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Abstract
Knowledge-augmented methods leverage exter-
nal resources such as commonsense knowledge
graphs (CSKGs) to improve downstream rea-
soning tasks. Recent work has explored con-
trastive learning over relation-aware sequence
pairs derived from CSKG triples to inject com-
monsense knowledge into pre-trained language
models (PLMs). However, existing approaches
suffer from two key limitations: they rely solely
on randomly sampled in-batch negatives, over-
looking more informative hard negatives, and
they ignore additional plausible positives that
could strengthen training. Both factors limit the
effectiveness of contrastive knowledge learn-
ing. In this paper, we propose an enhanced
contrastive learning framework for CSKGs that
integrates hard negative sampling and pos-
itive set expansion. Hard negatives are dy-
namically selected based on semantic similar-
ity to ensure the model learns from challenging
distinctions, while positive set expansion ex-
ploits the property that similar head entities
often share overlapping tail entities, allowing
the recovery of missing positives. We evalu-
ate our method on unsupervised commonsense
question answering and inductive CSKG com-
pletion using ConceptNet and ATOMIC. Exper-
imental results demonstrate consistent improve-
ments over strong baselines, confirming that
our approach yields richer commonsense-aware
representations and more effective knowledge
injection into PLMs.

1 Introduction

Commonsense reasoning is fundamental for en-
abling machines to form assumptions about ev-
eryday situations and draw conclusions aligned
with human understanding of commonly known
facts (Davis and Marcus, 2015; Sap et al., 2020).
Despite significant progress in natural language
processing (NLP), endowing models with robust
commonsense reasoning abilities remains an open
challenge. This challenge has received growing at-
tention in recent years with the release of versatile
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Figure 1: An example from a SocialIQA task focusing
on reasoning about actions and social implications (top)
(Sap et al., 2019b), with the relevant social common-
sense knowledge triplets from ATOMIC (middle) (Sap
et al., 2019a). The bottom shows a (input, choice) se-
quence pair of the example and a (premise, alternative)
sequence pair of a knowledge graph triplet.

benchmark datasets targeting different aspects of
commonsense reasoning. For example, Figure 1 il-
lustrates a sample from the SocialIQA dataset (Sap
et al., 2019b), which focuses on reasoning about
human actions and their social implications. In
parallel, the development of large-scale common-
sense knowledge graphs (CSKGs), such as Con-
ceptNet (Speer et al., 2017) and ATOMIC (Sap
et al., 2019a), has motivated tasks like inductive
CSKG completion to further test models’ ability
to generalize over unseen entities (Malaviya et al.,
2020; Wang et al., 2021).

With the advent of large pre-trained language
models (PLMs) (Devlin et al., 2018; Liu et al.,
2019; Radford et al., 2019), fine-tuning PLMs
on task-specific commonsense question answer-
ing (CSQA) datasets has led to strong results, in
some cases approaching or surpassing human per-
formance (He et al., 2020). However, reliance on
large-scale human-annotated training data poses
challenges, as such annotations are expensive and
difficult to scale (Shwartz et al., 2020; Banerjee
and Baral, 2020; Bosselut et al., 2021; Sun et al.,
2022). Moreover, evidence shows that PLMs often
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exploit spurious correlations or shortcuts in data
(Branco et al., 2021), rather than performing gen-
uine commonsense reasoning or effectively lever-
aging external knowledge sources (Banerjee et al.,
2021).

To mitigate these limitations, several unsuper-
vised approaches based on CSKGs have been pro-
posed. For instance, Ma et al. (2021); Kim et al.
(2022) generate synthetic QA pairs from CSKG
triples by treating the head entity with its relation
as a query and the tail entity as the gold answer.
Yet, the coverage of such methods is constrained
by the incompleteness of CSKGs (Ju et al., 2022).
More recently, Su et al. (2022) introduced a con-
trastive learning framework that pre-trains PLMs
on (premise, alternative) pairs synthesized from
CSKGs. While effective, this approach has two ma-
jor shortcomings: (i) it relies on randomly sampled
in-batch negatives, overlooking the importance of
hard negatives, and (ii) it ignores potentially valu-
able positive examples inherent in CSKG struc-
tures. Both factors may limit the efficacy of the
contrastive learning paradigm.

In this work, we propose an enhanced con-
trastive learning framework to better utilize CSKGs
for commonsense knowledge representation. Our
method incorporates two key components: (i) hard
negative sampling, which dynamically selects in-
formative negatives that are neither trivial nor in-
distinguishably similar, and (ii) positive set ex-
pansion, which leverages the property that similar
head entities in CSKGs often share overlapping tail
entities, thereby recovering missing positives. By
integrating these mechanisms into the contrastive
objective, we more effectively exploit the structure
of CSKGs to improve knowledge injection into
PLMs.

We evaluate our framework on two widely used
CSKGs, ConceptNet and ATOMIC, across unsuper-
vised CSQA benchmarks, including COPA (Roem-
mele et al., 2011), SIQA (Sap et al., 2019b) and
CSQA (Talmor et al., 2019) and inductive CSKG
completion tasks. Experimental results demon-
strate consistent improvements over strong base-
lines, confirming that our framework generates su-
perior commonsense-aware knowledge representa-
tions.

2 Preliminaries and Preprocessing

In this section, we first introduce some preliminar-
ies used in this work. Then we will present the

preprocessing details.

2.1 Task Definition
Our task is the following: given a common-sense
knowledge graph G and a pre-trained language
model M, we construct a synthesized corpus of
sequence pairs D = {(p1, a1), ..., (pi, ai)} from G,
where p is the head sequence and a is the natural
language description of the tail entity. Then we fur-
ther train M on the corpus D so M performs better
on a given downstream commonsense-related task
represented as T = {(x1, y1), ..., (xm, ym)} by en-
couraging M to generate superior commonsense-
aware knowledge representation embeddings for
the sequence pair (xm, ym). The corpus D is con-
structed from G using the method described in §2.3.

2.2 Notation
We define our commonsense knowledege graph G
as a 4-tuple G = (E ,R, T ,P), where the vertices
are entities E and R are the set of relation types. T
is the set of all edges, where each edge is a triple
(h, r, t). h ∈ E , r ∈ R, and t ∈ E are the head
entity, relation, and tail entity, respectively. P is
the collection of all relations expressed in natural
language, as shown in Appendix A.2. Additionally,
following previous work (Ouyang et al., 2021; Su
et al., 2022) we augment G with inverse edges: for
each edge triple (h, r, t) ∈ T we add its reverse
triple (h, r−1, t) into G.

2.3 Knowledge Graph Triple to Natural
Language

In CSKGs, the entities h and t in E are in a free-
form text format, and the relation r is a specific
word or short phrase based on the corresponding
CSKG. For example, (h, r, t) in ConceptNet could
be (Bottle, MadeOf, Plastic) or (PersonX spills Per-
sonX’s coffee, xWant, To get it clean) in ATOMIC.
. We use a set of templates for the relation r and
its reverse relation r−1 in ATOMIC and Concept-
Net. Following previous work (Hwang et al., 2021;
Huang et al., 2021; Su et al., 2022), we first con-
vert each edge triple (h, r, t) into a sequence pair
(p, a) in natural language, consisting of a head se-
quence and its tail sequence. The original relation
r is converted to the pre-defined natural language
template and then connect it with the head entity h
to form the head sequence p, while a is the natural
language description of the tail entity t.

For example, in Figure 1, for the head node "Per-
sonX spills PersonX’s coffee", we concatenate it
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Figure 2: The steps in our contrastive learning framework. (A) Hard Negative Sampling: We dynamically
sample hard negatives by the similarity of premise pairs. (B) Positive Set Expansion: We deliberately utilize the
characteristic within the CSKGs that similar head entities are likely to share the same set of positive tail entities and
expand the possible positive set mutually. (C) Contrastive Training: We integrate the updated sequence pairs into
the existing multi-view contrastive learning framework to perform knowledge injection.

with the relation template of "xWant", resulting in
the head sequence "PersonX spills PersonX’s cof-
fee, as a result, PersonX wants." Similarly, for the
reverse relation r−1, we can also derive a sequence
pair. Since for a head entity h, given a relation r, it
may have n tail entities {t1, t2, ..., tn}. Therefore,
for a head sequence p, it may have a set of tail
sequences {a1, a2, ..., an}.

2.4 Embedding Representation

After obtaining the sequence pair (p, a), we use a
pre-trained language model (PLM) to get an initial
embedding representation for the sequence pair.
Specifically, for a sequence pair (p, a), where both
p and a consist of sequence of tokens {x0, ..., xm}
and {y0, ..., yn}, respectively, We apply a PLM
encoder to obtain the last hidden states of p and a,
then use the hidden state of the first token, ep and
ea as the embedding representation for p and a.

For a positive sequence pair (p, a), their repre-
sentations in embedding space ep and ea should be
close. We adopt the cosine similarity function to
measure the distance of p and a:

sim(p, a) = cos(ep, ea)

3 Methodology

Our commonsense-aware knowledge representa-
tion learning framework, as shown in Figure 2, is
divided into three steps: hard negative set sampling,
positive set expansion, and contrastive knowledge
fine-tuning. The input consists of a CSKG (e.g.,
ATOMIC) and a PLM (e.g., RoBERTa-Large).

Given the synthesized CSKG sequence pairs ob-
tained from §2.4, the goal is to inject the common-
sense knowledge into the PLM by further training
on the synthesized sequence pairs with enhanced
contrastive learning.

We propose to enhance the existing contrastive
learning framework for learning commonsense
knowledge representation (Su et al., 2022). We
propose two mechanisms to mitigate two issues
that may impede the learning efficacy of the con-
trastive learning framework. First, we propose hard
negative sampling to pay more attention to the hard
ones instead of merely relying on random in-batch
negatives (§3.1). Second, we propose to expand
the positive set so that the missing positives could
be recovered (§3.2). Finally, the PLM is trained
with the adapted contrastive objective (§3.3).

3.1 Hard Negative Sampling

In this paper, we propose adapting the idea of
hard negative sampling to the existing contrastive
learning framework for the common sense-aware
knowledge representation task. The learning frame-
work learns commonsense knowledge representa-
tion with the contrastive information of the natural
language sequence pairs. In particular, the exist-
ing method utilizes samples within the same mini-
batch as negatives (Su et al., 2022), although such
a strategy can significantly enhance training effi-
ciency by repeatedly using the representations of
in-batch negatives. However, this method ignores
the difference of easy and hard negatives. Some lit-
eratures have theoretically and empirically proved
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that easy samples contribute less to the final learned
representation (Bucher et al., 2016; Wu et al., 2017;
Robinson et al., 2020; Zhang and Stratos, 2021).
Recently, several adaptations in knowledge graph
representation learning for knowledge graph com-
pletion and commonsense question answering also
verify the importance of sampling hard negatives
(Wang et al., 2022; Peng et al., 2022; Zhang and Li,
2022). The success of the contrastive representa-
tion benefits more from the hard ones, which means
that the negatives that are difficult to distinguish are
preferred instead of relying on randomly selected
in-batch negatives.

To illustrate the proposed idea more precisely,
consider the corpus D consisting of all triples con-
verted from the CSKG G by the aforementioned
steps and a given (p, a) from D. The goal is to
find hard samples (p′, a′) so that the model has dif-
ficulty differentiating the pair (p, a′) in the latent
embedding space. We propose to select hard neg-
atives by the similarity between p and p′ to form
a hard negative set. For a sample (p′) from D, we
first calculate the similarity sim(p, p′) between p
and p′. If α < sim(p, p′) < β, where α and β
are hyperparameters, then p′ will be added into the
set I−. We don’t want to select negative exam-
ples too close to the positive example, so we have
sim(p, p′) < β, and we don’t want examples that
are too easy, so we have α < sim(p, p′). Based on
manual observations, we set α = 0.3 and β = 0.7.
We use the cosine similarity function to measure
the similarity of p and p′.

An illustration of how we construct the negative
samples is shown on the left in Figure 2. Let A(p)
be the collection of all tail entities {aj , aj , ..., aj}
from D such that each tail sequence has the same
head p. For each pj ∈ I− we obtain the head
sequence and tail sequence pairs (pj , aj,o), where
aj,o ∈ A(pj) is the collection of all tail entities
{aj,1, aj,2, ..., aj,n} from D such that each tail se-
quence has the same head pj . The union of these
sets forms our hard negative set.

3.2 Positive Set Expansion

We propose to expand the positive set by utilizing
the unique property of CSKGs to incorporate some
potential while valuable positives.

Specifically, given a sequence pair of head and
tail set (p, ai), ai ∈ A(p), we measure the similari-
ties of p with other head sequences p′. The p′ with
the highest similarity sim(p, p′) will be selected.

Then, given the similar head sequence p′, A(p) and
A(p′) may share some tail sequences. For example,
in Figure 2, for the head sequences "PersonX loves
cats, as a result, PersonX feels" and "PersonX likes
cats, as a result, PersonX feels", both have same tail
sequences while contain their own exclusive ones.
Hence, we propose heuristically expanding the pos-
itive set A by inserting the missing tail sequences
obtained from the tail sequence set A(p′).

3.3 Training Objective

For the sample (pi, ai), we use the InfoNCE loss
with additive margin (Chen et al., 2020; Gao et al.,
2021):

Li = − log
e(ϕ(pi,ah)−γ)/τ

e(ϕ(pi,ah)−γ)/τ +
|I−|∑
j=1

k∑
o=1

eϕ(pi,aj,o)/τ

,

where the scoring function for a candidate sequence
pair ϕ(pi,ah) = sim(pi,ah). We use cosine sim-
ilarity for our similarity function. For the hard
positive, we select the one positive alternative ah
from the expanded set A which has the lowest sim-
ilarity to p. The positive additive margin γ incen-
tivizes the model to boost the score of the positive
sequence pairs. By adjusting the temperature τ ,
the relative significance of negatives can be modi-
fied. A smaller value of τ increases the emphasis
on challenging negatives, yet it also poses a risk of
over-fitting to label noise.

3.4 Fine-Tuning Details

In practice, we fine-tune RoBERTa-Large (Liu
et al., 2019) on the synthesized CSKG sequence
pairs. The contrastive fine-tuning process directly
equips the PLM with relation-aware commonsense
knowledge, which can then be evaluated in zero-
shot settings for commonsense QA and CSKG com-
pletion.

4 Experiments

In this section, we first introduce the CSKGs that
we used in this study. Then we will present three
evaluation tasks, unsupervised CSQA, inductive
CSKG completion and claim verification, by in-
truding related benchmark datasets, baselines and
main results. We conduct all experiments in a zero-
shot setting, which means we do not have access to
the official training data.
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4.1 Commonsense Knowledge Graphs

Our experiments rely on two representative CSKGs,
ConceptNet (Speer et al., 2017) and ATOMIC (Sap
et al., 2019a). Each KG has different knowledge
types. Following previous work(Wang et al., 2021;
Su et al., 2022), we use CN-82K and ATOMIC in
our experiments. The statistics are shown in Table
7. Details of the CSKGs are listed in Appendix
A.1.

4.2 Unsupervised CSQA

In this section, we evaluate our framework on com-
monsense question answering datasets in an unsu-
pervised way, which can be formalized as follows:
given a question q and a set of answer candidates A,
the model could choose the most likely candidate â
by â = argmaxa∈A sim(q,a), where q and a are
representations obtained from the model.
Benchmarks: We conduct experiments on
three different commonsense question answering
datasets , COPA (Roemmele et al., 2011), SIQA
(Sap et al., 2019b) and CSQA (Talmor et al., 2019)
to verify the effectiveness of the proposed frame-
work. Details of the datasets are listed in Appendix
A.3.
Baselines: We compare the proposed framework
with four different groups of baselines: (1) Vanilla
PLMs (RoBERTa-Large (Liu et al., 2019), GPT2-
L/M (Radford et al., 2019)); (2) Methods without
relying on external CSKGs, instead by using PLMs
to generate intermediate outputs (SEQA (Niu et al.,
2021), self-talk (Shwartz et al., 2020), Dou (Dou
and Peng, 2022)); (3) Prompting the large LMs to
generate relevant knowledge given few-shot human
annotations, including GKP (Liu et al., 2022) and
TSGP (Sun et al., 2022); and (4) Models using
CSKGs, including KTL (Banerjee and Baral, 2020),
DynaGen (Bosselut et al., 2021), NLI-LM (Huang
et al., 2021) and MICO (Su et al., 2022), a multi-
view contrastive learning based baseline. For the
details of each baseline method, please refer to their
original papers. We are aware that there exist some
other methods or method variants achieving better
performance compared to the baselines listed here.
However, they are either using larger backbone
models (Sun et al., 2022) or trained with the larger
even multiple knowledge bases (Ma et al., 2021;
Kim et al., 2022). Both factors can improve the
performance. Thus, we compare to methods with a
similar model size as ours and the same knowledge
bases. We also consider the issue of model size in

§5.

Main Results: Table 1 shows the zero-shot eval-
uation results on benchmark datasets. Our model
achieves the best performance across all baseline
models on all datasets.

First, we compare our model with the vanilla
PLMs, RoBERTa-Large (Liu et al., 2019), GPT2-
L/M (Radford et al., 2019). It is not surprising
that the LMs show significant and systematic per-
formance gains on all datasets compared to the
random baselines. Since it has been verified that
the LMs already store implicitly vast amount of var-
ious types of knowledge in their parameters, such
as relational and commonsense knowledge, which
are universally indispensable for downstream tasks
(Petroni et al., 2019).

Second, we compare our model with the meth-
ods generating intermediate outputs in the infer-
ence stage, such as SEQA (Niu et al., 2021) and
self-talk (Shwartz et al., 2020). SEQA first gener-
ates a set of plausible answers and then compute
the semantic similarity between each plausible an-
swer and answer candidate. While self-talk itera-
tively queries the LMs with a set of information-
seeking questions to disclose the potential back-
ground knowledge. However, this kind of methods
cannot maintain their effectiveness systematically,
even their performance is lower than the LM base-
lines. For example, as shown in Table 1, on CSQA
dataset, self-talk is 8% lower than GPT2-Large,
suggesting that self-talk may generate some spu-
rious or misleading background knowledge. This
shows that the explicit commonsense knowledge
may be necessary to mitigate the hallucinations of
LMs’ generated knowledge. In light of this, our
model injects explicit commonsense knowledge
by self-supervising LMs on CSKGs. As shown
in the results, our model can generate better com-
monsense knowledge representation advancing the
unsupervised CSQA tasks.

Our method can achieve consistent improve-
ment just by using relatively small backbone model.
Compared with methods suzch as GKP (Liu et al.,
2022) and TSGP (Sun et al., 2022), our best model
outperforms them on SIQA and CSQA tasks with-
out relying on large language models (LLMs). Sim-
ilar as chain-of-thought (Wei et al., 2022), both
GKP and TSGP first prompt the LLMs (GPT-3
and GPT2-XL, respectively) with few-shot hu-
man annotations to generate relevant background
knowledge. However, knowledge snippets in nat-
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Methods Models Knowledge Source COPA SIQA CSQA
dev test dev dev

Random - - 50.0 50.0 33.3 25.0
RoBERTa-L RoBERTa-L - 54.8 58.4 39.8 31.3
GPT2-L GPT2-L - 62.4 63.6 42.8 40.4

SEQA GPT2-L GPT2-L - - 46.6 34.6
self-talk GPT2-[Distil/XL/L] GPT2-[Distil/L/M] 66.0 - 46.2 32.4
Dou ALBERT-XXL-v2 ALBERT-XXL-v2 - - 44.1 50.9

GKP T5-11b few-shot exemplars + GPT-3 - - - 47.3
TSGP GPT2-XL few-shot exemplars + GPT2-XL - - 51.5 49.1

KTL RoBERTa-L ATOMIC - - 46.6 36.8
DynaGen GPT2-M COMET - - 50.1 -
NLI-LM RoBERTa-L ATOMIC+QNLI - - - 52.1
MICO-CN RoBERTa-L ConceptNet 73.2 75.2 44.6 51.0
MICO-ATOMIC RoBERTa-L ATOMIC 79.4 77.4 56.0 44.2

Ours RoBERTa-L ConceptNet 73.8 77.2 46.2 53.2
Ours RoBERTa-L ATOMIC 82.0 79.4 56.7 47.8

Table 1: Accuracy (%) of unsupervised CSQA task on three public benchmarks. Our best scores are highlighted in
bold.

ural language may not be sufficient to answer a
commonsense-related question, since even LLMs
still suffer from hallucination (Wei et al., 2022).

Our method can fine-tune LMs on CSKGs in
a more effective and efficient way. Compared
with methods using external CSKGs, such as KTL
(Banerjee and Baral, 2020), DynaGen (Bosselut
et al., 2021), NLI-LM (Huang et al., 2021) and
MICO (Su et al., 2022), our method can achieve bet-
ter performance even trained with the same CSKG.
For a knowledge triplet, given knowledge repre-
sentations of any two, KTL learns to generate the
third one. While our method focuses on generating
relation-aware contextualized representation given
two sequence pairs. DynaGen dynamically gen-
erates contextually-relevant commonsense knowl-
edge graphs by using a generative neural common-
sense knowledge model, COMET (Bosselut et al.,
2019). While the generated commonsense infer-
ences are more context-relevant, it requires itera-
tive generation that may impact the inference effi-
ciency. Our method is more efficient by just gen-
erating contextually-relevant commonsense repre-
sentations and selecting the most probable based
on the largest similarity. NLI-LM utilizes extra
NLI resources while unnecessary for our method.
Our method outperform NLI-LM slightly by 1.1%
on CSQA dataset. MICO is the most relevant to
our method. It also utilizes contrastive multi-view
training on CSKGs, while our method can bring
consitent performance gains on all datasets com-
pared with it. It shows the effectiveness of the two
proposed modules, positive set expansion and hard

Model ConceptNet ATOMIC
MRR Hits@10 MRR Hits@10

ConvE 0.21 0.40 0.08 0.09
RotatE 0.32 0.50 0.10 0.12
Malaviya 12.29 19.36 0.02 0.07
InductivE 18.15 29.37 2.51 5.45
MICO 10.92 22.07 8.13 15.69

Ours 9.65 19.97 8.29 15.93

Table 2: Results on inductive CSKG completion. The
best scores are highlighted in bold.

KG Method COPA SIQA CSQA
dev test dev dev

Concept
Net

Ours 73.8 77.2 46.2 53.2
-w/o HNS 72.2 76.8 43.6 52.0
-w/o PSE 74.0 77.4 43.9 52.7

ATOMIC
Ours 82.0 79.4 56.7 47.8
-w/o HNS 79.0 80.4 56.0 44.4
-w/o PSE 80.4 78.4 56.5 45.9

Table 3: Ablation study. The best scores are highlighted
in bold.

negative sampling.

4.3 Inductive CSKG Completion
Knowledge graphs, especially CSKGs, are often
incomplete with missing entities and relations. In-
ductive CSKG completion evaluates the inductive
capability of a model to predict relations triples for
new, unseen entities (Wang et al., 2021). Given a
knowledge triplet (h, r, t), the model needs to pre-
dict the unseen tail entity t by (h, r, ?) or the unseen
head entity by (?, r−1, t). Same as the previous
work (Wang et al., 2021), we adopt the link predic-
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Backbone KG COPA SIQA CSQA
dev test dev dev

BERT
Base

- 45.4 46.4 37.1 21.5
ConceptNet 63.8 66.4 38.9 43.2
ATOMIC 69.8 74.0 48.2 42.7

BERT
Large

- 47.4 46.8 37.2 20.4
ConceptNet 64.4 73.2 41.7 47.8
ATOMIC 73.2 74.2 51.6 43.9

RoBERTa
Base

- 52.0 55.2 38.4 29.2
ConceptNet 62.4 69.6 40.1 45.4
ATOMIC 72.4 73.4 52.1 41.0

RoBERTa
Large

- 55.0 58.6 39.8 31.3
ConceptNet 73.8 77.2 46.2 53.2
ATOMIC 82.0 79.4 56.7 47.8

Table 4: Performance with different backbone LMs on
unsupervised commonsense QA task.

tion task with standard evaluation metrics including
MRR (Mean Reciprocal Rank) and Hits@10 to eva-
lute the inductive CSKG completion models.
Benchmarks: In our experiments, following Wang
et al. (2021), we use the inductive split of CN-82K
and ATOMIC, where at least one of the entities in
knowledge triplets of the testing sets is not present
in the training set.
Baselines: We compare with ConvE (Dettmers
et al., 2018), RotatE (Sun et al., 2019), Malaviya
(Malaviya et al., 2020), InductivE (Wang et al.,
2021) and MICO (Su et al., 2022).

Main Results: By training LMs with hard neg-
ative triplets and expanding the knowledge triplet
with the potential missing alternatives on CSKGs,
our method is able to generate superior common-
sense knowledge representation, leading to the im-
proved generalizability to unseen entities.

Table 2 shows the results of the inductive CSKG
completion. Our method performs better on
ATOMIC while remains comparable on Concept-
Net. Previous entity embedding based methods by
utilizing the existing entity links, such as ConvE
(Dettmers et al., 2018) and RotatE (Sun et al.,
2019), perform worse when it comes to the dis-
connected entities. For the graph neural network
(GNN) based methods, such as Malaviya (Malaviya
et al., 2020) and InductivE (Wang et al., 2021),
by utilizing PLMs to initialize the entity embed-
ding, the proposed GNNs trained on sampled sub-
graphs can significantly improve the generalizabil-
ity on ConceptNet. However, the CSKGs are highly
sparse and can be disconnected, the GNN-based
methods could be failed when such a subgraph

structure is not available (Franceschi et al., 2019).
In contrast, our method focuses on learning a

relation-aware commonsense representation for
each entity without relying on the graph struc-
ture. Same as MICO (Su et al., 2022), our method
achieves better performance on ATOMIC while
otherwise on ConceptNet compared with Induc-
tivE, one of the possible reasons could be the aver-
age length of the entity description in ATOMIC
(6.12 words) is longer than that in ConceptNet
(3.93 words). Longer sequences could enhance
the PLMs to learn more accurate contextual repre-
sentation for entity nodes. Compared with MICO,
our method performs slightly worse on Concept-
Net, one possible explanation is that more false
negatives are introduced due to the hard negative
sampling and positive set expansion.

5 Analysis

Ablation Study To further investigate what fac-
tors contribute to the performance gains, we con-
duct an ablation study by removing the step of
hard negative sampling (HNS) and positive set ex-
pansion (PSE). Table 3 shows the results of abla-
tion study on unsupervised CSQA task. Overall,
when HNS or PSE is removed, the performance de-
creases on SIQA and CSQA whenever the model is
trained with either ConceptNet or ATOMIC. Specif-
ically, compared to the base model, training with-
out HNS significantly hurts the performance by
2.6% and 0.7% on SIQA, which proves that hard
negatives are effective in the existing contrastive
learning instead of using in-batch negatives only.
Meanwhile, removing PSE also degrades the per-
formance most time, which shows that recovering
the potential links between the head entity and the
tail entity candidate by PSE contributes to learning
superior commonsense-aware knowledge represen-
tation. However, removing PSE does not affect the
accuracy much even can improve the performance
slightly, which may be because that introducing
PSE also incurs more false negatives in training.

Power of Scale We empirically test the influence
of increasing the backbone LM size affecting the
performance of the proposed model. Table 4 shows
the results of different backbone LMs on unsuper-
vised commonsense QA task. Overall, our method
broadly benefits from backbone LM size increase.
In addition, it conveys the same pattern as Table 1.
ATOMIC benefits more for both COPA and SIQA,
while ConceptNet is more helpful for CSQA.
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6 Related Work

Contrastive Learning for NLP Contrastive
learning has been applied into many NLP tasks.
Such as, contrastive self-supervised objectives for
text classification task (Fang et al., 2020; Kachuee
et al., 2020); multi-view contrastive learning for
dense encoder in open domain question answering
(Karpukhin et al., 2020); sentence representation
transfer with efficient contrastive framework (Yan
et al., 2021; Gao et al., 2021). Among the works
applying contrastive learning for NLP, Zhang and
Stratos (2021) considered the importance of the
hard negatives and proposed to combine hard nega-
tives with appropriate score functions to improve
the performance of zero-shot entity linking task. In
this work, we propose to enhance contrastive learn-
ing with hard negative sampling for commonsense-
aware knowledge representation task.

Unsupervised Commonsense Question Answer-
ing For the task of unsupervised CSQA, the
vanilla PLMs can achieve moderate performance
on most tasks. Furthermore, there are several meth-
ods generating intermediate outputs first by PLMs
without relying on external CSKGs, such as SEQA
(Niu et al., 2021), self-talk (Shwartz et al., 2020)
and Dou (Dou and Peng, 2022). Some models in-
corporate CSKGs, including KTL (Banerjee and
Baral, 2020), DynaGen (Bosselut et al., 2021), NLI-
LM (Huang et al., 2021) and MICO (Su et al.,
2022). Recently, a few methods prompt the large
LMs to generate relevant knowledge given few-
shot human annotations, including GKP (Liu et al.,
2022) and TSGP (Sun et al., 2022). In this paper,
we improve the commonsense knowledge represen-
tation by the sequence pairs synthesized CSKGs.

Commonsense Knowledge Graph Completion
Existing KG completion methods can be adapted
for CSKG completion, such as, ConvE (Dettmers
et al., 2018) and RotatE (Sun et al., 2019) learn
entity embeddings by the relation links between en-
tity nodes. However, many entity nodes in CSKGs
referring to the same concept are stored as distinct
ones due to their free-form texts, resulting in larger
and sparser graphs. To mitigate this issue, methods
such as Malaviya (Malaviya et al., 2020) and Induc-
tivE (Wang et al., 2021), propose various graph neu-
ral network modules with the embeddings initial-
ized from PLMs and focus on learn latent subgraph
structures. Without leveraging graph structure, we
also focus on the relation-aware knowledge repre-

sentation with the free-form sequence pairs from
CSKGS (Su et al., 2022).

7 Conclusion

In this paper, we propose to enhance the contrastive
learning framework to fine-tune PLMs over CSKGs
more effectively. Specifically, our method is di-
vided into three steps: hard negative set sampling,
positive set expansion and contrastive knowledge
fine-tuning. We conduct extensive experiments on
several unsupervised CSQA tasks and inductive
CSKG completion with two widely used CSKGs,
ConceptNet and ATOMIC. The performance gains
demonstrate its effectiveness.

Limitations

First, in this paper, we focus on the commonsense
knowledge representation learned on the synthe-
sized sequence pairs from a given CSKG. How-
ever, the synthesized sequence pairs are missing
contexts which may be indispensable for decision-
making for some circumstances. Second, we pro-
pose to sample hard negatives during training in-
stead of merely utilizing the in-batch negatives,
which increases the memory footprint and com-
putational costs. Third, we only focus on learn-
ing a relation-aware commonsense knowledge rep-
resentation from the synthesized sequence pairs,
while the subgraph structure of each entity node is
also important for more fine-grained representation
learning.
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A Details of CSKGs

A.1 CSKGs

Our experiments rely on two representative CSKGs,
ConceptNet (Speer et al., 2017) and ATOMIC (Sap
et al., 2019a).

ConceptNet. ConceptNet focuses on taxonomic,
lexical and physical commonsense knowledge, de-
scribing the relation between a conceptual entity
with another entity. Li et al. (2016) first introduced
CN-100K which contains Open Mind Common
Sense entries in the ConceptNet5 knowledge base
(Speer and Havasi, 2013) to separate true and false
triplets. However, the data split ratio of CN-100K
is biased. In view of this issue, we use the new data
split CN-82K proposed in (Wang et al., 2021) that
is uniformly sampled.

ATOMIC. ATOMIC is an event-centric knowl-
edge base, which contains everyday commonsense
knowledge organized as nine typed if-then rela-
tions, e.g. xIntent, xWant. It focuses on different
aspects of an event, such as social effect, mental
states and causes. Following previous work, we use
CN-82K and ATOMIC in our experiments (Wang
et al., 2021; Su et al., 2022). The statistics are
shown in Table 7.

A.2 Templates for Relation

Table 5 and Table 6 show the template for relation
used for ATOMIC and ConceptNet, we adopted the
version from InductivE 1.

A.3 Evaluation Benchmarks for Unsupervised
CSQA

We evaluate our framework on commonsense ques-
tion answering datasets, COPA (Roemmele et al.,
2011), SIQA (Sap et al., 2019b) and CSQA (Tal-
mor et al., 2019). We evaluate on both the dev
and test splits unless the test split is hidden. The
label information is only used for the final accuracy
calculation.

COPA (Roemmele et al., 2011) COPA is a two-
alternative commonsense causal reasoning dataset,
where one alternative is more plausible than the
other. We replace the term cause with The cause
for it was that and effect with As a result, as in
previous work (Su et al., 2022).2

1https://github.com/BinWang28/InductivE
2Please refer to Su et al. (2022) for more details.

Relation rel template

xAttr PersonX is seen as
xEffect as a result, PersonX will
xWant as a result, PersonX wants
xNeed but before, PersonX needed
xReact as a result, PersonX feels
xIntent because PersonX wanted
oEffect as a result, PersonY or others will
oReact as a result, PersonY or others feel
oWant as a result, PersonY or others want

xAttr rev "PersonX is seen as", "because PersonX"
xEffect rev "PersonX will", "because PersonX"
xWant rev "PersonX wants", "because PersonX"
xNeed rev "PersonX needs", "as a result PersonX"
xReact rev "PersonX feels", "because PersonX"
xIntent rev "PersonX wanted", "as a result PersonX"
oEffect rev "PersonY or others will", "because PersonX"
oReact rev "PersonY or others feel", "because PersonX"
oWant rev "PersonY or others want", "because PersonX"

Table 5: Relation types and relation substitute templates
from ATOMIC. rev mean reverse relation.

SIQA (Sap et al., 2019b) SIQA is three-choice
dataset for testing social commonsense knowledge.
Questions are built upon ATOMIC, focusing on
social interactions about people’s actions and their
social implications.

CSQA (Talmor et al., 2019) CSQA is collected
based on ConceptNet. Each question explores the
potential taxonomic or physical commonsense re-
lationships between entities and has five crowd-
sourced candidate answers.

B Experimental Settings

We mainly run our experiments with RoBERTa-
Large (Liu et al., 2019), which consists of 355M
parameters. Our experiments are conducted with a
A100 GPU. The running time of each experiment
is about 5 10 hours. The results are averaged by
three experiments.
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Relation relation templates

AtLocation located or found at or in or on
CapableOf is or are capable of
NotCapableOf is not or are not capable of
Causes causes
CausesDesire makes someone want
CreatedBy is created by
DefinedAs is defined as
DesireOf desires
Desires desires
NotDesires do not desire
HasA has, possesses, or contains
HasFirstSubevent begins with the event or action
HasLastSubevent ends with the event or action
HasPrerequisite to do this, one requires
HasProperty can be characterized by being or having
InstanceOf is an example or instance of
IsA is a
MadeOf is made of
MotivatedByGoal is a step towards accomplishing the goal
PartOf is a part of
ReceivesAction can receive or be affected by the action
SymbolOf is a symbol of
UsedFor used for
LocatedNear is located near
RelatedTo is related to
InheritsFrom inherits from
LocationOfAction is acted at the location of
HasPainIntensity causes pain intensity of

AtLocation rev is the position of
CapableOf rev is a skill of
NotCapableOf rev is not a skill of
Causes rev because
CausesDesire rev because
CreatedBy rev create
DefinedAs rev is known as
DesireOf rev is desired by
Desires rev is desired by
NotDesires rev is not desired by
HasA rev is possessed by
HasFirstSubevent rev is the beginning of
HasLastSubevent rev is the end of
HasPrerequisite rev is the prerequisite of
HasProperty rev is the property of
InstanceOf rev include
IsA inversed includes
MadeOf rev make up of
MotivatedByGoal rev motivate
PartOf rev include
ReceivesAction rev affect
SymbolOf rev can be represented by
UsedFor rev could make use of
LocatedNear rev is located near
RelatedTo inversed is related to
InheritsFrom rev hands down to
LocationOfAction rev is the location for acting
HasPainIntensity rev is the pain intensity caused by

Table 6: Relation types and relation substitute templates
from ConceptNet. rev mean reverse relation.
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Dataset Entities Relations Train Edges Valid Edges Test Edges Avg. In-Degree

ConceptNet 78,334 34 81,920 9,795 9,796 1.31
ATOMIC 304,388 9 610,536 24,355 24,486 2.58

Table 7: Distribution of train, valid, and test edges from CN-82K and ATOMIC. Avg. In-Degree is the average
number of tail entity connected to head entity.


