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Abstract

This study compares methods for detect-
ing violent videos, which are crucial for
ensuring real-time safety in surveillance
and digital moderation. It evaluates four
approaches: a random forest classifier, a
transformer model, and two multimodal
vision-language models. The process in-
volves preprocessing datasets, training
models, and assessing accuracy, inter-
pretability, scalability, and real-time suit-
ability. Results show that traditional meth-
ods are simple but less effective. The trans-
former model achieved high accuracy, and
the multimodal models offered high vio-
lence recall with descriptive justifications.
The study highlights trade-offs and pro-
vides practical insights for the deployment
of automated violence detection.

1 Introduction

Concerns about harmful content have
prompted the UK government to implement
the Online Safety Act 2023, which encourages
proactive content moderation and violence
prevention both online and offline (GOV UK
Department for Science, 2025). As smart
cities evolve, citizens demand enhanced safety
measures and swift emergency responses,
pressuring authorities to adopt automation
tools (Pujol et al., 2020). Governments are
facing the rapid growth of video content in
surveillance and digital applications, making
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manual analysis impractical. This drives the
need for real-time video systems that identify
patterns for safety and emergencies (Sabha
and Selwal, 2024). Social media platforms
also struggle to manage vast video volumes
in near real-time (Pujol et al., 2020), amid
increasing circulation of violent content,
including hate crimes and terrorist attacks
(Studer, 2017). Many platforms, such as
Facebook and YouTube, attempt to moderate
content through automated tools; however, the
scale and immediacy of live streaming make
this nearly impossible (Pujol et al., 2020).

Automatic violence detection is difficult due
to its inherent subjectivity. Violent acts are not
always visually explicit and depend on con-
text, like body posture, group dynamics, or
weapons, posing barriers to definition (Naik
and Gopalakrishna, 2017). Other issues in-
clude illumination variance, which affects out-
door video quality due to changes in lighting,
such as day/night transitions or weather, im-
pacting colour and contrast (Kaur and Singh,
2024).

Fortunately, Al offers promising tools, partic-
ularly through computer vision (CV) and ma-
chine learning models trained to classify vi-
sual data. This project explores and compares
four such methods for detecting violence: Ran-
dom Forest classifier, TimeSformer, Llama 3.2
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Vision Instruct and Janus Pro. This project
aims to investigate the effectiveness of cutting-
edge machine learning technologies in detect-
ing real-world violence. This research has ap-
plications ranging from enhancing online mod-
eration to improving street safety in cities.

2 Background

Recent research indicates that machine learn-
ing models are increasingly supporting video
classification, particularly in the context of vi-
olence detection (VD).

2.1 Violence detection (VD) software

Before Deep Learning (DL) methods, VD was
seen as recognising specific human actions
(Peixoto et al., 2020). Following initial ap-
proaches, DL techniques improved VD re-
sults (Peixoto et al., 2020), notably with 3D
convolutional neural networks for extracting
spatio-temporal patterns (Ding et al., 2014).
However, many models remain computation-
ally intensive, often using multi-stream input
and stacked LSTM layers, with limited de-
tails on their complexity (Ullah et al., 2019)
(Ullah et al., 2022). Some researchers focus
on models balancing performance and effi-
ciency. One achieved 87.25% accuracy with
just 0.27 million parameters (Cheng et al.,
2021a) using depth-wise separable convolu-
tions from Pseudo-3D Residual Networks (Qiu
et al., 2017) and MobileNet (Howard et al.,
2017), thereby reducing complexity without
compromising accuracy. The VD field has
evolved from handcrafted features to advanced
DL models that interpret video spatio-temporal
cues.

2.2 Random Forest

Random Forests are a popular machine learn-
ing model used for classification and forecast-
ing, requiring high-quality data for training.
They improve algorithms and user behaviour
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analysis, aiding pattern recognition (Salman
et al.,, 2024). The model excels in classifi-
cation and regression, using cross-validation
for accuracy and handling missing data effec-
tively (Achari and Sugumar, 2024). It also
reduces bias by training multiple decision trees
on random subsets of data, making it one of
the most reliable techniques in ML (Salman
et al., 2024). Random forests are often used in
hybrid models for VD. For example, a study
developed a facial recognition assault system
using Random Forest, achieving 98% precision
and 97.5% accuracy, showing ensemble meth-
ods enhance safety (Ohwosoro et al., 2024).

2.3 TimeSformer

Video understanding tasks, such as VD, re-
quire models to interpret spatial and tempo-
ral features. TimeSformers, which utilise
a transformer-based architecture with spatio-
temporal attention, reason across frames and
time (Bertasius et al., 2021a). Research has
found TimeSformer performs well in Deep-
Fake detection (Chen et al., 2024). The archi-
tecture is suitable for VD, where an extended
temporal context is key. TimeSformer differs
from standard Transformers in that it learns
spatio-temporal features directly from frame
patches. Research shows that “divided atten-
tion,” applying temporal and spatial attention
separately, achieves the highest video classifi-
cation accuracy (Bertasius et al., 2021b).

2.4 Large Language Models

Following ChatGPT’s launch, attention has fo-
cused on large language models (LLMs) (Tian
et al., 2024), especially for their strong per-
formance in classification (Al Faraby et al.,
2024), summarisation (Doss et al., 2024), data
and code generation (Shimabucoro et al., 2024)
(Nejjar et al., 2025). The rapid development
of LLMS is clear in the late 2023 and early
2024 releases of Google’s Gemini, Anthropic’s



Claude 3, and OpenAl’'s GPT-4 (Shahriar et al.,
2024). These models represent a significant
leap in capabilities, transitioning from text-
only to multimodal understanding across text,
images, and audio, with enhanced parameters
and speed (Shahriar et al., 2024). LLMs’ abil-
ity to understand and generate extensive data
has created opportunities, such as Llama3.2,
which addresses predatory conversations and
abusive messages (Arora, 2025). However,
these models can gain vision capabilities. Vi-
sion in LLMs means adapting transformer
models from language to interpret images (Yen-
duri et al., 2024). This has expanded the gener-
ative pre-trained transformer (GPT) to include
vision. Since multimodal LLMs are relatively
new, many research areas are still in their early
stages (Wang et al., 2024). OpenAl’s GPT-4
release in May 2024 marked a key shift, as it
was the first to interpret emotions from videos
(Islam and Moushi, 2024), opening up new ap-
plications. Yet, using multimodal LLMs for
VD in videos remains under-explored, with re-
search gaps this project aims to fill (Jaafar and
Lachiri, 2023).

3 Data

The violent samples in both datasets depict
real-world street fight scenarios recorded un-
der varying conditions. Non-violent samples
include everyday activities like walking, eating,
and playing sports, representing a wide range
of non-aggressive behaviours. This diversity
provides a realistic setting for evaluating safety
monitoring and automated incident detection
systems.

3.1 Ethical concerns

All datasets used in this study were obtained
from publicly available academic sources. No
new data was collected, annotated, or shared
during the project. The RLVS dataset was
sourced from Kaggle (Mustafa, 2020) and in-
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troduced initially by Soliman et al. (Soliman
etal.,2019). The RWF-2000 dataset was down-
loaded from Hugging Face and first presented
by Cheng et al. (Cheng et al., 2021b). Both
datasets contain publicly available videos de-
signed for violence detection research. None
of the content includes personally identifi-
able information, as all videos were either
anonymised or publicly accessible.

3.2 RLVS Dataset

A subset of the Real-Life Violence Situations
(RLVS) dataset comprising 957 violent sam-
ples and 839 non-violent samples was used for
training, validation, and in-distribution testing.
As a result, the final dataset used in this study.
A consistent train/validation/test split was gen-
erated and saved in a persistent JSON file to
support reproducibility.

Figure 1: Example frames from RLVS. Left: vio-
lent, Right: non-violent

3.3 RWF-2000 Dataset

The RWF-2000 dataset was used solely for out-
of-distribution testing to assess generalisation
beyond the training data. A subset of 383 vio-
lent and 395 non-violent was used for testing
to reduce computational load, especially for
the vision-language models. Models were nei-
ther trained nor fine-tuned on RWF-2000, and
no manual labelling or editing was done.



4 Methodology

4.1 Data Preprocessing

A unified pipeline ensured consistent inputs
across models. Videos were uniformly sam-
pled every 15 frames, with up to 16 frames
per clip. Frames were resized to 224 x 224;
clips with fewer than 8 valid frames were dis-
carded. Training and validation sets were aug-
mented with brightness, contrast, and satura-
tion shifts (+20%), hue shifts (+0.1), horizontal
flips, random crops, and rotations (+10°), ap-
plied consistently across frames to preserve
temporal coherence. RLVS was split via strat-
ified sampling (20% test, 10% validation);
for RWF-2000, a subset was used for test-
ing only. Motion features were derived from
Farneback optical flow, summarised with statis-
tics (mean, variance, skewness, range, etc.)
and a high-motion pixel count. Frames were
saved as JPEGs (for LLMs) and as tensors
(T x C x H x W) in PyTorch format for effi-
cient loading.

4.2 Random Forest

To establish a classical baseline, a Random
Forest classifier was trained on motion features
derived from dense optical flow.

4.2.1 Training

The Random Forest model was trained on mo-
tion statistics derived from dense optical flow,
including mean, median, standard deviation,
maximum, minimum, range, skewness, vari-
ance, and the proportion of high-motion pix-
els per frame. These features capture both
overall motion intensity and its distribution
across frames. Labels were assigned automati-
cally from dataset filename prefixes (‘violent-’
or ‘nonviolent-"), consistent with the dataset’s
original annotation scheme. Hyperparameters
were optimised via grid search with five-fold
cross-validation, using ROC-AUC as the scor-
ing metric due to class imbalance. The best
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model employed 100 estimators, a maximum
depth of 8, a minimum sample split of 10, a
minimum sample leaf of 4, and balanced class
weighting. This configuration was retrained on
the whole training set and evaluated on the test
set.

4.2.2 Feature Importance

Post-training, feature importances revealed
that mean and minimum motion magnitudes
were the most influential predictors, underscor-
ing the role of motion intensity in distinguish-
ing between violent and non-violent activity.

4.2.3 Interpretability of Random Forest

The Random Forest provides insight into
which features drive classification. For exam-
ple, a high mean motion magnitude strongly
predicted violent sequences, such as street
fights, whereas a low minimum flow magni-
tude aligned with stable, non-violent scenes.
However, the model also produced false pos-
itives in contexts like crowd surges at sports
events, where collective movement mimicked
aggression. These results suggest that RF’s
interpretability is valuable, but its rule-like mo-
tion thresholds are not robust across diverse
scenarios.

4.3 TimeSformer

To establish a DL benchmark, a transformer-
based video classification model was imple-
mented using the TimeSformer architecture.
TimeSformer builds on the Vision Transformer
(ViT) framework by introducing a mechanism
to handle both spatial and temporal dimensions
in video data. Rather than using traditional
3D convolutions, it applies divided attention
across space and time separately, enabling ef-
ficient and scalable video understanding from
raw pixel data.



4.3.1 Model Configuration

The TimeSformer model wused was
facebook/TimeSformer-base-
finetuned-k400, pre-trained on the
Kinetics-400 dataset (Bertasius et al., 2021a).
To adapt it for binary violence detection,
the classification head was replaced with a
fully connected layer producing two logits.
Frames were converted to floating point and
normalised by dividing by 255.0, preserving
dynamic range without distorting pixel intensi-
ties. Temporal tensors were zero-padded as
needed. Labels were inferred from filename
prefixes. The entire model was fine-tuned to
adapt specifically to the task.

4.3.2 Training Configuration

Training used the Hugging Face Trainer API
with a batch size of 6. The model was opti-
mised for cross-entropy loss with label smooth-
ing (0.1), a learning rate of 5e-5, and cosine
scheduling, along with a 25% warm-up. Early
stopping had a patience of 2 steps. Regularisa-
tion included weight decay (0.2) and gradient
clipping (norm 1.0). Evaluation occurred ev-
ery 1000 steps, saving the best model based on
validation log loss. Seeds were fixed at 42 for
reproducibility. Training ran on a SLURM job
with an NVIDIA A5000 GPU.

4.4 Interpreting TimeSformer decisions

We analyse the model’s posterior p(violence |
x) without binarisation. To expose its deci-
sion process, we extract self-attention from
each transformer block during a forward pass.
(output_attentions=true) and apply
attention rollout: heads are averaged, an iden-
tity residual added, rows normalised, and at-
tention matrices multiplied across layers to
form a single CLS—patch relevance map. This
is reshaped into a g x g grid and tempo-
ral tubelets to yield spatial heatmaps (time-
averaged). In the Kinetics-400 TimeSformer,
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inputs are 224 x 224 with 16 x 16 patches
(g = 14) and tubelet size 8, so 16 frames give
Teg = 2 temporal tokens inferred at run time.
For windowed videos, video-level probabili-
ties are aggregated with monotone poolers that
preserve probabilistic semantics: max, mean,
top-k mean, log-sum-exp (temperature 7), and
noisy-OR 1 — [];(1 — p;). Evaluation utilities
proper scoring rules (negative log-likelihood,
Brier) and calibration/ranking metrics (ROC—
AUC, PR-AUC, ECE/MCE).

4.5 Multimodal LLMs: Llama 3.2 Vision
and Janus-Pro-7B

To assess the potential of multimodal large
language models for violence detection,
Meta’s Llama 3.2 Vision Instruct model and
DeepSeek’s Janus-Pro-7B were used.

4.5.1 Llama 3.2 Vision Instruct Model
Configuration

The model (meta-Llama/Llama-3.2-
11B-Vision—-Instruct) was loaded via
Hugging Face Transformers (meta, 2024) with
mixed-precision evaluation. Inputs were pro-
cessed using AutoProcessor for image normal-
isation and prompt tokenisation. Generation
was limited to 200 tokens with deterministic
decoding (do_sample=False, temperature=0.2)
to ensure stable outputs. Each frame was eval-
uated using the following prompt: “This image
is part of a public dataset of street and public
scenes used for academic research. Start your
response with a yes or no if violence is depicted
in this image. Then describe what is happen-
ing. If a violent or aggressive incident occurs,
describe what happened and identify those in-
volved. If there isn’t any violence, describe
the scene as peaceful or non-violent. Use sim-
ple language and avoid complex terms where
possible.”



4.5.2 Janus-Pro-7B Vision Model
Configuration

Janus was loaded using AutoModelFor-
CausalLM with mixed precision enabled. The
Janus-specific VLChatProcessor was used to
process images and chat-style prompts, ensur-
ing consistent resizing, normalisation, and to-
kenisation. The prompt used was identical to
that used with Llama. Generation parameters
were configured with do_sample=False, repeti-
tion_penalty=1.0, and a maximum of 200 new
tokens to produce deterministic and focused
outputs.

4.6 Testing Methodology

To evaluate model effectiveness and general-
isability, two testing settings were used: in-
domain testing on the RLVS test split and
out-of-domain testing on a subset of RWF-
2000. This allowed assessment of performance
within the original data distribution and in un-
seen environments. A unified preprocessing
and evaluation pipeline standardised video ex-
traction, transformation, and organisation for
both datasets. The RLVS test set consisted of
363 videos (194 violent and 169 non-violent),
which were held out from training and vali-
dation. The RWF-2000 subset included 778
videos (383 violent, 395 non-violent), enabling
fair cross-model comparison. To improve ro-
bustness and simulate real-world variability,
data augmentation was applied at the video
level with a 50% probability during RLVS
training and validation. Extracted frames were
then formatted as inputs for the three mod-
els. For input preparation, the Random Forest
model used optical flow between consecutive
frames to extract nine motion statistics form-
ing fixed-length feature vectors. The TimeS-
former model received RGB frame tensors of
shape (16, 3, 224, 224) and applied spatial
and temporal self-attention for classification.
Llama and Janus processed frames individually
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with a fixed prompt; a zero-shot text classifier
classified their generated text outputs to assign
violent or non-violent labels. Outputs were
compared to ground truth labels, with confu-
sion matrices used to analyse false positives
and negatives. Performance metrics included
accuracy, precision, recall, and F1-score.

5 Evaluation

5.1 In-Domain Testing (RLVS)

Model Accuracy Precision Recall F1 Time (s)
Random Forest ~ 77.96% 0.7614  0.8556 0.8058 0.01
TimeSformer 96.41% 0.9547  0.9793 0.9669 39.90
LLaMA 78.24% 0.7154  0.9845 0.8286 99309.80
Janus Pro 74.38% 0.6772  0.9948 0.8058 9904.08

Table 1: In-domain RLVS test set performance.

Table 1 summarises model performance on
the RLVS test set. TimeSformer performed
strongest, achieving high accuracy and a bal-
anced precision—recall trade-off with inference
times suitable for near-real-time surveillance.
LLaMA and Janus Pro reached very high re-
call, but this came at the cost of precision, often
misclassifying non-violent group behaviour as
violent. Random Forest was the fastest model,
classifying samples almost instantly; however,
its reliance on simple motion statistics made it
prone to errors in ambiguous scenarios, such
as crowd surges. These results suggest that
TimeSformer is best suited for automated mon-
itoring, while multimodal models may be more
valuable in forensic review or moderation con-
texts where interpretability is prioritised. Ran-
dom Forest, despite weaker performance, re-
mains attractive for highly constrained deploy-
ments. The error distributions for each RLVS
model are illustrated in the corresponding con-
fusion matrices (Figure 2), which make explicit
the balance between false positives and false
negatives discussed above.



Random Forest (RLVS) TimeSformer (RLVS)

Violent 117 52 Violent 160 9

True
True

Non-Violent 28 166 Non-Violent 4 190

Non-Violent Violent
Predicted

Non-Violent Violent
Predicted

LLaMA 3.2 (RLVS) Janus Pro (RLVS)

Violent 191 76 Violent 193 92

True
True

Non-Violent 3 93 Non-Violent 1 77

Non-Violent Violent
Predicted

Non-Violent Violent
Predicted

Figure 2: Confusion matrices on the RLVS test set
(rows = true labels, columns = predicted labels).

5.2 Out-Of-Domain Testing (RWF-2000)

Model Accuracy Precision Recall F1 Time (s)
Random Forest ~ 54.24% 0.5754  0.2689 0.3665 0.01
TimeSformer 68.76% 0.6590  0.7571 0.7047  82.16
LLaMA 64.78% 0.5873  0.9635 0.7298 193729
Janus Pro 74.68% 0.6691  0.9635 0.7898 21706

Table 2: Out-of-domain RWF-2000 test set perfor-
mance.

Table 2 presents the performance of all models
on the RWF-2000 dataset. Janus Pro achieved
the highest F1 score (0.79) with near-perfect
recall (0.96), demonstrating strong zero-shot
transfer capabilities. LLaMA achieved similar
recall but with lower precision, resulting in a
higher number of false positives. Both models
generated interpretable outputs, though their
runtimes were extremely high. TimeSformer
generalised well, despite being fine-tuned only
on RLVS, achieving balanced scores and com-
pleting inference in just over a minute. Ran-
dom Forest performed poorly under distribu-
tion shift, with low recall and F1, reflecting
limited robustness. Overall, Janus Pro showed
the strongest zero-shot generalisation, while
TimeSformer offered a better balance of speed
and accuracy. LLaMA remained interpretable,
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but it was computationally intensive. Random
Forest remained the most efficient but least
adaptable. Error patterns under distribution
shift are shown in the RWF-2000 confusion
matrices (Figure 3), which emphasise the mod-
els’ differing capacities to generalise.

Random Forest (RWF-2000) TimeSformer (RWF-2000)

Violent 319 76 Violent 245 150

True
True

Non-Violent 280 103 Non-Violent 93 290

Non-Violent Violent
Predicted

Non-Violent Violent
Predicted

LLaMA 3.2 (RWF-2000) Janus Pro (RWF-2000)

Violent 370 Violent 370

True
True

Non-Violent 14 211 Non-Violent 14 134

Non-Violent Violent
Predicted

Non-Violent Violent
Predicted

Figure 3: Confusion matrices on the RWF-2000
test set (rows = true labels, columns = predicted
labels).

5.3 Decision evidence and probability
quality

On 778 test windows (383 violent; 395
non-violent), the model yields ROC-AUC
0.767 and PR-AUC 0.764 from raw posteri-
ors. Probability quality is moderate (negative
log-likelihood 1.94; Brier 0.288) and calibra-
tion indicates over-confidence (ECE 0.286, 15
bins). Cumulative gains show that the top 10%
of windows by p(violence | ) contain 18.3%
of violent windows (Lift@10% 1.83). Aggre-
gating windows improves video-level ranking:
noisy OR reaches ROC-AUC 0.800 (PR-AUC
0.751), while top-k mean (kK = 3) gives the
best proper scoring (negative log-likelihood
1.851; Brier 0.287) and the lowest ECE among
the poolers.



Pooler ROC-AUC1T NLL |
max 0.787 2.011
mean 0.755 1.854
noisy—OR 0.800 2.149
log—sum—exp 0.759 1.864
top-k mean 0.761 1.851

Table 3: Video-level pooling of window probabilities
(no thresholds). Best per column in bold.

5.4 Qualitative evidence

Spatial overlays for high-confidence violent
windows focus on converging bodies and
limbs, with temporal peaks in the tubelet that
captures contact. Low confidence violent win-
dows show diffuse attention, often in pre- or
post-event frames, under occlusion, or when
brief actions are split across tubelets. High con-
fidence non-violent windows emphasise crowd
surges or celebratory gestures that are visually
salient yet non-violent. Figure 4 shows exam-
ples.

pviolence | ) ~
0.000418

p(violence | z) ~
0.999754

p(violence | ) =~
0.999993

Figure 4: Spatial attention overlays (CLS—patch rele-
vance) for three representative windows.

5.5 Evaluation Findings
5.5.1 Notable Observations

TimeSformer consistently achieved the best
balance of precision and recall across both
datasets. Its confusion matrices indicated
lower rates of false positives and false nega-
tives, supporting its reliability in varied scenar-
ios. LLaMA Vision exhibited a strong bias to-
wards recall, detecting violent content aggres-
sively but occasionally misclassifying benign
scenes as violent. This trade-off may be accept-
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able in high-sensitivity contexts but is less suit-
able where false positives carry a significant
cost. Random Forest performed reliably on
RLVS, particularly in identifying non-violent
scenes, but its accuracy declined on RWF-2000.
This shows its handcrafted features generalise
poorly to more varied or noisy data.

5.5.2 Error Analysis and Interpretability

TimeSformer’s errors primarily resulted from
crowded or celebratory scenes, which pro-
duced false positives, and short, low-contrast
violent clips, which resulted in false negatives.
LLaMA and Janus Pro often hallucinated ag-
gression, labelling cricket games as violent.
Random Forest struggled with camera shake
and noisy backgrounds, exposing its reliance
on clean motion signals. Interpretability also
varied. TimeSformer’s attention maps high-
lighted human interactions, usually aligning
with the source of violence. LLaMA and Janus
Pro generated natural language explanations,
offering detailed scene descriptions of actors,
actions, and context, such as environments and
expressions. These outputs exposed system-
atic biases and helped diagnose false positives.
They also added value in human-in-the-loop
scenarios where moderators could review justi-
fications alongside predictions.

5.5.3 Summary of Findings

TimeSformer delivered the highest overall per-
formance, with strong generalisation and the
fewest false positives. Its ability to model spa-
tial and temporal features makes it well-suited
for continuous, high-precision surveillance in
environments where alert reliability is critical.

LLaMA Vision and Janus Pro achieved the
highest recall, demonstrating strong sensitivity
to violent content and producing interpretable
natural language explanations. These qualities
make them valuable for content moderation
and investigative or regulatory settings, where



comprehensive flagging and explanation are
prioritised. However, their lower precision and
very high inference times limit their suitability
for real-time or autonomous applications.

Random Forest, while fast and transparent,
generalised poorly to RWF-2000. Its simplic-
ity and efficiency still make it viable for con-
trolled edge deployments, such as low-power
CCTYV units, where latency and interpretability
take precedence over accuracy. Overall, these
findings emphasise distinct deployment niches:
TimeSformer as the most balanced and scal-
able solution, multimodal LLMs for human-
in-the-loop systems, and Random Forest for
resource-constrained contexts. Together, they
illustrate the trade-offs between accuracy, in-
terpretability, and efficiency that must guide
real-world adoption of violence detection sys-
tems.

6 Conclusion

6.1 Project Limitations

This study has several limitations. The models
were not trained to detect weapons, as this was
not included in the datasets used in this project,
which limits their ability to detect armed vi-
olence. No post-hoc calibration was applied,
ensuring fairness across models but potentially
constraining accuracy and generalisability. At-
tention maps serve as explanatory aids rather
than causal attributions but consistently empha-
sise physical interaction.

6.2 Future Work

Future work should evaluate these models in
real-time surveillance or moderation settings.
Adding audio cues, such as raised voices, could
support earlier detection. Another approach
is to incorporate textual commentary from
speech transcripts or subtitles, as verbal threats
often precede violence. LLMs can process
text and video jointly, enabling cross-modal
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reasoning. In contrast, models like TimeS-
former would need auxiliary NLP components
or architectural changes. Methodological steps
include aligning subtitles with video frames,
fine-tuning multimodal encoders, and com-
paring late-fusion against joint-embedding ap-
proaches to determine which best captures tem-
poral and semantic dependencies. Such integra-
tion could provide richer context and improve
robustness in safety-critical applications.

6.3 Summary

This project compared four approaches to
AVD in video: a Random Forest baseline, the
transformer-based TimeSformer, LLaMA 3.2
Vision Instruct and Janus Pro, evaluated on
RLVS and RWF-2000 datasets. TimeSformer
achieved the strongest balance of accuracy and
efficiency, making it suitable for real-world de-
ployment. LLaMA Vision demonstrated high
recall and interpretability, which is valuable
in settings with human oversight; however,
computational demands limit its scalability.
The Random Forest was lightweight and inter-
pretable but struggled to generalise, highlight-
ing the limits of handcrafted features. Overall,
transformer-based models appear most promis-
ing when balancing performance and scalabil-
ity. Future directions include model distilla-
tion, real-time optimisation, and audio integra-
tion.
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