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Abstract
The growing use of generative AI in academic
writing raises urgent questions about author-
ship and the integrity of scientific communi-
cation. This study addresses the detection of
AI-generated scientific abstracts by construct-
ing a temporally anchored dataset of paired
abstracts—each with a human-written version
that contains scientific abstracts of works pub-
lished before 2021 and a synthetic version
generated using GPT-4.1. We evaluate three
approaches to authorship classification: zero-
shot large language models (LLMs), fine-tuned
encoder-based transformers, and traditional
machine learning classifiers. Results show
that LLMs perform near chance level, while a
LoRA-fine-tuned DistilBERT and a PassiveAg-
gressive classifier achieve near-perfect perfor-
mance. These findings suggest that shallow lex-
ical or stylistic patterns still differentiate human
and AI writing, and that supervised learning is
key to capturing these signals.

1 Rationale

The proliferation of generative artificial intelli-
gence (AI) models, particularly large language
models (LLMs), has significantly reshaped con-
tent creation across domains (Kreps et al., 2022),
including scientific writing. While these mod-
els offer powerful tools for drafting, summarising,
and translating academic texts, their capacity to
autonomously generate scientific abstracts raises
ethical concerns regarding authorship, originality,
and the integrity of scholarly communication. In
the context of peer-reviewed publication, the need
of distinguishing between human-written and AI-
generated content is becoming increasingly press-
ing. Without reliable detection methods, academic
institutions, publishers, and reviewers face the risk
of unknowingly legitimising AI-generated content,
undermining trust in the scholarly record. As such,
there is an urgent need for robust tools capable of

accurately identifying AI-generated scientific writ-
ing, particularly in the early, high-stakes stages of
academic dissemination—namely, paper abstracts.

Several recent approaches have emerged to ad-
dress this challenge. Tools such as OpenAI’s AI
Text Classifier and GPTZero have attempted to
leverage statistical and linguistic features to differ-
entiate AI from human writing, with varying levels
of success. In parallel, research studies have inves-
tigated stylometric patterns, perplexity metrics, and
discourse-level anomalies as potential indicators of
synthetic text. However, most of these efforts suffer
from limitations including small or general-domain
datasets, lack of temporal anchoring (e.g., com-
paring texts written before the advent of LLMs),
and insufficient validation on high-quality, domain-
specific academic corpora. Consequently, there
remains substantial room for advancement in this
area.

Our study seeks to address the above gaps by
constructing a temporally controlled and domain-
specific corpus for AI writing detection in scientific
abstracts. By compiling a set of abstracts published
prior to 2021—before the rise of transformer-based
language models—and juxtaposing them with a
parallel set of abstracts generated by state-of-the-
art LLMs for the same papers, we aim to compare
different models to distinguish between human and
AI-generated scientific writing. This approach not
only ensures a clear temporal boundary between
human-authored and synthetic texts but also con-
tributes a novel, curated dataset to the field of natu-
ral language processing.

The remainder of this paper is structured as fol-
lows: Section 2 reviews related work on AI text
detection and scientific authorship analysis. Sec-
tion 3 details the construction of the human and
synthetic abstract corpora. Section 4 outlines our
model architecture and experimental setup, as well
as the results obtained. Finally, Section 5 discusses
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the implications of our findings and Section 6 in-
cludes conclusions as well as directions for future
research.

2 Related Work

The growing use of generative artificial intelligence
(GAI), particularly large language models (LLMs),
in scientific writing has inspired a broad spectrum
of academic research. Recent research explores
customisation strategies, potential pitfalls, and the
promising capabilities of these tools in scholarly
contexts. This section covers the use of genera-
tive AI in scientific writing and highlights different
state-of-the-art methods for detecting AI-generated
content.

2.1 AI-generated scientific writing

Emerging research highlights the ways in which
commercial AI systems are being adapted for sci-
entific use. Some studies compare multiple AI
chatbots to demonstrate performance across aca-
demic writing tasks, with GPT-4 scoring highest in
quantitative assessments, though all models failed
to produce original scientific contributions (Lozić
and Štular, 2023). Similarly, Biondi-Zoccai et al.
(2025) provide a detailed overview of AI tools tai-
lored for manuscript drafting, refinement, and lit-
erature review. While tools like ChatGPT, Gram-
marly, and SciSpace Copilot are becoming increas-
ingly embedded in academic workflows, the au-
thors caution against their uncritical adoption. In a
practical example, Babl and Babl (2023) test Chat-
GPT’s capacity to generate a conference abstract
from fictitious data. The output, despite minor
hallucination in the references, was structurally
sound and content-appropriate, raising concerns
over undetectable AI involvement in academic sub-
missions.

A major concern addressed in the literature is
the issue of hallucinations—false or fabricated in-
formation produced by AI. (Athaluri et al., 2023)
(2023) thoroughly examine this phenomenon in sci-
entific writing, warning of its potential to mislead
readers and reviewers and to contaminate academic
discourse. Another critical analysis comes from
Jenko et al. (2024), who evaluate AI-generated lit-
erature reviews in musculoskeletal radiology. The
study reveals significant factual inaccuracies and
shallow content, concluding that current AI tools
cannot yet replace expert domain knowledge in
scientific synthesis. These risks are echoed in

(Biondi-Zoccai et al., 2025), who warn of AI’s
susceptibility to generating fraudulent datasets and
paper mill content. Traditional plagiarism detec-
tors are ineffective against this sophisticated output,
calling for robust AI detection mechanisms.

Despite these issues, several sources under-
score the potential benefits of AI-assisted writing.
(Huang and Tan, 2023) (2023) describe how Chat-
GPT can improve review article composition by
accelerating literature organisation, enhancing lin-
guistic clarity, and assisting non-native English
speakers. They argue that AI serves best as a co-
authoring assistant—providing structural and lin-
guistic support while the scientist retains control
over content and critical interpretation.

2.2 Detection of AI-generated content

As large language models (LLMs) such as GPT-4o
and DeepSeek become capable of producing highly
coherent and human-like text across multiple do-
mains and languages, researchers have responded
by developing diverse strategies and platforms to
identify machine-generated content. These ap-
proaches generally fall into three categories: tra-
ditional machine learning, transformer-based de-
tection models, and zero-shot evaluations using
state-of-the-art LLMs themselves.

Early efforts in AI text detection relied heav-
ily on traditional machine learning models using
surface-level linguistic features (Alghamdi et al.,
2023); (Jawahar et al., 2020). These include met-
rics such as token diversity, sentence length dis-
tributions, part-of-speech frequencies, and syn-
tactic patterns. Classifiers such as Support Vec-
tor Machines (SVMs), trained on engineered fea-
tures extracted from labelled datasets, have demon-
strated moderate success. However, with the rise
of transformer-based architectures, detection strate-
gies have increasingly moved toward fine-tuned
pretrained language models. Fine-tuning mod-
els such as BERT and DeBERTa-v3 on domain-
specific corpora, often with techniques like Low-
Rank Adaptation (LoRA), have shown improved
performance (Hans et al., 2024);(He et al., 2021). A
third, more recent direction involves evaluating the
ability of advanced LLMs to detect AI-generated
content in a zero-shot setting (Papageorgiou et al.,
2024); (Forment et al., 2025). This strategy lever-
ages the generative model itself—such as GPT-4o-
mini—to assess whether a given text appears AI-
generated.
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Benchmark datasets have played a crucial role
in driving these developments. Notable resources
include the AuTexTification corpus (used in Iber-
LEF 2023 and 2024), GPT-2 Output Dataset, HC3
and HC3 Plus for chat-based detection (Su et al.,
2024), and domain-specific sets like TweepFake
(Fagni et al., 2021) and MGTBench (He et al.,
2024). These corpora span a range of languages,
modalities, and genres—offering fertile ground for
cross-domain benchmarking.

Detection tasks have also become the focus of
organised evaluation campaigns. Shared tasks such
as the IberLEF AuTexTification challenge, the Se-
mEval 2024 Task 8 on authorship verification, and
upcoming initiatives at RANLP and COLING have
galvanised research efforts by offering competi-
tive benchmarks and standardised test sets. These
tasks increasingly emphasise multilingualism and
domain diversity, reflecting real-world challenges
where generative AI is used in both high-resource
and under-resourced linguistic settings.

All in all, current detection platforms rely on a
spectrum of techniques, from transparent ML clas-
sifiers (Alghamdi et al., 2023) to opaque but pow-
erful deep learning systems (Hashmi et al., 2024);
(Mahmud et al., 2024). Despite incremental gains
in accuracy, no approach currently guarantees ro-
bust, generalisable detection across domains, lan-
guages, and use cases. The limitations of zero-shot
LLM detection and the rising fluency of AI out-
puts all point to the need for hybrid approaches and
labelled datasets.

3 Dataset

This project focuses on the development of a struc-
tured, balanced, and semantically coherent dataset
designed to support research on the automatic iden-
tification and classification of machine-generated
versus human-written scientific abstracts. In order
to evaluate this task with high fidelity and domain
diversity, we compiled a dataset that not only spans
a wide range of scientific disciplines but also en-
sures that each data point includes two correspond-
ing versions of the same abstract: one written by a
human and another generated by a machine.

The entire data pipeline—from initial collection
to the final preparation of train and test sets—was
carefully engineered to respect the semantic in-
tegrity of abstract pairs and the thematic propor-
tionality of the dataset. This section outlines the
key stages of that process, namely the dataset com-

pilation via API scraping and metadata filtering,
followed by a custom train-test split procedure that
guarantees class balance, category proportionality,
and the preservation of human-machine abstract
pairs.

3.1 Original and generated abstracts

The human-written abstracts were collected lever-
aging the Semantic Scholar Graph API to retrieve
metadata and abstracts for a wide range of scien-
tific papers across multiple disciplines. The query
process was domain-driven, using keywords and
filters to target articles in areas such as medicine,
physics, environmental science, engineering, com-
puter science, chemistry, biology, and materials
science.

For each query result, the script extracted sev-
eral fields of interest, including the paper’s title,
abstract, year of publication, venue, DOI, unique
paper ID, and URL. Additional metadata was col-
lected when available through integrations with the
Unpaywall and Crossref APIs, which were used to
verify open-access status and ensure the retrievabil-
ity of the original documents.

To maintain linguistic and disciplinary consis-
tency, the script applied a series of filtering criteria.
First, only abstracts written in English were re-
tained, as determined using the langdetect library.
A minimum abstract length threshold was enforced
to guarantee sufficient content for accurate lan-
guage detection. Second, the script discarded non-
research content, such as editorials or metadata-
only entries, and prioritised papers for which a
PDF was accessible or openly licensed. A human
curation and review process was also implemented
to verify abstract consistency and validity.

Once cleaned and filtered, each abstract was
stored along with its associated metadata in a struc-
tured format. These abstracts constitute the human-
authored portion of the final dataset.

The machine-generated abstracts were produced
using the model GPT-4.1. For each scientific article
retrieved in the previous stage, the first 10 pages
of the full-text document were used as input to the
model. These pages were either extracted from
the available PDFs or obtained through additional
metadata queries and processing pipelines that re-
constructed the document’s main body content.

The GPT-4.1 model was prompted to generate
an abstract that closely followed the conventions
of scientific abstract writing: summarising the re-
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Domain Human Machine
biology 13,057 12,512
business 7,047 6,763
chemistry 11,770 10,838
computer science 9,163 8,361
economics 6,410 6,943
education 14,503 10,028
engineering 12,044 11,140
environmental science 18,313 13,229
materials science 8,574 7,740
medicine 20,063 17,782
physics 28,910 26,160
sociology 7,413 6,249

Table 1: Total word count per category for human- and
machine-written abstracts.

search problem, methodology, and key findings in
a concise and coherent format. No abstract was
generated unless a minimum threshold of source
content was available (i.e., a full 10-page span or
an equivalent amount of text). This ensured that the
machine-generated abstract had sufficient context
and detail to mirror the function and structure of
the original human-written abstract.

All generated abstracts were paired with their
corresponding human-written versions using the pa-
per’s title as a unique ID, and both versions shared
the same category and metadata. This pairing pro-
cess resulted in a clean and balanced dataset where
each title appears exactly twice—once under the
label human and once under the label machine.

The total word count analysis reveals consistent
patterns across categories, with human-written ab-
stracts generally containing slightly more words
than their machine-generated counterparts. This
trend is observed in nearly all disciplines, most
notably in fields like medicine, physics, and envi-
ronmental science, which show the highest overall
word volumes. The discrepancy in length may re-
flect differences in content density, verbosity, or
summarisation strategies between human authors
and the language model.

3.2 Split with pair integrity

Once the full dataset of human–machine abstract
pairs had been compiled and validated, the next
step was to divide it into a training set and a test
set, in a way that would enable reliable supervised
learning and fair evaluation. This division was
carried out with particular attention to three key

Figure 1: Train split

requirements: semantic pairing integrity, class bal-
ance, and thematic proportionality across scientific
categories.

The core structural unit of the dataset is the ab-
stract pair, consisting of one human-written and
one machine-generated version of the same scien-
tific paper. In order to prevent data leakage and
preserve the semantic boundary between training
and test samples, it was essential that these pairs
remain intact during the split. That is, both the hu-
man and machine versions of a given abstract had
to be assigned to the same subset—either training
or test. Splitting the two across subsets would have
introduced significant risk of semantic overlap, as
both versions are derived from the same source
paper and often convey similar core content.

To enforce this constraint, the split was per-
formed at the level of the paper title, which
uniquely identifies each pair. Only titles that ap-
peared exactly twice in the dataset—once with each
version—were eligible for inclusion. The total pool
of such valid pairs was then randomly divided into
training and test sets using an 80/20 stratified split,
with stratification based on the category assigned
to each paper. This ensured that the topical distri-
bution of abstracts across disciplines (e.g., physics,
medicine, computer science) remained proportion-
ally balanced in both subsets.

After assigning titles to either the training or
test set, all associated abstracts and metadata were
recovered using the title as the join key. This ap-
proach guaranteed that the final training and test
sets were (i) fully balanced in terms of class la-
bels (human and machine); (ii) proportionally dis-
tributed across scientific categories (iii) free from
any leakage or overlap of semantically equivalent
texts.

Following the train–test split, a final validation
step was performed to ensure the integrity of the
abstract pair structure within each subset. This
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Figure 2: Test split

involved verifying that each paper ID appeared
exactly once per version (i.e., once for the human-
written abstract and once for the machine-generated
one), and that both instances were assigned to the
same subset.

This was achieved by counting the frequency of
each ID in the training and test sets independently.
The results of this verification confirmed that all
pairs were preserved and correctly assigned, with
no instances of cross-subset leakage or structural
inconsistencies.

4 Experiments

This study investigates the capacity of computa-
tional models to classify scientific abstracts ac-
cording to their authorship—human or machine-
generated. The classification task was designed as
a binary decision problem and explored through
three complementary modelling approaches: (1)
prompt-based classification using large language
models (LLMs), (2) supervised fine-tuning of
a transformer-based classifier with parameter-
efficient adaptation, and (3) traditional machine
learning pipelines based on bag-of-words represen-
tations.

4.1 Experimental setup

In this section we aim to explore which model
and configuration performs best when classifying
human vs. machine generated text. To this end,
different setups have been explored and are detailed
below.

Prompt-based LLM classification In the first
setup, a suite of instruction-tuned large language
models (LLMs) was used to perform zero-shot clas-
sification. Each model was prompted with a re-
search abstract and asked to determine whether it
had been written by a human or generated by a
machine. A fixed prompt template was used for

all models to ensure consistency and comparability
across predictions.

• System prompt: You are a diligent assistant
that labels research abstracts. Reply strictly
with either ’human’ or ’machine’ and nothing
else.

• User prompt: Classify the following abstract
as written by a human or by a machine. An-
swer with only ’human’ or ’machine’. Ab-
stract: * Classification: *

No few-shot examples were provided, and no ad-
ditional formatting was required from the model
output beyond the binary label. Different mod-
els with different parameter configuration and size
were used:

• OpenAI: GPT-4.1, o4-mini, GPT-4o-mini

• LLaMa 4: llama4-scout-instruct-basic, lama4-
maverick-instruct-basic

• Qwen3: qwen3-30b-a3b, qwen3-235b-a22b

• DeepSeek: deepseek-r1-basic

Fine-tuned transformer with LoRA To comple-
ment zero-shot inference with supervised learning,
we employed the AutoGOAL AutoML framework
(Estevez-Velarde et al., 2020) to automatically ex-
plore and optimise deep learning pipelines based
on transformer architectures. AutoGOAL was ex-
tended to include 44 pipeline variants across 13
transformer-based language models (introduced by
Estevanell-Valladares et al., 2024), sourced from
the Hugging Face model hub (Jain, 2022). These
models included various fine-tuning strategies: full
fine-tuning, partial fine-tuning (top-layer adapta-
tion), and Low-Rank Adaptation (LoRA).

Training and evaluation were performed on a
workstation equipped with an NVIDIA RTX 4090
GPU, allowing efficient gradient-based learning
across configurations. Each pipeline was evaluated
using 2-fold stratified cross-validation on the train-
ing set. The best-performing pipeline selected by
AutoGOAL used LoRA fine-tuning over a Distil-
BERT base model.

Traditional machine learning baseline To es-
tablish a non-neural baseline, we also constructed
and tuned a traditional machine learning pipeline
built on sparse vector representations. The pipeline
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consisted of a HashingVectorizer for text featurisa-
tion and a PassiveAggressiveClassifier for classifi-
cation.

The HashingVectorizer was configured to use
over two million features, binary encoding, and L1
normalisation, transforming text into a fixed-length
sparse binary representation. The classifier was
optimised with a high aggressiveness parameter
(C=9.991) and evaluated using stratified validation
on the training set.

4.2 Results

The performance of the large language mod-
els (LLMs) on the binary classification
task—determining whether a scientific ab-
stract was written by a human or generated by an
AI—revealed a consistent trend: despite strong
general-purpose capabilities, the models exhibited
difficulty distinguishing between the two classes in
a reliable manner.

Across all LLMs evaluated, F1 scores remained
low, rarely exceeding 0.34. The best-performing
model, Qwen3-235B, achieved an F1 score of
0.335, followed closely by GPT-4.1 and DeepSeek-
R1, with scores of 0.333 and 0.332 respectively.
Accuracy scores hovered near 49–50% for most
models, suggesting that predictions were often
close to chance level in aggregate, despite marginal
gains in class-specific precision or recall. The con-
fusion matrix in Figure 3 suggests that Qwen3-
235B, which is the best LLM, almost always mis-
takes every machine-generated abstract for human
writing.

This performance gap highlights a critical lim-
itation of general-purpose LLMs when applied
to subtle authorship attribution tasks involving
highly similar content, such as pairs of human- and
machine-written scientific abstracts derived from
the same paper. The task appears to require more
fine-grained discriminative capabilities than current
zero-shot prompting strategies afford.

In contrast, the best-performing model emerged
from a supervised approach using LoRA fine-
tuning on top of the distilbert-base-multilingual-
cased encoder. This configuration, discovered
through AutoGOAL’s AutoML pipeline search,
achieved a markedly superior F1 score of 0.974,
with equivalent levels of accuracy, precision,
and recall. These results underscore the value
of task-specific training, particularly when us-
ing parameter-efficient fine-tuning techniques like

Figure 3: Confussion matrix for the best-performing
LLM

Model Acc P R F1
LoRA DistilBERT 0.974 0.974 0.974 0.974
PassiveAggressive 0.972 0.972 0.972 0.972
Qwen3-235B 0.490 0.357 0.490 0.335
GPT-4.1 0.487 0.328 0.487 0.333
DeepSeek-R1 0.494 0.280 0.493 0.332

Table 2: Accuracy, precision, recall, and F1 score of
the best-performing models across the classification ap-
proaches.

LoRA.
The fine-tuned encoder demonstrated consistent

and robust performance across all metrics, cor-
rectly classifying nearly all abstracts in the test set.
This outcome confirms that the classification sig-
nal—though subtle—can be captured by a discrim-
inative model when exposed to labelled examples
during training.

The traditional ML pipeline, consisting of a
HashingVectorizer and a PassiveAggressiveClassi-
fier, also performed strongly. With an F1 score of
0.972, it rivaled the fine-tuned transformer despite
relying solely on sparse feature representations and
linear decision boundaries. This result highlights
that surface-level textual features may encode suf-
ficient information to distinguish between human
and machine authorship in abstracts, possibly due
to differences in vocabulary frequency, sentence
structure, or lexical density.

5 Discussion

The results of our experiments reveal a notable
pattern in the performance of the classification
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models: large language models (LLMs), including
cutting-edge systems such as GPT-4.1 and Qwen3-
235B, consistently performed near chance level
in distinguishing between human- and machine-
written scientific abstracts. In contrast, both the
fine-tuned transformer model and the traditional
classifier achieved near-perfect performance, with
F1 scores of 0.974 and 0.972 respectively.

This sharp discrepancy raises several important
questions about the nature of the detection task
and the limitations of zero-shot LLM inference.
The underwhelming results of the LLMs may stem
from the zero-shot setup used in the experiments.
Although LLMs have demonstrated broad com-
petence in a range of generative and reasoning
tasks, their performance in subtle classification
settings—particularly without task-specific train-
ing—is often limited. In our case, the classification
task relies on capturing fine-grained, often imper-
ceptible linguistic differences between two texts
that are topically identical and structurally simi-
lar. These nuances may not be readily detectable
without additional context or calibration.

Another contributing factor is the in-domain sim-
ilarity of the texts. Since both human- and machine-
generated abstracts summarise the same research
paper, they often share terminology, structure, and
even phrasing. This results in minimal surface-
level variation—precisely the kind of variation that
LLMs may overlook in the absence of tailored
prompting or fine-tuning.

Furthermore, LLMs are inherently generative,
not discriminative. When repurposed for binary
classification in a zero-shot setting, they rely heav-
ily on probabilistic reasoning and internal priors,
which may not be accurate for a highly specific
detection task such as this. Their inability to iden-
tify stylistic markers of synthetic writing without
explicit examples severely limits their utility in au-
thorship verification.

The success of both the traditional PassiveAg-
gressive classifier and the LoRA-fine-tuned Dis-
tilBERT suggests that authorship signals do ex-
ist in the data, but they are subtle and best cap-
tured by models with explicit supervision. The
dataset shows a consistently higher word count
in the generated versions by domain, which may
have been a clear indicator for these models. There
may be some lexical patterns such as “This pa-
per/study/review presents/examines/provides. . . ”

The PassiveAggressive classifier, leveraging a

simple bag-of-words approach, likely benefits
from capturing statistical regularities in vocabu-
lary use, lexical density, or syntactic patterns that
differ—perhaps subtly but consistently—between
human and machine writers. These cues might in-
clude phrase redundancy, sentence-initial tokens,
or unnatural repetition that are hard to detect per-
ceptually but easily exploited by statistical models.

The DistilBERT model, fine-tuned via LoRA,
excels likely because it is explicitly trained on the
classification objective, allowing it to learn nuanced
distinctions over multiple layers of abstraction. The
results highlight the value of supervised discrimina-
tive learning even in tasks where the classes appear
nearly indistinguishable to a human reader or an
unadapted LLM.

These findings carry significant implications:

• The detection of AI authorship may not re-
quire deep semantic modelling, but rather ben-
efits from the exploitation of shallow stylis-
tic inconsistencies. This opens opportunities
for lightweight, interpretable, and resource-
efficient detection systems.

• Future detection strategies should consider
ensemble approaches, combining the broad
generalisation of LLMs with the precision of
discriminative classifiers.

6 Conclusions and Future Work

This study investigated the detection of AI-
generated content in scientific abstracts by evaluat-
ing a range of modelling strategies, including zero-
shot prompting of large language models (LLMs),
fine-tuned transformer encoders, and traditional
machine learning classifiers. Surprisingly, the most
advanced LLMs—including GPT-4.1 and Qwen3-
235B—performed at near-chance levels in the bi-
nary classification task. In contrast, a lightweight
encoder-based model fine-tuned with Low-Rank
Adaptation (LoRA) and a traditional PassiveAg-
gressive classifier achieved near-perfect classifica-
tion accuracy.

These findings suggest that while LLMs excel
at text generation and general reasoning, they are
not well-suited for fine-grained authorship attri-
bution in a zero-shot setting, especially when the
candidate texts share substantial semantic overlap.
On the other hand, task-specific supervised ap-
proaches—both neural and statistical—are capable
of capturing subtle linguistic cues that differentiate
human- and machine-generated writing.
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Several limitations should be noted: (i) LLMs
were tested exclusively in zero-shot mode, without
prompt tuning, few-shot examples, or in-context
learning strategies; (ii) all synthetic abstracts were
produced by GPT-4.1, which may limit general-
izability; (iii) the study focused exclusively on
English-language abstracts.

Building on this limitations, several promising
directions can be pursued:

• Explainable detection: Integrating explainabil-
ity tools (e.g., SHAP, attention visualisation)
into detection pipelines could reveal which
linguistic features signal machine authorship
and support trust in automated tools.

• Multilingual detection: Expanding the dataset
and experiments to include other languages
would allow evaluation of AI authorship de-
tection across diverse linguistic and cultural
contexts.

• Human-in-the-loop verification: Combining
automated detection with expert judgment
could yield hybrid frameworks that balance ef-
ficiency and reliability in academic publishing
workflows.

• Comparison with abstracts from scientific pa-
pers published after gen-AI open-source tools,
with the purpose of inferring whether auto-
matic writing is being used in scientific writ-
ing.
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