
Proceedings of the First Workshop on Comparative Performance Evaluation: From Rules to Language Models associated with RANLP 2025,
pages 154–164, Varna, Bulgaria, Sep 11, 2025.

https://doi.org/10.26615/978-954-452-102-8-016

154

Systematic Evaluation of Rule-Based Analytics for LLM-Driven Graph
Data Modelling

Fabio Yáñez-Romero
University Institute for Computer

Research
University of Alicante

fabio.yanez@ua.es

Andres Montoyo
Armando Suárez

Department of Computing and
Information Systems

University of Alicante
montoyo@dlsi.ua.es
armando@dlsi.ua.es

Alejandro Piad-Morffis
Yudivian Almeida-Cruz

School of Math and Computer Science
University of Havana

apiad@matcom.uh.cu
yudivian@matcom.uh.cu

Abstract

Artificial intelligence models have increas-
ingly supplanted traditional rule-based sys-
tems for extracting knowledge from structured
data; however, the integration of both ap-
proaches remains underexplored. While large
language models offer greater flexibility than
rigid rule systems, the structured knowledge
from rule-based analytics can significantly en-
hance LLM performance and efficiency. This
paper presents a novel multi-agent system
that automatically generates graph database
schemas from tabular data by strategically com-
bining rule-based analytics with large language
models. Our system utilises a lightweight rule
framework that selects the most suitable analyt-
ical methods based on column data types, pro-
viding targeted insights to inform the schema
generation process. The system’s modular ar-
chitecture enables comprehensive ablation stud-
ies examining both the effectiveness of rule-
based analytics and their optimal presentation
formats. Through systematic evaluation, we
demonstrate that structured rule formats re-
duce result variability (lower standard devi-
ation) while contextualised formats achieve
superior performance despite higher variance.
Our analysis identifies which pipeline stages
benefit most from analytical guidance, provid-
ing insights for optimising hybrid AI systems.
This work contributes a practical framework for
integrating rule-based knowledge with modern
language models, demonstrating measurable
improvements in both consistency and perfor-
mance for structured data processing tasks.

1 Introduction

The evolution of natural language processing has in-
volved different rule-based (Miller et al., 1996), sta-
tistical (Weikum, 2002), and machine learning sys-
tems (Galanis et al., 2021), culminating in the cur-
rent dominance of Large Language Models (LLMs)
(Feng et al., 2025). However, recent approaches

suggest that there is room for improvement with
techniques traditionally used in rule-based sys-
tems when combined with LLMs (Laqrichi, 2024).
While LLMs have revolutionised most NLP tasks
with their exceptional reasoning capabilities, they
still face challenges with complex linguistic phe-
nomena, scalability, and domain-specific accuracy
requirements (Gururaja et al., 2023). These limi-
tations have revived interest in knowledge-based
and rule-based approaches, which offer superior
explainability and remain competitive in niche do-
mains (Chen et al., 2025).

Rule-based analytics have been the cornerstone
of classical information extraction from structured
data (Atzmüller et al., 2008), involving the extrac-
tion of entities, properties, and relationships via
discovered data types. However, these analytical
methods, while interpretable and precise, lack the
semantic interpretability necessary to accurately
handle multi-column relationships and implied pat-
terns.

Contemporary causal language models demon-
strate a remarkable capacity to understand struc-
tured data formats such as CSV, JSON, and Mark-
down (Oh et al., 2025), enabling them to reason
over tabular data when provided with appropri-
ate context. For automatic generation of graph
database schemas from relational ones, such a
combination is particularly valuable. Relational
databases represent entities as tables with primary
keys and associated columns, and relationships as
foreign keys. Although this structure guarantees
coherence and integrity, it is not suitable for tasks
involving the detection of implicit relationships,
hierarchical understanding, or semantic flexibil-
ity—the essential ingredients for graph-based rep-
resentations.

Our approach demonstrates how rule-based ana-
lytics can be integrated systematically with LLMs
to address these challenges. We employ a rule-
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based system that infers data types for every col-
umn and calls specialised analytical routines based
on these type determinations. These analytics are
then exposed as structured or contextualised con-
text to LLMs in a multi-agent system, allowing
us to contrast the relative performance impact of
rule-based preprocessing on LLM-based schema
generation.

The multi-agent system architecture enables sys-
tematic ablation studies by selectively masking ana-
lytical components, allowing us to quantify the con-
tribution of rule-based analytics to overall system
performance. Each agent specialises in different
aspects: individual table analysis leveraging type-
specific rules, cross-table relationship detection,
and schema standardisation and integration.

2 Related Work

The automatic generation of graph database
schemas from relational data represents a conver-
gence of several fundamental research areas. Our
work builds upon three interconnected domains:
semantic interpretation techniques for extracting
meaning from relational data, methodologies for
converting relational schemas to graph representa-
tions, and the integration of large language models
with tabular data processing.

2.1 Semantic Interpretation in Relational
Data

The interpretation of semantics in tabular data has
evolved significantly from early rule-based sys-
tems and heuristics (Cremaschi et al., 2024) to
machine learning approaches (Chen et al., 2019).
Traditional approaches relied primarily on unsuper-
vised clustering techniques and supervised learning
methods for column type classification and entity
disambiguation. The introduction of dense vec-
tor representations marked a paradigm shift (Gor-
ishniy et al., 2023), with specialised embedding
techniques designed for tabular data enabling ef-
fective representation of column semantics, entity
relationships, and cross-table linkages.

The emergence of large language models has
fundamentally transformed semantic interpretation
by enabling contextualised understanding of ta-
ble content and structure (Cremaschi et al., 2025).
Encoder-only models, such as BERT, have demon-
strated effectiveness for header classification and
column similarity assessment (Trabelsi et al., 2022).
In contrast, decoder-only models such as Llama

(Jiang et al., 2024) excel at entity linking, relation-
ship extraction, and cross-table reasoning through
in-context learning.

2.2 From Relational to Graph Databases

The conversion from relational to graph database
schemas represents a critical challenge in modern
data management (Bhandari and Chitrakar, 2024).
While relational databases ensure data integrity
through rigid schemas with primary keys, foreign
keys, and predefined relationships, their structural
constraints limit adaptability for downstream tasks
requiring flexible semantic modelling.

Graph databases address these limitations by
representing entities as nodes and relationships as
edges, enabling more flexible modelling of seman-
tic relationships. The conversion process involves
identifying entities (potentially distributed across
multiple tables), detecting implicit semantic rela-
tionships, and standardising properties and types.
This transformation requires careful consideration
of graph type selection (property graphs vs. RDF),
structural properties (directionality, multigraphs),
and higher-level semantic rules (Putrama and Mar-
tinek, 2022).

The complexity of this conversion process has
motivated researchers to explore automated ap-
proaches leveraging advanced reasoning capabili-
ties, leading to increased interest in utilising large
language models for schema conversion (Sui et al.,
2024a).

2.3 LLMs Integration with Tabular Data

Large Language Models have demonstrated re-
markable capabilities in processing structured data
through advanced prompt engineering techniques
such as Chain-of-Thought reasoning (Wang et al.,
2024) and in-context learning (Wen et al., 2025).
However, several critical limitations constrain their
effectiveness:

Format Sensitivity: LLMs exhibit pronounced
sensitivity to tabular serialisation methods, with
performance degradation of approximately 50%
when tables are transposed (Liu et al., 2023).
HTML and XML formats demonstrate superior
performance with GPT models (Sui et al., 2024a).

Context Window Limitations: Context con-
straints pose significant challenges when process-
ing larger tables, leading to performance degrada-
tion and the "lost-in-the-middle" phenomenon (Sui
et al., 2024b).
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Reliability Concerns: LLM outputs remain
prone to hallucinations (Su et al., 2024), partic-
ularly in sensitive applications, with severity in-
creasing as output length extends (Harrington et al.,
2024). Mitigation strategies include audit mod-
ules and self-correction mechanisms (Karbasi et al.,
2025).

External Tool Integration: The integration of
external tools has significantly enhanced LLM util-
ity for tabular data tasks, enabling code generation
for database interaction (Zhang et al., 2023) and
automated data processing workflows (Fan et al.,
2024).

Despite these advances, current approaches pri-
marily rely on commercial LLMs (Chen et al.,
2025), limiting reproducibility and raising privacy
concerns. Furthermore, existing methods lack a
systematic evaluation of how rule-based analytics
can enhance LLM performance in schema gener-
ation tasks, representing a significant gap that our
work addresses.

3 MultiAgent System

To systematically evaluate the impact of rule-based
analytics on graph schema generation from tabular
data, we developed a multi-agent system that inte-
grates data analytics with causal language models.
Our primary objective is to generate valid graph
database schemas from relational tabular data while
enabling controlled experimentation to assess the
contribution of rule-based preprocessing to overall
system performance.

3.1 System Architecture and Design
Principles

We implemented our system using LangGraph
(Wang and Duan, 2024), a framework that enables
the definition of distinct state graphs for different
processing pipelines. This architectural choice pro-
vides crucial flexibility for our experimental design,
allowing us to conduct ablation studies by selec-
tively turning on or off specific nodes and analytics-
driven prompts within the language model work-
flows. This modular approach facilitates systematic
comparison between schema generation with and
without rule-based analytical enhancement.

Our system architecture mirrors the decision-
making process employed by expert graph database
modellers when converting relational databases to
graph representations (De Virgilio et al., 2013).
The design incorporates domain expertise through

a structured two-stage approach that addresses the
inherent complexity of semantic interpretation and
schema transformation. A comprehensive diagram
illustrating the state graph used in our experiments,
with and without analytics integration, is presented
in Figure 1.

3.2 Processing Pipeline Architecture
The schema generation process operates through
two complementary stages designed to capture both
intra-table and cross-table semantic relationships:

1. Table-Based Processing Pipeline: This stage
executes individual state graphs for each table
in the source dataset, focusing on entity iden-
tification, relationship discovery, and property
mapping within the context of each isolated
table.

2. Cross-Table Processing Pipeline: This stage
utilises a unified state graph to standardise re-
dundant entities and relationships across ta-
bles, while identifying cross-table relation-
ships, including primary and foreign key asso-
ciations.

This dual-stage approach enables a systematic
evaluation of how rule-based analytics influence
various aspects of the schema generation process,
ranging from local entity recognition to global
schema coherence.

3.3 Table-Based Processing Pipeline
The table-level state graph implements three se-
quential processing nodes, each designed to lever-
age rule-based analytics for enhanced semantic un-
derstanding:

1. Entity Identification: Our system infers one
or multiple entities within individual tables or
recognises tables that lack sufficient informa-
tion for entity extraction. When no entities are
identified by the language model for a specific
table, the table is excluded from the current
pipeline stage.

2. Intra-Table Relationship Discovery: When
multiple entities are detected within the same
table, the language model infers relationships
between those entities.

3. Property Mapping: For each column in a
table, the system calls the language model to
associate the column with identified entities or
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Merge Entities

Merge Relations

Merge PropertiesLoad Column Analytics

Detect Table Entities

Infer Relations 

Column Mapping

Loop For
each Table

Once In the
Entire Pipeline

Table-Based Processing Pipeline Cross-Table Processing Pipeline

Figure 1: Entire Architecture for the system. Each table is processed individually before merging entities, relations
and properties.

relationships. This process can be enhanced
by providing the analytics related to that spe-
cific column.

The underlying strategy leverages the language
model’s ability to identify entities and relationships
based on primary and foreign key analysis, en-
riched by rule-based analytics that provide deeper
insights into column semantics and value distribu-
tions.

3.4 Cross-Table Processing Pipeline

The cross-table state graph operates on aggregated
context from all processed tables to ensure schema
consistency and completeness:

1. Entity Standardisation: The language model
examines all previously identified entities,
considering their names and associated proper-
ties through the initial columns and determine
which semantically equivalent entities should
be merged.

2. Relationship Standardisation: This process
is activated when merged entities possess rela-
tionships with different names but equivalent
semantic meanings. The model assigns the
most appropriate name to these semantically
equivalent relationships, ensuring schema co-
herence and reducing redundancy.

3. Property Standardisation: After entity and
relationship standardisation, the system vali-
dates that all properties from merged compo-
nents are correctly preserved and consolidated.
The module identifies potential property con-
flicts arising from merging (such as duplicate
properties with different data types) and ap-
plies resolution strategies to maintain schema
integrity. This validation step is crucial for
preserving the semantic richness captured dur-
ing the table-based processing phase.

This systematic approach enables a precise eval-
uation of how rule-based analytics contribute to
various aspects of schema generation, ranging from
local semantic interpretation to global schema stan-
dardisation and consistency. The code for using the
agent, as well as reproducing the entire experiment,
can be found on GitHub1.

4 Experimental Settings

Building upon the multi-agent system architecture
described in the previous section, we designed a
comprehensive experimental framework to system-
atically evaluate the impact of rule-based analytics
on graph schema generation performance. Our
experimental design enables controlled ablation
studies that isolate the contribution of different an-
alytical approaches to the overall effectiveness of
the system.

4.1 Rule-Based Analytics Integration

The core hypothesis of our work centres on the
premise that rule-based analytics can significantly
enhance LLM performance in semantic interpreta-
tion tasks. To test this hypothesis, we implemented
a type-specific analytical system that applies tai-
lored analytics based on automatically inferred col-
umn data types. Our rule-based system categorises
columns into four fundamental data types: cate-
gorical (including Boolean), string, numerical (in-
cluding integer and float values) and date. The
selection of specific analytics for each data type
is grounded in established data science practices
that optimise information extraction based on the
inherent characteristics of each data type.

A detailed specification of the analytics per-
formed for each data type is presented in Figure
2. These analytics range from basic statistical mea-
sures (mean, variance, distribution characteristics)
to samples and automatically generated descrip-

1Repository for the Agentic Framework

https://github.com/FabioYanezRomero/tabular_neo4j
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Figure 2: Analytics performed according to each data
type detected. The intersections in the Venn Diagram
represent the analytics that are shared among different
data types.

tions of the entire columns, providing rich informa-
tion for LLM decision-making.

4.2 Experimental Configurations

To systematically evaluate the contribution of rule-
based analytics, we designed three distinct experi-
mental configurations that represent different levels
of analytical integration:

1. Version 1 “No Analytics Baseline” (V1):
This configuration serves as our baseline, pro-
viding only representative data examples for
each column without any analytical context.
This experiment enables direct measurement
of the analytical contribution by comparing
performance against pure LLM reasoning ca-
pabilities.

2. Version 2 “Structured Analytic” (V2): This
configuration provides comprehensive analyti-
cal results in a structured JSON format, ex-
actly as computed and stored by our rule-
based system. This approach tests the capa-
bility of the language model for understand-
ing structural information while maintaining
a clear organisational structure that facilitates
systematic processing.

3. Version 3 “Contextualised Analytic” (V3):
This configuration applies analytical contextu-
alisation methodologies inspired by success-
ful approaches such as DeepJoin (Dong et al.,

Purchases
userId eventDate orderNumber itemId

“table_name: “purchases”,
column_name: “userId,
“sampled_values”: [...]

“table_name: “purchases”,
column_name: “userId,

“sampled_values”: [...],
“uniqueness_ratio”:0.24,

“cardinality”:4425,
“data_type”:integer,

“contextual_description”: ...

V1

V2

V3

"userId: 26926.0, 8168.0, 17732.0, 64915.0, 57017.0. This medium cardinality
integer sequence has 4425 distinct combinations from 18025 total entries.

Token value range: 3 to 249036, average value: 78974. Sequence length
statistics: average 1.0, range 1-1 tokens. Distribution uniformity: 99.1%,

uniqueness ratio: 24.55%. Most frequent token: 10591.0. Table: purchases.
Context: The userId column likely represents a unique identifier for each
customer, though a significant portion (62.8%) of entries are missing. The
customer IDs range from 3 to 249036, with a wide distribution and a clear

mode at 10591, suggesting potential biases or groupings within the
customer base. The average userId is around 78974, but the substantial
difference between quartiles indicates considerable variability in these

identifiers."

Figure 3: Analytics context formats supplied to the
LLM-based agent for inferring the graph (property-
graph) schema from the tabular dataset. V2 encodes
the analytics as structured JSON, while V3 (“contex-
tualised analytics”) expresses the same information as
narrative text generated deterministically from V2 via a
Python function to mimic typical LLM prompts. The
figure contrasts these formats to assess how structured
versus free-text context affects schema generation.

2023), which demonstrated significant im-
provements in semantic table interpretation
through effective context integration. In this
version, raw analytical results are transformed
into natural language descriptions that provide
semantic context about column characteristics,
distributions, and relationships.

Importantly, all experimental variations utilise
identical pipeline logic and differ only in the initial
prompts provided to the language models. This
design ensures that observed performance differ-
ences can be explicitly attributed to the presence
or absence of rule-based analytics rather than ar-
chitectural variations. A sample of each version is
shown in Figure 3.
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4.3 Implementation and Reproducibility
Measures

To ensure experimental reproducibility and address
the limitations of commercial LLM dependency
identified in related work (Chen et al., 2025), we
implemented our entire system using locally exe-
cuted models. We selected Gemma 3 12B (Team
et al., 2025) quantised to 4 bits, specifically the ver-
sion hosted by Ollama2, which provides an optimal
balance between model capability and computa-
tional accessibility on standard user GPUs.

Our experimental configuration employs several
measures to ensure reproducible results:

• Fixed Random Seed: All experiments use
identical random seeds to ensure a consistent
model behaviour across runs.

• Zero Temperature: Model temperature is set
to zero to minimise stochastic variations in
output generation.

• Model Consistency: The same model instance
is used across all pipeline stages within each
experimental run.

• Local Execution: All models are loaded and
executed locally, eliminating external depen-
dencies and ensuring data privacy.

Even with temperature = 0 and a fixed seed,
LLM inference is not strictly deterministic: GPU-
level numerical effects (e.g., parallel reductions,
fused kernels, library autotuning) and decoder tie-
breaking near probability ties can flip early to-
kens or the stopping point across runs (Atil et al.,
2025), (Song et al., 2024). In our multi-agent
pipeline, such micro-differences are amplified be-
cause each agent conditions on previous gener-
ations. We hypothesise that variability in an-
swer length at early stages is the dominant driver:
slightly longer/shorter completions change what
downstream agents read, steering different trajec-
tories and yielding different schema proposals. To
address this, we ran 10 independent trials and re-
port the mean and variance across runs.

4.4 Prompt Engineering Strategy

Our prompt design incorporates established tech-
niques that have demonstrated effectiveness in
structured data reasoning tasks. Specifically, we

2Gemma 3 12B quantised model on Ollama

employ in-context learning examples that illus-
trate the desired schema generation behaviour,
combined with Chain-of-Thought (CoT) reason-
ing prompts that guide the model through system-
atic analysis steps. This approach has proven par-
ticularly effective in interpreting tabular data, as
demonstrated in recent literature (Liu et al., 2025).
The complete prompt specifications for each experi-
mental configuration are detailed in the experiment
repository3, enabling full reproducibility of our ex-
perimental setup. Each prompt variant maintains
an identical logical structure while varying only
in the analytical context provided to the language
model.

4.5 Statistical Validation

To ensure the statistical significance of our results,
each experimental configuration is executed ten
times under identical conditions. We calculate both
mean performance metrics and variance measures
for each version of the experiment and for each
dataset, enabling robust statistical analysis of the
analytical contribution. This approach addresses
the inherent variability in LLM outputs while pro-
viding sufficient statistical power to detect meaning-
ful performance differences between analytical and
baseline configurations. This experimental design
directly addresses the research gap identified in our
literature review regarding the systematic evalua-
tion of rule-based analytics in LLM-driven schema
generation tasks, providing a rigorous framework
for assessing the effectiveness of our integrated
approach.

4.6 Dataset

For our experimentation, we employ the Diginetica
dataset, a large-scale benchmark released initially
for the CIKM Cup 20164. This dataset has become
a cornerstone in session-based recommender sys-
tem research due to its comprehensive coverage of
real-world e-commerce interactions. Crucially for
our purposes, the Diginetica dataset is organised
into multiple interrelated tables, making it espe-
cially suitable for exploring the transition from a
tabular to a graph-based data model:

• Items: Each product is uniquely identified
and annotated with descriptive features such
as price and textual tokens.

3Prompt Templates used in the experiments
4Original challenge where Diginetica Dataset was released

https://ollama.com/library/gemma3
https://github.com/FabioYanezRomero/tabular_neo4j/tree/main/Tabular_to_Neo4j/prompts
https://competitions.codalab.org/competitions/11161
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• Categories: Products are mapped to one or
more categories, introducing a hierarchical
structure that enriches the context for each
item.

• Views: Every user interaction with a product
page is captured, including session identifiers,
temporal ordering, and user context.

• Purchases: Purchase events are linked to ses-
sions and users, with references to related
Items and Views, effectively connecting user
actions across the dataset.

• Queries: This table logs user search activities
with timestamps and contextual information,
referencing entities from the other tables and
enabling the reconstruction of full user search
journeys.

The high degree of correlation and reference
among these tables naturally aligns with the princi-
ples of graph data modelling, where entities (e.g.,
users, items, categories) become nodes and their
relationships (such as views, purchases, and cate-
gory memberships) are represented as edges. Such
a structure facilitates the explicit modelling of com-
plex interdependencies and interaction patterns that
may be cumbersome to express or query efficiently
in a purely tabular schema.

Therefore, Diginetica’s rich, interconnected tab-
ular design provides an ideal foundation for our
task of translating traditional relational data into
a graph database schema, enabling more expres-
sive analysis and supporting advanced graph-based
recommendation and user modelling techniques.

5 Results and Discussion

5.1 Evalutation Method
From the tabular dataset, we derived a lossless, ag-
nostic property graph schema using Grok-4 (xAI,
2025). A graph data expert then reviewed and re-
fined the naming, cardinalities, and data types to
establish the expert-validated golden schema. We
evaluated each experimental variant against this
reference by measuring completeness (recall) over
nodes, relationships, and properties; node/edge
matching was synonym- and alias-aware to han-
dle LLM naming variance, while property names
were matched precisely to the original columns.

The completeness assessment methodology var-
ied according to the schema component being eval-
uated:

• Node completeness: Measured by comparing
the types of nodes present in the generated
schema against those defined in the golden
schema

• Property completeness: Assessed by deter-
mining whether nodes and relationships con-
tain the properties they should possess based
on the original relational database columns

• Relationship completeness: Evaluated based
on whether relationships between existing
node types match those in the golden schema,
regardless of relationship names or direction-
ality

The relationship evaluation methodology was
deliberately simplified due to practical constraints.
Language models frequently infer relationships
with inverse orientations, incorrect directionality,
or overly generic names. This complexity made
the automatic evaluation of relationship complete-
ness challenging and hindered the assessment of
improvements in relationship detection across ex-
perimental versions.

5.2 Discussion of Results
The experimental results, presented in Table 1,
show average outcomes and standard deviations
across 10 independent tests per experimental ver-
sion, along with the best-performing results for
each version. Based on these findings, we can
conclude the impact of column analytics usage and
format on schema generation performance. The dis-
cussion is organised into specific component-level
results and overall schema prediction performance.

5.2.1 Specific Results
Node Detection Performance: Node complete-
ness showed minimal sensitivity to the use of ana-
lytics. When analytics were applied, unstructured
sentence-format analytics proved counterproduc-
tive, with some contextualised analytics experi-
ments degrading node type detection performance
compared to baseline conditions.

Property Detection Performance: Property
completeness, which depends solely on mapping
columns to predefined entities, demonstrated a
clear improvement with the use of analytics. Con-
textualised analytics format achieved the high-
est success rates in this component, suggesting
that rich contextual information aids in accurate
property-entity mapping.
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Table 1: Completeness Percentage for Node, properties and relations, comparing the schema generated with the
golden schema for Diginetica Dataset.

Completeness No Analytics (V1) Structured Analytics (V2) Contextualised Analytics (V3)

Node 85.70± 0.00 85.70± 0.00 82.84± 5.72
Property 70.87± 1.86 73.88± 3.74 74.26± 5.68
Relation 68.75± 13.98 63.75± 3.75 75.00± 11.18

Overall 75.11± 4.91 74.44± 1.11 77.39± 7.24

Relationship Detection Performance: Rela-
tionship completeness yielded mixed results across
experimental conditions. Experiments without col-
umn analysis outperformed those using structured
analytics, but underperformed compared to con-
textualised analytics approaches. This suggests a
non-linear relationship between analytics complex-
ity and the accuracy of relationship detection.

5.2.2 Overall Results
Overall, the best predictions were obtained using
contextualised analysis (V3), while the worst results
were obtained using structured analytics. From the
point of view of variability in results, the most
uniform results are achieved between experiments
using this set of structured analytics (V2). In con-
trast, the most unpredictable results are obtained
when the analytics are contextualised.

6 Discussion and Conclusion

The results indicate that while basic data analyt-
ics (providing representative column subsets along
with column and table names) do not enhance node
detection in inferred graph databases, they signif-
icantly improve property and relationship detec-
tion. Contextualised analytics demonstrated im-
provements of up to 9% in these components, with
the format of contextual data proving critical for
optimal relationship detection.

When evaluating overall schema generation ef-
fectiveness, contextualised analytics maximised
model performance, while structured analytics
yielded the poorest results. This suggests that
rich, contextual information enables more accu-
rate schema inference than rigid, structured data
formats.

From a consistency perspective, structured an-
alytics dramatically reduced result variability, as
evidenced by lower standard deviations. This find-
ing suggests that structured analytics should be pre-
ferred when result stability is prioritised over peak
performance. Conversely, contextualised analytics
produced the highest variability—exceeding even

baseline conditions without analytics—making
them the least stable approach across all experi-
mental versions.

These findings present a clear trade-off between
performance and stability in graph schema genera-
tion. Users prioritising maximum accuracy should
employ contextualised analytics, despite increased
result variability, while those requiring consistent,
predictable outcomes may benefit from structured
analytics approaches, albeit with reduced peak per-
formance.

7 Limitations and Future Work

The experiments conducted present several limita-
tions that we intend to address in future work, such
as the use of open-source models of different sizes
to verify the degradation/improvement based on
model size.

Likewise, it would be of great interest to make a
comparison with large commercial models, accord-
ing to similar methodologies applied by previous
works (Chen et al., 2025), which would give us an
idea of what percentage of success can be expected
with a multi-agent system like this compared to
frontier models, being able to measure at this point
also the computational cost associated with numer-
ous calls of medium-sized models compared to the
use of these commercial models.

On the other hand, the rule system used is ex-
tremely simple, with considerable room for im-
provement that can affect the final accuracy of
the schema when determining the entities, relation-
ships, and properties of the graph database.

Finally, truly understanding the limitations and
capabilities of this system requires the use of more
tabular data in various domains and with diverse
characteristics, such as a large number of columns
per table or tabular data that does not conform to
the nomenclature of a relational database. In this
sense, other structured formats provided for the
analytics might be impactful on the final results,
which needs further investigation.
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