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Abstract

We propose a fine-tuning strategy for English
Multiclass Hope Speech Detection using Mis-
tral, leveraging two complementary datasets:
PolyHope and CDB, a new unified framework
for hope speech detection. While the former
provides nuanced hope-related categories such
as GENERALIZED, REALISTIC, and UNREAL-
ISTIC HOPE, the later introduces linguistically
grounded dimensions including COUNTERFAC-
TUAL, DESIRE, and BELIEF. By fine-tuning
Mistral on both datasets, we enable the model
to capture deeper semantic representations of
hope. In addition to fine-tuning, we developed
advanced prompting strategies which provide
interpretable, zero-shot alternatives and further
inform annotation and classification designs.
Our approach achieved third place in the multi-
class (Macro F1=71.77) and sixth in the binary
(Macro F1=85.35) settings.

1 Introduction

Hope speech detection has recently evolved into a
specialized area of classification within NLP, aimed
at distinguishing constructive and future-oriented
statements from neutral or negative content. While
several datasets have been proposed to support this
task (Goldberg et al., 2009; Palakodety et al., 2020;
Chakravarthi, 2020; Balouchzahi et al., 2023a,b),
their annotation schemas vary widely—ranging
from affective taxonomies to structurally grounded
categories—making generalization across label
sets a persistent challenge.

This paper investigates whether structurally di-
vergent but semantically related taxonomies can
be combined to improve model performance on
multiclass hope speech detection. We focus on two
English-language datasets: PolyHope (Balouchzahi
et al., 2023b), which classifies hope expressions
into affective categories (GENERALIZED, REALIS-
TIC, and UNREALISTIC HOPE), and CDB (Ferreira

Leite da Silva et al., 2025), which bases its classifi-
cation on the semantic notion of modality (Kratzer,
1991; Portner, 2009) in the broad sense, as encom-
passing propositional attitudes and speech acts (Gi-
annakidou and Mari, 2021, 2026), and thus en-
coding the propositional structure of hope-related
speech (COUNTERFACTUAL, DESIRE, BELIEF).
Despite having disjoint label sets, both datasets
target overlapping semantic phenomena. We treat
them as complementary sources of supervision and
fine-tune a Mistral-7B model on the merged corpus
using a parameter-efficient strategy.

Our methodology is informed by recent find-
ings in multi-task and cross-taxonomy learning.
Prior work shows that combining tasks with high
structural complementarity can produce synergistic
gains in generalization, a phenomenon referred to
as the “cocktail effect” (Brief et al., 2024). For
example, Lai et al. (2024) proposed Multi-Task
Implicit Sentiment Analysis (MT-ISA) which lever-
ages auxiliary sentiment tasks to enhance main-
task performance, while Ivison et al. (2023) Data-
Efficient Fine-Tuning (DEFT) which shows that
structural similarity between tasks is often a more
reliable indicator of transfer effectiveness than
surface-level alignment or data volume. Building
on these insights, we treat PolyHope and CDB not
as competing annotation schemes, but as comple-
mentary lenses on the semantic domain of hope. In-
stead of aligning or mapping between taxonomies,
we fine-tune a generative model on both datasets
simultaneously, alternating prompt formats within
a single training pipeline. This setup enables the
model to internalize both affective and proposi-
tional representations of hope.

In addition to supervised fine-tuning, and draw-
ing on recent surveys of prompting strategies
(Schulhoff et al., 2025; Fagbohun et al., 2023;
White et al., 2023), we propose three zero-shot
prompting methods tailored to the PolyHope tax-
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onomy for hope speech detection: Confidence-
Structured Output Prompting, Multiple Reason-
ing Path Prompting, and Decision Tree Prompt-
ing. These strategies—developed specifically for
this study—were designed to enhance model inter-
pretability and decision consistency, particularly
in multiclass scenarios where category boundaries
are conceptually nuanced. By integrating struc-
tural supervision with reasoning-aware prompting,
we evaluate both supervised and prompt-based ap-
proaches within a unified framework.

Our submission to the RANLP-2025 shared task
ranked 3rd in the English multiclass classification
track and 6th in the binary. Results suggest that
cross-taxonomy fine-tuning without explicit task
weighting, can yield competitive generalization per-
formance. The codebase and prompt templates will
be released publicly to support further research in
structure-aware hope speech classification1. Our
main contributions are:

1. A cross-taxonomy LLMs fine-tuning strat-
egy leveraging structurally complementary
datasets.

2. Proposal and evaluation of reasoning-aware
zero-shot prompting strategies tailored to
hope speech multiclass classification.

3. A qualitative error analysis of the best model,
highlighting systematic confusion patterns in
hope classification.

We begin in Section 2 with a review of previous
work in the field. Section 3 details the datasets
employed in the shared task. Our methodology
is described in Section 4, and the corresponding
results are reported in Section 5.

2 Related Work

2.1 Hope Speech Datasets

Prior research on hope speech has explored a
range of perspectives, from peace-oriented dis-
course (Palakodety et al., 2020) to multilingual
detection for promoting inclusion (Chakravarthi,
2020). Other works have examined expressions of
regret and past-oriented hope (Balouchzahi et al.,
2023a), and the expression of wish in products re-
views and political discussions (Goldberg et al.,
2009).

1https://github.com/Priyaaa-hub/Shared-task-prompts.git

Figure 1: The COUNTERFACTUAL-DESIRE-BELIEF
(CDB) model (Ferreira Leite da Silva et al., 2025).

The PolyHope dataset (Balouchzahi et al.,
2023b) used in the shared task is annotated with
four categories of future-oriented hope-related ex-
pressions: (a) NOT-HOPE, indicating the absence of
hope; (b) GENERALIZED HOPE, referring to vague
or non-specific statements of hope; (c) UNREAL-
ISTIC HOPE, denoting overly optimistic or implau-
sible expectations; and (d) REALISTIC HOPE, cap-
turing grounded and plausible expressions of hope.
In contrast, the ReDDit dataset (Balouchzahi et al.,
2023a) focuses exclusively on past-oriented hope,
specifically targeting expressions of retrospective
longing or regret.

Building on these prior works, the CDB model
(Ferreira Leite da Silva et al., 2025) introduces
a more fine-grained and linguistically grounded
classification system. Unlike PolyHope and ReD-
Dit, which each target a single temporal dimension
of hope, the CDB model incorporates both: one
class for past-oriented hope, two distinct classes
for future-oriented hope, and one for the not-hope
instances. This classification is grounded in the
degree of speaker commitment implied by each
expression, allowing for a more nuanced frame-
work for annotation and classification. The model
defines four core classes that subsume previous
classification schemes, as illustrated in Figure 1:
(a) NOT-HOPE: indicating the absence of any hope-
related expression. (b) COUNTERFACTUAL: which
captures expressions of regret and represents past-
oriented hope. (c) DESIRE: encompassing future-
oriented expressions of mere desire or wishful
thinking that lack strong speaker commitment. (d)
BELIEF: which also encodes future-oriented hope,
but in this case grounded in epistemic or deontic
considerations.
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This taxonomy enables a more linguistically in-
formed and temporally aware analysis of hope
speech across discourse contexts. Two annotators
achieved a Cohen’s kappa of 74.88 for the binary
classification task, and 70.46 for the multiclass clas-
sification, indicating substantial agreement given
the subjectivity of the task.

2.2 Hope Speech Automatic Detection

Several shared tasks have also advanced the study
of hope speech in multilingual and multicultural set-
tings. At LT-EDI 2022 (Chakravarthi et al., 2022),
LT-EDI 2023 (Kumaresan et al., 2023) and Iber-
LEF 2023 (Jiménez-Zafra et al., 2023), the task
was framed as binary classification in a variety of
languages. These tasks laid the foundation for more
detailed distinctions explored in subsequent years.

The IberLEF 2024 shared task (Garcı́a-Baena
et al., 2024) introduced a two subtasks reflecting
distinct dimensions of hope: (1) Hope for Equal-
ity, Diversity, and Inclusion to detect supportive
speech toward vulnerable groups, (2) Hope as Ex-
pectations that requires multi-class classification
of generalized, realistic, and unrealistic expres-
sions of future-oriented hope. Approaches based
on transformer models, as well as those leverag-
ing prompting with large language models (LLMs),
have both demonstrated competitive performance.
For instance, the top-ranked system in Subtask
(1) (Thuy and Thin, 2024) employed a zero-shot
prompting strategy using ChatGPT-3.5, incorpo-
rating class definitions into the prompt in both En-
glish and Spanish. Their solution explored multiple
prompting techniques—zero-shot, one-shot, three-
shot, and chain-of-thought (CoT)—combined with
six different information strategies, including role-
defining, class explanations, and task-specific con-
cepts. The best performance was achieved using
a one-shot prompt and an information-rich strat-
egy that defined both class meanings and model
roles, yielding a Macro F1-score of 0.7161 on the
out-of-domain Spanish test set.

In Subtask (2), the winning team (Bui Hong
et al., 2024) adopted a supervised approach, com-
bining multilingual transformer models with rigor-
ous data pre-processing and augmentation. Their
method leveraged data combination across English
and Spanish corpora and generated synthetic sam-
ples for minority classes using Gemini LLMs. Clas-
sification was performed via fine-tuned models
such as XLM-R, mDeBERTa, and RoBERTuito,

and predictions were aggregated using a max vot-
ing ensemble. This robust pipeline achieved the
highest scores in the multiclass subtasks for both
English (Macro F1 = 72.00) and Spanish (Macro F1
= 66.68), highlighting the effectiveness of multilin-
gual augmentation and ensemble-based inference.

As we can see, the progression of hope
speech detection methods—from traditional ma-
chine learning models to transformer architectures
and, more recently, to prompt-based large language
models—reflects a broader shift in NLP toward
more flexible and powerful approaches, particularly
for multilingual and cross-domain applications.

3 Datasets

We rely on two datasets, PolyHope and CDB. We
first present them, then explain their complemen-
tarity.

3.1 PolyHope Dataset

The dataset consists of 8,256 tweets collected in
2022, covering topics such as abortion rights, racial
justice, religion, and politics. As illustrated in Ta-
ble 2, the dataset exhibits moderate imbalance, with
category NOT-HOPE comprising nearly half of the
instances, while the remaining categories are no-
tably less represented (GENERALIZED HOPE being
more than twice as frequent as REALISTIC HOPE

and nearly three times as frequent as UNREALIS-
TIC HOPE). As the test set was not provided, we
only report the statistics of the train and dev sets in
the tables.

3.2 The CDB Dataset

The CDB dataset comprises 4,370 texts in total,
of which 3,092 were randomly selected and re-
annotated from existing corpora (WISH (Goldberg
et al., 2009), PolyHope (Balouchzahi et al., 2023b),
and HopeEDI (Chakravarthi, 2020)), and 1,278
were newly collected from X (formerly Twitter)
and Reddit (HopeDrone). As shown in Table 3,
the dataset exhibits a slight class imbalance in the
binary setting, with the HOPE category accounting
for 57.28% of the total instances. In the multiclass
setting, however, the distribution is more skewed:
while NOT-HOPE remains the largest single class,
the DESIRE category represents nearly one-third of
the dataset, followed by BELIEF at just over one-
fifth. The COUNTERFACTUAL category is notably
underrepresented, comprising less than 5% of all
texts. These proportions remain consistent across
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Category HopeDrone PolyHope WISH Corpus HopeEDI Total

COUNTERFACTUAL 15 (0.34%) 112 (2.56%) 62 (1.42%) 14 (0.32%) 203 (4.65%)
DESIRE 224 (5.13%) 682 (15.60%) 360 (8.24%) 113 (2.59%) 1,379 (31.56%)
BELIEF 390 (8.92%) 202 (4.62%) 226 (5.17%) 103 (2.36%) 921 (21.08%)
NOT-HOPE 649 (14.85%) 279 (6.39%) 569 (13.02%) 370 (8.47%) 1,867 (42.72%)

Total 1,278 (29.24%) 1,275 (29.18%) 1,217 (27.85%) 600 (13.73%) 4,370 (100%)

Table 1: The CDB dataset, following Ferreira Leite da Silva et al. (2025). The ”Total” column aggregates the
instance counts across all four datasets—HopeDrone, PolyHope, WISH Corpus, and HopeEDI—for each class in
the CDB taxonomy. The bottom row summarizes the total number and relative size of each dataset.

Binary Train Dev Total

NOT HOPE 2,245 (49.44%) 816 (49.45%) 3,061 (49.44%)
HOPE 2,296 (50.56%) 834 (50.55%) 3,130 (50.56%)

Multiclass Train Dev Total

NOT HOPE 2,245 (49.44%) 816 (49.45%) 3,061 (49.44%)
GENERALIZED HOPE 1,284 (28.28%) 467 (28.30%) 1,751 (28.28%)
REALISTIC HOPE 540 (11.89%) 196 (11.88%) 736 (11.89%)
UNREALISTIC HOPE 472 (10.39%) 171 (10.36%) 643 (10.39%)

Table 2: Distribution of classes for binary and multi-
class settings (PolyHope) by Split. The ”Total” column
presents the aggregate number of instances for each
class, obtained by summing the respective values from
the training and development splits.

the training and test splits.
Importantly, we verified that 1,020 texts in the

CDB dataset were originally drawn from the Poly-
Hope corpus used in the shared task—543 from the
training set, 203 from the development set, and 274
from the test set. This overlap is explicitly reported
to ensure transparency. During fine-tuning, the Mis-
tral model was trained jointly on the PolyHope and
CDB training sets. Crucially, the PolyHope test
set remained unlabeled and was never used during
training. Although some texts may have been seen
with alternative annotations from the CDB taxon-
omy, their original PolyHope labels were hidden
throughout. Rather than constituting test contam-
ination, this setup enables robust cross-taxonomy
learning and allows the model to internalize diver-
gent labeling schemes over shared inputs.

Binary Label Train Test Total

NOT-HOPE 1,599 (43.03%) 268 (40.98%) 1,867 (42.72%)
HOPE 2,117 (56.97%) 386 (59.02%) 2,503 (57.28%)

Multiclass Label Train Test Total

NOT-HOPE 1,599 (43.03%) 268 (40.98%) 1,867 (42.72%)
DESIRE 1,149 (30.92%) 230 (35.17%) 1379 (31.56%)
BELIEF 801 (21.56%) 120 (18.35%) 921 (21.08%)
COUNTERFACTUAL 167 (4.49%) 36 (5.50%) 203 (4.65%)

Table 3: Distributions of classes for binary and multi-
class settings (CDB model) by Split.

3.3 Cross-Taxonomy Comparison

Figures 2 and 3 illustrate the cross-taxonomy rela-
tionship between PolyHope and CDB, as reported
in (Ferreira Leite da Silva et al., 2025). Each figure
presents a correlation matrix based on randomly
selected 1,022 PolyHope instances that were re-
annotated using the CDB schema.

Figure 2: CDB vs. PolyHope binary annotations.

As previously stated, these datasets are not com-
peting but complementary. Despite what Figure 2
may initially suggest—many instances labeled as
NOT HOPE in PolyHope are reclassified as HOPE

in CDB—the multiclass perspective reveals their
compatibility. In Figure 3, we observe that the
CDB category DESIRE serves as a good approxi-
mation for all three hope categories in PolyHope.

The fact that most PolyHope instances labeled
as GENERALIZED, REALISTIC, or UNREALISTIC

hope are mapped to the DESIRE category in CDB
highlights a key difference between the taxonomies:
CDB places greater emphasis on temporal and
modal structure, while PolyHope focuses on plau-
sibility and affective nuance.

This also reflects, among other factors, a
structural divergence—PolyHope excludes past-
oriented hope from its schema, whereas CDB ex-
plicitly encodes it through the COUNTERFACTUAL

category. The divergence becomes even more ap-
parent in the multiclass comparison (cf. Figure 3),
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Figure 3: CDB vs. PolyHope multiclass annotations.

where there is no one-to-one mapping between cat-
egories across the two taxonomies.

We provide below some examples of PolyHope
and CDB annotations. Instances (1) and (2) show
cases where utterances labeled as NOT HOPE in
PolyHope were annotated as BELIEF in CDB:

(1) “Don’t expect Chris Rock to talk about ‘the
slap’ when he performs Friday at the AVA at
Casino del Sol.”

(2) “Getting on your knees to pray should stay off
the football field and stay in church settings.”

Similarly, utterances (3) and (4) labeled as NOT

HOPE in PolyHope, were classified as COUNTER-
FACTUAL in CDB, due to the presence of past-tense
constructions:

(3) “Thank you for being brave and speaking
up—your work is so beautiful! Wish we had
met in NFT NYC.”

(4) “I wish it was Speak Now, but the signs seem
to point to 1989.”

This structural mismatch has direct implications
for training strategies. While the multiclass setup
benefits from the complementarity of both tax-
onomies, the binary classification reveals overlap-
ping boundaries that risk making the label space
more concorrente than complementary. We there-
fore did not adopt the multi-task learning in the bi-
nary setting, as merging categories could introduce
conflicting signals during training. Conversely, in
the multiclass scenario, the alignment between af-
fective subtypes and temporal-motivational roles
supports more synergistic learning.

4 Methodology

4.1 Models

We designed models based on transformers and
Large Language Models (LLMs). The reported
scores are averaged over 3 runs on the PolyHope
development set, as the test set has not been re-
leased. The hyper-parameters used for fine-tuning
both the LLMs and transformer based models are
available in the supplementary material associated
to this submission.

4.1.1 Transformers

We use BERT (Bidirectional Encoder Representa-
tions from Transformers) as a baseline transformer
model for hope speech classification. Known for its
strong performance across a variety of NLP tasks,
BERT was fine-tuned separately for both binary
and multiclass classification.

4.1.2 Large Language Models

We make use of two models:

–GPT-4, the Generative Pretrained Transformer
4 developed by OpenAI, was also explored in our
experiments. Although its performance on the
development dataset was comparatively lower,
it was still used to generate predictions under a
zero-shot prompting strategy for the test set and
included in the final submission.

–Mistral FT. It is the Mistral-7B-Instruct-v0.3,
a 7-billion parameter open-weight LLM developed
by Mistral AI, optimized for instruction-following
tasks. We fine-tune Mistral using a parameter-
efficient strategy based on QLoRA, a lightweight
variant of Low-Rank Adaptation (LoRA) that en-
ables scalable tuning of large language models with
limited compute. This setup allows us to fine-tune
Mistral-7B on structurally complementary datasets
(PolyHope and CDB) while preserving efficiency
and reducing overfitting. Unlike prior work com-
paring multiple adaptation methods, our goal is not
to benchmark fine-tuning techniques, but rather to
validate the value of combining taxonomically di-
vergent supervision sources. During training, each
instance included three fields: a dataset-specific
prompt, the corresponding input text, and the gold
classification label.

The set of prompting strategies used to fine-tune
Mistral are as follows:
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1. Zero-Shot Prompting: The prompt includes
a description of the task, definitions for each
label, and the expected output format, without
providing any training examples.

2. Few-Shot Prompting: In addition to the task
description and label definitions, this prompt
includes two randomly chosen examples per
class. There are 4 examples for binary clas-
sification (2 - HOPE and NOT HOPE), and 8
examples for multiclass classification (2 per
class resp.). Each example is paraphrased be-
fore including it in the prompts to prevent
overfitting and ensure the model learns from
the examples and does not rely on the specific
phrasing. We use a tool called quillbot2 for
paraphrasing the chosen examples after which
these examples are included in the prompt for
classification.

3. Decision Tree Prompting: This strategy im-
plements a logical flowchart in prompt form,
requiring the model to follow a step-by-step
decision process. We pose several sequential
queries to the model, inquiring about the pres-
ence of hope, any specific goal mentioned, and
the feasibility of the goal by asking whether it
involves a particular result and whether they
are attainable or not. This prompt was elabo-
rated based on the concept of Decision Tree
Reasoning for Prompting, proposed as a struc-
tured decomposition strategy within the Tree-
of-Thought framework by Yao et al. (2023),
and categorized under Logical and Sequential
Processing in (Fagbohun et al., 2023). It ex-
pands on classic Chain-of-Thought prompting
by introducing a branching logic format for
inference.

4. Confidence-Structured Output Prompting:
This technique generates both a classification
label and a graded confidence score for each
category, based on observable features of the
input. The prompt structure guides the model
through identifying hope-related language, as-
sessing the specificity of the desired outcome,
and evaluating its feasibility. These compo-
nents are followed by a confidence estimate
for each label and the final classification. The
method is inspired by uncertainty-aware rea-
soning and structured prediction techniques in

2https://quillbot.com/paraphrasing-tool

LLMs. This prompt was elaborated based on
the concept of Uncertainty-Routed Chain-of-
Thought (CoT) prompting, proposed in (Schul-
hoff et al., 2025), and classified under Thought
Generation and Self-Criticism strategies. It
leverages confidence estimation techniques to
refine final predictions.

5. Multiple Reasoning Path Prompting: This
method encourages LLMs to perform a multi-
perspective analysis of the text by decompos-
ing the reasoning process into three steps: lin-
guistic cues, goal assessment, and contextual
framing. Each perspective contributes to the fi-
nal classification. Such an approach is related
to multi-perspective CoT prompting. This
prompt was elaborated based on the concept
of Multi-View or Multi-Faceted Reasoning, ex-
plicitly discussed in (Schulhoff et al., 2025)
under Contrastive CoT and Meta-CoT, and
structurally aligned with the Cognitive Verifier
pattern in (White et al., 2023), which decom-
poses reasoning into modular sub-analyses to
enhance robustness and explanatory power.

The prompts used for LLMs and the hyper-
parameters used for fine-tuning both the LLMs
and transformer-based models, are provided in the
Appendix.

4.2 Submitted Systems
A total of 9 systems have been submitted for the
shared task:

1. Binary Classification: GPT-4, Mistral FT
(Zero-shotP , Few-shotP , Confidence ScoreP ,
Multiple ReasoningP ).

2. Multiclass Classification: BERTP , GPT-4,
Mistral FT (Zero-shotP , Zero-shotP+CDB)

Where Promptd indicates Mistral FT model
fine-tuned with one of the previous 5 Prompt on
the dataset d ∈ {P, P + CDB}. BERTP has
only been fine-tuned on PolyHope, GPT4, being
prompted in a zero-shot fashion. These configura-
tions were selected based on their superior perfor-
mance on the development set (see next Section).

5 Results

Table 4 presents the results for the binary classifica-
tion, best scores are in bold font. We observe that
most Mistral FT variants achieve relatively stable
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Development Set Test Set

Model P R F1 Acc P R F1 Acc

GPT-4 77.78 76.83 76.55 76.73 53.00 52.02 51.87 77.00

Mistral FT Variants

Zero-shotP 84.19 84.17 84.18 84.18 85.06 84.85 84.97 84.98
Few-shotP 83.08 83.01 83.01 83.03 85.44 85.34 85.35 85.37
Confidence ScoreP 83.66 83.62 83.63 83.64 85.30 85.25 85.26 85.27
Multiple ReasoningP 84.03 83.98 83.99 84.00 85.01 84.91 84.92 84.93

Table 4: Performances of binary classification in development vs. test sets in terms of macro P, R and F1 scores.

Development Set Test Set

Model P R F1 Acc P R F1 Acc

BERTP 71.01 66.58 68.24 74.30 73.31 69.28 70.78 77.14
GPT-4 53.55 47.62 42.55 56.67 55.80 49.54 44.87 57.86

Mistral FT Variants

Zero-shotP 68.12 68.49 68.07 74.00 68.66 69.97 69.12 75.06
Zero-shotP+CDB 70.40 69.98 70.12 75.58 71.19 71.09 71.11 76.80

Table 5: Multiclass classification results in the development vs. test sets in terms of macro P, R, and F1 scores.

Binary Multiclass

Label P R F1 Label P R F1

BERTP

HOPE 80.00 86.81 83.27 GEN. HOPE 64.86 76.66 70.26
NOT HOPE 85.23 77.82 81.36 REAL. HOPE 69.33 53.06 60.12

UNREAL. HOPE 66.91 54.39 60.0
NOT HOPE 82.94 82.23 82.58

GPT-4P

HOPE 83.48 67.27 74.50 GEN. HOPE 76.81 11.35 19.78
NOT HOPE 72.09 86.40 78.60 REAL. HOPE 31.27 64.29 42.07

UNREAL. HOPE 39.02 28.07 32.65
NOT HOPE 67.11 86.76 75.68

Mistral FT
Zero-shotP Zero-shotP

HOPE 83.75 85.25 84.49 GEN. HOPE 72.25 61.88 66.67
NOT HOPE 84.64 83.09 83.86 REAL. HOPE 53.62 64.29 58.47

UNREAL. HOPE 64.24 61.99 63.10
NOT HOPE 82.35 85.78 84.03

Few-shotP Zero-shotP+CDB

HOPE 81.99 85.13 83.53 GEN. HOPE 70.45 66.38 68.36
NOT HOPE 84.18 80.88 82.50 REAL. HOPE 59.62 64.80 62.10

UNREAL. HOPE 67.72 62.57 65.05
NOT HOPE 83.79 86.15 84.95

Confidence-scoreP Confidence-scoreP
HOPE 82.94 85.13 84.02 GEN. HOPE 52.38 30.62 38.65
NOT HOPE 84.38 82.11 83.23 REAL. HOPE 19.45 54.59 28.69

UNREAL. HOPE 24.64 39.77 30.43
NOT HOPE 76.89 19.98 31.71

Multiple ReasoningP Multiple ReasoningP

HOPE 83.29 85.49 84.38 Gen. Hope 37.87 63.81 47.53
NOT HOPE 84.76 82.48 83.60 REAL. HOPE 24.41 31.63 27.56

UNREAL. HOPE 33.33 1.75 3.33
NOT HOPE 70.28 51.59 59.51

Table 6: Performances per class in the development set in both binary and multiclass settings.
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performance across all prompting strategies, with
only minor variations, outperforming GPT4. The
highest performance is observed using Few-shot
prompting trained on the PolyHope dataset.

Table 5 shows the results for the multiclass
classification task, where Mistral has been fine-
tuned either on PolyHope or PolyHope+CDB. The
PromptP+CDB setups consistently outperform
PromptP by approximately 2%, indicating that
incorporating the additional CDB data enhances
the model’s capacity for fine-grained classification.

We finally provide in Table 6 per-class perfor-
mance results for both the binary and multiclass
classification tasks on the development set, as the
testset has not been released. It offers a compre-
hensive overview of all evaluated strategies.

Overall, our system achieved a 6th place ranking
in the Binary Classification task and a 3rd place in
the Multiclass Classification task on the English
dataset. These results confirm the effectiveness of
our tailored prompting and fine-tuning strategies,
particularly for multiclass scenarios.

6 Error Analysis

Here we analyze the most frequent misclassifica-
tions—377 instances—as predicted by our best
model Mistral FT using Zero-ShotP+CDB on the
development set. These errors can be grouped into
two main categories:

– Generalized Hope (Gold) vs. Not Hope (Predic-
tion)

1. GENERALIZED HOPE (Gold) → NOT HOPE

(Prediction) = 90 instances, as in “This is aw-
ful. Please pray for these poor people. No
one should have died that way, but will this ad-
ministration do anything? Nope, they have a
clown tribunal to attend to, and a constitution
to ignore”.

2. NOT HOPE (Gold) → GENERALIZED HOPE

(Prediction) = 81 instances, as in “All task
done [...] thank you and wish me luck”.

These confusions suggest that the model
struggles with vague or subtle expressions of hope
(highlighted in bold in the examples). In (a), for
instance, short hopeful spans are embedded in
longer neutral or non-hopeful content, which may
dominate the model’s representation. Conversely,
in (b), lexical cues like hope or wish lead to

overgeneralization.

– REALISTIC HOPE (Gold) vs. GENERALIZED
HOPE (Prediction)

1. GENERALIZED HOPE (Gold) → REALISTIC

HOPE (Prediction) = 53 instances, like in “I
just hope my 3 years of Spanish lessons and
streak are still there”.

2. REALISTIC HOPE (Gold) → GENERALIZED

HOPE (Prediction) = 34 instances, e.g., “Well
I hope we’re singing Turn Out the Lights the
Party’s Over, when this hearing is done.”

In these last two cases, the model may struggle to
distinguish between grounded, outcome-oriented
hopes and more diffuse or emotive expressions,
suggesting limited sensitivity to contextual or prag-
matic features that signal speaker intent.

7 Conclusion

We proposed novel prompting strategies that
achieved top-tier performance in the shared task.
In addition, our fine-tuning methodology demon-
strates the feasibility of combining structurally
distinct datasets—each with its own label taxon-
omy—for multiclass classification using large lan-
guage models and transformer architectures. This
cross-taxonomy approach enables richer supervi-
sion and improved generalization.

In the future, we plan to consider the idea of
unifying hope speech taxonomies via latent label
modeling or joint annotation projection. This could
offer a principled way to formalize cross-taxonomy
alignment.
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Limitations

The prompting strategies we explored such as deci-
sion tree prompting, confidence-structured output
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prompting, and multiple reasoning path prompting-
were selected precisely for their cross-domain gen-
eralization, as highlighted in recent work (e.g.,
(Schulhoff et al., 2025; White et al., 2023)). How-
ever, we acknowledge that task-specific adaptation
is often necessary to fully leverage their benefits.

For instance, the structural logic of decision tree
prompting can be transferred across tasks, but the
branching criteria must be adapted to the domain’s
ontology. Similarly, while the general idea behind
confidence-structured output prompting is domain-
agnostic (e.g., eliciting outputs with associated self-
assesses certainty), the format and calibration of
confidence levels might require tuning. In multiple
reasoning path prompting, the principle of diverse
inference paths remain reusable, but the types of
reasoning paths must reflect the target task’s cog-
nitive demands. In short, while the strategies are
reusable at a conceptual level, they often require
lightweight, task-aware instantiations to reach opti-
mal performance.
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A Model Hyper-parameters

Tables 7 and 8 present the hyperparameter used to
fine-tune the transformer-based models and large
language models in our experiments.

Parameter Value
Pre-trained Model BERT-base-uncased
Max Sequence Length 256
Batch Size 16
Learning Rate 2× 10−5

Optimizer AdamW
Number of Epochs 10

Table 7: Hyperparameter for BERT fine-tuning.

Parameter Value
Sequence Length 2048
Gradient Accumulation 2
Learning Rate 2× 10−5

Scheduler Cosine
Number of Epochs 3
Lora Rank (r) 8
Save Checkpoints Every 1000 steps

Table 8: Hyperparameter for fine-tuning Mistral.

B Prompt Design and Examples

B.1 Prompt Structure
Figures 4, 5, 6, 7, and 8 illustrate the various
prompting strategies applied in assessing the large
language model.

Figure 4: Zero-Shot (Multiclass).

B.2 Dataset Prompt Examples
Figures 9 and 10 illustrate the prompt example
instances from the PolyHope and CDB datasets,
including the prompt, input text, and corresponding
gold classification labels.
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Figure 5: Few-Shot (Binary).

Figure 6: Decision Tree (Multiclass).

Figure 7: Multiple Reasoning (Multiclass).

Figure 8: Confidence Score (Multiclass).

Figure 9: Prompt, input instance, and gold classification
in the PolyHope dataset.

Figure 10: Prompt, input instance, and gold classifica-
tion in the CDB dataset.


