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Abstract
We address hyperbole detection as a bi-
nary classification task, comparing rule-
based methods, fine-tuned transformers (BERT,
RoBERTa), and large language models (LLMs)
in zero-shot and few-shot prompting (Gemini,
LLaMA). Fine-tuned transformers achieved the
best overall performance, with RoBERTa attain-
ing an F1-score of 0.82. Rule-based methods
performed lower (F1 = 0.58) but remain effec-
tive in constrained linguistic contexts. LLMs
showed mixed results: zero-shot performance
was variable, while few-shot prompting no-
tably improved outcomes, reaching F1-scores
up to 0.79 without task-specific training data.
We discuss the trade-offs between interpretabil-
ity, computational cost, and data requirements
across methods. Our results highlight the
promise of LLMs in low-resource scenarios
and suggest future work on hybrid models and
broader figurative language tasks.

1 Introduction

Hyperbole, a common figure of speech that in-
volves deliberate exaggeration, plays an important
role in natural language communication by con-
veying emphasis, emotion, and humor. Detecting
hyperbole automatically is a challenging yet valu-
able task for natural language processing (NLP),
with applications in sentiment analysis, position
detection, sarcasm recognition, and computational
humor. Despite its linguistic and practical signifi-
cance, hyperbole detection remains underexplored
compared to related figurative language phenom-
ena such as metaphor, irony, and sarcasm (Zhang
and Wan, 2021; Troiano et al., 2018; Zhang et al.,
2024).

The first systematic work on hyperbole detec-
tion was carried out by Troiano et al. (2018), who
introduced HYPO, the first dataset dedicated to
exaggeration detection. Their study framed hyper-
bole detection as a supervised binary classification

problem and demonstrated that semantic features,
particularly those that capture quantity and quality,
two core linguistic dimensions of exaggeration, en-
abled traditional classifiers such as logistic regres-
sion to achieve beyond chance performance. How-
ever, these early rule-based and feature-engineered
approaches, although interpretable, suffered from
limited generalizability and required extensive lin-
guistic knowledge (Chen et al., 2022; Oprea and
Magdy, 2019; Eke et al., 2021).

The field progressed with the adoption of deep
learning methods, motivated by the need for richer
semantic representations. Early neural models
such as CNNs and LSTMs provided moderate im-
provements Ghosh and Veale (2016); Chen et al.
(2022), and Kong et al. (2020) demonstrated that
deep learners could substantially outperform tradi-
tional models. Their introduction of HYPO-cn, a
Chinese dataset, further expanded the scope of re-
search, showing that LSTM-based systems combin-
ing handcrafted and embedding features achieved
up to 85.4% accuracy.

A major breakthrough came with the advance
of transformer-based models. Fine-tuning BERT
on the HYPO dataset improved accuracy to 80%
(Zhang and Wan, 2021), significantly surpassing
earlier methods and confirming the effectiveness
of learned contextual representations for hyperbole
detection. Further refinements, such as multitask
training with literal paraphrases, achieved addi-
tional gains (Biddle et al., 2021; Schneidermann
et al., 2023).

More recently, research has turned towards large
language models (LLMs). While LLMs such as
LLaMA, BLOOM, and ChatGPT exhibit strong
general-purpose language understanding, studies
show that their zero-shot hyperbole detection per-
formance is weak, reflecting an incomplete grasp of
this figurative device (Badathala et al., 2023). Even
when able to recognise prototypical hyperboles,
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LLMs struggle with cases involving overlap with
metaphors or context-dependent exaggeration. To
address these shortcomings, recent work explores
advanced prompting techniques (Zheng et al., 2025;
Xu et al., 2024) and hybrid approaches combin-
ing LLMs with human expertise, rule-based veri-
fication, or emotion-aware modules (Cohen et al.,
2025; Qu et al., 2024).

In this paper, we conduct a comprehensive com-
parison of three distinct approaches for hyper-
bole detection: (1) a handcrafted rule-based sys-
tem, (2) fine-tuned transformer models, and (3)
prompt-based inference with LLMs in zero-shot
and few-shot settings. Our evaluation on bench-
mark data reveals the strengths and limitations of
each paradigm in terms of accuracy, computational
efficiency, and generalisability. We show that while
fine-tuned transformers achieve the highest perfor-
mance, LLMs offer competitive results with min-
imal task adaptation, and rule-based methods re-
main viable in constrained scenarios.

The contributions of this study are as follows:
(i) an empirical analysis and comparative evalua-
tion of hyperbole detection using diverse method-
ologies ranging from rule-based methods through
deep learning models to large language models, (ii)
a thorough evaluation of prompt-based LLMs ap-
plied to this task, and (iii) insight into the strengths
and limitations of each method within the task’s
challenging landscape.

The rest of the paper is structured as follows.
Section 2 overviews related work. Section 3 de-
tails the data used in this study. Section 4 presents
the experimental setup, outlining the approaches
employed, while Section 5 reports the evaluation
results. Section 6 offers discussion of the results.
Finally, Section 7 summarises the main findings
and proposes future research directions.

2 Related Work

While NLP has long studied figurative language
phenomena such as metaphor, irony, and sarcasm,
hyperbole detection has only recently emerged as a
dedicated research topic. It was largely overlooked
until Troiano et al. (2018) introduced the HYPO
dataset, the first corpus of hyperbolic and literal
sentences. Their work framed hyperbole detection
as a supervised binary classification problem and
demonstrated that handcrafted features grounded in
linguistic theory—particularly quantity and quality
distinctions—enabled traditional classifiers such as

logistic regression to achieve up to 76% F1 score
when literal paraphrases were used as negative ex-
amples.

Early approaches mainly relied on rule-based
methods and lexical heuristics (Burgers et al.,
2016). These methods exploited cues such as ex-
treme adjectives, interjections, or polarity intensi-
fication (Kunneman et al., 2015) to identify exag-
gerations. While interpretable, such systems were
brittle and lacked scalability to diverse real-world
data. The release of HYPO enabled systematic
experimentation with machine learning methods,
establishing a foundation for subsequent research.

The next wave of studies adopted neural mod-
els, motivated by their ability to capture deeper
semantic information. Ghosh and Veale (2016) ex-
plored early neural network architectures, while
Kong et al. (2020) showed that deep learning ap-
proaches substantially outperformed feature-based
models. Their work introduced HYPO-cn, a Chi-
nese dataset, and demonstrated that an LSTM-
based model could achieve 85.4% accuracy by in-
tegrating embeddings with handcrafted features.

Transformer-based models soon set the state of
the art. Zhang and Wan (2021) reported that fine-
tuning BERT on HYPO improved accuracy to 80%,
a significant leap over the best traditional baseline
of 72%. Biddle et al. (2021), Badathala et al. (2023)
and Schneidermann et al. (2023) extended this line
of research by using multitask learning and literal
paraphrases as privileged information, showing that
transformers could exploit more nuanced contex-
tual signals.

More recently, researchers have evaluated LLMs
such as LLaMA, BLOOM, and ChatGPT for hy-
perbole detection. Although these models perform
well on a wide range of NLP tasks, their zero-
shot performance on hyperbole classification is
poor, revealing a limited understanding of exag-
geration (Badathala et al., 2023). Even ChatGPT,
which can correctly classify prototypical hyper-
boles, struggles with multi-class cases involving
metaphor-hyperbole overlaps. To improve LLM
performance, studies have investigated advanced
prompting methods, including chain-of-thought
reasoning, which helps models articulate reasoning
but still fails to capture the emotional and contex-
tual subtleties of hyperbole (Zheng et al., 2025; Xu
et al., 2024).
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Split Label Source # sentences Total per label Total per split

train

0
HYPO L 1979

2917

5834

HYPO - literal 469
HYPO - paraphrase 469

1
HYPO - hyperbole 469

2917HYPO L 767
HYPO XL 1681

dev

0
HYPO L 120

360

720

HYPO - literal 120
HYPO - paraphrase 120

1
HYPO - hyperbole 120

360HYPO L 120
HYPO XL 120

test

0
HYPO L 120

360

720

HYPO - literal 120
HYPO - paraphrase 120

1
HYPO - hyperbole 120

360HYPO L 120
HYPO XL 120

Total: 7274

Table 1: Data splits.

3 Data

In this section, we describe the datasets used in our
experiments, along with the procedure for splitting
the data into training, development, and test sets.

3.1 Used datasets
We used three existing datasets: HYPO (Troiano
et al., 2018), HYPO L, and HYPO XL 1.(Zhang
and Wan, 2021)

HYPO contains 2,127 sentences, with 709 exam-
ples of hyperbole and 1,418 without. Of the non-
hyperbolic sentences, 709 are literal paraphrases
of the hyperbolic ones (where hyperbolic words
or phrases were replaced with literal equivalents).
The remaining 709 non-hyperbolic sentences fea-
ture the same phrases in their literal sense.

HYPO L consists of 3,226 sentences: 1,007 with
hyperbole and 2,219 without. These sentences
were first automatically annotated and then human-
verified for accuracy.

HYPO XL is made up of 17,862 automatically
annotated sentences, all of which contain hyper-
bole.

3.2 Data splits
The original datasets exhibit a high degree of class
imbalance. To enable robust training and evalua-

1https://github.com/yunx-z/MOVER

tion, we constructed a balanced dataset through a
two-stage process.

In the first stage, we merged the HYPO and
HYPO L datasets and recast the task as binary clas-
sification, assigning a label of 1 to hyperbolic sen-
tences and 0 to non-hyperbolic ones. We then sam-
pled additional hyperbolic instances from HYPO
XL to achieve an equal number of examples for
each class in the combined dataset.

In the second stage, we partitioned the data into
training, development, and test sets. Both the de-
velopment and test sets are perfectly balanced, con-
taining 720 sentences each—360 hyperbolic and
360 non-hyperbolic—while also maintaining an
equal distribution across the original data sources.
The training set consists of the remaining 5,834 sen-
tences, evenly split between the two classes. How-
ever, in contrast to the development and test sets,
the distribution of examples across data sources in
the training set is not uniform.

Table 1 summarises the size and composition of
each data split.

4 Experimental setup

We frame hyperbole detection as a binary sentence
classification task, where each input sentence is
labeled as either hyperbolic or non-hyperbolic. In
this section, we describe the model architecture,
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training configuration, and evaluation methodology
used in our experiments. The objective is to com-
pare the performance of a rule-based approach with
two deep learning models and two large language
models for the task of hyberbole detecton.

4.1 Rule-based method
Our rule-based approach to automatic hyperbole
detection integrates lexical, syntactic, and seman-
tic cues derived from established linguistic re-
sources and syntactic analyses. The system lever-
ages a combination of handcrafted lexicons, pattern
matching, and semantic incongruity detection to
identify exaggerated language indicative of hyper-
bole.

4.2 Data Preprocessing and Linguistic
Analysis

For linguistic analysis, input sentences are pro-
cessed using Stanza POS tagging (Qi et al., 2020),
which provides tokenization, part-of-speech tag-
ging, lemmatisation, and dependency parsing. This
comprehensive linguistic annotation enables pre-
cise syntactic and semantic analysis necessary for
detecting subtle forms of exaggeration.

4.2.1 Lexical Resources and Hyperbole
Lexicons

We curate several lexicons capturing common hy-
perbolic expressions across various semantic do-
mains. To construct these lexicons, we manually
reviewed the training set exclusively, deliberately
excluding the development and test sets to avoid
bias.

• Quantity and Size Adjectives: Adjectives
such as endless, gigantic, and limitless that
represent exaggerated quantities or magni-
tudes.

• Intense Emotion Verbs and Adjectives:
Verbs and adjectives conveying heightened
emotional states (e.g., die, cry, terrified, ec-
static), used to detect emotional overstate-
ments.

• Temporal Exaggerators: Nouns and adverbs
denoting exaggerated durations (e.g., eternity,
forever, centuries).

• Hyperbolic Idiomatic Expressions: A pre-
defined set of verb-object pairs known to form
hyperbolic idiomatic expressions (e.g., cry me
a river, break heart).

4.2.2 Rule-Based Detection of Hyperbolic
Patterns

A collection of syntactic and lexical rules is applied
to each processed sentence to identify potential
hyperbolic cues:

1. Exaggerated Quantity or Size: Detection of
adjectives from the quantity and size lexicons
or large numeric expressions (e.g., million,
billion).

2. Unrealistic Comparisons: Identification of
comparative constructions typical of hyper-
bole, such as similes employing patterns like
as . . . as or like a.

3. Emotional Overstatement: Recognition of
verbs and adjectives associated with intense
emotions, with special handling for frequent
colloquial hyperbolic phrases (e.g., so hun-
gry).

4. Temporal Exaggeration: Detection of tem-
poral terms implying extreme duration.

5. Superlative Forms: Identification of superla-
tive adjectives (e.g., biggest, most incredible).

The complete set of rules and the associated lex-
icons are provided in the Appendix (see Appendix
A for the lexicons and Appendix B for the rule
set)2.

4.2.3 Semantic Incongruity Analysis
To complement surface-level rules, we incorporate
semantic checks to detect incongruities frequently
present in hyperbolic expressions:

• WordNet Domain Analysis: Utilizing the
WordNet lexical database, semantic domains
for verbs and nouns are extracted to assess se-
mantic compatibility. Abstract subjects paired
with concrete predicates may signal hyper-
bole.

• Verb-Object Selectional Preferences: By
comparing verb domains against expected
noun domains, the system flags semanti-
cally incongruous verb-object pairs (e.g., eat
horse).

• Idiomatic Hyperbole Pairing: Known id-
iomatic hyperbolic pairs are matched directly
to capture conventionalised exaggerations.

2Available at: https://drive.google.com/
file/d/1JWRMGPyb7mWrWj0DrEV-JHUjVWge3C_
P/view?usp=sharing

https://drive.google.com/file/d/1JWRMGPyb7mWrWj0DrEV-JHUjVWge3C_P/view?usp=sharing
https://drive.google.com/file/d/1JWRMGPyb7mWrWj0DrEV-JHUjVWge3C_P/view?usp=sharing
https://drive.google.com/file/d/1JWRMGPyb7mWrWj0DrEV-JHUjVWge3C_P/view?usp=sharing
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4.3 Fine-tuning Transformer Models
For our experiments with transformer-based mod-
els, we selected BERT and RoBERTa. For both
models, we adopted the standard architecture pro-
vided by the Hugging Face Transformers library.

4.3.1 BERT model
Model Architecture We use a standard
transformer-based architecture for binary sen-
tence classification, based on the pretrained
bert-base-cased model from the Hugging
Face Transformers library. This version of
BERT consists of 12 transformer layers, each
with 12 self-attention heads and a hidden size
of 768. The model is implemented using the
BertForSequenceClassification class,
which appends a linear classification layer on top
of the [CLS] token representation to predict one
of two class labels: hyperbolic or non-hyperbolic.
The model is fine-tuned end-to-end on our
task-specific data.

Training Configuration The model is fine-tuned
using the AdamW optimiser with a learning rate
of 2× 10−5 and trained for 3 epochs with a batch
size of 16. A linear learning rate scheduler without
warm-up steps is used throughout training. Sen-
tences are tokenised using the BertTokenizer,
with all inputs truncated or padded to a maximum
length of 128 tokens.

Evaluation Methodology Model performance
is assessed on the test set. We report standard
classification metrics, including accuracy, preci-
sion, recall, and F1-score, computed using the
scikit-learn library. Evaluation is conducted
in batches using PyTorch’s no grad() context
to disable gradient tracking. Predicted labels are
stored alongside the gold labels to support detailed
error analysis.

4.3.2 RoBERTa model
Model Architecture We use the multilingual
XLM-RoBERTa base model for our experi-
ments, treating the task as a binary sentence clas-
sification problem. The model follows a standard
transformer encoder architecture, consisting of 12
layers, each with 768 hidden units and 12 self-
attention heads. On top of the transformer back-
bone, a classification head is added—a fully con-
nected layer followed by a softmax layer that out-
puts a probability distribution over two classes: hy-
perbolic and non-hyperbolic.

Training Configuration The model is fine-tuned
using the Hugging Face Transformers library. In-
put texts are tokenised using the corresponding
AutoTokenizer, with truncation and padding
applied to ensure a maximum sequence length
of 128 tokens. Training is performed using the
AdamW optimiser with a learning rate of 2e-5,
over 3 epochs, and with a batch size of 16. A linear
learning rate scheduler without warm-up steps is
employed. The model is trained using the cross-
entropy loss.

Evaluation Methodology We evaluate model
performance on both the development and test sets
using standard classification metrics: accuracy, pre-
cision, recall, and F1-score. Predictions are ob-
tained by selecting the class with the highest soft-
max probability.

4.4 LLM-based methods

For the large language model (LLM) experiments,
we evaluated two instruction-tuned models: Gem-
ini (proprietary, accessed via API) and LLaMA
(open-weights, accessed via the Hugging Face
Transformers library). Both models were tested
in zero-shot and few-shot configurations. The
task required the model to predict whether a
given sentence contains hyperbole, returning either
"hyperbole" or "not hyperbole".

4.4.1 Prompting Strategies
In the zero-shot setting, each model was given only
a natural language instruction along with the input
sentence, as shown below:

You are a helpful assistant for
↪→ detecting hyperbole.

Classify the following text into one of
↪→ two categories: hyperbole or not
↪→ hyperbole.

Hyperbole is a figure of speech that
↪→ uses extreme exaggeration to
↪→ emphasize a point or create a
↪→ strong impression. It is not
↪→ meant to be taken literally and
↪→ is often used for humor or
↪→ dramatic effect.

Output only the predicted label (either
↪→ hyperbole or not hyperbole) and
↪→ nothing else.

Now classify the following text:

Text: {text}
Classification:
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In the few-shot setting, the prompt included
the same instruction followed by several example
text–label pairs, illustrating both hyperbolic and
non-hyperbolic cases. An example prompt is given
below:

You are a helpful assistant for
↪→ detecting hyperbole.

Classify the following text into one of
↪→ two categories: hyperbole or not
↪→ hyperbole.

Hyperbole is a figure of speech that
↪→ uses extreme exaggeration to
↪→ emphasize a point or create a
↪→ strong impression. It is not
↪→ meant to be taken literally and
↪→ is often used for humor or
↪→ dramatic effect.

Here are some examples:

{examples}

Now classify the following text:

Text: {text}
Classification:

The examples were selected to cover a range of
syntactic and semantic structures typically associ-
ated with hyperbolic and literal expressions.

4.4.2 Inference Parameters
To ensure consistent model behaviour across condi-
tions, we fixed the following decoding parameters:

• Temperature: 0 (to enforce deterministic out-
put)

• Max tokens: 5 (to limit responses to concise
labels)

Gemini was accessed via its official API, while
LLaMA was executed locally using the Hugging
Face Transformers interface with identical prompt
structures and generation settings.

The outputs from both models were normalised
to binary labels, with "hyperbole" mapped to
the positive class (1) and "not hyperbole" to
the negative class (0). Any non-standard outputs
were either discarded or resolved using simple pat-
tern matching heuristics.

4.4.3 Evaluation Protocol
All LLM outputs were evaluated against the held-
out test set used consistently across all models. We
computed standard classification metrics, including

accuracy, precision, recall, and F1-score. This al-
lowed for direct and fair comparison with both the
rule-based baseline and the fine-tuned transformer
models.

5 Results

This section presents the evaluation outcomes of
the tested approaches on the classification task. We
report performance metrics across different exper-
imental setups. The results provide insights into
the effectiveness and comparative strengths of each
method.

The results, summarised in Table 2, show a clear
performance difference across the evaluated meth-
ods.

5.1 Rule-Based method

The rule-based method was built using a set of man-
ually designed rules based on common patterns
found in hyperbolic expressions—for example, ex-
treme adjectives, intensifiers, or emotional phrases.
This system achieved an accuracy of 56%, a preci-
sion of 0.55, a recall of 0.60, and an F1-score of
0.58.

These results indicate that the rule-based system
is capable of detecting certain prototypical cases of
hyperbole, particularly when the language follows
well-defined and recognisable patterns. However,
its performance declines when faced with more
subtle, context-dependent, or creatively expressed
instances. This suggests that while rule-based ap-
proaches can offer interpretability and precision in
constrained settings, they lack the flexibility needed
to generalise across the diverse and often ambigu-
ous forms of hyperbolic language found in natural
discourse.

While the overall performance is relatively low
compared to machine learning models, the rule-
based system is still useful. It provides insight
into which linguistic features are most important
for hyperbole and serves as a transparent and inter-
pretable baseline.

5.2 Fine-Tuned Transformer Models

Both BERT and RoBERTa performed much better
than the rule-based system.

• BERT achieved an accuracy of 81%, with pre-
cision of 0.86 and an F1-score of 0.80. BERT
tends to be cautious, favouring precision over
recall. This means it is good at avoiding false
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Method Model Accuracy Precision Recall F1-score
Rule-based - 0.56 0.55 0.60 0.58
Fine-Tuned Transformer BERT 0.81 0.86 0.75 0.80
Fine-Tuned Transformer RoBERTa 0.82 0.81 0.83 0.82
LLM zero-shot Gemini-2.5-flash-lite 0.71 0.80 0.58 0.67

Meta-Llama-3-8B-Instruct 0.68 0.80 0.47 0.59
LLM few-shot Gemini-2.5-flash-lite 0.78 0.80 0.78 0.79

Meta-Llama-3-8B-Instruct 0.74 0.68 0.88 0.77

Table 2: Results on the test set.

positives, which is helpful in situations where
incorrect detection could be problematic.

• RoBERTa performed slightly better than
BERT. It achieved the best overall results,
with an accuracy of 82%, recall of 0.83, and
F1-score of 0.82. RoBERTa was better at
finding true cases of hyperbole (higher recall)
while still keeping precision high, possibly
due to its stronger pre-training.

5.3 Large Language Models (LLMs)
We also tested large instruction-tuned models,
Gemini and LLaMA, in zero-shot and few-shot
settings. These models were not fine-tuned on our
dataset, but we gave them task instructions (and a
few examples, in the few-shot setting) at inference
time.

• Gemini Zero-Shot had moderate perfor-
mance, with accuracy of 72% and F1-score of
0.67. It was highly precise (0.80) but missed
many true cases (recall: 0.58), meaning it was
conservative in predicting hyperbole.

• Gemini Few-Shot improved significantly.
With just a few examples, its accuracy rose to
80%, and its F1-score reached 0.79, showing
that few-shot prompting can help LLMs better
understand the task.

• LLaMA Zero-Shot had weaker performance,
with a low recall of 0.46 and F1-score of 0.60,
even though precision remained high (0.80).
Like Gemini, it was overly cautious.

• LLaMA Few-Shot improved the most in re-
call (0.88), meaning it detected many true hy-
perboles, but at the cost of lower precision
(0.68) and more false positives. This suggests
it became overconfident in labelling hyperbole
after seeing a few examples.

6 Discussion

Among all models, RoBERTa achieved the high-
est overall performance (F1 in the low 80s), high-
lighting the effectiveness of fine-tuned transformer
models for hyperbole detection. BERT and Gem-
ini Few-Shot also performed competitively (F1 in
the high 70s), showing that both supervised learn-
ing and few-shot prompting can yield strong results.
Although the gap between fine-tuned transformers
and few-shot LLMs is relatively small, it is prac-
tically meaningful: supervised transformers con-
sistently generalise better across data splits, while
few-shot LLMs offer flexible, annotation-free al-
ternatives that trade a few points of accuracy for
drastically lower requirements in labelled data.

While the rule-based method performed less well
in aggregate metrics (F1 around the high 50s), it
remains valuable in certain settings. One of the
main challenges we faced was the difficulty of
capturing the full range of hyperbolic expressions
through a fixed set of handcrafted rules. Hyper-
bole often relies on creative, context-dependent
language, which makes it hard to exhaustively de-
fine through linguistic patterns alone. As a result,
the system struggled with generalisation and cover-
age. Nevertheless, in highly constrained domains
where hyperbolic forms are stable and predictable,
such systems may perform comparably to neural
approaches, especially when transparency and effi-
ciency are prioritised.

Although the zero-shot LLMs (Gemini and
LLaMA) were less accurate overall (F1 in the high
50s), they show strong potential in low-resource
settings. Their performance improves significantly
with just a few examples, making them flexible
tools for tasks where annotated data is limited or
unavailable. Nevertheless, LLMs are computation-
ally expensive to run and may produce inconsistent
outputs depending on prompt design and input for-
mulation.
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Taken together, these results highlight a trade-
off between performance, data requirements, and
computational costs: fine-tuned transformers de-
liver the strongest accuracy but require labelled
data; few-shot LLMs offer near-competitive results
with minimal annotation; and rule-based systems,
though weakest in absolute performance, provide
efficiency and interpretability in specialised con-
texts.

7 Conclusion and Future work

This paper casts the task of hyperbole detection
as a binary classification problem, comparing
rule-based methods, fine-tuned transformer mod-
els, and large language models (LLMs) in both
zero-shot and few-shot configurations. Our find-
ings demonstrate that fine-tuned transformer mod-
els—particularly RoBERTa—offer the most robust
performance overall, with F1 scores in the low 80s,
clearly outperforming both handcrafted rule sys-
tems and prompt-based LLMs across standard eval-
uation metrics.

The relative performance differences are signif-
icant: while few-shot LLMs achieved F1 in the
high 70s, suggesting they are competitive with fine-
tuned transformers in practical terms, their advan-
tage lies in requiring no annotated training data.
By contrast, zero-shot LLMs and rule-based meth-
ods, both yielding F1 in the high 50s, lag behind in
predictive accuracy but retain value in specific con-
ditions—such as absence of labelled data, domain-
specific constraints, or the need for interpretability.
This performance spectrum indicates that model
choice should be guided by resource availability
and task requirements rather than accuracy alone.

Future work could explore hybrid approaches
that combine the interpretability of rule-based sys-
tems with the generalisability of neural models. In
addition, improving prompt engineering strategies
and model calibration may further enhance the re-
liability of LLMs in zero-shot settings. Finally,
expanding the task to include more nuanced figura-
tive language phenomena, such as irony, may offer
a more comprehensive understanding of exaggera-
tion in natural language.
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