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Abstract

This study compares a traditional machine
learning feature-engineering approach to a
large language models (LLMs) fine-tuning
method for Native Language Identification
(NLI). We explored the COREFL corpus,
which consists of L2 English narratives pro-
duced by Spanish and German L1 speak-
ers with lower-advanced English proficiency
(C1) (Lozano et al., 2020). For the feature-
engineering approach, we extracted language
productivity, linguistic diversity, and n-gram
features for Support Vector Machine (SVM)
classification. We also looked at sentence
embeddings with SVM and logistic regres-
sion. For the LLM approach, we evaluated
BERT-like models and GPT-4. The feature-
engineering approach, particularly n-grams,
outperformed the LLMs. Sentence-BERT
embeddings with SVM achieved the second-
highest accuracy (93%), while GPT-4 reached
an average accuracy of 90.4% across three runs
when prompted with labels. These findings
suggest that feature engineering remains a ro-
bust method for NLI, especially for smaller
datasets with subtle linguistic differences be-
tween classes. This study contributes to the
comparative analysis of traditional machine
learning and transformer-based LLMs, high-
lighting current LLM limitations in handling
domain-specific data and their need for larger
training resources.

1 Introduction

The role of a learner’s native language (L1) in sec-
ond language (L2) acquisition has been widely ad-
dressed in second language acquisition (SLA) lit-
erature (Lado, 1957; Corder, 1975). SLA research
has shown that the spelling, grammar, and lexicon
used in L2 writing are often influenced by patterns
and rules from a learner’s L1. However, the extent
of L1 impact on L2 performance remains difficult
to determine precisely.

With the emergence of learner corpora, it has be-
come possible to empirically test SLA hypotheses
and explore how different L1s manifest in L2 writ-
ing. One application of this is the Native Language
Identification (NLI) task, which uses automated
methods to predict a learner’s L1 based on their L2
writing. Prior studies have demonstrated high per-
formance for feature-engineered machine learning
(ML) approaches to NLI. However, research ex-
amining the applicability of large language models
(LLMs) to NLI remains limited. Moreover, there
is a lack of studies directly comparing LLMs with
traditional feature-engineered pipelines within the
same experimental paradigm.

The current study addresses this gap by compar-
ing a traditional feature-engineering ML approach
to transformer-based LLMs for the NLI task. As
a secondary goal, we explore both methods us-
ing a relatively small but unique learner corpus
composed of video-based written narratives. This
corpus offers more structured and homogeneous
data than the topic-based essays commonly used
in prior NLI studies. We report the results of both
NLI approaches and discuss their implications for
SLA research.

This paper is structured as follows: Section 2
introduces previous research. Section 3 outlines
the methodology, including a description of the
COREFL corpus and training/testing techniques.
Section 4 presents the results of both approaches.
Section 5 discusses the findings and implications
for SLA and NLI. Section 6 provides the conclu-
sion and suggests future research directions.

2 Related Work

In NLI research, findings are often interpreted
through the lens of Second Language Acquisition
(SLA) and linguistic transfer. Several theoretical
approaches from SLA have served as a founda-
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tion for this task. One of the most influential is
the Contrastive Analysis Hypothesis (CAH; Lado,
1957), which posits that difficulties in second lan-
guage learning arise from differences between the
learner’s first language (L1) and the target language
(L2). Language typology plays a key role in this
process: the more similar two languages are, the
more likely learners are to experience positive trans-
fer that facilitates acquisition; conversely, typologi-
cally distant languages tend to result in more nega-
tive transfer and errors.

Linguistic transfer refers to the application of
phonological, morphological, syntactic, or lexical
rules from one language to another (Odlin, 1989).
For instance, a native speaker of a pro-drop lan-
guage, such as Spanish, may incorrectly omit sub-
jects when constructing sentences in a non-pro-
drop language like German. The likelihood and
nature of transfer errors depend not only on struc-
tural differences between the languages but also on
the learner’s level of proficiency (Montrul, 2014).
As learners become more proficient in the L2, they
tend to make fewer transfer-based errors.

In the context of NLI, the underlying assumption
is that classification algorithms can detect subtle
linguistic patterns in learners’ L2 that reflect L1
influence, such as deviations in syntactic structure,
part-of-speech usage, or inconsistencies in lexicon
and use these cues to identify the writer’s native lan-
guage. These linguistic traces provide support for
theoretical approaches in SLA and help explore the
phenomenon of cross-linguistic influence or trans-
fer (Jarvis and Crossley, 2012; Tsur and Rappoport,
2007).

Prior studies have consistently demonstrated the
effectiveness of n-gram-based features for NLI. For
instance, several studies have found character n-
grams to be among the most discriminative fea-
tures (Koppel et al., 2005; Markov et al., 2022),
while others have reported high classification per-
formance using lexical and part-of-speech (POS)
n-grams. Jarvis et al. (2013), for example, achieved
an accuracy of 83.6% using word n-grams, and
Markov et al. (2022) reported accuracies ranging
from 80% to 90% using character n-grams with
high values of n (up to n=9). Furthermore, com-
binations of POS n-grams and error features have
yielded precision and recall scores exceeding 80%
(Aharodnik et al., 2013; Kochmar, 2011). For ex-
ample, Kochmar (2011) reported 84% accuracy
using a combined feature set of character n-grams,

POS n-grams, and corpus-derived error rates for
classifying Romance and Germanic languages. In
contrast, fewer NLI studies have examined features
that reflected language productivity and lexical di-
versity, such as function word and content word
ratios, mean length of utterance in words, and type-
token ratio. However, these features may also be
informative, as learners may exhibit L1-influenced
lexical and syntactic patterns in their writing. For
example, some studies emphasized that function
words have contributed to high-performing models
when combined with n-grams and error features
(Koppel et al., 2005; Wong and Dras, 2009).

Studies exploring NLI with LLMs have yielded
mixed results. For example, Lotfi et al. (2020)
reported an accuracy of 89% on the test set for
TOEFL11 and 94.2% on 5-fold cross validation
for ICLE Corpus using GPT-2. These results in-
dicated that the open source GPT model (GPT-2)
was higher than the traditional machine learning
approaches, with the best performing model achiev-
ing 88.2% accuracy with the SVM (Malmasi et al.,
2017). However, studies have shown lower perfor-
mance for BERT-like LLMs compared to a GPT-
2 model. For example, 80.8% accuracy was at-
tained using BERT-base-uncased when tested on
the TOEFL11 corpus test set (Lotfi et al., 2020).
Importantly, few studies have directly compared
traditional machine learning and LLM-based ap-
proaches within the same experimental framework.

Moreover, LLM performance appears to be sen-
sitive to dataset size. For instance, Steinbakken and
Gambäck (2020) found that BERT-based models
reached 85.3% accuracy on the TOEFL11 dataset,
but accuracy improved to 90.2% when using the
larger Reddit-L2 dataset. These findings suggest
that LLMs require larger and more diverse data to
perform optimally, highlighting the need for fur-
ther research that examines LLM effectiveness on
datasets of varying sizes and content types.

The nature of the data itself also plays a critical
role in classification performance. Most NLI stud-
ies have relied on the TOEFL11 corpus, which con-
tains argumentative essays on various topics (Mal-
masi and Dras, 2015). While high performance has
consistently been reported for this dataset (Kop-
pel et al., 2005; Malmasi and Cahill, 2015), its
topic-based structure introduces the risk of con-
tent bias, particularly when using content-sensitive
features such as word and character n-grams. Stud-
ies on cross-corpora evaluation have found that
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Features Description
Narrative Microstructure
MLU(w) Mean Length of Utterance in Words: ratio of total word tokens to

total number of sentences per text
FCR Function-to-Content Word Ratio.

Function words: auxilliaries, pronouns, determiners, prepositions,
conjunctions, particles.
Content words: nouns, verbs, adjectives, adverbs.

TTR Type-Token Ratio: ratio of unique words to total words.
POS fc Part-of-speech frequency counts (e.g., the number of NOUNs,

VERBs, ADJs, etc. per text).
N-gram Features
POS n-grams Sequences of POS tags (e.g., ”DET NOUN”, ”NOUN VERB

ADV”).
Word n-grams Sequences of words (e.g., ”he walked”, ”the baby ate”)
Character n-grams Sequences of characters (e.g., ”ing”, ”ys”, ”ies”)

Table 1: Overview of linguistic productivity, language diversity, and n-gram features included in the study.

genre-diverse corpora produce a higher accuracy
when tested on a genre-specific corpus than the
reverse. However, overall accuracy remains rel-
atively low, as many features useful for NLI are
genre-dependent (Malmasi and Dras, 2015). More
structured datasets, such as those based on picture-
or video-based narratives, can be used as an alterna-
tive for a more consistent feature extraction across
participants.

The current study addresses these gaps by com-
paring a traditional feature-engineering approach
with supervised machine learning classifiers and
the fine-tuning of LLMs within a single experimen-
tal setup. We examine both previously validated
feature sets, such as n-grams, and a complemen-
tary set of language productivity and diversity mea-
sures. This approach aims to assess whether these
additional linguistic features enhance classification
performance and provide deeper insights into L1-
specific patterns in learner writing. To minimize
topic-related bias in L1 identification, we apply
both methods to a more homogeneous dataset.

3 Methods

3.1 Dataset
We used the COREFL corpus (Lozano et al., 2020).
The corpus contained English L2 learner data of
Spanish and German L1 backgrounds. Only learn-
ers with a lower advanced level of English profi-
ciency (C1) were included in the study. The writ-
ers’ age ranged from 18 to 60 years old. The data
consisted of 84 German and 79 Spanish files with

Language Total Files VS BDS
German 84 13 7
Spanish 79 17 7
Total 163 30 14

Table 2: Total number of files and the number of files
used for validation and blind test sets for both language
groups. VS = Validation Set. BDS = Blind Dataset.

one file per participant. The participants watched
a 4-minute video clip about Charlie Chaplin and
summarized the story in a written essay.

3.2 Feature-Engineering Approach
The feature-engineering step focused on selecting
and automatically extracting specific features that
best characterized the data. The features for this
study included two sets described in detail in Table
1.

The pre-processing step involved data cleaning
and feature extraction. Data cleaning consisted of
basic steps: removing special characters, removing
punctuation, lowercasing, tokenization, and POS
tagging. All features were extracted from narratives
using bash scripts. The POS tagging was imple-
mented using en core web trf with Spacy Python
package. All bash scripts and Python code is avail-
able on GitHub1:

The extracted features were used as input for
supervised machine learning binary classification.
We implemented the Support Vector Machine clas-

1https://github.com/AliyahVanterpool/ml features vs llm.git
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Testing Set Feature Accuracy F1
VS All 0.70 0.70
BDS All 0.79 0.78
VS MTF 0.67 0.64
BDS MTF 0.64 0.64
VS POS fc 0.63 0.63
BDS POS fc 0.71 0.71
VS MLU(w) 0.67 0.62
BDS MLU(w) 0.50 0.48
VS TTR 0.60 0.57
BDS TTR 0.50 0.33
VS FCR 0.60 0.55
BDS FCR 0.79 0.78

Table 3: Highest accuracy and F1 for language produc-
tivity and diversity features. VS = Validation Set. BDS
= Blind Dataset. All = MLU(w), TTR, FCR, POS fc.
MTF = MLU(w), TTR, FCR.

sifier (SVM; Cortes and Vapnik, 1995) with linear
and rbf kernels, Logistic Regression (Cox, 1958;
Hosmer Jr et al., 2013), and K-Nearest Neighbors
(KNNs) classifier (Cover and Hart, 1967). We com-
pared the performance across feature sets and clas-
sifiers. Table 2 shows the total number of files
and those allocated to the validation and blind test
sets for both language groups. The following mod-
els were included in the analysis: 1) all features
(ALL = MLU(w) + TTR + FCR + POS fc); 2) each
feature from ALL models individually; 3) MTF fea-
ture set (MLU(w) + TTR + FCR); 4) word n-grams
(bigrams, trigrams); 5) POS n-grams (bigrams, tri-
grams); and 6) character n-grams (four-grams to
nine-grams).

The training dataset was created using 90% of
the entire dataset, while 10% was held out for the
blind test set. 80% of the training data was used
for training and 20% for validation. The classifier
training and parameter tuning was implemented
using scikit-learn package in Python (Pedregosa
et al., 2011). The kernels and c-parameter were
explored to evaluate which models performed the
best.

We also looked at Sentence-BERT embeddings
(Reimers and Gurevych, 2019). We implemented
all-MiniLM-L6-v2, a distilled BERT-based model
from the Sentence Transformers. These embed-
dings were used as feature vectors for downstream
binary ML classification with SVM and Logistic
Regression. We evaluated the performance of both
classifiers and reported the accuracy for the blind
test set.

3.3 LLM Approach

For the LLM approach, we explored BERT-like
models (Devlin et al., 2019). These models
were ALBERT (Lan et al., 2019), BERT-base-
multilingual-cased, BERT-base-uncased, Distil-
RoBERTa-base, DistilBERT-base-uncased, and
XLM-RoBERTa-base. We fine-tuned these pre-
trained models for sequence classification using the
learner corpus. The fine-tuning process involved
training each model on 80% of the entire dataset,
with 20% validation for a maximum of 3 epochs
with a learning rate of 1e-5 and a batch size of 8.
We experimented with frozen layers, however the
models with all layers demonstrated better results
and thus were reported in our study.

Additionally, we evaluated GPT-4 performance
across three runs in two ways - 1) when tested on
the blind dataset with class labels provided; and
2) no labels given. When GPT-4 was provided
with labeled data, the prompt was: The following
English text is written by either a native German
speaker or native Spanish speaker. What is the
native language of the writer of this text: German
or Spanish? Explain your choice in 1-2 sentences.
The prompt for unlabeled data was: The follow-
ing English text is written by a non-native speaker.
What is the native language of the writer of this
text? Explain your choice in 1-2 sentences.

3.4 Testing and Evaluation Metrics

For the feature-engineering approach, we used
three testing techniques: validation set, blind
dataset, and k-fold cross validation (CV). The vali-
dation split was 20% of the training dataset. The
blind dataset consisted of 10% of the entire dataset
held out for testing and not included in the training.
The blind dataset included 7 random files for each
label (14 files in total). For K-fold CV, k ranged
from 5-10 and the best k (k = 7) was reported. We
reported the results for the SVM classifier since it
demonstrated the best performance. We evaluated
the best accuracy for linear and rbf kernels, and for
C-parameter value. We also calculated feature im-
portance scores with Random Forest Classifier for
word bigrams and trigrams from the blind test set to
identify those n-grams that impacted the classifier’s
decisions.

For the LLMs approach, we looked at both the
validation and blind dataset results and reported the
blind test results. Cross-validation techniques was
computationally expensive for the BERT-like mod-
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els, hence those were not reported for this study.

4 Results

4.1 Feature Engineering Approach

For the feature engineering approach, the best per-
forming model was the model with all productivity
and diversity features combined (ALL; 79% accu-
racy and 78% F1-score). K-fold CV for all fea-
ture models produced the highest mean accuracy
of 72.5%. The productivity and diversity measures
are described in Table 3. Models with individual
features showed the highest accuracy (79%) and
F1-score (78%) for function-to-content ratios with
k-fold CV at 57.7%.

Among n-gram features, word bigrams and tri-
grams as well as character four- and five-grams at-
tained the highest accuracy and F1 for both the val-
idation and blind datasets. These results are shown
in Table 4. The highest accuracy of 100% (95%
CI [0.78, 1.00], Wilson interval) was achieved by
word bigrams when tested on the blind dataset. The
k-fold CV accuracy with k = 7 was 90.6% for word
bigrams. The best models for the validation set
were word bigrams and trigrams, as they acquired
an accuracy of 93% (95% CI [0.79, 0.98], Wilson
interval). The k-fold CV accuracy for trigrams
was 91.3%. POS bigrams had the highest accuracy
when tested on the validation set (87%; 95% CI
[0.70, 0.95], Wilson interval) and POS trigrams ac-
quired the highest accuracy of 79% (95% CI [0.52,
0.92], Wilson interval) when tested on the blind
dataset. The K-fold CV accuracy was 81.2% for
POS bigrams and 82.5% for POS trigrams. Over-
all, the results for n-gram features demonstrated
the highest accuracy and stable results across dif-
ferent testing techniques (validation, blind test, and
K-fold CV).

The highest accuracy for sentence embeddings
with SVM was 93% and 78% with logistic regres-
sion when tested on the blind dataset. Additionally,
the SVM embedding results performed better than
the language productivity and diversity measures.
However, sentence embeddings results were lower
than the word bigram results. The best perform-
ing models for the feature-engineering approach,
including sentence embeddings, are displayed in
Figure 1.

4.2 LLM Approach

The LLM approach was separated into two parts:
(1) BERT-like models with a classification layer,

Figure 1: Best performing models for feature-
engineering approach. ALL, FCR, word bigrams, SE
w/ SVM, and SE w/ LogReg when tested on the blind
dataset. Character four-grams and five-grams when
tested on the validation set. SE w/ SVM = Sentence-
embeddings with SVM. SE w/ LogReg = Sentence-
embeddings with Logistic Regression.

and (2) GPT-4 results. For the first part, we reported
the performance of the blind test set. For the second
part, we provided the average GPT-4 results across
three runs for prompting with and without labels.

For BERT-like models, the highest accuracy of
all six models is displayed in Figure 2. This in-
cluded only models with all layers, as models with
frozen layers demonstrated lower accuracy. The
results show that two small BERT-like models and
one large model performed with the highest accu-
racy: ALBERT (83%), DistilBERT-base-uncased
(81%), and BERT-base-uncased (73%). As AL-
BERT and DistilBERT-base-uncased are lighter
models, these results demonstrate that lighter mod-
els perform better than larger models for this stud-
ies data. Additionally, compared to previous BERT
results, the BERT results in this study outperformed
previously reported results 83% vs 80.8% (Lotfi
et al., 2020), but lower than cross-corpora com-
parison accuracy of 85.3% when using SVM and
FFNN base classifiers (Steinbakken and Gambäck,
2020).

For GPT-4, we performed 3 runs for with-label
and no-label options with temperature set to 0.2.
The accuracy when labels were provided was
92.9% for the first two runs – with only one file
being mislabeled, and 85.7% for the third run. The
average accuracy of the three runs was 90.48%.
When no labels were given, GPT-4 attained an ac-
curacy of 50% for all three runs. German was
misclassified as Turkish and Russian, and Spanish
was mislabeled as Italian, French, and Turkish.
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Testing Set N-gram Type N-gram Accuracy F1-score
VS Word Bi 0.93 0.93
BDS Word Bi 1.00 1.00
VS POS Bi 0.87 0.86
BDS POS Bi 0.71 0.71
VS Word Tri 0.93 0.93
BDS Word Tri 0.86 0.85
VS POS Tri 0.80 0.80
BDS POS Tri 0.79 0.78
VS Character Four 0.93 0.93
BDS Character Four 0.79 0.78
VS Character Five 0.93 0.93
BDS Character Five 0.86 0.86

Table 4: Accuracy and F1 for n-gram models. The best models are in bold. VS = Validation Set. BDS = Blind
Dataset.

Figure 2: The results for BERT-like models. Dis = Distil.
UC = Uncased. MC = Multilingual-cased.

5 Discussion

The contribution of the current study is two-fold.
First, we compared two approaches - feature engi-
neering and fine-tuning BERT-like LLMs - within
the same study. The results showed that the
feature-engineering approach outperformed the
LLM-based approach, highlighting the effective-
ness of feature-engineering pipelines for the NLI
task, particularly in scenarios with relatively small
datasets. Second, we explored a type of data that
differs from that used in most previous studies.
Specifically, our dataset consisted of narratives
written by participants in response to the same
video-based stimulus, providing more consistency
across texts than the corpora of topic-based argu-
mentative essays commonly used in NLI research.

Word bigrams were the most effective features
extracted from the data. This finding suggested
that word bigrams can effectively distinguish be-

tween learners with Spanish L1 and German L1
backgrounds based on their English writing. These
n-grams likely captured differences in vocabulary
use, word choices reflecting possible morphosyn-
tactic errors, and distinctive lexical-syntactic pat-
terns (the combinations of word tokens) between
the two groups, which could be evidence of lan-
guage transfer from learners’ native languages to
their L2 English. For example, German L1 influ-
ences were seen in lexical choices such as ’small hu-
man being’ instead of ’baby’ (possibly influenced
by ’kleines menschliches Wesen’ in German) and
’perceives it’ instead of ’notices it’ (possibly from
’wahrnehmen’ meaning both ’perceive’ and ’notice’
in German).

Spanish L1 transfer was also evident from mor-
phosyntactic patterns, such as noun-pronoun gen-
der disagreement (e.g., ’the baby. . . she’). The
preposition use was another source of transfer for
Spanish L1 writers. For instance, ’yells him’ (from
Spanish ’le grita’) reflected the incorrect omission
of a preposition possibly due to the Spanish verb
allowing a direct object.

An analysis of function words (Figure 3) re-
vealed no major quantitative differences in the fre-
quency of POS categories between the two groups,
except for prepositions: German L1 writers tended
to use more prepositions in their narratives com-
pared to the Spanish L1 group. Qualitative differ-
ences in preposition use were seen, for instance,
in ’walking on the street’ phrase, where Spanish
L1 writers overused the preposition ’on’ instead of
’in’. The above examples indicated instances of lin-
guistic transfer which are in line with the previous



150

research on interlingual errors in Spanish-English
bilinguals (Alonso Alonso, 1997). These patterns
influenced the classifiers’ decisions in disambiguat-
ing the two classes in the current study.

The Random Forest classifier also highlighted
the bigrams that contributed to classification. For
example, ’next to’ was predominantly used by
German L1 writers, while ’he is’ and ’to leave’
appeared more frequently in Spanish L1 texts.
These features further illustrated the distinct lexico-
syntactic choices between the two L1 groups. Over-
all, our results suggested that even when the dif-
ferences between learner groups were subtle, tra-
ditional ML classifiers were capable of detecting
them based on word n-grams and related surface-
level patterns.

Importantly, our findings aligned with previous
research that has identified word n-grams as ef-
fective features for NLI (e.g., Koppel et al., 2005;
Jarvis et al., 2013) and demonstrated comparable or
higher accuracy. For example, Jarvis et al. (2013)
found that word and POS n-grams acquired an accu-
racy of 83.6% when using 10-fold cross validation
and 90.1% when used on an ensemble classifier.
However, our results cannot be directly compared
because the number of classes and the nature of the
data were different in the current study. In addition,
word-based n-grams successfully captured class-
specific differences from the dataset that consisted
of written narratives based on the same video stim-
ulus, thus reducing the risk of content bias from
topic-related vocabulary.

Other n-gram types, including character n-grams
and POS n-grams, also performed well. For char-
acter n-grams, we explored a range from four char-
acters to nine characters. The best results were
achieved with four- and five-grams. These likely
captured class differences in short function words,
such as prepositions, which are often markers of L1
influence (Jarvis and Odlin, 2000). The high perfor-
mance of POS n-grams may be attributed to distinc-
tive patterns in part-of-speech use and distribution
across the two groups. For example, the qualitative
analysis of the data suggested that German L1 writ-
ers relied more on subordinate clauses, a pattern
consistent with transfer from German’s preference
for embedded structures (Swan and Smith, 2001).

Among lexical diversity and productivity fea-
tures, the model combining all measures (function-
to-content word ratio, MLU(w), TTR, and POS fre-
quency counts) achieved the highest accuracy and

Figure 3: Percentage of function words per category and
language group. AUX = Auxillaries. PRON = Pronouns.
DET = Determiners. ADP = Adposition (Preposition).
CONJ = Coordinating and Subordinating Conjunctions.
PART = Particles.

F1 score (see Table 3). However, these results were
still lower compared to the n-gram-based models.
Notably, the function-to-content word ratio (FCR)
emerged as the strongest individual predictor in
this group, showing the highest performance on
the blind test set. These patterns suggest that both
n-gram features and FCR effectively captured dif-
ferences in language productivity and distributional
tendencies across German and Spanish L1 groups.
Lexical diversity features, such as TTR, did not
show high accuracy (50%) for the blind dataset. Ex-
ploring other TTR metrics (e.g., Moving-Average
Type-Token Ratio (MATTR)) might provide a dif-
ferent result given the length-sensitive nature of the
feature.

The sentence embeddings approach also out-
performed the fine-tuning of BERT-like classifi-
cation models with 93% accuracy. By encoding
contextual relationships and sentence-level seman-
tics, these embeddings were able to capture subtle
differences in linguistic patterns between the two
L1 groups in their English L2. These findings are
in line with the previous research that indicated the
utility of the embeddings approach for the NLI task
and demonstrated that word embeddings together
with string kernels were effective for L1 classifica-
tion (Franco-Salvador et al., 2017).

Taken together, the results of the feature-
engineering approach highlighted the robustness of
both sparse vector surface-level features, such as
n-grams, and dense sentence embeddings approach.
Both methods were effective for distinguishing ad-
vanced learners’ L1 backgrounds in written narra-
tives.

The classification with BERT-like LLMs did not
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Figure 4: Percentage of content words per category and
language group. ADJ = Adjective. ADV = Adverb.

perform on par with the feature-engineering ap-
proach. The highest accuracy within this group
was achieved by the ALBERT model (83% accu-
racy, Figure 2), suggesting that lighter and more
parameter-efficient architectures may be better
suited for this task.

One possible explanation for the lower perfor-
mance of BERT-like models is their sensitivity to
dataset size and domain mismatch. Effective fine-
tuning of these models typically requires large, di-
verse datasets to generalize better. In contrast, the
relatively small and domain-specific nature of our
dataset may have limited their ability to adapt. Ad-
ditionally, while BERT models are designed for
deep contextual understanding, this level of com-
plexity may not be necessary for the current NLI
task. Surface-level patterns, such as n-gram distri-
butions and POS frequencies in our study, appear
sufficient for distinguishing between L1 groups.

Furthermore, the results for the closed-source
GPT-4 model revealed an average accuracy of
90.48%, which is similar to the sentence embed-
dings and word n-gram models. This performance
was achieved using prompts that included labels,
resembling a supervised approach. These find-
ings align with previous studies investigating GPT
models. For example, Zhang and Salle (2023) re-
ported that GPT-4 achieved an accuracy of 91.7%
on the TOEFL11 dataset. Similarly, Ng and
Markov (2024) found that closed-source LLMs
such as GPT-4 consistently outperformed open-
source LLMs, regardless of fine-tuning. However,
without labels, the closed-source GPT-4 performed
poorly in our study.

Although both open- and closed-source models
have demonstrated promising results for NLI, an
important limitation of closed-source LLMs lies
in the lack of transparency regarding their training

data which raises concerns about reproducibility
and potential biases in their outputs.

Overall, our results highlighted that traditional
supervised machine learning techniques (e.g., SVM
classifier) remain highly robust for low-resource
NLI tasks. These models not only outperformed
BERT-like LLMs but also achieved performance
on par with the GPT-4 model. The lower results
for BERT-like LLMs underscore their limitations
in settings with domain-specific and scarce training
data, including issues of limited interpretability and
a higher risk of overfitting during fine-tuning.

6 Conclusion & Future Directions

In this paper, we compared two approaches for
the NLI binary classification task: the tradi-
tional ML feature-engineering method and fine-
tuning of BERT-like LLMs with a classification
head. Our findings suggested that studies working
with smaller, domain-specific datasets may bene-
fit more from feature-engineering pipelines than
from fine-tuning BERT-like LLMs. Frequency-
based surface-level features were more sensitive
to subtle differences in written narratives of sim-
ilar content. While BERT-like models were less
robust, lighter variants performed noticeably bet-
ter than their larger counterparts on the small NLI
dataset. Nonetheless, including other fine-tuning
methods (e.g., DAPT, LoRA) could produce differ-
ent results. The GPT-4 model also showed promis-
ing results when provided with labels; however,
since the sources of its training data are not trans-
parent, it is difficult to assess the generalizability
and reliability of its performance. By evaluating
both feature-engineering and BERT-like LLM ap-
proaches within the same study, we offered a direct
comparison of their effectiveness for NLI.

Future studies could focus on datasets with
structurally and topically consistent content across
classes, which may reveal more subtle linguis-
tic cues relevant for classification. It would also
be valuable for future work to explore robust
cross-validation techniques for LLMs, particularly
when sufficient computational resources are avail-
able. Future research should continue to explore
both traditional feature-engineering and LLM ap-
proaches, including closed-source LLM models
without given labels, within the same experimental
framework to better understand their comparative
advantages across diverse domain-specific datasets.
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