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Abstract
Multi-hop question answering (MHQA) re-
quires systems to retrieve and connect informa-
tion across multiple documents, a task where
large language models often struggle. We in-
troduce Knowledge Graph-Enhanced Iterative
Reasoning (KGEIR), a framework that dynam-
ically constructs and refines knowledge graphs
during question answering to enhance multi-
hop reasoning. KGEIR identifies key entities
from questions, builds an initial graph from re-
trieved paragraphs, reasons over this structure,
identifies information gaps, and iteratively re-
trieves additional context to refine the graph
until sufficient information is gathered. Evalu-
ations on HotpotQA, 2WikiMultiHopQA, and
MuSiQue benchmarks show competitive or su-
perior performance to state-of-the-art methods.
Ablation studies confirm that structured knowl-
edge representations significantly outperform
traditional prompting approaches like Chain-
of-Thought and Tree-of-Thought. KGEIR’s
ability to explicitly model entity relationships
while addressing information gaps through tar-
geted retrieval offers a promising direction for
integrating symbolic and neural approaches
to complex reasoning tasks. Details of the
project and the code are published at https:

//github.com/TiandaSun/KGEIR

1 Introduction

Multi-hop question answering (MHQA) presents a
significant challenge in natural language process-
ing, requiring systems to retrieve and connect infor-
mation from multiple documents to answer com-
plex questions (Yang et al., 2018; Ho et al., 2020;
Trivedi et al., 2022). Unlike traditional question an-
swering, which typically relies on information from
a single passage, MHQA demands reasoning across
disparate pieces of information, making it a more
accurate reflection of human information-seeking
behaviour (Chen et al., 2017). Despite recent ad-
vances in large language models (LLMs) (Brown

et al., 2020; Touvron et al., 2023), their ability to
perform structured reasoning over multiple sources
remains a challenging area, particularly when ev-
idence must be gathered from diverse documents
without explicit connections (Qi et al., 2019).

Existing approaches to MHQA typically follow
a retrieve-then-read paradigm (Lewis et al., 2020;
Karpukhin et al., 2020), where relevant documents
are first retrieved based on the question, followed
by a reading comprehension step to extract the an-
swer. However, this sequential process often strug-
gles with complex questions requiring multi-step
reasoning, as the initial retrieval may fail to cap-
ture all necessary documents when relationships
between different pieces of evidence are not explic-
itly considered [11]. Furthermore, most systems
lack an effective mechanism to identify and ad-
dress information gaps through iterative refinement
(Trivedi et al., 2023). The increasing availability
of powerful LLMs has opened new possibilities for
MHQA, as these models demonstrate impressive
reasoning capabilities (Wei et al., 2023; Wang et al.,
2023). However, their application in multi-hop set-
tings is often limited by several factors: (1) the
inability to understand relationships between enti-
ties across different passages (Han et al., 2025), (2)
the lack of structured representation of knowledge
(Sun et al., 2024; Edge et al., 2025), and (3) the
absence of systematic processes to identify and fill
information gaps (He et al., 2024).

To address these limitations, we propose a novel
Knowledge Graph-Enhanced Iterative Reasoning
(KGEIR) framework for multi-hop question an-
swering. Our approach combines the reasoning
capabilities of LLMs with the structured representa-
tion of knowledge graphs, enabling more effective
multi-hop reasoning through explicit modelling of
entity relationships across documents. The key
insight of our approach is that dynamically con-
structing and refining a knowledge graph during

https://github.com/TiandaSun/KGEIR
https://github.com/TiandaSun/KGEIR
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Figure 1: A common workflow on the MHQA task with an example from HotpotQA dataset. A regular MHQA
question cannot get the answer from one single document but needs to retrieval multiply paragraphs from different
documents. In here, the model firstly needs to retrieve the relevant paragraph across 2 different documents and
identify that ’James Henry Miller’ and ’Ewan MacColl’ is one and the same person. Then it can make the connection
between the fact that Peggy Seeger is his wife and the knowledge about her nationality (American).

the question-answering process provides an effec-
tive scaffold for reasoning, while also identifying
information gaps that can guide targeted retrieval
of additional context.

Our KGEIR framework operates through an it-
erative process: (1) initial retrieval of relevant
paragraphs based on entities extracted from the
question, (2) dynamic construction of a knowledge
graph from retrieved paragraphs, (3) reasoning over
the knowledge graph to attempt answering the ques-
tion, (4) identification of information gaps in the
knowledge graph, (5) targeted retrieval of addi-
tional paragraphs to fill these gaps, and (6) refine-
ment of the knowledge graph and reasoning pro-
cess. This iterative approach continues until suffi-
cient information is gathered to answer the question
confidently or a maximum number of iterations is
reached.

We evaluate our approach on multiple multi-
hop QA datasets, including HotpotQA (Yang et al.,
2018), 2WikiMultiHopQA (Ho et al., 2020), and
MuSiQue (Trivedi et al., 2022), demonstrating that
KGEIR achieves significant improvements over
strong baselines. Our analysis shows that the
knowledge graph structure effectively guides the

reasoning process of LLMs, while the iterative re-
finement process substantially improves answer
accuracy by addressing information gaps identified
during reasoning. The contributions of this paper
are threefold:

1. A novel framework that leverages knowledge
graphs to enhance multi-hop reasoning capa-
bilities of large language models.

2. An iterative information-seeking approach
that identifies and addresses knowledge gaps
through targeted retrieval.

3. A comprehensive evaluation demonstrating
the effectiveness of our approach on challeng-
ing multi-hop QA benchmarks.

Our results suggest that structuring informa-
tion as explicit entity-relation graphs significantly
enhances the multi-hop reasoning capabilities of
LLMs, potentially opening new avenues for com-
bining symbolic and neural approaches to complex
question answering.
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2 Related Works

This section examines recent advances in multi-
hop question answering (MHQA), organised into
complementary research directions that inform our
KGEIR framework. By analysing the strengths and
limitations of existing approaches, we demonstrate
the need for our integrated framework.

2.1 Retrieval and Knowledge Structure
Approaches

Recent retrieval methods for MHQA have pro-
gressed beyond simple matching to incorporate log-
ical relevance and multi-hop connections. While
dense retrievers like BGE (Xiao et al., 2024) per-
form well on single-hop tasks, they often strug-
gle with capturing bridging information needed for
complex reasoning. HopRAG (Liu et al., 2025)
represents a significant advancement by introduc-
ing a logic-aware retrieval mechanism that con-
nects passages through pseudo-queries and em-
ploys a retrieve-reason-prune paradigm. Their
work demonstrated that indirectly relevant passages
can serve as stepping stones to reach relevant ones,
achieving notable results across multiple datasets.
The approach, however, focuses primarily on en-
hancing retrieval rather than constructing explicit
knowledge representations for reasoning.

Astute RAG (Wang et al., 2024) addresses im-
perfect retrieval by developing mechanisms to over-
come knowledge conflicts and reasoning failures.
They revealed that approximately 70% of retrieved
passages do not directly contain true answers, high-
lighting the limitations of pure similarity-based
retrieval. Similarly, BRIGHT (Su et al., 2025)
demonstrates through their benchmark that even
state-of-the-art retrievers struggle with multi-step
reasoning tasks.

Knowledge structure approaches have emerged
to provide explicit representations of entity re-
lationships. G-Retriever (He et al., 2024) intro-
duced a retrieval-augmented generation framework
that enhances retrieval quality by leveraging graph
structures to identify relevant information through
entity-relation patterns. GraphRAG (Edge et al.,
2025) builds hierarchical graph indices with knowl-
edge graph construction and recursive summarisa-
tion, demonstrating the value of graph structures
for organising complex information. Extract, De-
fine, Canonicalise (Gutiérrez et al., 2025) presents
an LLM-based framework for knowledge graph
construction that systematically extracts entities

and relations from text without extensive training
or predefined schemata.

A key limitation across these approaches is their
reliance on static construction processes and lack
of explicit mechanisms to identify information
gaps and iteratively refine knowledge representa-
tions, which our KGEIR framework specifically
addresses.

2.2 Reasoning and LLM-Based Approaches

Recent reasoning approaches have increasingly
leveraged structured representations to guide LLMs
through complex multi-hop questions. Graph-
based reasoning methods have shown particular
promise in organising the reasoning process. Graph
Elicitation (Park et al., 2024) decomposes multi-
hop questions into sub-questions to form a graph
and guides LLMs to answer based on the chrono-
logical order of the graph. Structure-Guided
Prompting (Cheng et al., 2024) instructs LLMs
in multi-step reasoning by exploring graph struc-
tures extracted from text. While effective, these
approaches typically construct graphs as static scaf-
folds rather than dynamic structures that evolve
through iterative refinement.

Graph Chain-of-Thought (Jin et al., 2024) aug-
ments LLMs by incorporating reasoning on graphs
into the generation process, demonstrating that
graph structures can significantly enhance LLMs’
reasoning capabilities on tasks requiring structured
knowledge. Reasoning with Graphs (Han et al.,
2025) most closely aligns with our approach by
structuring implicit knowledge into explicit graphs
through multiple rounds of verification. Their re-
sults show significant improvements across logical
reasoning and multi-hop question answering tasks,
though their approach does not incorporate an iter-
ative retrieval mechanism to address information
gaps identified during reasoning.

The reasoning capabilities of LLMs have been
extensively studied, revealing both strengths and
limitations. Yang et al. (Yang et al., 2024) found
that while models can connect information across
sources, they benefit significantly from explicit
guidance in complex scenarios, particularly as rea-
soning hops increase. Huang et al. (Huang et al.,
2024) demonstrated that even advanced LLMs
struggle to identify and correct errors in their rea-
soning without external guidance, underscoring the
importance of providing explicit structures to guide
the reasoning process.
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Various approaches have been proposed to en-
hance LLMs’ reasoning. Self-RAG (Asai et al.,
2023) introduced a framework for retrieval, gen-
eration, and critique through self-reflection, while
REFEED (Yu et al., 2023) employs a multi-round
retrieval-generation framework using feedback to
refine retrieval steps. SAFE-RAG (Liang et al.,
2025) highlighted the importance of reliable rea-
soning over retrieved information, showing that
without proper verification mechanisms, LLMs can
produce inconsistent responses. However, these
approaches typically lack explicit mechanisms to
identify specific information gaps or leverage struc-
tured representations for reasoning.

2.3 Iterative Refinement Approaches

Iterative approaches to information retrieval and
reasoning have gained significant traction, ad-
dressing multi-hop question answering challenges
through progressive refinement. When compared
with tree-structured RAG approaches like RAP-
TOR (Sarthi et al., 2024) and SiReRAG (Zhang
et al., 2025), graph-structured approaches, such
as HopRAG (Liu et al., 2025) demonstrate supe-
rior performance by enabling flexible logical mod-
elling, cross-document organisation, and efficient
construction.

The HippoRAG framework (Yang et al., 2024)
introduces a neurobiologically inspired approach to
long-term memory for LLMs, implementing a sys-
tem that prioritises relevance signals and iteratively
refines its understanding. However, their approach
does not explicitly model the graph evolution pro-
cess or use graph structures to identify information
gaps. ActiveRetrieval (Jiang et al., 2023) actively
queries a corpus during the generation process, us-
ing intermediate reasoning states to guide retrieval.
This approach demonstrates the value of dynami-
cally adjusting retrieval based on the current rea-
soning state, a principle that our KGEIR framework
incorporates through gap-aware retrieval.

While these existing approaches have made sig-
nificant strides in different aspects of the MHQA
challenge, they typically address only part of the
problem. KGEIR uniquely integrates dynamic
knowledge graph construction, gap identification,
and iterative refinement into a unified framework
that addresses the full spectrum of challenges in
multi-hop question answering, differentiating it
from existing approaches that typically address
only part of the problem.

3 Methods

We introduce KGEIR (Knowledge Graph-
Enhanced Iterative Reasoning), a novel framework
for multi-hop question answering that combines
the reasoning capabilities of large language models
with the structural advantages of knowledge
graphs. This section describes our approach, which
dynamically constructs and refines knowledge
graphs to support iterative reasoning over multiple
documents.

3.1 Problem Analysis
Multi-hop question answering requires integrating
information across multiple sources to derive an-
swers that cannot be found in any individual source.
We formalize this task as follows: Given a question
q and a corpus of documents D = {d1, d2, ..., dN},
MHQA aims to produce an answer a by reason-
ing over a subset of supporting documents S ⊂ D
where:

• No single document di ∈ S contains sufficient
information to answer q.

• The answer a requires establishing relation-
ships between information in different docu-
ments.

• The reasoning process can be represented as a
sequence of hops between documents, form-
ing a path:

di1 → di2 → ... → dik → a

Traditional approaches follow a retrieve-then-
read paradigm that can be formalised as:

a = R(T (q,D), q)

Where T is a retrieval function that selects relevant
documents, andR is a reading function that extracts
the answer. This approach faces challenges with
multi-hop questions as the initial retrieval often
fails to capture all necessary information.

Our KGEIR framework reformulates this prob-
lem by introducing an iterative graph-based ap-
proach:

a = R(Gk, q)

Where Gk is a knowledge graph constructed and
refined through k iterations of retrieval and rea-
soning. Each iteration identifies information gaps
and retrieves additional context to fill these gaps,
progressively enriching the graph until sufficient
information is gathered to answer the question.
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Figure 2: KGEIR framework workflow for multi-hop QA, illustrated with the example "What nationality was James
Henry Miller’s wife?" The process begins with extracting incomplete triples from the question (left), followed by
multi-faceted retrieval extracting paragraphs relevant to the main entity and relations. The initial knowledge graph
is constructed from retrieved paragraphs (centre), enabling structured reasoning by the LLM. If the current graph
lacks sufficient information, the system identifies missing entities and relations to guide targeted retrieval (right),
iteratively refining the knowledge graph until a confident answer can be produced. This dynamic enhancement
process addresses the limitations of static retrieval approaches by adaptively exploring the information space based
on reasoning requirements.

3.2 Initial Knowledge Graph Construction

The first component of KGEIR is constructing an
initial knowledge graph from the question and cor-
pus. As shown in Figure 1, this process involves
question analysis, initial retrieval, and graph for-
mation. Given a question, we first identify key
entities and potential relationships required to an-
swer it. For the question "What nationality was
James Henry Miller’s wife?" (Figure 1), we extract
incomplete triples: (James Henry Miller, ?, ?), (?,
HasWife, ?), and (?, HasNationality, ?). These in-
complete triples capture both explicit entities men-
tioned in the question and implicit relations nec-
essary to answer it. We only crop the corpus if
it reaches the limitation of LLM’s context length.
Then, combining the text corpus with these ex-
tracted entities and relations, we design a prompt
for the LLM to retrieve the relevant paragraphs
from the corpus. This multi-faceted retrieval ap-
proach targets documents containing information
about the entities ("James Henry Miller"), relations
("HasWife"), and properties ("HasNationality") in
the query. This strategy ensures a broader cover-
age than traditional retrieval methods that focus on

entities only. All our prompts used throughout the
paper are available upon request.

From the retrieved paragraphs, we extract enti-
ties and relationships to construct the initial knowl-
edge graph. This process creates a structured rep-
resentation of the information contained in the re-
trieved documents, converting unstructured text
into an explicit entity-relation graph. While valu-
able, this initial graph often lacks crucial connec-
tions needed to answer complex multi-hop ques-
tions, necessitating our dynamic enhancement ap-
proach.

3.3 Dynamic Knowledge Graph Enhancement

The core innovation of KGEIR is its dynamic ap-
proach to enhancing the knowledge graph through
targeted retrieval and iterative refinement, as shown
in the right portion of Figure 1. After construct-
ing the initial graph, an LLM reasoner attempts
to answer the question using the available knowl-
edge structure. Upon determining that the current
graph does not contain sufficient information for a
confident answer to the question, the system initi-
ates an enhancement cycle that operates through a
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systematic information-seeking paradigm.
The enhancement process begins with a gap anal-

ysis mechanism that examines the knowledge graph
structure to identify missing entities and relations.
This mechanism employs specialised prompting
techniques to direct the LLM’s attention to specific
structural deficiencies in the current graph. As illus-
trated in Figure 1, the system identifies entities that
would be most informative for answering the query,
modelling information necessity rather than merely
information relevance. Following gap identifica-
tion, the system employs relation-aware retrieval to
efficiently locate documents containing the missing
information. This targeted retrieval strategy dif-
fers significantly from traditional similarity-based
approaches by formulating queries specifically de-
signed to bridge identified knowledge gaps. The re-
trieval component employs both entity-centric and
relation-centric query formulation to ensure com-
prehensive coverage of the missing information.
The retrieved information undergoes structured ex-
traction and integration into the existing knowledge
graph through our graph extension mechanism (la-
belled "Extend KG" in Figure 1). This integration
process preserves existing graph structure while
incorporating new entities and relations, creating a
progressively more comprehensive knowledge rep-
resentation with each iteration. The enhancement
cycle continues iteratively, with each cycle refin-
ing the knowledge graph until it contains sufficient
information for confident reasoning or reaches a
predetermined iteration limit. This dynamic re-
finement process enables KGEIR to overcome the
limitations of static retrieval approaches, adaptively
exploring the information space as directed by rea-
soning requirements rather than surface-level query
similarity.

3.4 Knowledge-Guided Reasoning and
Assessment

The final component of KGEIR leverages the dy-
namically enhanced knowledge graph to perform
multi-hop reasoning and answer the question. Un-
like approaches that reason directly over retrieved
text, KGEIR reasons over the structured entity-
relation graph, allowing for more precise naviga-
tion through complex information. The reasoning
process leverages both the graph structure and the
original retrieved passages, combining the advan-
tages of structured knowledge representation with
the contextual richness of the original text. As il-

lustrated in Figure 1, the LLM reasoner identifies
relevant paths through the knowledge graph that
connect question entities to potential answers. For
our example question, the reasoner would identify
paths connecting "James Henry Miller" through the
"HasWife" relation to his spouse, and then through
the "HasNationality" relation to the target answer.
By traversing these explicit relationship paths, the
system effectively performs multi-hop reasoning
while maintaining clarity about the evidence sup-
porting each hop.

The reasoning process includes a simple verifica-
tion step (the decision node in Figure 1) where the
LLM determines if the current graph provides di-
rect supporting information to answer the question.
If more information is needed, the system triggers
another enhancement cycle; otherwise, it proceeds
to generate the final answer.

4 Experiment

4.1 Setup

Dataset and Retrieval Parameter For comprehen-
sive evaluation of KGEIR, we conducted experi-
ments on three established multi-hop QA bench-
marks: HotpotQA (Yang et al., 2018), 2WikiMulti-
HopQA (Ho et al., 2020), and MuSiQue (Trivedi
et al., 2023). These datasets represent varying de-
grees of reasoning complexity, including 2-hop, 3-
hop, and 4-hop inference chains. Following estab-
lished evaluation practices in this domain (Zhang
et al., 2025), we selected a sample of 1,000 ques-
tions from each dataset’s validation set. For the
hyperparameter setting, we set the number of re-
trieved paragraphs to five for each iteration of the
enhancement cycle, for a maximum of three itera-
tions. If the model still cannot find the answer at
this point, the question is marked as failed.

Baselines We evaluated KGEIR against repre-
sentative methods spanning different approaches to
multi-hop reasoning. We included both sparse re-
trieval with BM25 (Robertson and Zaragoza, 2009)
and dense retrieval with BGE (Xiao et al., 2024) to
establish performance baselines for non-structured
approaches. We compared against the published re-
sults in Liu et al. (2025) on leading tree-structured
systems, including RAPTOR (Sarthi et al., 2024)
and SiReRAG (Zhang et al., 2025), as well as
graph-based approaches namely GraphRAG (Edge
et al., 2025) and HippoRAG (Gutiérrez et al., 2025).
For all structured systems, GPT-4o has been used
to maintain consistency between implementations.
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Evaluation Metric We assessed performance us-
ing exact match (EM) and F1 scores as same as the
setting in HopRAG model (Liu et al., 2025), which
measures the precision of answer generation at dif-
ferent granularities. The EM metric requires exact
correspondence with reference answers, while F1
combines precision and recall at the token level
to provide a more nuanced measure of partial cor-
rectness. We focused exclusively on answer quality
metrics rather than retrieval metrics, as several base-
line systems generate synthetic content (such as
summaries) that would make direct retrieval com-
parison inequitable.

4.2 Result Analysis

Table 1 presents a comprehensive evaluation of our
proposed KGEIR framework against established
baselines across three multi-hop QA datasets. Thus,
KGEIR achieves competitive results with state-of-
the-art methods, our novel mechanisms of dynamic
knowledge graph construction and iterative reason-
ing.

On MuSiQue, KGEIR achieves 44.50% EM (ex-
act matches) and 53.12% F1, showing modest im-
provements over HopRAG (42.20% EM, 54.90%
F1). For HotpotQA, we observe performance
of 63.15% EM and 76.77% F1, slightly higher
than HopRAG’s 62.00% EM and 76.06% F1. On
2WikiMultiHopQA, our approach achieves 59.13%
EM and 69.55% F1, which is competitive though
slightly lower than HopRAG’s 61.10% EM and
68.26% F1. These results demonstrate that KGEIR
achieves comparable performance to the current
state-of-the-art while introducing a fundamentally
different approach to multi-hop reasoning. The pri-
mary contribution of KGEIR is not a significant
leap in raw performance metrics, but rather the
introduction of a novel framework that enhances
the reasoning process through explicit knowledge
modelling and iterative refinement.

In terms of approach, KGEIR differs from Ho-
pRAG in several key aspects. While HopRAG
prioritises logical connectivity between passages
through pseudo-queries and multi-hop traversal,
KGEIR focuses on dynamically constructing and
refining explicit knowledge representations. Un-
like HopRAG, which integrates similarity with log-
ical relations when constructing edges, KGEIR ex-
plicitly models information gaps and uses these
to guide targeted retrieval. The performance
comparisons with traditional retrievers (BM25:

31.77% avg. EM, BGE: 36.17% avg. EM) high-
light the significant advantages of structured ap-
proaches. Meanwhile, GraphRAG’s lower per-
formance (22.10% avg. EM) suggests that static
knowledge graph construction alone is insufficient
without iterative refinement mechanisms. Simi-
lar to how HopRAG positioned itself against SiR-
eRAG by emphasising its streamlined graph struc-
ture without additional summary nodes, KGEIR
introduces a novel dynamic knowledge graph con-
struction process that evolves throughout reason-
ing. Our approach does not require pre-constructed
knowledge graphs or complex graph preprocessing,
instead, it builds and refines graph representations
as reasoning progresses.

4.3 Ablation Experiment and Discussion

To evaluate the effectiveness of KG-based reason-
ing in our framework, we performed an ablation
study comparing different reasoning methods fol-
lowing the retrieval phase. We examined four
distinct approaches: (1) Vanilla (direct LLM rea-
soning without prompting), (2) Chain-of-Thought
(CoT) (Wei et al., 2023), (3) Tree-of-Thought (ToT)
(Yao et al., 2023), and (4) our complete KGEIR
approach with knowledge graph reasoning. For all
experiments, we used Gemma3-27B as the base
model and maintained consistent dataset settings
with our main evaluation. Performance was mea-
sured based on semantic correctness relative to
ground truth answers.

As shown in Table 2, KGEIR consistently out-
performs all baseline reasoning methods across
all datasets, achieving an average improvement
of 2.26% over ToT. The performance improve-
ment is particularly pronounced on the HotpotQA
dataset, where KGEIR achieves 62.20% accuracy
compared to 57.70% for ToT—a 4.50% absolute
improvement. All results suggest that our knowl-
edge graph approach is very effective for complex
bridging questions that require connecting informa-
tion across multiple documents.

Table 2 shows a clear progressive improve-
ment pattern (Vanilla → CoT → ToT → KGEIR),
demonstrating the value of increasingly structured
reasoning approaches. While CoT provides modest
gains over vanilla reasoning (48.11% vs. 48.47%
on average), ToT’s tree-structured exploration
offers more substantial improvements (53.85%).
However, KGEIR’s explicit modelling of entity
relationships through dynamic knowledge graphs
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Table 1: Comparison of RAG methods across datasets with baseline results from the cited literature.

Method MuSiQue 2WikiQA HotpotQA Average

EM [%] F1 [%] EM [%] F1 [%] EM [%] F1 [%] EM [%] F1 [%]
BM25 13.80 21.50 40.30 44.83 41.20 53.23 31.77 39.85
BGE 20.80 30.10 40.10 44.96 47.60 60.36 36.17 45.14
GraphRAG 12.10 20.22 22.50 27.49 31.70 42.74 22.10 30.15
RAPTOR 36.40 49.09 53.80 61.45 58.00 73.08 49.40 61.21
SiReRAG 40.50 53.08 59.60 67.94 61.70 76.48 53.93 65.83
HopRAG 42.20 54.90 61.10 68.26 62.00 76.06 55.10 66.40
KGEIR 44.50 53.12 59.13 69.55 63.15 73.77 55.59 65.48

Table 2: Comparison of ablation study between different reasoning methods across datasets.

Method MuSiQue 2WikiQA HotpotQA Average
Vanilla (LLM ‘as is’) 42.60 62.21 40.62 48.47
CoT (LLM with CoT prompt) 44.50 57.25 42.57 48.11
ToT (LLM with ToT prompt) 45.65 58.21 57.70 53.85
KGEIR 46.45 59.69 62.20 56.11

provides the most effective reasoning framework
(56.11%).

Interestingly, on 2WikiQA, the performance gap
between reasoning methods is less pronounced,
with vanilla LLM reasoning achieving a surpris-
ingly high 62.21%. This suggests that for certain
types of questions, the base reasoning capabilities
of modern LLMs may be sufficient when retriev-
ing appropriate context. Nevertheless, KGEIR still
provides the most consistent performance across
all datasets, demonstrating the robustness of our
approach to different question types and reasoning
complexities.

These results validate our hypothesis that struc-
turing multi-hop reasoning through explicit knowl-
edge graphs enhances LLMs’ ability to connect in-
formation across documents, particularly for com-
plex questions requiring multiple reasoning steps.
The dynamic construction and refinement of knowl-
edge representations provide a more interpretable
and effective reasoning process compared to tradi-
tional prompting methods.

5 Conclusion

In this paper, we presented KGEIR, a novel frame-
work that enhances multi-hop question answering
through dynamic knowledge graph construction
and iterative refinement. Unlike traditional retrieve-
then-read paradigms, KGEIR explicitly models en-
tity relationships across documents and systemati-
cally identifies information gaps to guide targeted

retrieval. This iterative knowledge refinement pro-
cess provides both a structured scaffold for LLM
reasoning and an effective mechanism to address
the inherent limitations of similarity-based retrieval
for complex questions.

Our comprehensive evaluation across three
multi-hop QA benchmarks demonstrates KGEIR’s
effectiveness, achieving competitive or superior
performance compared to state-of-the-art methods.
The most significant improvements appear on com-
plex bridging questions, confirming our approach’s
strength in scenarios requiring cross-document rea-
soning. Ablation experiments reveal that structured
knowledge graph reasoning consistently outper-
forms traditional prompting methods, with our full
KGEIR model providing absolute improvements
of up to 4.50% over Tree-of-Thought prompting.

The integration of dynamic knowledge graph
construction with iterative reasoning represents a
promising direction for addressing complex infor-
mation needs in NLP systems. By bridging sym-
bolic and neural approaches, KGEIR offers a prin-
cipled solution to the challenges of information
fragmentation and implicit relationships that char-
acterise multi-hop reasoning tasks. We may extend
this framework to incorporate uncertainty handling
and conflicting information resolution, potentially
expanding its applicability to a broader range of
knowledge-intensive applications beyond question-
answering.
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