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Abstract

In this paper, we evaluate the performance of
various fine-tuned, transformer-based models
in translating Akkadian into English. Using
annotated Akkadian data, we seek to establish
potential considerations when developing mod-
els for other low-resource languages, which do
not yet have as robust data. The results of this
study show the potency, but also cost ineffe-
ciency of Large Language Models compared
to smaller Neural Machine Translation models.
Significant evidence was also found demon-
strating the importance of fine-tuning machine
translation models from related languages.

Keywords: transformer, neural machine trans-
lation, low-resource, Akkadian

1 Rationale

Ancient languages serve as vital links to our cul-
tural and historical heritage. Akkadian, once the
lingua franca of Mesopotamia (George, 2007), ex-
emplifies this connection. Massive digitisation ini-
tiatives such as ORACC and the CDLI projects
have generated extensive corpora of transliterated
cuneiform texts (Tinney et al., 2025; CDLI Con-
tributors, 2025); for instance, the Ur III corpus
comprises over 72,000 transcribed texts, yet only
2.2% have been translated into modern languages
(Punia et al., 2020). This stark bottleneck under-
scores the need for robust machine translation (MT)
tools that can democratise access to these historical
records for Assyriologists and scholars alike.
Since the introduction of the Transformer ar-
chitecture (Vaswani et al., 2017), MT solutions
have swiftly moved away from statistical models
in favour of neural approaches. The surge in aca-
demic interest in low-resource languages — charac-
terised by their limited digital presence and sparse
representation in training data — has further high-
lighted the challenges faced by contemporary Large
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Language Models such as ChatGPT or Gemini in
low-resource scenarios (Hasan et al., 2024). These
languages necessitate tailored strategies to achieve
robust translations, whether through fine-tuning on
curated sentence pairs or via methods like Retrieval
Augmented Generation (RAG), as explored by Shu
et al. (2024). However, this study focuses exclu-
sively on fine-tuning.

Akkadian itself, though extinct and largely con-
fined to the realm of Assyriology, benefits from a
uniquely rich, highly annotated corpus' with many
bidirectional translations — an advantage seldom
seen in low-resource languages. This abundance
of quality data obviates the need for extensive
data augmentation techniques often employed in
projects for under-documented languages (e.g., as
described in NLLB, 2022). Instead, Akkadian of-
fers an ideal testbed for evaluating the performance
of different pre-trained transformer architectures —
both sequence-to-sequence (seq2seq) models and
causal (decoder-only) models — in a low-resource,
morphologically distinct setting. Additionally, the
relative simplicity of the cuneiform transliteration
system, in which wedge clusters represent syllables
(Schmandt-Besserat, 2014), enables a straightfor-
ward conversion into the Latin alphabet, making
Akkadian particularly amenable to phonetic-like
translation tasks.

Our investigation evaluates how model archi-
tecture, parameter count, and the nature of pre-
training data (including exposure to related Semitic
languages) influence translation quality. By estab-
lishing a performance baseline for Akkadian-to-
English translation, our study not only addresses a
critical gap in the digitisation and translation of an-
cient texts but also lays the groundwork for broader
applications of MT for low-resource languages.

"Entries in Oracc contain descriptions such as line rulings,
which are not necessary regarding this paper, but may be
useful for future research into Akkadian OCR
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The remainder of this paper is structured as fol-
lows. Section 2 provides a background on related
work, including an overview of Akkadian, the digi-
tisation efforts of cuneiform texts, and research on
MT for low-resource languages. Section 3 details
the methodologies used to fine-tune and train the
models, along with the compromises made during
data preparation, and the metrics used for evalua-
tion. Section 4 offers a comprehensive evaluation
of the results, and Section 5 and 6 conclude with a
discussion of the study’s implications and potential
directions for future research.

2 Preliminaries

2.1 Akkadian

Akkadian is an extinct East Semitic language that
was spoken in Mesopotamia — roughly correspond-
ing to modern-day Iraq. Historically, it was written
in cuneiform on clay tablets using a wedge-based
script. Each cuneiform symbol represents a sylla-
ble; for example, to write the word “cat,” the script
would use two distinct symbols, representing “ca”
and “at” respectively (as illustrated by examples
from the British Museum). The transliteration of
these cuneiform texts into the Latin script forms
the source for our machine translation (MT) task.

Akkadian qualifies as a low-resource language
due to its limited online presence (Magueresse
et al., 2020). For the majority of low-resource
languages, this results in difficulty obtaining good
training data — ideally a dataset of parallel sen-
tences. Recent efforts to leverage technology for
preserving cultural heritage and enhancing digital
inclusivity (Galla, 2018; Joshi et al., 2020) have
elevated interest in such languages. Notably, col-
laborative projects like CDLI and Oracc have been
instrumental in digitising vast collections of clay
tablets, thereby providing a rich bilingual corpus
that is rarely available for other low-resource lan-
guages.

There are a few important caveats when using
Akkadian as a benchmark. Although Akkadian was
originally written in cuneiform, its digitised repre-
sentation in CDLI and Oracc is transliterated into
the Latin script. Consequently, the performance
of our MT models specifically reflects translation
challenges for low-resource languages presented in
this format. Additionally, Akkadian occasionally
incorporates Sumerian elements — sumerograms
or logograms — into its script. For instance, the
Akkadian word for “king” is pronounced “sharum”
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yet may be rendered with the Sumerian term “Lu-
gal.” These instances are statistically infrequent
and unlikely to significantly affect overall model
performance.

This study leverages Akkadian’s unique position
as a well-annotated yet low-resource language to
evaluate and refine neural machine translation tech-
niques, ultimately contributing to both the preser-
vation of ancient cultural heritage and the advance-
ment of MT for underrepresented languages.

2.2 Low-Resource Languages

The digital preservation of ancient languages is vi-
tal not only for maintaining the cultural heritage
of communities but also for tapping into a vast
potential market — after all, there are nearly 3 bil-
lion speakers of low-resource languages worldwide
(Kshetri, 2024). Initiatives such as Meta’s No
Language Left Behind (NLLB Team, 2022) have
shown that investment in multilingual translation
goes beyond charity; it opens up entire emerging
markets while preserving unique cultural identities.
In this context, Akkadian stands out as a partic-
ularly interesting case study. Its status as a low-
resource language is compounded by the fact that
our source material is transliterated text — the con-
version of ancient cuneiform (originally inscribed
on clay tablets using wedge impressions) into the
Latin alphabet. An example of this transliteration
process is evident in the texts provided by Oracc
(2025).

2.3 Low-Resource Comparisons and
Cuneiform Translation

Solutions to translate Akkadian have been explored
previously. Krueger (2023a) details the develop-
ment of an AI Cuneiform Corpus — a resource for
Assyriology that leverages a fine-tuned TS trans-
former model to generate translations of both Sume-
rian and Akkadian texts. His work employs bidi-
rectional translation training, whereby the model
is also trained to translate back from English to
the source language. This strategy helps stabilise
convergence across epochs, even though the work
does not report modern metrics, such as BLEU
scores, to benchmark its performance. The model’s
availability on HuggingFace (Krueger, 2023b) en-
ables direct, side-by-side comparisons with other
approaches, making it a valuable reference point
for our own TS experiments.

During a period of heightened interest in the
machine translation of ancient languages, Punia



et al. (2020) evaluated multiple architectures for
translating Sumerian to English. Their study com-
pared a Base Translator — an LSTM-based model
without pre-trained embeddings — against an Ex-
tended Translator that incorporated pre-trained em-
beddings from the Wikipedia corpus (Pennington
et al., 2014), as well as a Transformer-based model.
Despite Transformers’ well-known advantage in
handling long sequences through self-attention,
the brevity of cuneiform inscriptions (with an av-
erage of just 2.8 tokens per phrase in Punia’s
dataset) appears to limit the benefits of this archi-
tectural choice. As a result, the Extended Transla-
tor achieved a slightly higher BLEU score (21.6)
compared to the Transformer (20.9), though the
Transformer still outperformed the Base Trans-
lator. These findings underscore that while self-
attention offers robust performance overall, fine-
tuning specifics — such as access to pre-trained em-
beddings — can be particularly crucial in scenarios
where input sequences are very short.

Shu et al. (2024) further contribute to this discus-
sion by demonstrating how Retrieval Augmented
Generation (RAG) can be used effectively in low-
resource settings — in their case, for Cherokee trans-
lation. Their RAG model, although yielding moder-
ate BLEU scores, showed impressive semantic un-
derstanding as measured by BERTScore. This sug-
gests that even when lexical overlap is low, models
can capture deep semantic meaning if properly con-
textualised through additional data retrieval. While
these findings point to the potential of large lan-
guage models when fine-tuned or augmented appro-
priately, the higher computational costs involved
also highlight the appeal of achieving strong perfor-
mance through more focused, fine-tuning methods
— exactly the approach taken in this project.

3 Data and methodology
3.1 Corpora

A major reason for the choice of Akkadian as the
language of interest is the organisation of data that
exists. Assyriologists have worked to digitise the
world’s discovered cuneiform tablets into organ-
ised corpora. Since this digitising process occurred
over many years, there are inconsistencies within
the standardisation of cuneiform, a problem dis-
cussed by Krueger (2023a). Some symbols are
translated in ASCII, whereas more modern forms
maybe transliterated using accented Unicode char-
acters. For this project, data was gathered from
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the Oracc (2025) and CDLI (2025) corpora. These
corpora are extensive and hold enough translation
examples to train a competent translator.

3.1.1 Oracc Corpus

The Oracc corpus grew out of recognition of the
limitation present in the Electronic Text Corpus of
Sumerian Literature (Black et al., 2002). ETCSL
was initiated by Jeremy Black and Graham Cun-
ningham of the University of Oxford, and had the
ambitious goal to create an online corpus with
Sumerian literary texts, along with their English
translations (Ebeling, 2007). Though a valuable
resource, it was limited in many aspects. Its fo-
cus on Sumerian was problematic when consid-
ering cuneiform, a writing system used to write
countless, linguistically unrelated languages. Fur-
thermore, ETCSL was largely static, limiting the
ability of the community to contribute and stunting
its development. Recognising these limitations, the
Oracc corpus was developed. It allowed for richer
annotation, beyond just translations (Oracc, 2019),
and emphasised openness and collaboration. Oracc
includes glossaries for each subproject within the
overall corpus. These glossaries provide informa-
tion about all the words used within the subproject.
While this is not useful for this project, since the
model should be able to learn words from exposure
during fine-tuning, it does have potential to be use-
ful when considering a technique like RAG (Shu et
al., 2024) discussed earlier. These glossaries could
be used to scrape a wordlist, which can be used as
context for larger models with very potent few-shot
capabilities.

3.1.2 CDLI

The Cuneiform Digital Library Initiative (CDLI),
unlike Oracc, focuses on being a digital archive
for the objects themselves. As such, the tablets
have high quality photos and line art, occasion-
ally with transliterations. It has an emphasis on
unpublished materials, allowing researchers to ac-
cess tablets worldwide for research and study. Both
CDLI and Oracc provide a valuable resource for
this project. Scraping their data allows for translit-
erated Akkadian to be gathered en masse. Further-
more, it allows for untranslated, but still transliter-
ated, texts to be gathered. While not vital to this
project, it is important to a project such as AICC,
which used Krueger’s model to translate previously
undeciphered texts into English.



3.2 Methodology
3.2.1 Models used

The transformers chosen for comparison primar-
ily differ in their architecture, pre-training scope
and parameter size. Broadly, the models chosen
can be split into Sequence-to-sequence (encoder-
decoder) and causal (decoder-only) architectures.
The seq2seq models used here are considered Neu-
ral Machine Translation (NMT) solutions, whereas
the causal models are considered LLM models.
The models chosen were as follows:

* TS-base (Raffel et al., 2020): 250 million pa-
rameter encoder-decoder model that was used
by Krueger (2023a) to translate Akkadian and
Sumerian. Uses C4 corpus with mostly En-
glish text scraped from the web, and is trained
to perform a variety of tasks, including trans-
lation. Since this model was used by Krueger,
it serves as a baseline and sense check for the
quality of our own experiments.

MarianMT (Junczys-Dowmunt et al., 2018):
MarianMT has roughly 75 million parameters,
and is an encoder-decoder model specifically
designed for translation tasks. It has half the
layers of T5-base, and is trained on the OPUS
corpus (Tiedemann, 2012), which contains
parallel corpora in multiple languages. This
model provides insight in the tradeoff between
fine-tuning a multi-purpose model as opposed
to a model designed specifically for transla-
tion.

Qwen 0.5B-Instruct (Yang et al., 2024): A
500 million parameter decoder-only model. It
is inherently multilingual, being trained across
multiple languages. It also utilises some ad-
vancements to the transformer architecture,
such as Rotary Positional Embeddings, which
may allow it to better understand semantics
within sentences. It also uses Grouped-Query
Attention, which may allow for faster infer-
ence times.

Mistral 7B (Lachaux et al., 2023): A 7 bil-
lion parameter decoder-only model developed
by Mistral Al that leverages Grouped-Query
Attention for faster inference. With a param-
eter count 14 times that of Qwen 0.5B, it
offers enhanced few-shot translation perfor-
mance. The model employs a Byte-Pair En-
coding (BPE) tokeniser adapted for transla-
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tion, ensuring robust handling of both ASCII
and Unicode inputs. Training on consumer
hardware is made feasible by using quanti-
sation techniques (Gholami et al., 2022) and
LoRA (Hu et al., 2021), with most parameters
remaining unchanged during fine-tuning.

We seek to establish the performances of these
various transformer-based NMT and LLM models —
each with different architectures, parameter counts
and specifity. As stated, the models chosen for this
experiment are MarianMT, T5, Qwen 0.5B instruct,
and Mistral 7B. These models are advanced enough
to provide worthwhile translations, but can still be
trained on consumer hardware, and run cheaply. TS
and MarianMT are encoder-decoder transformers,
whereas Qwen and Mistral are decoder-only trans-
formers. The decoder-only architecture not only
reduces model size, but also does not need labelled
input that a encoder-decoder model might (Fu et al.,
2023). This means it can be more readily trained
with available data on the internet, hence why it is
favoured by the larger language models. This might
be of benefit in few-shot capabilities when trans-
lating Akkadian to English. Architecturally, Qwen
and Mistral use more modern techniques when em-
bedding and using multiple attention heads. Qwen,
for example, uses Rotary Positional Embeddings
(RoPE). This gives the model an advantage in un-
derstanding relative word relations by reducing the
influence words have on one another with distance,
as opposed to T5’s relative positional embeddings,
which cannot decay dependencies as effectively
(Su et al., 2024). It also benefits faster inference,
because of improvements such as Grouped-Query
Attention, and has a significantly higher context
window then MarianMT and T5.

An important compromise was made in order
to train Mistal 7B. Given the limited VRAM on
consumer hardware, methods were used to lessen
this burden. Namely, through the Unsloth library,
Low-Rank Adaptation (LoRA) was used to freeze
the original model weights, and only train newly
injected matrices. In its introductory paper by
Hu et al. (2021), it was shown that LoRA dras-
tically lowers the resources required to train. GPT
175B’s VRAM consumption during training using
LoRA reduced VRAM consumption form 1.2TB
to 350GB. Despite this, empirical evidence has
also shown that the fine-tuned capability of LoORA
trained models equals, or occasionally outperforms
fully-trained models (Agiza et al., 2024; Peters



et al., 2019). As such, the outcome can still be
considered alongside the other models.

3.2.2 Evaluation Metrics

Translation quality will be assessed using the fol-
lowing metrics:

* BLEU (Papineni et al., 2002): A widely used
metric for evaluating machine translation qual-
ity, BLEU measures the overlap between n-
grams in the generated translation and ref-
erence translations, and includes a brevity
penalty. It is particularly effective for assess-
ing lexical similarity.

* BERTScore (Zhang et al., 2019): This met-
ric evaluates semantic similarity by compar-
ing contextual embeddings of words in the
generated translation against those in refer-
ence translations. BERTScore measures the
accuracy of semantic meaning, making it use-
ful for assessing whether the model captures
intended meanings of text, even if the exact
words differ.

* ROUGE2 (Lin, 2004): This metric measures
bigram overlap between the generated and
reference translations. By capturing both
precision and recall of contiguous word se-
quences, it assesses whether key multi-word
expressions and local phrasal structures are
preserved. In doing so, ROUGE2 comple-
ments BLEU by providing insight into the
preservation of phrase-level content.

3.2.3 Gathering

Oracc provides API’s to access lists of projects
hosted, given in JSON format. Each project has
its own collected corpus of cuneiform translitera-
tions that can be navigated through. Each project
provides different types of documents, and it is im-
portant to appreciate the difference between these
when considering a translator. For example, a
project such as akklove (2025), contains Akkadian
love literature. Within this corpus are lengthy po-
ems that incorporate descriptive vocabulary. On
the other hand, a corpus such as The Royal Inscrip-
tions of Assyria online (Grayson et al., 2025) con-
tains royal inscriptions, which are often shorter and
much more repetitive than akklove. It is important
to appreciate the bias and diversity of the dataset
in order to make best use of it. Data scraped from
these projects are in the form of ATF files, a format

specifically designed to digitise cuneiform tablets,
whilst maintaining metadata about its format.

Krueger (2023b) had already scraped the cor-
pora, and using the same training data provides
a foundational benchmark to assess our models
against existing solutions. Overall, 95,629 samples
were used, with a split of 90% training (86,066)
and 10% testing (9,563). A validation set was not
used in this case, since tuning of hyperparameters
was not performed. Instead, a learning rate of 2e-
5 was used for all models, with varying numbers
of epochs. This is a common learning rate for
fine-tuning transformer models, and was used by
Krueger (2023a).

4 Experiments and Results

The models were each trained with a different num-
ber of epochs. MarianMT models, along with T5,
were trained for 15 epochs, while Qwen 0.5B was
trained for 3. Mistral7B was only trained for 1
epoch. This is mostly due to limitations in compute,
but provides insight into the few-shot capabilities
of the larger models.

4.1 All Sentences

Table 1 reports BLEU, ROUGE-2 and BERTScore
over all test sentences.

¢ Prec - ROUGE?2 Precision

¢ Recall - ROUGE2 Recall

¢ F1 - ROUGE2 F1

It shows 6 fine-tuned models. The LLM’s, Mis-
tral 7B and Qwen 0.5B, as opposed to the NMT
models, MarianAr (Arabic—English), MarianEs
(Spanish—English), Krueger (T5) and T5. The
models are ordered by BLEU score, with Mistral
7B achieving the highest BLEU of 0.478, followed
by MarianAr at 0.453, Krueger at 0.416, Qwen at
0.403, TS at 0.376 and MarianEs at 0.122.

Table 1: Evaluation on all sentences

Model BLEU Prec Recall F1 = BERT
Mistral 0.478 0.527 0.494 0.501 0.930
MarianAr 0453 0.541 0.508 0.512 0.931
Krueger 0.416 0.530 0.484 0.493 0.930
Qwen 0.403 0.516 0.487 0.491 0.929
T5 0.376 0.420 0.397 0.399 0.914
MarianEs 0.122 0.198 0.303 0.209 0.842

Mistral’s 7 billion-parameter model achieved the
highest BLEU of 0.478 (3 sf), indicating strong



n-gram overlap with the reference. MarianAr fol-
lowed at 0.453 — a 5.2% deficit — while Krueger’s
and Qwen trailed at 0.416 and 0.403 respectively.
Our TS5, trained for only 15 epochs, reached 0.376,
and MarianEs (Spanish—English) lagged at 0.122,
a 74.5% drop relative to Mistral.

In ROUGE-2 Precision, MarianAr led with 0.541
(54.1% of generated bigrams in the reference), fol-
lowed by Krueger (0.530), Mistral (0.527) and
Qwen (0.516), all within a 4.6% band. T5 and
MarianEs fell to 0.420 and 0.198. For Recall, Mar-
ianAr attained 0.508, Mistral 0.494, Qwen 0.487
and Krueger 0.484. Combined F1 placed MarianAr
at 0.512, Mistral at 0.501 and the next best systems
within 4.1%.

On BERTScore most models clustered around
0.930-0.931, effectively within margin of error.
MarianAr scored 0.931, with Mistral, Krueger and
Qwen at 0.930. TS5 scored 0.914 and MarianEs
0.842.

4.2 Long Sentences (Reference > 4 words)

Table 2 shows metrics when restricting to sentences
with four or more reference tokens.

Table 2: Evaluation on long sentences

Table 3: Evaluation on short sentences

Model BLEU Prec Recall F1 = BERT
Mistral 0.602 0.408 0.407 0.404 0.938
Qwen 0.593 0.430 0.435 0.428 0.942
Krueger 0.586 0.404 0.406 0.401 0.940
MarianAr 0.541 0.426 0.429 0.423 0.941
T5 0.520 0.346 0.348 0.344 0.927
MarianEs 0.016 0.025 0.103 0.031 0.778

Short sentences boosted BLEU markedly for all
except MarianEs: Mistral rose to 0.602, Qwen
to 0.593, Krueger to 0.586, each surpassing Mar-
ianAr’s 0.541. Qwen led ROUGE-2 precision
(0.430), recall (0.435) and F1 (0.428). BERTScore
peaked at 0.942 for Qwen, with MarianAr at 0.941
and Krueger 0.940.

4.4 Significance Testing

To determine the statistical significance of the dif-
ferences in BLEU scores between models, we con-
ducted significance tests. Table 4 presents the p-
values and confidence intervals for BLEU delta
between pairs of models.

Table 4: Significance Test Results (BLEU Delta)

Model1 Model2 BLEUA BLEUA  p-value

Model BLEU Prec Recall F1 = BERT Lower CI  Upper CI
Mistral 0.473 0.549 0.510 0.519 0.928 Er“eger l\h//ll?rtiali[;l: —‘71-(1)3 —g-gé 8~88

. rueger 1stra —/. =J. .

MarianAr 0.446 0.562 0.522 0.529 0.929 Krueger MarianEs  27.72 30.08 0.00
Krueger 0.407 0.554 0.499 0.510 0.928 Krueger Qwen05 0.87 1.63 0.00
Qwen 0.395 0.532 0.496 0.503 0.927 ﬁ;ﬁgﬁ Magjnm _ifgs _gfgo 888
TS 0.370 0.434 0.407 0409 0911  NfarianEs Mistral7b 3605  -3431  0.00
MarianEs 0.149 0.230 0.340 0.242 0.854 MarianEs Qwen05  -28.77 -26.45 0.00
MarianEs T5 -25.98 -23.91 0.00
MarianAr Mistral7b -3.15 -2.14 0.00
MarianAr Qwen05 4.49 5.39 0.00
BLEU dipped slightly for all models (e.g. Mis- 1\1\//11?33517&; Qv;reios g:gj gigg 8:88
tral from 0.478—0.473, MarianAr 0.453—0.446), Mistral7b T5 9.75 10.86 0.00
while MarianEs rose from 0.122—0.149. Precision ~_Qwen05 15 2.28 3.13 0.00

increased across the board — MarianAr reached
0.562, Krueger 0.554 — preserving the rank order.
Recall and F1 mirrored this improvement (Maria-
nAr recall 0.522, F1 0.529). BERTScore remained
effectively unchanged.

4.3 Short Sentences (Reference < 4 words)

Table 3 isolates sentences shorter than four words.
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The significance testing results in Table 4 pro-
vide a detailed statistical analysis of the differences
in BLEU scores between pairs of models. The table
includes the lower and upper confidence intervals
for the BLEU delta, along with the corresponding
p-values. All p-values are less than 0.05, indicating
that the differences in BLEU scores between the
models are statistically significant.



4.5 Inference Timings

Table 5 compares wall-clock times to translate 500

sentencesz .

Table 5: Inference time for 500 sentences

Model Total Time (s) Per Sentence (s)
MarianAr 108 0.22
T5 242 0.48
Qwen 348 0.70
Mistral 1786 3.57

MarianAr was fastest at 108s (0.22s/sentence),
over four times quicker than Mistral’s 1786s (3.57
s/sentence). TS and Qwen required 242s and 348s,
respectively. Inference speed is an important metric
when considering practical applications, and the
tradeoff between speed and quality needs to be
considered.

4.6 Summary

Overall, MarianAr and Mistral are the top perform-
ers: MarianAr leads in all metrics except BLEU
(where Mistral narrowly wins). Krueger’s TS sur-
passes our 15-epoch TS5 and Qwen in semantic
scores, highlighting the impact of extended train-
ing and transfer. Short sentences favour few-shot
LLM generalisation (Mistral, Qwen), while longer
contexts modestly reduce recall. Finally, smaller
specialised models (MarianMT) offer the best trade-
off of speed and quality for practical low-resource
language translation.

Shown in Figure 1 are translations between
transliterated Akkadian and English, using the Mar-
ianAr model.

5 Discussion

When interpreting these results, it’s important to
remember that our cuneiform corpus is highly repet-
itive — many near-identical phrases appear in both
training and test splits, inflating absolute scores.
While this doesn’t undermine comparisons between
models, it does caution against assuming similar
performance on a more varied low-resource dataset.

Firstly, our TS5 baseline (15 epochs) underper-
forms Krueger’s T5 (30 epochs) across both BLEU
and BERTScore, despite identical hyperparameters.
Krueger’s additional epochs — and his bidirectional
training (English— Akkadian/Sumerian) — helped

*MarianAr was used for timing MarianMT, it can be as-
sumed MarianAr will be roughly equivalent.
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Example 1 - Astronomical Text:

Source:

(_mul2_-e)-sza2-_sag_-_gir2-tab 20 si 6 zi ir kur
gin geb 7 sag ge6_ sin ina _igi mul2#_- kur_-
sza2-_kird_-szil-_pa 3 kusz3_ beta Scorpii
Translation:

The 6th, ZI IR, the east wind blew. Night of
the 7th, beginning of the night, the moon was 3
cubits in front of theta Ophiuchi

Example 2 - Royal Inscription:

Source:

(d#)na3#-ku-du-ur2-[ri-uri3]  _lugal_  ba-
bila2#[(ki)] za-ni-in e2-sag-il2# u3 e2-zi-da#
_ibila_ a-sza-re-du sza (d)na3-ibila-uri3 _lugal_
babila2(ki)

Translation:

Nebuchadnezzar, king of Babylon, who provides
for the E-sagil and the Ezida, foremost son of
Nabopolassar, kingship of Babylonia

Figure 1: Example translations from the MarianAr
model showing transliterated Akkadian to English

convergence. This technique is not viable for Mari-
anMT’s single-direction architecture, but it signals
that smaller models without LLM-style few-shot
strength benefit substantially from extended fine-
tuning.

Overall, MarianAr (Arabic—English) deliv-
ers the best balanced performance. It leads in
ROUGE?2 and BERTScore, and only narrowly trails
Mistral-7B on BLEU. By contrast, MarianEs (Span-
ish—English) lags dramatically, confirming that
even a distantly related Semitic language imbues
the model with useful implicit grammatical and
lexical knowledge — despite script mismatches and
millennia of divergence.

The few-shot prowess of large causal LLMs also
shines through. Mistral-7B achieves the top BLEU
after a single epoch, and Qwen-0.5B, with three
epochs, matches or bests others on very short sen-
tences (<4 words). These results suggest their vast
pre-training mitigates sparse data, particularly for
lexical matching.

Inference speed highlights practical trade-offs.
Although Mistral-7B excels in raw BLEU, its 7
billion parameters slow throughput severely. In
contrast, MarianMT variants — especially MarianAr
— combine strong quality with sub-second latency,
making them better suited for real-world, resource-
constrained deployment.



6 Conclusions and Future Work

In this paper we have demonstrated that careful
adaptation of existing NMT architectures can un-
lock high-quality Akkadian—English translation
even under severe data scarcity. Our experiments
show that fine-tuning a MarianMT model pre-
trained on Arabic (MarianAr) delivers the best
balance of surface accuracy (BLEU), semantic fi-
delity (ROUGE2, BERTScore), and inference effi-
ciency. Despite the millennia that separate Arabic
and Akkadian — and the mismatch between Ara-
bic script and romanised transliteration — Maria-
nAr’s internalised Semitic grammar and vocabu-
lary proved remarkably transferrable. At the same
time, we observed that large causal LLMs such
as Mistral-7B and Qwen-0.5B require only one to
three epochs to rival or exceed other models on
shorter sentences, underlining their potent few-shot
adaptation. Yet the hefty parameter counts of these
LLMs incur a tangible latency penalty, reaffirming
the practical importance of lightweight, specialised
NMT when deployment speed and resource bud-
gets are at a premium.

Looking ahead, several avenues promise to ex-
tend and deepen these findings. First, pushing
MarianAr and our T5 baseline through additional
epochs and systematic hyperparameter sweeps will
clarify the point of diminishing returns and guard
against overfitting. Second, a mixture-of-experts
framework — where a fast NMT core handles rou-
tine or formulaic passages while a heavyweight
LLM tackles longer or more ambiguous sentences
— could marry speed with versatility. Third, aug-
menting our pipeline to ingest raw cuneiform im-
ages and output English translations would bridge
OCR/transliteration and MT, yielding a seamless
toolchain for Assyriologists. Finally, applying
this comparative lens to other under-documented
Semitic and ancient languages will test the gener-
ality of “pre-train on related language + fine-tune”
and few-shot paradigms across diverse scripts,
dialects, and time periods. By pursuing these
threads, we aim to push the frontier of low-resource,
historical-language translation ever closer to full
academic and cultural utility.
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