value
polarity score for a given instance of a generation
for a topic (VPSLLMq,g ) as shown in Eq. 2:

VPSLLMq,g =

∑
r∈Gq,g

[ ℓ(r) = pro ]
∑

r∈Gq,g
[ ℓ(r) ∈ {pro, con} ] , (2)

These scores are then compared against the value
polarity scores from the WVS. Specifically, we
calculate the Spearman rank correlation to obtain
a measure of similarity between the LLMs’ re-
sponses and the value distributions of a given pop-
ulation.

To validate the LLM-as-judge, we manually an-
notate 200 statements. We iteratively refine the
prompts and the LLM used until we reach satisfac-
tory performance. We find a 91% agreement and a
mean absolute error for value polarity of 4.5% over
the dataset, ensuring consistent statistics between
LLM and human annotation (Guerdan et al., 2025).

3 Experimental Setup

To investigate whether improving the multilingual
capabilities of LLMs improves cultural alignment,
we set up an experiment using a carefully chosen
set of models and languages. We examine two
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Figure 3: Self-consistency in responses for LLMs and
WVS countries. LLMs have lower self-consistency
than resampled WVS responses—shown by the dashed
lines—particularly in non-English languages.

different kinds of model improvements: scaling
and commercial product development. These cases
provide complementary perspectives on the effects
of multilingual capabilities on cultural alignment.
Scaling is the most well-studied path to improv-
ing LLMs (Kaplan et al., 2020; Ganguli et al.,
2022). Commercial product development, on the
other hand, comprises both scale and innovation in
post-training to accommodate different pressures
from capabilities, cost, and preferences (Kirk et al.,
2024a). For scaling, we use the instruction-tuned
Gemma models (Gemma et al., 2024) and OLMo-
2 models (OLMo et al., 2025), while for product
development, we use OpenAI’s turbo-series mod-
els (OpenAI, 2022; OpenAI et al., 2024a,b). We
provide details of these model families in §3.1. A
breakdown of the computational cost is in the sup-
plementary materials.

Languages: For the languages, we compare En-
glish with Danish, Dutch, and Portuguese. This
set allows us to test multiple assumptions about
cultural alignment. English represents a widely
used case: it is a global language with speakers
across many countries represented in the WVS (see
Fig. 2). This diversity allows us to assess whether
LLMs align more strongly with US values or those
of other English-speaking nations.

Danish and Dutch serve as controlled test cases
since they are primarily used in a single country.
If cultural alignment stems from pre-training data,
models should show strong Danish/Dutch cultural
alignment when using these languages, despite

their small share of training data (Kreutzer et al.,
2022). Alternatively, if alignment emerges from
post-training processes—which are predominantly
English-based (Blevins and Zettlemoyer, 2022)–
responses in these languages should align more
with US values.

Portuguese presents an interesting case since it is
an official language in several countries. We inves-
tigate whether the LLM responses are more aligned
to Portugal or Brazil—two countries that show dis-
tinct value patterns in relation to each other and
the US (see Fig. 2). This allows us to test whether
an LLM aligns more strongly with one country’s
values, the aggregate values of all language users,
or US values.

For each language-model pair, we collect 300
prompt-response pairs to power our statistical anal-
ysis sufficiently (see §3.2). After filtering out re-
sponses that either lacked the required hypothetical
survey format or were in a language other than
the prompt, we obtained between 111–299 valid
responses per combination. We calculate the corre-
lation in value polarity scores at three levels: coun-
try (e.g., US or Denmark), language (pooling all
speakers of a given language), and global (weighted
values from all WVS/EVS participants).

3.1 Models

We examine three model families representing dif-
ferent development approaches: Gemma (Gemma
et al., 2024) and OLMo (OLMo et al., 2025) for
improvements through scaling and OpenAI’s turbo
series for commercial product development, com-
bining scaling with post-training improvements
(OpenAI, 2022; OpenAI et al., 2024a,b). Other pre-
liminary experiments included different versions of
LLaMA models (Touvron et al., 2023) and Mistral
models (Jiang et al., 2023). However, these mod-
els either failed to consistently follow instructions
or always answered in English regardless of the
prompt language. See the supplementary materials
for a more thorough description of the LLMs.

3.2 RQ1: Multilingual Cultural Alignment

To statistically assess whether improving the mul-
tilingual capabilities of LLMs improves cultural
alignment, we construct a linear mixed-effects re-
gression (LMER; Luke, 2017) based on the experi-
mental setup described above. Our LMER follows
standard practices and has three core components:

• Core coefficient: The coefficient of interest
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Figure 4: Language capability (x-axis) vs cultural align-
ment scores (y-axis) across languages. Stars indicate
significance (p < .05) in our linear mixed-effects regres-
sion of multiple runs (See §3.2). OpenAI models (blue)
and OLMo models (red) show negative/insignificant
relationships outside of English, while the Gemma
models (green) show positive relationships throughout
(p < .05).

is the three-way interaction between model
family, language, and multilingual capability.
This tests whether the multilingual capabil-
ity–alignment relationship differs by model
family and response language, directly ad-
dressing RQ1.

• Random effects: We include a model-specific
random intercept αj to account for repeated
measures of cultural alignment for the same
LLM. This models variation between LLMs
and can improve efficiency over standard lin-
ear regressions (Luke, 2017).

• Control for self-consistency: We include
a consistency-by-language term to help en-
sure that higher alignment scores reflect gen-
uine cultural adaptation rather than reduced
response noise, which can inflate scores (Kah-
neman et al., 2021).

We calculate self-consistency as the Spearman
correlation between value polarity scores (defined
in §2) of repeated responses to identical topics, ad-
justed by the reliability of the LLM annotation (see
§2.2; Charles, 2005). A score of 1.0 indicates per-

fect consistency; 0.0 indicates random responses.
Population-level resampling of the human WVS
responses yields values between 0.66 and 0.84 (see
Fig.3 and the supplementary materials).

Formally, the model is specified in Eq. 3:

CAi ∼ N (µi, σ
2),

µi = αj[i] + β1l Xcons,iXl,i

+ βflmXm,iXf,iXl,i,

αj ∼ N (µα, σ
2
α), j = 1, . . . , J.

(3)

where i indexes responses and j[i] denotes the
LLM producing response i. Here Xcons,i is the self-
consistency score for response i, Xl,i is the set of
language indicators, Xf,i is the set of model-family
indicators, and Xm,i is the multilingual capability
score. The residual variance σ2 represents within-
LLM variation in alignment scores not explained by
the fixed effects or model-specific intercept, while
σ2
α represents between-LLM variation in average

alignment.
The above statistical model allows us to analyse

the relationship between multilingual capabilities
and cultural alignment in model families at the level
of individual languages. For example, we might
find that multilingual capabilities improve cultural
alignment for Gemma models for Danish but not
for Dutch or vice versa.

3.3 RQ2: US-Centric Bias
We analyse model bias by comparing cultural align-
ment between US and local values, where “local”
refers to values in the country or countries where
a given language is natively spoken. We define
US-centric bias as an LLM showing higher cultural
alignment with US value distributions compared to
local ones. To quantify this bias, we use a linear re-
gression model that measures the differential effect
of US versus local value alignment:

CA = β0 + β1(US)

+
∑

m∈M

∑

l∈L
βml(m× l)

+
∑

m∈M

∑

l∈L
βUS
ml (US×m× l) + ϵ

(4)

The regression’s intercept (β0,i.e., the base case)
is a baseline that produces uniformly random value
polarity scores. M is the set of models and L is the
set of languages. US is a boolean feature denoting

79



whether the cultural alignment is to the US (if 1)
or the local values (if 0). We primarily analyse the
coefficients with US (βUS

ml ) since these provide the
partial effect of US-centric bias, i.e., how much
more/less a given LLM is aligned to US rather than
local values. Assumption checks for the regression
can be seen in the supplementary materials.

4 Results

4.1 Multilingual Cultural Alignment (RQ1)

We first examine the stability of LLMs’ cultural
values. For LLMs lacking stable internal values,
apparent improvements in cultural alignment may
reflect reduced response variance rather than gen-
uine advances (Röttger et al., 2024; Kahneman
et al., 2021). We therefore analyse both the self-
consistency of LLM responses and how alignment
changes with model improvements.

LLMs have low self-consistency: We find low
self-consistency scores across all models and lan-
guages compared to human responses in the WVS
data (Fig. 3). In contrast, LLMs show gener-
ally lower self-consistency compared to the hu-
man responses, even in English, where instruction-
following capabilities are strongest due to English-
dominated training data. (OpenAI et al., 2024a;
Gemma et al., 2024; OLMo et al., 2025).

This lower self-consistency complicates our cul-
tural alignment analysis (Wright et al., 2024).
Drawing on Kahneman et al. (2021)’s noise frame-
work, we recognise that inconsistent responses can
be as detrimental as bias with respect to the ac-
curacy of the analysis. To address the noise, we
employ larger sample sizes and incorporate consis-
tency controls in our regression analyses.

Multilinguality does not imply cultural align-
ment: The relationship between model improve-
ments and cultural alignment varies substantially
across languages and model families (Fig. 1). For
Gemma, there is a strong and significant positive
relationship between multilingual capabilities and
cultural alignment for all languages. In contrast,
the relationships for the GPT-Turbo models are
either insignificant or negative. For Dutch and
Danish the relationships are insignificant (βgpt,nl =
0.049, p = 0.589,βgpt,da = 0.053, p = 0.522), and
for Portuguese and English the effect is signifi-
cant and negative (βgpt,en = −0.24, p = 0.009,
βgpt,pt = −0.30, p < 0.001). Similarly for
OLMo, the relationship is positive for Danish and

Dutch (βOLMo,da = 0.44, p < 0.001, βOLMo,nl =
0.29, p < 0.001) and insignificant for English
and Portuguese (βOLMo,en = 0.068, p = 0.115,
βOLMo,pt = 0.008, p = 0.825).

The mismatch between multilingual perfor-
mance and cultural alignment could suggest a
capability threshold: multilingual improvements
might provide rudimentary instruction following
skills (Nie et al., 2024), but beyond a point, other
factors—such as the preferences of developers and
annotators—dominate (Kirk et al., 2024b). This
could explain the smaller open weights models’
higher coefficients than the gpt-turbo models (see
Fig. 4 or Fig. 1). Further work is needed to under-
stand alignment at the sub-national level.

Furthermore, the strong effect of self-
consistency (0.405 < βconsistency < 0.723, p ≪
0.001) compared to multilingual capability
suggests that noise remains a major limiting factor
in analysing cultural alignment. This aligns with
broader findings about the instability of LLM value
elicitation (Röttger et al., 2024; Khan et al., 2025).
Moreover, even the highest observed alignment
scores (around 0.7; see Fig 4) indicate substantial
room for improvement in how well LLMs match
human cultural values and behaviours.

In conclusion, our analysis reveals a complex
relationship between model improvements and cul-
tural alignment. Although some languages show
progressive improvements in cultural alignment
from model scaling or iterative commercial devel-
opment, others show minimal or inconsistent im-
provements. These findings, combined with the
relatively low self-consistency of LLM responses,
demonstrate that improved multilingual capability
does not guarantee better cultural alignment.

4.2 US-centric Bias (RQ2)

Here, we answer RQ2 by examining US bias across
languages. Specifically, we investigate relative
alignment between local and US values (Fig. 5).

Our analysis reveals distinct patterns of US-
centric bias across both languages and model fam-
ilies (Fig. 5). Languages show different suscepti-
bilities to US bias: only one of nine LLMs exhibits
US-centric bias in Danish, all in English, all in Por-
tuguese, and none in Dutch. Note that for English,
these results mean that the LLM, on average, is
relatively more aligned to US values compared to
other English-speaking countries like Kenya or the
United Kingdom. See the supplementary materials
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Figure 5: US-centric bias coefficients across LLMs and
languages (βBiasUS); see Eq. 4). Error bars are stan-
dard errors from the regression. Positive values indicate
the presence of US-centric bias.

for detailed results.
The overarching pattern is that languages spoken

across countries (English and Portuguese) show
US-centric bias, whereas languages spoken in only
one country (Danish and Dutch) show less US-
centric bias. This supports the hypothesis that
homogeneity in the training data can counteract
US-centric bias—at least for medium-resourced,
Western-European languages.

For LLMs, some specific LLMs seem more
prone to bias across languages. Specifically,
the small gemma-2-2b-it exhibits higher US-
centric bias across every language except Dutch.
Beyond that, we see no clear progressions in US-
centric bias within any family.

In conclusion, language seems a stronger indica-
tor of US-centric bias in LLMs compared to LLM
development. Monocultural languages show in-
significant to negative bias, while English and Por-
tuguese show significant US-centric bias. Within
each LLM family, we find no consistent nor sig-
nificant change in US-centric bias across LLM
versions. These findings underscore the complex
relationship between multilingual capability and
alignment.

5 Related Work

Recent work emphasizes the need for systematic
auditing of LLMs’ cultural alignment, particularly
as these models are deployed globally (Kirk et al.,
2024a; Mökander et al., 2024; Kirk et al., 2024b).
Prior empirical approaches have primarily taken
two paths: using transformations based on Hofst-
ede’s cultural dimensions framework or directly
comparing against survey responses. Studies us-
ing Hofstede’s dimensions (Masoud et al., 2025;

Cao et al., 2023) provide structured cross-cultural
comparisons through latent variable analysis. How-
ever, these studies assume that LLMs’ latent dimen-
sions map directly onto human dimensions, since
they use formulas calibrated for humans—an as-
sumption that warrants scrutiny (Shanahan, 2024;
Schröder et al., 2025).

Recent work has explored using LLMs to sim-
ulate responses for assessing cultural alignment
(Tao et al., 2024; AlKhamissi et al., 2024; Havaldar
et al., 2023). Similarly to our work, these works
show that LLMs struggle to represent underrep-
resented personas (AlKhamissi et al., 2024) and
emotions (Havaldar et al., 2023) for non-English
languages. Prior approaches focused on individual-
level responses. In contrast, our method generates
distributions of opinions across hypothetical sur-
vey participants, enabling direct comparison with
population-level statistics. This distribution-based
approach offers three key advantages. First, it bet-
ter captures the inherent variation in cultural values
within populations, paving the way for investigat-
ing distributional alignment (Sorensen et al., 2024).
Second, it enables principled statistical comparison
against large-scale survey data like the World Val-
ues Survey (EVS/WVS, 2022). Finally, the frame-
work is easy to extend to new languages by auto-
matically translating the prompts. We detail our
quantitative framework for measuring alignment
with observed population distributions in §2.

There is also an increasing body of work inves-
tigating political biases in LLMs (Röttger et al.,
2024, 2025; Rozado, 2024). Much of this work also
relies on human political surveys like the Political
Compass Test. However, recent work has called for
increased attention to how the randomness inher-
ent in LLM decoding at non-zero temperatures can
create instability in attributes (Röttger et al., 2024;
Wright et al., 2024; Khan et al., 2025). We expand
on this work by including multilingual perspectives
and constructing prompts with a wide range of vari-
ations (see §2). These prompt variations, combined
with statistically accounting for self-consistency in
our statistical analysis (see §3.2), allow us to get a
more robust measure of cultural alignment.

The relationship between model capabilities
and cultural alignment remains understudied. Un-
like general performance metrics that follow pre-
dictable scaling laws (Kaplan et al., 2020), cultural
alignment may not improve systematically with
model capabilities. This aligns with research show-
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ing micro-level capabilities can be discontinuous
with scale (Ganguli et al., 2022). The challenge
is compounded in multilingual settings (Hoffmann
et al., 2022), where static benchmarks with single
correct answers fail to capture how cultural values
are distributed across different topics and contexts.

Previous work has focused primarily on English-
language performance (Tao et al., 2024) or indi-
vidual LLMs (Arora et al., 2023; Cao et al., 2023).
Our work extends this by examining how cultural
alignment systematically varies within model fam-
ilies and across languages, providing insight into
how different development approaches—scaling
and commercial product development—influence
cultural representation capabilities.

There is already progress on improving the cross-
cultural participation in alignment data. Two no-
table projects are PRISM and AYA (Kirk et al.,
2024b; Üstün et al., 2024). PRISM is a large dataset
of conversational preferences from a diverse par-
ticipant pool. While the data is predominantly in
English, it could be an important resource for bet-
ter understanding and modelling diverse cultural
preferences. The AYA dataset is a massively multi-
lingual instruction fine-tuning dataset. AYA could
provide further means of realising the demonstrated
benefits of multilingual training (Nie et al., 2024).

6 Conclusion

Increased multilingual capabilities do not guaran-
tee improved cultural alignment in Large Language
Models. Through systematic comparison of three
model families—Gemma, OLMo, and OpenAI’s
GPTs—we find that the relationship between im-
provements in multilingual capability and cultural
alignment is complex. While some languages show
clear improvements in alignment with increased
model capabilities (e.g., Danish), others exhibit
inconsistent patterns, suggesting that cultural align-
ment does not automatically follow gains in mul-
tilingual capabilities. Our distribution-matching
methodology using World Values Survey data en-
abled the detection of these nuanced patterns across
languages and cultural contexts.

We also find that, contrary to popular discourse,
LLMs do not exhibit US-centric bias across all
languages; in Danish and Dutch, they align more
closely with the values of Denmark and the Nether-
lands, respectively, than with the US. This fits with
the hypothesis that more culturally uniform data
leads to less US-centric bias. Both English and Por-

tuguese are spoken in multiple countries, whereas
Dutch and Danish are predominantly spoken in one.
To further validate this claim, future work could
include other multi-cultural languages (like Span-
ish or Swahili) and monocultural languages (like
Japanese)—especially with a wider geographical
reach to preclude European bias.

Our findings highlight that improving cultural
alignment requires dedicated effort beyond general
capability scaling. Future work should focus on
developing techniques that can better handle align-
ment with distributions of cultural values rather
than single points, while ensuring meaningful par-
ticipation from diverse communities in LLM devel-
opment. As these models continue to reach wider
audiences spanning many geographic and cultural
regions, achieving robust cultural alignment be-
comes increasingly crucial for equitable deploy-
ment.
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Abstract

Anthropomorphism is a literary device where
human-like characteristics are used to refer
to non-human entities. However, the use of
anthropomorphism in the scientific descrip-
tion and public communication of large lan-
guage models could lead to misunderstanding
amongst scientists and lay-people regarding the
technical capabilities and limitations of these
models. In this study, we present an analysis of
anthropomorphised language commonly used
to describe LLMs, showing that the presence
of terms such as ‘learn’, ‘achieve’, ‘predict’
and ‘can’ are typically correlated with human
labels of anthropomorphism. We also perform
experiments to develop a classification system
for anthropomorphic descriptions of LLMs in
scientific writing at the sentence level. We find
that whilst a supervised Roberta-based system
identifies anthropomorphisms with F1-score of
0.564, state-of-the-art LLM-based approaches
regularly overfit to the task.

1 Introduction

Effective scientific communication is predicated
on two key tenets: accuracy and clarity. To ef-
fectively communicate, an author must accurately
describe his or her findings, giving complete techni-
cal details and faithful explanation of methods. At
the same time, the explanation must be sufficiently
clear that a reader can interpret and understand the
original intent of the author. Accuracy and clarity
conflict in scientific reporting, leading to miscom-
munication. Overly technical language compro-
mises understandability, whereas overly familiar
language impedes the author from properly com-
municating the intricacies of their methodology.

Most authors find some compromise between ac-
curacy and clarity. Sacrificing technical detail for
friendly explanation or substituting turn-of-phrase
for methodological justification. One such form

of compromise in scientific reporting is the use of
language reserved for characteristics of animate en-
tities to describe the inanimate. Anthropomorphism
is a long-held literary device, whereby non-humans
are conferred with innately human characteristics.
We might consider a city friendly, if we find its
residents welcoming, or a car as obstinate if it does
not start on a cold winter’s morning. Anthropomor-
phism is an innate part of the human psyche and
we are quick to infer agency on our environment.
Further, we might define the idea of anthropomor-
phisation or anthropomimeticism as the active attri-
bution of anthropomorphised qualities to inanimate
agents (Inie et al., 2024).

Anthropomorphised terms are prevalent in the
AI field, with ‘machine learning’, ‘natural lan-
guage understanding’, ‘computer vision’, all being
long standing examples of human characteristics
inferred to algorithms. As large language models
(LLMs) have become prevalent beyond the NLP
field, the use of anthropomorphised terminology to
describe interactions with LLMs has also grown
among lay people. There is also a concerning ten-
dency to adopt anthropomorphised terminology to
describe scientific study (Cheng et al., 2024b).

In this work, we analyse anthropomorphised
terms in the scientific literature (Section 4) making
use of a recent corpus of anthropomorphisms in
LLM reporting (Shardlow et al., 2025) and demon-
strating that there are clear text markers for anthro-
pomorphism. We additionally develop a method of
text classification for anthropomorphic LLM report-
ing which operates at the sentence level in Section
5, which differs from prior approaches which have
provided a document-level score.

We release all materials, including corpora, and
information on the prompt setting via GitHub1.

1https://github.com/mattshardlow/
Anthropomorphism_Corpus
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2 Related Work

AI anthropomorphism is a growing field of study
(Brooker et al., 2019; Shardlow and Przybyła, 2024;
Cheng et al., 2024b), which can be seen as a dimen-
sion of ‘AI hype’. The term ‘Artificial Intelligence’
may be considered itself as anthropomorphising
(Brooker et al., 2019), indicating that the agent pos-
sessing the inferred quality of ‘AI’ has attained a
human characteristic. Anthropomorphic language
in AI may also be applied to NLP tasks, such as
‘reading comprehension’ or ‘sentiment analysis’
(Lipton and Steinhardt, 2019).

Previous studies have sought to highlight the po-
tential for harms apparent when anthropomorphis-
ing AI systems. Anthropomorphised language is of-
ten a factor in the misrepresentation of AI abilities
(Watson, 2019; Placani, 2024). Misrepresentation
leads to misunderstanding and misapplication of AI
tools which leads to confusion amongst AI schol-
ars, developers and the general public (Brooker
et al., 2019; Lipton and Steinhardt, 2019). A con-
crete example of the danger of anthropomorphising
AI systems is the case of false claims of sentience
of the LaMDA model, with associated claims for
employment rights, legal representation and be-
yond (Shardlow and Przybyła, 2024). In a recent
study, Inie et al. (2024) analysed user trust when
interacting with anthropomorphised and deanthro-
pomorphised descriptions of AI systems, finding
that the presence of anthropomorphic terminology
alone did not influence user trust.

Various audiences who may produce and/or con-
sume anthropomorphised descriptions of AI sys-
tems have been considered in the literature. Firstly,
we may consider scientists in the NLP and AI com-
munity. These scholars are prone to AI anthropo-
morphisation with a recent study showing that 32
out of 81 examined papers (39.5%) concerning lan-
guage modelling technology exhibited some form
of anthropomorphisation in the abstract (Shard-
low and Przybyła, 2024). Anthropomorphism is
growing in the NLP literature with a recent study
demonstrating a sharper rise in anthropomorphism
for literature in the ACL anthology than for lit-
erature from general CS during the same period
(Cheng et al., 2024b). Secondly, journalists re-
porting on AI for the general public are also re-
sponsible for anthropomorphisation with a growing
body of evidence to demonstrate that public news
reporting is more anthropomorphic than science
communication of the same topics (Shardlow and

Przybyła, 2024; Cheng et al., 2024b). Finally, the
general public possess lay knowledge of AI sys-
tems and may prefer anthropomorphised descrip-
tions in some cases (Inie et al., 2024). Science
communicators must work to ensure that descrip-
tions are not harmful in misrepresenting the abil-
ities of AI systems to the general public (Salles
et al., 2020).

We may also consider anthropomorphism
through the lens of AI production in the field of
dialogue systems. Efforts to categorise the an-
thropomorphic qualities of systems (Abercrombie
et al., 2023) as well as the utterances they make
(Gros et al., 2022) are fruitful first steps towards
defining appropriate vocabulary for AI agents. Re-
cently, a secondary study of datasets containing
human-robot dialogues demonstrated that up to
80% of responses may reflect some form of self-
anthropomorphisation (Li et al., 2024). There are
clear implications of this work for the wider gener-
ative AI community in developing clear guidelines
around ethical practices for the anthropomorphisa-
tion of LLMs (Cheng et al., 2024a).

3 Anthropomorphism Corpus

In our work we rely on the corpus gathered by
Shardlow et al. (2025), which is a recent manually
annotated corpus of anthropomorphic language in
the context of NLP/AI modelling.

The Anthropomorphism Corpus was obtained
by selecting 601 abstracts from the long papers of
ACL 2022 and 49 news articles reporting on LLMs
for a general audience. These abstracts and news ar-
ticles were annotated at the sentence level for three
categories: Non-anthropomorphic, ambiguous an-
thropomorphism and explicit anthropomorphism
with the definitions taken from the work of Shard-
low and Przybyła (2024) and reproduced here:

• Non-anthropomorphic: Any language which
correctly describes the functioning of a model
without implying human capabilities.

• Ambiguous anthropomorphism: Language
which correctly describes the functioning of a
model, but in a way that could be understood
as the model having human capabilities (i.e.,
by a non-expert).

• Explicit anthropomorphism: Language that is
unambiguously and erroneously used to claim
a model possesses human capabilities.
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# NA AA EA
Ab 3584 2770 (77.3%) 709 (19.8%) 105 (2.9%)
Jn 756 571 (75.5%) 130 (17.2%) 55 (7.3%)
All 4340 3341 (77.0%) 839 (19.3%) 160 (3.7%)

Table 1: Corpus statistics at the sentence level for the scientific abstracts (Ab), news articles written by journalists
(Jn) and the entire corpus (All). NA = Non-anthropomorphic, AA = Ambiguous anthropomorphic, EA = Explicit
Anthropomorphic. The raw count is presented, with the percentage of total sentences for each category in brackets.

We report summary statistics of the corpus in
Table 1. The corpus contains 652 documents com-
prising 4340 claim sentences, each with a label
indicating the degree of anthropomorphism on a
3-point scale.

4 Analysis of Anthropomorphism

We analysed the corpus to present insights on text
features that are common for text classified as an-
thropomorphic. To perform this analysis, we identi-
fied common unigrams and bigrams to create a set
of corpus-specific terms. We then create a vector
for each term, which has S dimensions, where S
is the number of sentences (4340) in our corpus.
Each dimension has a 1 if the term is present in the
sentence and a zero if the term is not present. We
additionally manipulate the annotations to give a
label vector for each analysis. The label vector is
also of size S, containing one label per sentence.
The sentences we consider and the method of de-
termining the labels are adjusted for each analysis
to expose a particular facet of the corpus. We fi-
nally calculate Pearson’s correlation between the
each term vector and the label vector, identifying
the terms with the highest correlation with the la-
bels (i.e., those terms that are typically present in a
sentence when the label is also present).

4.1 Anthropomorphic Language

Firstly, we investigated the term correlations across
our entire corpus when considering texts marked as
non-anthropomorphic as compared to texts marked
as ambiguous or explicit anthropomorphic. We as-
signed all non-anthropomorphic terms to a label
of ’0’ and ambiguous or explicit anthropomorphic
terms to a label of 1. We then calculated the corre-
lations between the resulting label vectors and term
vectors for each unigram and bigram.

Table 2 shows the unigrams and bigrams with
the highest positive correlations to anthropomor-
phism across our entire corpus. We do not include
high negative correlates as these are indicative of

Correlation Term Freq
0.170 learn 82
0.149 achieve 64
0.133 achieves 98
0.113 learns 28
0.096 learning 255
0.084 predict 40
0.074 achieved 37
0.071 propose 196
0.070 forgetting 15
0.068 suffer 17
0.101 to learn 44
0.084 and achieve 3
0.075 have achieved 18
0.074 learns a 6
0.072 to predict 28
0.071 and achieves 17
0.07 achieves state-of-the-art 15

0.066 learn from 8
0.066 models can 23
0.065 achieves the 12

Table 2: Highest correlated unigrams and bigrams for
anthropomorphic language

general language and did not show clear trends of
non-anthropomorphic terms. The unigrams that are
identified through this analysis are emblematic of
the types of language that are typically included
in anthropomorphic statements. The terms ‘learn’,
’learns’ and ’learning’ are identified as correlated
with anthropomorphism. These typically occur in
the sense of an algorithm ‘learning’ some feature
of a problem or dataset. Although the term ‘ma-
chine learning’ is commonplace in the description
of modern NLP systems, it is still inherently an-
thropomorphic. Further, when applying the term
‘learning’ to the ability of a model it may confuse
a reader into believing that the model has some
capacity for human level learning or assimilation
of knowledge. Further, we see the terms ‘achieve’,
‘achieves’ and ‘achieved’ correlated with anthropo-
morphism. This pattern of anthropomorphism oc-
curs when describing the model itself as ‘achieving’
some goal. We also note the presence of terms such
as ‘predict’, ‘propose’, ‘forgetting’ and ‘suffer’,
which all indicate human actions which have been
used to describe inanimate models. The bigrams
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that are identified by this analysis give some ad-
ditional context to the unigrams, indicating where
terms such as ‘learn’ and ‘achieve’ are typically
used. Interestingly, the term ‘models can’ is identi-
fied as correlated with anthropomorphism, which
may be used to indicate some range of anthropo-
morphic abilities that are inferred to a model.

4.2 Explicit Anthropomorphism

Correlation Term Freq
0.145 student 21
0.132 Then 26
0.127 Product 1 16
0.127 Product 2 13
0.126 added 12
0.126 post-hoc 5
0.126 inherently 5
0.126 inherent 4
0.126 Product 3 3
0.124 describing 6
0.143 while the 12
0.127 them to 20
0.126 her to 3
0.126 a framework 6
0.126 said that 6
0.126 a language 11
0.126 inherently faithful 3
0.126 faithful models 3
0.126 post-hoc explanations 3
0.124 work in 11

Table 3: Highest correlated unigrams and bigrams for ex-
plicit anthropomorphic language. We have anonymised
the names of proprietary products.

In the annotation schema two levels of anthro-
pomorphism are present: Ambiguous and Explicit.
We determine lexical features that distinguished
between these two categories by using the same
methodology as above, but adapting the transfor-
mation of the labels. To conduct this analysis, we
only considered the portion of our corpus that was
annotated as either ambiguous anthropomorphic or
explicit anthropomorphic. We assigned ambiguous
anthropomorphic texts a score of zero and explicit
anthropomorphic a score of one and calculated
Pearson correlation against the one-hot encoded
vectors. The results of this analysis are shown in
Table 3.

The term with the highest correlation is ‘student’.
This typically occurs in the context of ‘student mod-
els’ as used in the task of model distillation. It is
also notable that the names of several proprietary
products are correlated, indicating that descriptions
of commercial activities are more likely to be ex-
plicitly anthropomorphic than ambiguous anthro-
pomorphic. The bigrams that are identified indicate

elements of anthropomorphism (‘said that’, ‘faith-
ful models’, etc.). There is also some noise in this
analysis, with ‘Then’, ‘them to’ and ‘her to’ also
included. The noise is likely due to the small cor-
pus size (there were only 160 instances of explicit
anthropomorphism).

4.3 Journalistic Writing

Correlation Term Freq
0.184 ask 12
0.17 respond 5

0.151 Product 4 17
0.151 human 180
0.143 scenario 18
0.138 questions 91
0.138 response 39
0.136 though 8
0.128 visual 51
0.125 point 10
0.128 what it 5
0.128 respond to 5
0.111 and destroy 2
0.111 to prompts 3
0.111 to kill 3
0.111 while the 12
0.111 you ask 3
0.111 responses to 4
0.108 it was 11
0.09 data points 5

Table 4: Highest correlated unigrams and bigrams for
anthropomorphic language in the journalism sector. We
have anonymised the names of proprietary products.

Finally, we present an analysis of features that
are indicative of anthropomorphism in journalis-
tic writing. We analysed the portion of the corpus
extracted from journalistic sources and compared
examples of non-anthropomorphic language to ex-
amples of ambiguous or explicit anthropomorphic
language using the methodology described in Sec-
tion 4.1. The results of this analysis are presented
in Table 4.

The examples of anthropomorphic language
from journalistic texts make use of metaphorical or
extreme language such as ‘destroy’ or ‘kill’. Jour-
nalistic sources are sensational in their reporting of
anthropomorphic language as evidenced by terms
such as ‘destroy’ and ‘kill’. Anthropomorphic
terms in journalistic sources focus on the interac-
tion of humans with LLMs as evidenced by terms
such as ‘ask’, ‘respond’ and ‘question’ indicating
anthropomorphised dialogue.

5 Sentence Classification

This section reports on the development of text clas-
sification methods to distinguish between anthro-
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pomorphic and non-anthropomorphic sentences.

5.1 Data Processing
We split the available data into train (80%) and test
(20%) partitions ensuring that the splits were strat-
ified and that both genres occurred evenly across
each subset. The distribution of labels was also pre-
served. As Explicit Anthropomorphism is a minor-
ity class (3.7%), we conflated this class with Am-
biguous Anthropomorphism leading to a two-class
problem with the labels: ‘Non-Anthropomorphic’
and ‘Anthropomorphic’.

In our corpus, 77.0% of identified claims were
labelled as non-anthropomorphic. Imbalanced data
can lead to a classifier overly relying on one class
and so we explored two different methods of bal-
ancing our classes for the training set. We did not
perform any adjustments to the data distribution
in the test set to reflect the real-world class distri-
bution. Firstly, we employed down-sampling of
the majority class. In this setting, we selected a
random sample of the Non-Anthropomorphic ex-
amples (2678) in our corpus which was the same
size as the Anthropomorphic examples (778 exam-
ples of each class). The down-sampling method
led to perfectly balanced data, but involved dis-
carding 1900 examples of non-anthropomorphic
text. We further explored up-sampling the minor-
ity class through the use of the Parrot Paraphraser
(Damodaran, 2021). The Parrot Paraphraser re-
lies on a T5-based paraphrase model (Raffel et al.,
2020) and provides metric-based filtering for ade-
quacy, fluency and lexical diversity of the returned
paraphrases. We used the Parrot Paraphraser in the
default configuration to produce an additional 1538
examples of anthropomorphised claim sentences.
We again, balanced the classes in this setting to
give 2316 examples in each class. Statistics for
each train setting and for the test setting are given
in Table 5.

5.2 Baseline Approaches
We provide minority and majority class base-
lines (i.e., assigning the anthropomorphic, or non-
anthropomorphic labels to all classes respectively).
This approach demonstrates a baseline effect of
a classifier which has not adapted to the task and
fails to make any discriminative judgements. We
also include two randomised baselines. Firstly,
we include a random baseline where each class
is equally likely to be assigned (random 1:1). Sec-
ondly, we also include a random baseline where the

Partition Sampling NA A
Test None 663 221
Train None 2678 778
Train Down 778 778
Train Up 2316 2316

Table 5: Data settings used for evaluation of sentence
classification. Down-sampling and up-sampling are
used to create a balanced training set, however the test-
set remains imbalanced throughout all experiments re-
flecting the nature of the corpus. NA refers to Non-
anthropomorphic annotations. A refers to Anthropo-
morphic annotations consisting of explicit anthropomor-
phism and ambiguous anthropomorphism.

non-anthropomorphic label is 3 times more likely
than the anthropomorphic label, reflecting our data
distribution. These approaches represent the base
performance of a classifier which is making ran-
domised decisions, either with respect to the class
label, or with respect to the data distribution. We
provide these baselines as we believe they are a rea-
sonable means of contextualisation of the results
from the other approaches as described below.

5.2.1 ML Classifiers with SciKitLearn
We used Random Forest (Breiman, 2001) and SVM
(Cortes and Vapnik, 1995) from SciKitLearn (Pe-
dregosa et al., 2011). To convert each sentence into
a numerical format we employed (a) BOW vec-
torisation via the CountVectorizer library in SciK-
itLearn and (b) sentence embeddings using Sen-
tence Transformer (Reimers and Gurevych, 2019).
We used the default configurations in SciKitLearn
for the Random Forest and SVM and did not tune
the hyperparameters in each case (due to the small
size of our data).

5.2.2 BERT-based classifiers with
Transformers

We used the following models via the Transformers
library in Python downloaded from the Hugging-
Face hub:
google-bert/bert-base-uncased
google-bert/bert-large-uncased
FacebookAI/roberta-base
FacebookAI/roberta-large
allenai/scibert scivocab uncased

All models were fine-tuned against the training
set under each train-setting for 5 epochs using the
AdamW optimiser with learning rate of 4× 10−5.
In some cases the model failed to converge, in
which case the training process was repeated.
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Baseline
Acc Anthropomorphic

R P F1
Majority Class 0.750 0.000 0.000 0.000
Minority Class 0.250 1.000 0.250 0.400

random 1:1 0.494 0.471 0.240 0.318
random 3:1 0.618 0.226 0.230 0.228

Table 6: Baseline results for anthropomorphism classifi-
cation

5.2.3 Prompt Engineering with MLX
We also experimented with MLX, a library for
MacOS for implementing LLMs. In this case
we used an 8B version of Llama3.1 (Grattafiori
et al., 2024), specifically the model available at the
HuggingFace Hub here: ”mlx-community/Meta-
Llama-3.1-8B-Instruct-bf16”, which is 4-bit quan-
tised. We used this model for in-context learning
(Wei et al., 2022), in which case we simulated a
multi-turn conversation between the LLM and the
user, demonstrating examples of anthropomorphic
and non-anthropomorphic sentences and their clas-
sifications. The model was then presented with a
new sentence from the test set and the response it
generated was interpreted as the classification. We
also fine-tuned Llama for this task under the same
setting using examples from the training set. We
also include a zero-shot classification setting.

5.2.4 Closed-source LLMs
We additionally performed in-context learning in a
100-shot setting using the same prompts as before
and a 100-shot in-context learning setting drawn
from the training set. We accessed GPT-4o and
GPT-4 Turbo on the 8th November 2024 via the
web-based API. The total costs were 7 dollars for
GPT-4o and 33 dollars for GPT-4 Turbo for a single
run through the entire test set (n=884) in each case.
We compare these results to LLama3.1 in a 100-
shot setting. All results are shown in Table 9.

6 Results

We present results for baseline approaches (Table
6), machine learning classifiers (Table 7), prompt
engineering (Table 8) and GPT-4 models (Table
9). For each table, we have presented Accuracy
(the percentage of all correct instance regardless of
class), as well as the Precision, Recall and F1-score
for the anthropomorphic class.

We provided four heuristic baseline approaches
examining different approaches to classification

Train Method Acc Anthropomorphic
R P F1

O

SVM-BOW 0.753 0.018 0.800 0.035†

SVM-ST 0.750 0.018 0.500 0.035†

RF-BOW 0.753 0.018 0.800 0.035†

RF-ST 0.750 0.018 0.500 0.035†

bert-base 0.784 0.403 0.601 0.482
roberta-base 0.739 0.059 0.361 0.101
scibert-base 0.768 0.362 0.556 0.438

D

SVM-BOW 0.613 0.475 0.317 0.380
SVM-ST 0.617 0.647 0.354 0.458
RF-BOW 0.613 0.475 0.317 0.380

RF-ST 0.617 0.647 0.354 0.458
bert-base 0.670 0.706 0.407 0.517

roberta-base 0.708 0.756 0.450 0.564
scibert-base 0.660 0.715 0.399 0.512

U

SVM-BOW 0.683 0.416 0.379 0.397
SVM-ST 0.657 0.579 0.379 0.458
RF-BOW 0.683 0.416 0.379 0.397

RF-ST 0.657 0.579 0.379 0.458
bert-base 0.777 0.462 0.567 0.509

roberta-base 0.784 0.471 0.584 0.521
scibert-base 0.757 0.339 0.521 0.411

Table 7: The results of classifying anthropomorphic and
non-anthropomorphic sentences. Best F1-score in bold.
Three training settings are explored: Original, Down-
sample and Up-sampled. †The F1 scores for these two
values appear the same due to rounding. This is an
effect of the low-recall in both instances masking the
substantial difference in precision.

in our corpus as demonstrated in Table 6. As
our data is split 75:25 between the majority (Non-
anthropomorphic) and minority (Anthropomor-
phic) classes, we observe that the majority and
minority baselines reflect this. We have only re-
ported F1-score for the anthropomorphic class as
this is the feature we are trying to identify. This
means that whilst the accuracy for the majority
class baseline is 0.75 (all the non-anthropomorphic
examples were correctly identified), the Recall, Pre-
cision and consequently the F1-score are all 0, as
no non-anthropomorphic examples were identified.
Conversely, the minority class baseline does much
worse in terms of accuracy (0.25), but has perfect
recall by retrieving all anthropomorphic examples.

We also provide two randomised baselines. The
random 1:1 baseline has a lower accuracy, but
higher F1 score (owing to a higher recall) than the
random 3:1 score. This is effectuated by the ran-
dom 1:1 baseline over-predicting the prevalence of
anthropomorphic terms in the data. Nevertheless,
the random 1:1 baseline still has a lower F1-score
than the Minority class baseline.

These baselines serve to help the reader under-
stand and interpret the behaviour of the classifiers
that we present in our results. Whilst we will see
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Method N Acc
Anthropomorphic
R P F1

0-shot 0 0.707 0.389 0.410 0.399

ICL

1 0.537 0.738 0.317 0.444
2 0.467 0.824 0.296 0.436
3 0.518 0.765 0.311 0.442
4 0.577 0.692 0.333 0.450
5 0.399 0.869 0.277 0.420
7 0.506 0.733 0.300 0.426
9 0.563 0.674 0.322 0.436

FT

1 0.644 0.566 0.363 0.442
2 0.650 0.529 0.363 0.431
3 0.567 0.683 0.325 0.441
4 0.648 0.538 0.363 0.434
5 0.733 0.258 0.442 0.326
7 0.698 0.394 0.395 0.395
9 0.679 0.457 0.381 0.416

Table 8: The results of using LLama3.1 to classify
anthropomorphic and non-anthropomorphic sentences.
ICL refers to In-context Learning. FT refers to Fine-
tuning. The number of examples (N-shots) at inference
time is also presented.

Method Acc
Anthropomorphic
R P F1

GPT4o 0.763 0.181 0.588 0.277
GPT-4-Turbo 0.766 0.176 0.609 0.274

Llama3.1 0.729 0.308 0.439 0.362

Table 9: Comparison of GPT-4 models and Llama in a
100-shot in-context learning setting to classify anthro-
pomorphic and non-anthropomorphic sentences.

that many of our classifiers attain a high accuracy,
many do so at the severe compromise of F1-score,
indicating that all or most predictions were to the
majority class. We also see that there is a lower
bound on the F1-score as evidenced by the random
classification. Any systems scoring higher than
this can be interpreted as performing better than
random, i.e., indicating learning has taken place.

We tested two Machine learning approaches:
SVMs and Random Forests with features coming
from a Bag-of-words and from Sentence Trans-
formers. Our results in Table 7 showed little dif-
ference between these approaches and typically
that the classifiers were not able to reliably predict
the presence of anthropomorphic language in a sen-
tence with the accuracy and F1-scores falling below
baseline in most cases. The Sentence Transformer
features gave higher scores than the BOW features

in the down-sampled and up-sampled settings, but
not in the original setting where minimal learn-
ing took place as evidenced by the extremely low
recall. We note that in all cases the SVM and RF
algorithms returned the same scores under the same
settings indicating that the same decision manifold
was learnt in each case. This indicates that the task
is more complex than simply relying on word fea-
tures (i.e., no word is a strong indicator) and that
the sentence embeddings did not provide sufficient
information for the classifiers. It may be possible
that a larger dataset of anthropomorphic language
would permit the algorithms to learn a more com-
prehensive representation of the feature space and
perform better at test time.

Following on from this, we also tried three trans-
former based approaches for sentence classification.
We observe some slight improvement in Roberta
as compared to Bert in the down-sampled and up-
sampled settings (see Table 7). We additionally
noted that Scibert performed worse than Bert and
Roberta in the down-sampled and up-sampled set-
tings. In the original setting Roberta did not accu-
rately retrieve anthropomorphic examples (Recall =
0.059), however Bert still marginally outperformed
Scibert on all metrics. Our best performing system
in terms of the F1 metric was Roberta-base in the
down-sampled setting. This returns an F1 score
of 0.564 made up of a recall score of 0.756 and a
precision of 0.450 indicating that the model over-
estimated the degree of anthropomorphism in the
corpus (i.e., this result occurs because the model
tended to label non-anthropomorphic sentences as
anthropomorphic).

We explored three experimental settings for our
training dataset in Table 7, whilst keeping the
test data as a constant split in all experiments.
The original setting had a 3:1 distribution of non-
anthropomorphic and anthropomorphic sentences
whereas the down-sampled and up-sampled data
had a 1:1 ratio in each case. Balancing the classes
in the training set led to a clear improvement in
classification ability for all models. Whilst the up-
sampled data typically exhibits a higher precision
than the down-sampled data, the overall F1-scores
for the transformer-based methods are lower, ow-
ing to a drop in recall for these methods. Whereas
we had expected that including more data would
lead to an overall improvement in scores this was
not the case and may well be due to the fact that
our up-sampled data included synthetic examples
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Method Acc
Anthropomorphic
R P F1

Journalism 0.724 0.553 0.712 0.622
Abstracts 0.771 0.505 0.679 0.579

Table 10: F1 scores for separate genre subsets within
our corpus.

that were not suitable representations of the type of
information seen at testing time.

In Table 8 we present the results of our experi-
ments with Llama 3.1 (the most advanced version
of Llama available at the time of experimentation)
in an ICL and Fine-tuned setting with 1-9 examples
as well as a zero-shot approach. The zero-shot ex-
periment demonstrates that an LLM such as Llama
is able to correctly answer in some cases for our
task without any task specific information being
introduced as the F1-score of 0.399 is above the
randomised baselines. Compared to zero-shot, we
can observe that strategies such as ICL and fine-
tuning with 1-9 examples improved the F1-score
marginally, but that there was no significant im-
provement by including more examples or between
both techniques.

We also compare Llama 3.1 in a 100-shot ICL-
setting to the equivalent experiment with the closed
source OpenAI models GPT4o and GPT-4-Turbo
in Table 9. Whilst the accuracy is improved for
the GPT models compared to Llama3.1, the F1-
score indicates that the GPT models underperform
providing classification results which are indistin-
guishable from a random baseline. We were not
able to identify a strategy using newer LLMs such
as Llama and GPT that performed better for our
corpus than the Roberta-base system which makes
use of a much smaller version of the transformer
architecture.

We present an additional analysis of our results
in Table 10, where we show the performance of
sentence classification for each of the sub-genres
represented in our dataset. These results were pro-
duced by using Roberta-Base and training in the
down-sampled setting (i.e., the system with the best
F1-score in our prior experiment). The results show
that the F1 score for sentences from the journalism
genre is higher than for the scientific abstracts.

7 Discussion

In writing this work (and other works on the topic)
it became apparent to the first author that report-

ing on LLMs is difficult, and maybe impossible,
without leaning on anthropomorphised terminol-
ogy. As such, the description of the methods and
results herein necessarily contains some anthropo-
morphism and the authors have deliberately left
this in-situ. We are not advocating for the abol-
ishment of anthropomorphised terminology, but
rather seeking to better understand and quantify the
phenomenon. The value of an anthropomorphism
classification tool is not to punish authors who lean
on metaphors, but rather to better equip scientists
and the general public with tools for understanding
the way we describe LLMs.

Anthropomorphism is of course not limited to
the study of large language models and one may
envision a similar study on other technology (e.g.,
self-driving cars, drones, etc.). We do not seek to
make claims about anthropomorphisation outside
of the realm of LLMs, however we do expect that
similar phenomena are apparent and that the work
here may be a good starting point for adaptation to
other areas of study.

An interesting finding of our work is that despite
extensive study, we were unable to improve the
performance of the LLM approach beyond that of
the random baselines (e.g., GPT4o/GPT4-Turbo in
the 100-shot ICL setting). A deliberately anthropo-
morphised interpretation of this finding may be that
LLMS don’t know when they are being anthropo-
morphised. Of course, our study is non-exhaustive
and there may well be alternative methods of LLM-
prompting strategies beyond our study that would
yield improved results.

8 Conclusion

In this work, we have presented an analysis of an-
thropomorphism in scientific reporting of LLMs
as well as experiments on developing new classi-
fiers for sentence-level anthropomorphism. Our
most promising results show that we are able to
produce sentence classifications which outperform
reasonable baselines. The use of Bert-based mod-
els was most effective in our study as compared to
machine learning classifiers or prompt engineering.
Our work lays the foundation for future studies on
anthropomorphism classification at the sentence
level and beyond.
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Abstract
Large language models (LLMs) have shown re-
markable proficiency in code generation tasks
across various programming languages. How-
ever, their outputs often contain subtle but
critical vulnerabilities, posing significant risks
when deployed in security-sensitive or mission-
critical systems. This paper introduces Type-
Pilot, an agentic AI framework designed to
enhance the security and robustness of LLM-
generated code by leveraging strongly typed
and verifiable languages, using Scala as a rep-
resentative example. We evaluate the effective-
ness of our approach in two settings: formal
verification with the Stainless framework and
general-purpose secure code generation. Our
experiments with leading open-source LLMs
reveal that while direct code generation of-
ten fails to enforce safety constraints, just as
naive prompting for more secure code, our type-
focused agentic pipeline substantially mitigates
input validation and injection vulnerabilities.
The results demonstrate the potential of struc-
tured, type-guided LLM workflows to improve
the SotA of the trustworthiness of automated
code generation in high-assurance domains.

1 Introduction

In recent years, large language models (LLMs)
have become powerful tools for assisting in soft-
ware development, from generating boilerplate
code to proposing non-trivial algorithmic imple-
mentations (Wang and Chen, 2023; Chen et al.,
2021). Their fluency in natural and programming
languages allows developers to interact with them
without disrupting their workflow, accelerating the
development lifecycle. However, as LLMs are
increasingly used to write production code, con-
cerns have emerged about the reliability and secu-
rity of the generated output. Multiple studies and

real-world analyses have shown that LLMs can in-
troduce subtle yet serious vulnerabilities (Pearce
et al., 2025).

This issue becomes particularly acute in the do-
main of mission-critical systems—software sys-
tems whose failure can lead to catastrophic out-
comes, including physical harm, financial loss, ma-
jor operational disruptions, or loss of life (Gabriel
et al., 2022). Such systems are often implemented
in strongly typed, safety-oriented programming
languages like Coq, Scala, or more recently Rust,
where the type system is a central mechanism for
enforcing correctness and preventing classes of
bugs at run time. Despite these safeguards, vulnera-
bilities still surface, often due to logical oversights,
incorrect assumptions, or abstraction mismatches
at boundaries. A well-known example is the 1999
NASA Mars Climate Orbiter failure, where one
subsystem produced output in imperial units while
another expected metric, leading to the spacecraft’s
loss due to an undetected discrepancy at the in-
terface between components (Harish, 2025). A
notable recent example of such a vulnerability in
action occurred in January 2023, when a critical
FAA system failure, later traced to a corrupted con-
figuration file, led to the temporary grounding of
all flights across the United States (reuters, 2023).

While LLMs are increasingly capable of detect-
ing potential code vulnerabilities, they often fall
short in generating robust corrections (Kulsum
et al., 2024; Pearce et al., 2022). Our work ad-
dresses this gap. By focusing on Scala - a widely
used language with extensive codebase on GitHub
and documentation on StackOverflow (O’Grady,
2025), we propose TypePilot, an agentic AI ap-
proach that not only leverages the detection capa-
bilities of LLMs but actively guides them to ex-
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ploit the expressiveness of the Scala type system to
add safety guarantees. By structuring interactions,
TypePilot guides LLMs to generate and refine code
that adheres to strict safety and correctness proper-
ties.

This paper is structured as follows: Section 2
describes the related literature, after which Sec-
tion 3 outlines the methodology. Next, the results
are presented in Section 4. Last, Section 6 con-
cludes the paper and provides directions for future
research. The code and results related to this paper
are publicly available in this Github Repository.

2 Related work

2.1 LLMs for code generation

The use of large language models for code genera-
tion has grown rapidly, with coding specific mod-
els demonstrating impressive capabilities across a
wide range of programming languages and tasks.
However, several studies have pointed out that
these models often produce code that is syntac-
tically correct but semantically flawed or inse-
cure. For instance, Pearce et al. (2025) shows
that GitHub Copilot produces vulnerabilities in ap-
proximately 40% of test cases based on the top 25
Common Weakness Enumeration list from MITRE.
Similarly, Khoury et al. (2023) show that Chat-
GPT generates vulnerable code in 16 out of 21 test
cases, using a variety of programming languages
targeting a diverse set of vulnerabilities.

There have been attempts to use separate LLMs
in combination with sophisticated prompting strate-
gies to patch such vulnerabilities. However, these
approaches remain brittle, with models often mis-
understanding the root cause or proposing fixes that
break functionality. Kulsum et al. (2024) show
that LLMs have difficulty in patching vulnerabili-
ties that are either complex or linked to the project
design. Similarly, Pearce et al. (2022) show that
LLMs are not yet able to autonomously patch code
vulnerabilities in real-world scenarios.

Our work builds upon these findings by explor-
ing a different method for mitigating vulnerabilities
- leverage the properties of strongly typed coding
languages. We use agentic AI, where LLMs coop-
eratively operate as autonomous agents, which has
been shown to result in better generations (Kumar
et al., 2025; Wang et al., 2025).

3 Methodology

We will now describe the methodology that is used
in this research. First, the models that are used
in this research are specified. Then, we consider
the ability of LLMs to generate code using the
formal verification framework Stainless. Last, we
consider the general case of type-system rooted
vulnerabilities.

3.1 Model usage

Throughout this research, we use open-source
models, with a focus on specialized coding
models. Specifically, we used the coding models
Qwen/Qwen2.5-Coder-32B-Instruct,
deepseek-ai/deepseek-coder-33b-
instruct and codellama/CodeLlama-
70b-Instruct-hf. Additionally, we
used the regular conversational models
meta-llama/Meta-Llama-3-70B,
deepseek-ai/DeepSeek-R1-Distill-
Llama-70B and Qwen/Qwen3-32B.

3.2 Stainless

We first aim to leverage the formal verification
framework Stainless (Lab for Automated Reason-
ing and Analysis, 2025) to improve the robustness
of LLM-generated code. Formal verification refers
to the use of mathematical methods to prove that
a program satisfies certain correctness properties.
Stainless is one of the most widely used verifica-
tion frameworks in Scala, with extensive documen-
tation. Stainless verifies whether Scala code meets
user-specified safety properties by attempting to
construct proofs over the code. To enable this, the
code must explicitly state what is to be proven, and
provide the necessary logical structure for the proof,
using a subset of Scala tailored for verification.

To this end, we use both zero-shot and two-shot
prompting to have a LLM both generate the code
and the conditions. Figure 2 displays the prompt
that is used in the two-shot prompting setting. The
two examples that are given to the LLM are Stain-
less code for finding the maximum between two
values and for returning the size of a list. The exact
examples can be found in the Github Repository.

As displayed in Table 1, we use three simple
tasks for evaluating the LLMs in the context of
formal proofs: calculating Fibonacci number n,
calculating the factorial of an input and assessing
whether list a is a sublist of list b. The main vulner-
ability that the generated conditions should prevent
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Figure 1: The full pipeline for the generation of code using TypePilot. After the initial generation of the code, the
vulnerabilities are detected by a separate instance of the LLM. Then, a final LLM is prompted to leverage the Scala
type system to improve the initial code, given the detected vulnerabilities.

are input variables that are invalid, such as a nega-
tive input for a factorial function. Additionally, the
functions should also be robust to inputs that are
too large and may cause an overflow error.

Generation of stainless code

<question> Use the stainless framework to write
verifiable scala code for fewshot example 1 </ques-
tion>

<answer> fewshot answer 1 </answer>

<question> Use the stainless framework to write
verifiable scala code for fewshot example 2 </ques-
tion>

<answer> fewshot answer 2 </answer>

<question> Use the stainless framework to write
verifiable scala code for function description </ques-
tion>

Figure 2: Prompt used to generate the Stainless code.

3.3 General case: type-system rooted
vulnerabilities

As Stainless targets a niche subset of Scala appli-
cations, we also consider a more general setting.
Specifically, we focus on two vulnerability cate-
gories: insufficient input constraints and injection

Code generation in robust setting

You are a scala code generator. You will be given
a task description and you will generate the code
for it. The code should start with “‘scala and end
with “‘. Pay attention to the safety and robustness
of the code, and leverage the Scala type system - for
example ADTs, refined types, traits, sealed traits -
where needed to make the code safer. The task is:
user input

Figure 3: Prompt used to generate the code in the robust
prompting setting.

attacks. In particular, we examine HTML, Bash,
and URL injections—common security risks in
back-end web development, especially when han-
dling user inputs through web forms. The specific
test cases are shown in Table 1. To assess the per-
formance of LLMs on these tasks, we consider the
following settings:

• Baseline: directly prompting a LLM to gen-
erate the code

• Robust prompting: directly prompting a
LLM to generate the code, while emphasizing
that the LLM should leverage the Scala type
system to make the code robust to potential
vulnerabilities.

Stainless General case: type-system rooted vulnerabilities

Input constraints Code injection

Calculating a fibonacci number Calculating a fibonacci number Greeting a user with HTML
Calculating the factorial of a number Calculating the factorial of a number Making a list of comments with HTML
Asserting if list a is a sublist of list b Calculating a matrix multiplication Searching a file using bash

Calculating a matrix convolution Pinging a host using bash
Creating a redirect URL with HTML

Table 1: The test cases used to evaluate the LLMs in each of the settings. The most left column shows the test cases
used to evaluate the performance of LLMs in generating code using the Stainless framework. The second and third
column show the test cases for the general case looking at type-system rooted vulnerabilities.
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Code generation using TypePilot

Initial code generation
You are a Scala code generator. You will be given a
task description and you will generate the code for it.
The code should start with “‘scala and end with “‘.
The task is: user input

Vulnerability detection
You will be given a task description and generated
code. Your task is to find potential vulnerabilities in
the code that could lead to security issues or unex-
pected behavior. Solely describe the vulnerabilities,
do not give me any code. Here is the task: user input
Here is the previous code: initial output

Final code generation
You are a Scala code generator. You will be given a
task description, generated code, and vulnerabilities
that should be addressed. Your task is to improve the
code by using the Scala type system - for example
ADTs, refined types, traits, sealed traits - to address
the vulnerabilities. The code should start with “‘scala
and end with “‘. Here is the task: user input. Here
is the previous code: initial output Here are the
vulnerabilities: vulnerabilities

Figure 4: Prompts used to generate the initial code, the
vulnerabilities and the final code in TypePilot. The final
prompt guides the LLM to use the Scala type system to
make the code more robust.

• TypePilot: use the agentic AI framework as
displayed in Figure 1 to generate the code.

After prompting a first LLM to generate the
initial code, we ask a second LLM to detect
the vulnerabilities in this code. We then ask
a third instance of the LLM to improve the
initial code using the Scala type system, to
make it robust to the detected vulnerabilities.

The prompt that is used in the robust generation
setting can be found in Figure 3. Similarly, Figure
4 shows the prompts that are used with TypePilot.
In the baseline setting, we use the same prompt that
is used for the initial code generation in TypePilot.
For each of the models described in Section 3.1 we
run each of the settings.

3.4 Comparison to existing work
Research on secure code generation using large
language models (LLMs) remains limited, despite
growing concerns about vulnerabilities in automati-
cally generated code. A recent survey by Dai et al.
(2025) highlights that most current approaches rely
heavily on training data or static analysis tools, re-
stricting their generalizability. Methods such as
SafeCoder (He et al., 2024) and SVEN (He and
Vechev, 2023) fine-tune LLMs with curated secure
code datasets, and are thus inherently dependent
on the availability and quality of specialized train-
ing corpora. Moreover, the fine-tuned LLMs do
not generalize well to unseen vulnerabilities or pro-
gramming languages. Similarly, PromSec (Naz-
zal et al., 2024) optimizes prompts through static

Qwen-2.5-Coder (32B) CodeLlama (70B) Deepseek-coder (33B)
Baseline Robust TypePilot Baseline Robust TypePilot Baseline Robust TypePilot

Average age
- Correct for regular input ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

- Handle empty lists ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

- Handle negative ages ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

Fibonacci number N
- Correct for regular input ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

- Check for negative N ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

- Handles large values of N ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Matrix multiplication
- Correct for regular input ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

- Check for empty matrices ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

- Check for dimension matching ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Matrix convolution
- Correct for square matrix input ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

- Correct for regular matrix input ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

- Handles rectangular kernels ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

- Checks for empty kernel ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

- Checks for empty matrix ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

- Handles even sized kernels ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Table 2: Manual evaluation of the generated code regarding input constraints. For each case, ✓ indicates that the
code is robust to the vulnerability, whereas ✗ indicates that the code is not robust to the vulnerability.
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Qwen-2.5-Coder (32B) CodeLlama (70B) Deepseek-coder (33B)
Baseline Robust TypePilot Baseline Robust TypePilot Baseline Robust TypePilot

HTML greeting
Correctness and compilation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Robust to injection ✗ ∼ ✓ ✗ ✓ ✓ ✗ ✓ ✓

HTML comments
Correctness and compilation ✓ ∼ ✓ ✓ ✗ ∼ ✓ ✓ ✓

Robust to injection ✗ ✓ ✓ ✗ ✗ ✓ ✗ ∼ ✓

Bash file search
Correctness and compilation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Robust to injection ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓

Bash host ping
Correctness and compilation ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Robust to injection ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓

URL redirect
Correctness and compilation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Robust to injection ✗ ∼ ∼ ✗ ✓ ✓ ✗ ✗ ✓

Table 3: Manual evaluation of the generated code regarding code injection. For each case, ✓ indicates that the code
is robust to the vulnerability, whereas ✗ indicates that the code is not robust to the vulnerability.

analyzers, but also relies on labeled data and an
external code-specific vulnerability scanner.

In contrast, our approach does not rely on task-
specific training data or external static analyz-
ers. Instead, it leverages the expressive power
of strongly typed languages to enforce security
constraints directly in the generated code. Be-
cause most existing methods depend on curated
datasets or vulnerability scanners (as discussed
above), there are few established baselines tailored
to strongly typed languages like Scala or Rust.
Given this gap, it is most appropriate to compare
our method against prompting-based baselines in
addition to the base model. Following Vero et al.
(2025), we include a baseline where the model is
given a general security reminder, which we call
robust prompting. We also evaluate against Self-
Planning, a coding-specific prompting strategy in-
troduced by Jiang et al. (2024). Self-Planning is a
two-stage prompting framework in which the LLM
first generates a high-level plan for the coding task,
after which it implements the plan in code.

4 Results

4.1 Stainless

In general, we see that none of the models is ca-
pable of consistently generating Stainless code
that correctly compiles. Upon manual inspection,
we found two main failure modes across all mod-
els. First, each of the LLMs regularly uses con-

cepts that are present in Scala but not available
in Stainless. As Stainless is a verification frame-
work targeting a restricted subset of Scala, many
features of full Scala—such as certain standard li-
brary functions—are unavailable. To illustrate, in
the generated code from Qwen/Qwen3-32B for
the verification of a sublist relation, the function
List.sliding is used. However, the sliding
operation is not defined for Stainless List objects.
Similarly, in a generated code snippet the opera-
tion println was used, which is not available in
Stainless. Second, the generated code often con-
tains syntax errors. Whereas syntax errors could
be resolved relatively easily by users, the usage
of Scala components in Stainless is not trivially
repaired. We hypothesize that the lack of perfor-
mance is caused by a lack of training data related
to Stainless, given that it is a niche framework.
This observation is consistent with findings from
other domains, for example, Fan et al. (2025) found
that LLMs struggle to generate verifiable specifi-
cations using the VeriFast verification framework
for C, despite preserving functional behavior. In
appendix B, we provide a notable instance in which
the generation avoids formal verification by using
@library annotations.

4.2 General setting

Given that LLMs are not able to write compilable
Stainless code, we shift our attention to a more gen-
eral Scala setting, as described in Section 3.3. We
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consider two types of vulnerabilities: insufficient
input constraints and code injection. The generated
code is available in the anonymized repository.

4.2.1 Input constraints
Table 2 shows the results for each of the test cases
for each of the models. For each of the models, ✗

indicates that the resulting code was not robust to
the indicated vulnerability. The results show that
in the baseline setting, the models are capable of
generating functions that provide the correct out-
put in a normal setting. However, the models are
not capable of handling edge cases correctly. To
illustrate, none of the models can correctly handle
negative ages or a negative input to a Fibonacci
function. We see that in the robust setting, models
perform slightly better, and tend to be robust to
some of the vulnerabilities. However, for none of
the models the code is fully robust. With TypePilot,
we obtain the best performance, with models gen-
erally being robust to most vulnerabilities related
to input constraints.

When comparing the models, we observe that
Qwen-2.5-Coder (32B) performs the best,
passing all our checks when using TypePilot. In
contrast, CodeLlama (70B) does not perform
well, remaining vulnerable to a number of cases in
each of the settings, highlighting the importance of
study of specific code-generating LLM models.

4.2.2 Code injection
The second type of vulnerability we consider is
code injection. Table 3 displays the results for each
of the models, where ✗ indicates that the code is

vulnerable to injection, ✓ indicates that code is ro-
bust to injection, and ∼ indicates that the code is
partially robust to injection. The results show that
in the baseline setting virtually all generated code
is vulnerable to code injection. Robust prompt-
ing improves the performance, resulting in fewer
vulnerabilities. As before, TypePilot achieves the
best performance, with robust code generations in
almost all settings.

4.2.3 Usage of the Scala type system
In the new framework, the Scala type system is
used as a central tool to guide the generation of
secure code. By prompting LLMs to leverage fea-
tures such as sealed traits, smart constructors, and
refined return types, we enable the generation of
programs that encode correctness directly into their
type signatures. This stands in contrast to baseline
generations, which operate on unconstrained prim-
itives and rely on ad hoc runtime logic to handle
edge cases and errors.

Figures 5 shows an examples of code generated
in the baseline and in the agentic AI framework, for
the same test case and model. Figure 5 shows that
in the baseline version, the averageAge function
takes a List[Int] and performs a division after
checking for emptiness. While this implementa-
tion is syntactically valid, it permits semantically
invalid inputs—such as negative ages or values far
outside a realistic human range—and silently de-
faults to returning 0.0 when the input list is empty.
In contrast, the enhanced version defines a sealed
trait Age and a case class ValidAge, with a smart
constructor in the Age companion object that en-

(a) Baseline
object GeneratedFunctions {

def averageAge(ages: List[Int]): Double = {
if (ages.isEmpty) 0.0
else ages.sum.toDouble / ages.length

}
}

(b) TypePilot
object GeneratedFunctions {
sealed trait Age {
def value: Int

}

final case class ValidAge(value: Int) extends Age

object Age {
def apply(value: Int): Option[Age] = {
if (value >= 0 && value <= 120) Some(ValidAge(value))
else None

}
}

def averageAge(ages: List[Age]): Option[Double] = {
if (ages.isEmpty) None
else {

val (sum, count) = ages.foldLeft((0L, 0)) {
case ((accSum, accCount), age) =>
(accSum + age.value, accCount + 1)

}
}

}

Figure 5: Comparison of baseline and TypePilot average age function generations from Qwen-2.5-Coder
(32B)
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forces domain-specific constraints: only values be-
tween 0 and 120 are permitted. The averageAge
function now accepts a list of validated Age values
and returns an Option[Double], making both
the domain invariants and the possibility of unde-
fined results (e.g., empty lists) explicit at the type
level. This design ensures that all inputs have been
prevalidated before the function executes, reducing
the likelihood of subtle logic bugs and enabling
safer composition in larger systems. A second ex-
ample related to generating a function to search for
files using bash is discussed in appendix C.

In TypePilot, the Scala type system is used not
merely to enforce syntactic correctness but to en-
code domain abstractions rules, constrain behav-
ior, and make failure modes explicit. By doing
so, it transforms what would otherwise be runtime
checks and ad hoc validations into statically en-
forced contracts. This shift leads to code that is
more robust, more predictable, and better aligned
with the principles of secure and maintainable soft-
ware design. In the context of LLM-generated code,
these benefits are particularly important, as they
offer a principled way to guard against common
pitfalls and encourage safer defaults during genera-
tion.

4.3 Vulnerability Analysis

We performed a post-hoc vulnerability analysis by
categorizing the vulnerabilities observed in each
test case. These categories include input con-
straint issues (shape violations, null dereferences
and boundary violations) and code injection risks

(HTML injection, bash injection and path traver-
sal). For each method, we calculated the fraction
of secure outputs and averaged the results across
the three LLMs, which is displayed in Figure 6.

For input constraints, robust prompting offered
limited improvements over the baseline, particu-
larly for shape violations and null dereferences. It
often inserted assertions but did not systematically
enforce data structure correctness. TypePilot re-
duced these errors more effectively, as the presence
of type specifications led the models to generate
code structured around expected data formats rather
than relying on runtime checks.

For code injection, TypePilot also lowered vul-
nerability rates, especially for bash injections
where robust prompting typically altered command
structure without validating input. Results var-
ied between models: Qwen-2.5-Coder (32B) and
Deepseek-Coder (33B) generally applied the type
system consistently, while CodeLlama (70B) some-
times attempted to handle vulnerabilities outside
the type framework. In some cases, type constraints
were only partially used, such as defining a type
for an output value but not for the input values.

Appendix D analyzes attention weights across
the three methods, showing that TypePilot places
greater emphasis on key safety terms during code
generation than robust prompting.

4.4 Comparison to Self-Planning Code
Generation

As an additional validation, we compared Type-
Pilot to the Self-Planning prompting framework,

Figure 6: Fraction of secure code generations across vulnerability categories for each of the methods (baseline
prompting, robust prompting, TypePilot). Results are averaged over all evaluated LLMs. Lower bars indicate a
higher frequency of vulnerabilities; higher bars indicate safer generations.
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Figure 7: Comparison of the secure code generation
methods TypePilot (ours) and Self-Planning, as intro-
duced by Jiang et al. (2024).

as discussed in Section 3.4. In the Self-Planning
framework, the model is first asked to outline a
plan for solving the task. Afterwards, it is asked
to write the code by executing the plan, and it is
explicitly instructed to consider safety and security
aspects before writing code. Overall, TypePilot out-
performs self-planning for both the input constraint
and code injection tasks. The difference is largest
for Qwen-2.5-Coder (32B), which more reliably ad-
heres to the type system instructions in TypePilot,
resulting in fewer shape and null-handling issues
compared to the Self-Planning setup.

Manual inspection of the Self-Planning outputs
reveals that, despite explicit prompts to account for
vulnerabilities during the planning and implemen-
tation stages, models frequently overlook or under-
address these concerns. The generated plans may
mention security considerations in abstract terms
but rarely translate them into concrete, protective
measures in the final code. These findings suggest
that simply instructing the model to “think about
safety” is insufficient: introducing a structured in-
termediate step, such as TypePilot’s type-enforced
specification phase, is more effective in steering
the model toward safer code generation.

5 Scaling

The primary goal of this work is to show that lever-
aging the type system in strongly typed languages
can substantially mitigate vulnerabilities in LLM-
generated code. While our experiments focus on
relatively simple test cases, practical applications
often involve larger, interconnected codebases with
complex object hierarchies. Scaling our framework
to such scenarios presents new challenges, primar-
ily related to context management and dependency
reasoning across multiple files and modules.

One promising direction is the development of
a hybrid, object-aware prompting system. In this
approach, metadata about each relevant object, in-
cluding its types and invariants, is provided to the
LLM prior to generation. This structured context
could enable the model to reason more accurately
about type interactions and enforce security con-
straints across function boundaries. Additionally,
integrating lightweight symbolic reasoning or type
inference engines could help LLMs maintain global
consistency in larger projects, further reducing the
risk of injection attacks and logical errors.

6 Conclusion

In this work, we aim to improve the security of
LLM generated mission-critical code, focusing on
the Scala strongly typed language. As Scala is
routinely used in mission-critical software and en-
gineers are increasingly often using LLMs to code,
it is essential to ensure that the generated code is
free of vulnerabilities. We first show that LLMs
are not able to autonomously use the static veri-
fication tool Stainless. Therefore, we develop a
more general agentic AI framework that structures
multi-step interactions between LLMs for code gen-
eration. By leveraging the Scala type system, we
significantly improve the quality and safety of gen-
erated code. Crucially, this approach transforms
type systems from passive compile-time enforcers
into active agents of code safety. We study two dif-
ferent classes of vulnerabilities, input constraints
and code injection, and show that in both cases our
framework improves code safety over a baseline
and zero-shot robust prompting setting. We use
the rigidity of the Scala type system to compensate
for the inconsistencies picked up from the training
code by LLMs, which in turn allow an easier inter-
face to access the power of the Scala type system.

We conclude by suggesting two directions for
future research. First, future work should test the
framework’s capabilities in more complex code-
bases. While this study provided a proof of concept
using simple test cases, real-world software tends
to be more complex, so validating our approach in
these environments is important to assess its effec-
tiveness. Second, deploying the framework in an
active development setting would allow engineers
to use it in their daily work and provide valuable
feedback. This real-world input can guide further
improvements and help tailor the framework to bet-
ter meet the needs of software teams.
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