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Abstract

Large Language Models (LLMs) are increas-
ingly used in scientific question answering
(QA), including high-stakes fields such as bio-
diversity informatics. However, standard eval-
uation metrics such as BLEU, ROUGE, Exact
Match (EM), and BERTScore remain poorly
aligned with the factual and domain-specific
requirements of these tasks. In this work, we
investigate the gap between automatic metrics
and expert judgment in botanical QA by com-
paring metric scores with human ratings across
five dimensions: accuracy, completeness, rel-
evance, fluency, and terminology usage. Our
results show that standard metrics often mis-
represent response quality, particularly in the
presence of paraphrasing, omission, or domain-
specific language. Through both quantitative
analysis and qualitative examples, we show that
high-scoring responses may still exhibit criti-
cal factual errors or omissions. These findings
highlight the need for domain-aware evaluation
frameworks that incorporate expert feedback
and raise important ethical concerns about the
deployment of LLLMs in scientific contexts.

1 Introduction

Large language models (LLMs) are increasingly
fine-tuned and deployed for question answering
(QA) in specialized domains such as biodiversity,
medicine, and scientific research. These models
offer compelling fluency and broad generalization
capabilities, making them attractive for automating
knowledge access in fields where information is
complex and rich in terminology. However, eval-
uating their effectiveness in the real-world, espe-
cially in high-stakes contexts, remains a critical
challenge.

Despite impressive reported performance, most
QA systems are evaluated using lexical overlap
metrics such as BLEU (Papineni et al., 2002),
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ROUGE (Lin, 2004), or Exact Match (EM) (Ra-
jpurkar et al., 2016a). These metrics, while easy to
compute, have well-documented limitations: they
reward surface similarity over factual accuracy, fail
to penalize hallucinated content, and systematically
favor longer redundant answers that may appear
plausible but lack precision (An et al. (2024b);
Maynez et al. (2020)). In scientific and techni-
cal domains where answers must be both correct
and complete, such metrics can inflate perceived
performance and mask serious factual deficiencies.

This issue is especially pronounced in domain-
specific Question Answering (QA), where small
inaccuracies, such as an incorrect botanical trait or
a misrepresented medical guideline, can undermine
the reliability of the entire system. Recent studies
in medical QA (Singhal et al. (2023); Moor et al.
(2023)) and scientific QA (Taylor et al., 2022a)
demonstrate that even fine-tuned LLMs often gen-
erate answers that sound correct but are either par-
tially wrong, incomplete, or not grounded in verifi-
able sources. However, these limitations are rarely
visible in standard evaluation scores, leading to mis-
guided claims about model readiness and potential
misuse in real-world deployments.

In this paper, we critically examine how current
evaluation practices contribute to an overestima-
tion of fine-tuned LLM performance in domain-
specific QA tasks. Our analysis focuses on botan-
ical trait extraction, a high-stakes scientific appli-
cation where factual precision and accurate use
of terminology are essential. However, the eval-
uation challenges we highlight are not limited to
botany. They also apply to fields such as medicine
and law, where even small factual errors can have
serious consequences (Singhal et al., 2022; Wei-
dinger et al., 2021). In legal contexts, for example,
recent efforts have emphasized the importance of
expert-annotated datasets and domain-tuned mod-
els to ensure accurate interpretation of statutes and

Proceedings of the First Workshop on Comparative Performance Evaluation: From Rules to Language Models associated with RANLP 2025,

pages 77-86, Varna, Bulgaria, Sep 11, 2025.
https://doi.org/10.26615/978-954-452-102-8-009



regulations (Al Mouatamid et al., 2023).

Biodiversity data, for example, serves as the
foundation for ecological research, conservation
policy, endangered species monitoring, and climate
impact studies. Errors in trait extraction can propa-
gate into global biodiversity databases such as the
Global Biodiversity Information Facility (GBIF)',
leading to misclassifications, flawed scientific con-
clusions or misinformed policy decisions. Even
minor hallucinations or omissions (e.g., in leaf mor-
phology or species distribution) can distort down-
stream analysis or fieldwork.

We analyze cases where model outputs receive
high automatic scores but fail expert evaluation due
to factual inaccuracies, incompleteness, or loss of
critical context. We propose a set of evaluation
principles for scientific QA that prioritize factual
faithfulness, information coverage, and grounding
in verifiable sources, dimensions often invisible to
surface-level metrics like BLEU or EM.

Our findings highlight the need to move beyond
BLEU and toward evaluation frameworks that re-
flect the true utility and limits of LLMs in high-
precision domains.

2 Background and Motivation

Automated question answering (QA) systems, in-
cluding fine-tuned large language models (LLMs),
are commonly evaluated using lexical overlap met-
rics originally developed for tasks such as machine
translation and summarization. Among the most
widely adopted are BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and Exact Match (EM) (Ra-
jpurkar et al., 2016a) and token-level F1 from
extractive QA benchmarks such as SQuAD (Ra-
jpurkar et al., 2016a). These metrics compute n-
gram overlap between system outputs and refer-
ence answers, either as precision (BLEU), recall
(ROUGE), or strict equality (EM). Their popularity
is largely due to their ease of implementation, re-
producibility, and long-standing use in benchmark
comparisons.

However, a growing body of work has ques-
tioned the adequacy of these metrics in genera-
tive QA settings, where answers are open-ended,
multi-sentence, and potentially phrased in ways not
captured by reference strings. BLEU and ROUGE
focus on surface-level n-gram similarity and do
not assess whether an answer is factually correct,
complete, or grounded. For example, Maynez

"https://www.gbif.org
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et al. (2020) showed that summarization models
frequently hallucinate content that is not supported
by the source text, but still receive high ROUGE
scores. An et al. (2024b) found similar trends in
long-form QA: answers that are fluent but incor-
rect or incomplete are often rewarded by BLEU
and ROUGE, while semantically valid but lexi-
cally diverse answers are penalized. These find-
ings are echoed in previous critiques (Yang et al.,
2018) that demonstrated that metrics such as BLEU
and ROUGE poorly capture answer quality in both
yes/no and entity-centric QA formats.

Despite these limitations, overlap-based metrics
remain dominant, including in domain-specific QA
systems. Biomedical, legal, and scientific QA mod-
els routinely report BLEU, ROUGE, and Exact
Match (EM) as primary evaluation metrics (Lee
et al., 2021) (Singhal et al., 2023), often without
rigorous human evaluation or claim-level verifica-
tion (Thorne et al., 2018). In practice, this can
lead to inflated perceptions of model performance,
especially when answers contain hallucinated or
missing information that metrics fail to penalize.
This risk is amplified in high-stakes domains such
as medicine or biodiversity science, where users
may trust a model’s fluent output without realizing
that it lacks factual correctness or critical details.

The continued reliance on these metrics presents
not only a technical concern, but an ethical one
Ferdaus et al. (2024). By overstating model relia-
bility, current evaluation practices may contribute
to misleading claims of safety and readiness, po-
tentially enabling misuse or over-deployment in
sensitive contexts. As LLMs are increasingly pro-
posed as tools for scientific assistance and clinical
support, evaluating them using metrics that do not
reflect truthfulness, completeness, or verifiability
is insufficient and potentially dangerous.

3 Related Work

As large language models (LLMs) are increasingly
deployed in high-stakes domains, their evaluation
has become a focal point of methodological con-
cern and ethical debate. This section reviews work
on QA evaluation metrics, factuality assessment,
domain-specific QA challenges, and the responsi-
ble deployment of LLMs. Our contribution builds
on these foundations by examining how inadequate
metrics can systematically misrepresent the real
capabilities of fine-tuned models in scientific con-
texts.


https://www.gbif.org

3.1 Evaluation Metrics for LLM Question
Answering

Traditional QA evaluation is heavily based on n-
gram overlap metrics such as BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), and Exact
Match (EM) (Rajpurkar et al., 2016b). However,
these metrics often fail to capture semantic correct-
ness, factual consistency, or completeness, espe-
cially in open-ended or domain-specific QA tasks.
Studies have shown that token-level overlap cor-
relates poorly with human judgment on complex
QA (Yang et al., 2018; Maynez et al., 2020)). The
L-Eval benchmark introduced by An et al. (2024a)
further demonstrated that BLEU and ROUGE do
not align with human preferences, particularly in
long-context reasoning tasks. They are also biased
toward verbose, lexically similar outputs, further
inflating scores for answers that may be inaccurate
or incomplete.

More sophisticated semantic similarity metrics,
such as BERTScore (Zhang et al., 2020), ad-
dress paraphrastic variation, but remain sensitive
to domain-specific terminology and formatting.
In response, some QA evaluations now combine
overlap-based metrics with embedding-based simi-
larity and human assessment. There is also increas-
ing interest in using LL.Ms themselves as evaluators
(LLM-as-a-judge) (Zheng et al., 2023), although
these introduce new biases (Dubois et al., 2025). In
general, there is a growing consensus that surface-
level metrics are insufficient to capture factual ac-
curacy in generative QA.

3.2 Factuality and Hallucination Detection in
LLMs

In light of these limitations, recent research has
focused on factuality: whether generated answers
are supported by verifiable evidence. Maynez et al.
(2020) and Pagnoni et al. (2021) found that sum-
marization systems often hallucinate content while
scoring highly on ROUGE. These findings moti-
vated the development of claim-level verification
benchmarks such as FRANK (Pagnoni et al., 2021),
HaDeS (HAllucination DEtection dataSet) (Liu
et al., 2022), and TruthfulQA (Lin et al., 2022),
which assess hallucination at the token level.
Several methods now use retrieval-augmented
QA (Lewis et al., 2021), natural language infer-
ence, or question decomposition to verify gener-
ated content (e.g., QAFactEval (Fabbri et al., 2022),
RefChecker (Hu et al., 2024), Attributable to Iden-
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tified Sources (AIS) (Rashkin et al., 2023)). How-
ever, even retrieval-based systems can hallucinate
when the retrieved content is incomplete or am-
biguous (Moor et al., 2023). Hence, detection re-
mains challenging, with token-level hallucination
detectors achieving only ~70% F1 in specialized
domains, indicating that hallucination remains a
persistent issue even with dedicated detectors.

3.3 Evaluation in Domain-Specific QA
Systems

Evaluating QA systems, in scientific domains,
introduces unique challenges. Domain-specific
LLMs such as Microsoft’s BioGPT (Luo et al.,
2022) and Meta’s Galactica (Taylor et al., 2022b)
perform well on tailored benchmarks but re-
quire expert-informed evaluation to ensure fac-
tual grounding (Singhal et al., 2023; Bélisle-Pipon,
2024). In medicine, for example, Med-PalLM’s
evaluation combined human review with metrics to
assess not just correctness, but also reasoning qual-
ity, potential harm, and trustworthiness (Singhal
et al., 2022). However, hallucinations and omis-
sions persisted, where LLMs struggled to contex-
tualize general knowledge into actionable recom-
mendations.

In botany and biodiversity informatics, research
is emerging on LL.M-based extraction of scien-
tific facts from unstructured text, with recent stud-
ies achieving over 90% precision in tasks such as
species identification, geocoding, and data struc-
ture (Castro et al., 2024). However, these results of-
ten mask persistent challenges that standard metrics
fail to capture. Current LLMs show a concerning
tendency for delivering incorrect information that
raises concerns about their reliability in ecological
research applications (Gougherty and Clipp, 2024).
At the same time, extracting structured knowledge
from scientific text remains fundamentally chal-
lenging even for fine-tuned models (Dagdelen et al.,
2024).

The field faces several domain-specific obstacles
that standard metrics do not address. Term ambi-
guity represents a major challenge, as ecological
and botanical terminology often carries context-
dependent meanings that LLMs struggle to disam-
biguate correctly. Domain-specific syntax further
complicates extraction, as scientific literature em-
ploys specialized linguistic patterns and taxonomic
conventions that differ markedly from general text.
Additionally, the propagation of subtle errors poses



particular risks in scientific contexts, where small
inaccuracies can compound into significant misrep-
resentations of ecological relationships or species
characteristics.

Perhaps most critically, current benchmarks of-
ten fall short in capturing the diverse behavior of
these models in real-world applications, with ex-
isting frameworks being limited by their focus on
general-purpose queries and lack of diversity across
specialized domains (Raju et al., 2024). The ab-
sence of curated benchmarks specifically designed
for biodiversity informatics, combined with limited
human-in-the-loop evaluation frameworks, makes
it difficult to reliably assess model factuality, com-
pleteness, or risk of systematic errors in scientific
knowledge extraction. Although domain-specific
datasets such as FloraNER have emerged for botan-
ical named entity recognition (Nainia et al., 2024),
these represent only narrow aspects of the broader
challenge of biodiversity informatics, leaving sig-
nificant evaluation gaps in other critical areas such
as ecological relationship extraction, species behav-
ior analysis, and cross-domain knowledge integra-
tion. This evaluation gap is particularly concern-
ing given that scientific problem-solving requires
domain expertise, understanding of long-context
information, and multi-step reasoning (Cui et al.,
2025) that may not be adequately tested by existing
metrics (Dorm et al., 2025).

3.4 Responsible Use and Deployment in
High-Stakes Domains

Ethical concerns about LLM deployment have in-
tensified in law, science, and medicine, where
overreliance on fluent but inaccurate outputs has
led to misinformation, bogus citations, and incor-
rect legal filings (Weidinger et al., 2021). There-
fore, Scholars have called for stricter evaluation,
transparency, and oversight, especially for systems
supporting scientific reasoning or clinical advice
(Bélisle-Pipon 2024; Giorgino et al. 2023).

Safeguards such as retrieval-augmented genera-
tion (RAG) (Chen et al., 2024), expert-led evalu-
ation, and alignment methods like reinforcement
learning from human feedback (RLHF) (Christiano
et al., 2023) exist, but are inconsistently applied.
Many published evaluations still rely heavily on
lexical overlap metrics.

While prior work notes the risks of halluci-
nation and the limits of automatic metrics, few
studies have examined these failures in domain-
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specific QA. Our work addresses this gap through
targeted failure analyses and by proposing ethically
grounded evaluation principles centered on factual-
ity, completeness, and verifiable grounding, better
reflecting the needs of high-stakes scientific tasks.

4 Methodology

To investigate the ethical limitations of automatic
evaluation metrics in domain-specific question an-
swering (QA), we analyze a French-language QA
system fine-tuned on botanical texts. The system
follows a two-stage architecture: the first stage gen-
erates trait-specific questions from floristic descrip-
tions, and the second stage answers those questions
based on the same context.

In our experiments, we evaluate only the answer
generation stage, as factual reliability and complete-
ness are most critical for downstream use. Question
generation is included to relieve users from formu-
lating queries and to provide standardized prompts,
but its intrinsic quality was not separately assessed.

The QA system is based on LLaMA 22 and
LLaMA 3° models, fine-tuned using Low-Rank
Adaptation (LoRA) (Hu et al., 2021). The train-
ing dataset consists of 16,962 expert-verified ques-
tion—answer pairs constructed from unstructured
botanical descriptions. Each QA pair is associ-
ated with a specific botanical trait (e.g., leaf shape,
flower color, inflorescence length) and was de-
signed to reflect structured knowledge retrieval
from naturalistic text.

4.1 Evaluation Dataset

For evaluation, we curated a held-out test set of
1,697 botanical contexts from a distinct source cor-
pus not used during training. From this, a represen-
tative sample of 100 model outputs was randomly
selected using a reproducible pandas-based func-
tion for expert-based review. Each sample consists
of a botanical description (context), a trait-specific
question, and the system-generated answer

4.2 Human Evaluation Protocol

Each of the 100 outputs was independently re-
viewed by a biodiversity expert. The expert rated
each answer on a 1-5 Likert scale across five di-
mensions: Accuracy, Completeness, Relevance,
Fluency, and Terminology Usage (Table 1).

Zhttps://huggingface.co/meta-llama/Llama-2-7b
*https://huggingface.co/meta-llama/Meta-Llama-3-8B



Metric Meaning

Accuracy
Completeness
Relevance

Fluency
Terminology Usage

Factual correctness of the response

Inclusion of all relevant information from the context
Appropriateness of the answer given the question
Grammatical and stylistic quality

Correct and domain-appropriate terminology

Table 1: Expert evaluation metrics for assessing response quality in domain-specific QA.

The expert was provided with the meaning of
each evaluation expert-based metric to ensure con-
sistent scoring in all examples.

4.3 Automatic Metrics

To assess how standard metrics reflect answer qual-
ity, we computed the following scores for the
same 100 examples: BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), BERTScore (Zhang et al.,
2020), and Exact Match (EM) (Rajpurkar et al.,
2016a). These metrics were computed using the
model outputs and their corresponding reference
responses from the training set. We then compared
these automatic scores to human ratings in order
to analyze discrepancies and identify failure cases
that raise ethical concerns.

4.4 Ethical Framing

This methodology is designed to reveal how
surface-level metrics such as BLEU and ROUGE
may produce inflated scores for outputs that are
fluent, but factually incorrect, incomplete, or mis-
leading. In scientific domains such as botany, such
evaluation gaps pose real risks, including the propa-
gation of inaccurate species descriptions, misclassi-
fications of traits, and loss of trust in automated sys-
tems. By pairing automatic metrics with domain-
expert assessment, our aim is to identify evaluation
failures that have ethical implications for the de-
ployment of LLMs in high-stakes QA tasks.

5 Results and Analysis

5.1 Quantitative Overview of Expert Ratings

We first report the average scores assigned by the
domain expert across the five evaluation dimen-
sions. As shown in Table 2, the model achieves
high average ratings in Accuracy (4.74), Botani-
cal Terminology Usage (4.78), and Completeness
(4.53), with slightly lower but still strong scores for
Relevance and Fluency (both at 4.48).

To assess whether surface-level qualities such
as fluency are indicative of factual correctness, we
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Metric / Expert Dimension Mean Score
BLEU 51.48
ROUGE-L 77.13
Exact Match (EM) 0.22
BERTScore F1 0.93
Expert Accuracy 4.74
Expert Completeness 4.53
Expert Relevance 4.48
Expert Fluency 4.48
Botanical Terminology Usage 4.78

Table 2: Comparison of average automatic metric scores
with expert evaluation ratings (scale: BLEU/ROUGE in
%, EM in [0-1], Experts in [1-5]).

computed the Pearson correlation coefficients be-
tween the expert-rated dimensions (Table 3). Ac-
curacy and Completeness show a moderate corre-
lation (r = 0.52), while Fluency correlates only
weakly with Accuracy (r = 0.35) and even less
with Completeness (r = 0.17). The weakest cor-
relation is between Relevance and Terminology
(r = 0.08), and Fluency shows only a modest link
to Botanical Terminology, yet the highest compared
to other expert-based metrics (r = 0.42). These
findings suggest that well-written outputs are not
reliable indicators of factual quality.

Acc. Comp. Rel. Flu. Term.
Accuracy 1.00 0.52 052 035 0.16
Completeness 1.00 0.30 0.17 0.12
Relevance 1.00  0.17 0.08
Fluency 1.00 0.42
Terminology 1.00

Table 3: Pearson correlation matrix between expert eval-
uation dimensions.

5.2 Automatic Metrics vs. Expert Ratings

To evaluate how well commonly used automatic
metrics align with expert human judgment, we com-
pared BLEU, ROUGE-L, Exact Match (EM), and
BERTScore against five expert-evaluated dimen-
sions: Accuracy, Completeness, Relevance, Flu-
ency, and Botanical Terminology Usage. Table 2
reports the mean scores across 100 evaluated sam-
ples.



Context: Twining herbaceous plant with alternate paripinnate leaves. Rachis 7 to 9 cm long, bearing 10 to 13 pairs
of rectangular leaflets 15 to 20 mm long, 6-8 mm wide, decreasing in size towards the base: apex and base almost
truncated. Pairs of leaflets spaced 4-7 mm apart. Upper side of the blade glabrous, underside with fairly dense
semi-erect white hairs. Petiole 2 to 15 mm long before the first pair of leaflets; rachis with fairly dense semi-erect red
hairs: stems with the same pubescence.

Question: What is the color of the hairs on the underside of the leaflets?

Fine-tuned LLM Answer: “The underside of the leaflets is covered with semi-erect, fairly dense white hairs.”
Reference Answer: The hairs are white.

Expert Evaluation: Accuracy: 5, Completeness: 5, Fluency: 5

Metrics: BLEU: 1.7, EM: 0, ROUGE-L: 22.22, BERTScore: 0.80

Comment: Correct and informative answer; metrics penalized due to elaboration.

Context: Small tree, 10 to 15 m tall, or a sarmentose-lianaceous shrub with alternate leaves. Obovate leaf blade, 8 to
18 cm long, or more, 5 to 9 cm wide at the top. Wedge-shaped base, broadly rounded top, sometimes truncated, or
with a short, sharp point in the middle. 7 to 9 lateral veins and, between them, nervils spaced 3-4 mm apart, parallel to
each other.

Question: What is the base of the leaves like?

Fine-tuned LLM Answer: “The base of the leaves is wedge-shaped.”

Reference Answer: The base of the leaves is wedge-shaped, the apex is broadly rounded or sometimes truncate, or
with a short abrupt point in the middle.

Expert Evaluation: Accuracy: 5, Completeness: 5, Fluency: 4

Metrics: BLEU: 8.23, EM: 0, ROUGE-L: 46.67, BERTScore: 0.84

Comment: Accurate and concise, but metrics suffer due to omission of less relevant details.

Context: Petiole 1 to 5 cm long, covered with the same whitish pubescence, as well as the stem and the 2 filiform
stipules 3 to 6 mm long. Axillary flowers, isolated, or in pairs, at the top of a peduncle 1 to 2 cm long. Golden yellow
corolla 20 mm wide, with 5 obtriangular petals, with a broad and emarginate apex. In the center, a short column

bearing numerous stamens. Calyx with 5 fairly wide triangular teeth at the base.
Question: Which organs are mentioned in the plant description?
Fine-tuned LLLM Answer: “The mentioned organs are the petiole, stem, stipules, flowers, corolla, petals, column,

stamens, and calyx.”

Reference Answer: The mentioned organs are the petiole, stem, stipules, corolla, column, stamens, calyx, and

peduncle.
Expert: Accuracy: 5, Completeness: 4, Fluency: 5

Metrics: BLEU: 50.59, EM: 0, ROUGE-L: 80.0, BERTScore: 0.96
Comment: Nearly perfect, missing only the peduncle; EM fails despite strong factual match.

Table 4: Examples showing mismatch between automatic metrics and expert evaluation.

Discrepancies Between Metrics and Expert
Judgment: As illustrated in Table 4, even com-
plete and accurate factual answers can receive low
automatic scores due to linguistic variation or par-
tial overlap with reference. Despite high expert
ratings for accuracy and terminology usage, Exact
Match (EM) remains extremely low at 0.22. This
illustrates the inadequacy of EM in settings where
paraphrasing and linguistic variation are common.
Similarly, BLEU (51.48) and ROUGE-L (77.13)
(Table 2) reflect moderate overlap but remain insen-
sitive to omissions or hallucinations, two critical
failure modes in scientific QA.

Semantic vs. Factual Fidelity: BERTScore F1
(0.93) more closely tracks expert evaluations, sug-
gesting better alignment with semantic content.
However, BERTScore cannot distinguish between
correct information and plausible-sounding halluci-
nations, nor does it penalize factual incompleteness.
These results reinforce the notion that semantic sim-
ilarity does not imply factual fidelity.
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Ethical Implications: These discrepancies raise
serious ethical concerns. In high-stakes domains
like biodiversity, law, and medicine, models can
receive strong automatic scores while omitting
crucial details or introducing unverifiable content.
Therefore, over-reliance on surface-level metrics
can mislead downstream users, researchers, or pol-
icymakers into trusting outputs that lack scientific
rigor.

We provide empirical evidence for the core
claim of this paper: that standard metrics such as
BLEU, ROUGE, EM, and BERTScore fail to cap-
ture the factual quality of LLM-generated answers
in domain-specific settings. We argue for incorpo-
rating expert validation and task-specific evaluation
frameworks as ethical imperatives in future work
on domain-adapted QA systems.

5.3 Alignment of Automatic Metrics with
Expert Ratings

To further quantify how well automatic metrics
track expert judgment, we computed Pearson cor-
relations between BLEU, ROUGE-L, EM, and
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Figure 1: Scatter plot matrix showing automatic metrics vs. expert evaluation dimensions (1-5 scale). Pearson
correlations shown with significance levels (*** p < 0.001, ** p < 0.01, * p < 0.05). n=100.

BERTScore and the five expert-rated dimensions
(Accuracy, Completeness, Relevance, Fluency, Ter-
minology). Figure 2 visualizes the results.

Pearson Correlations between Metrics and Expert Ratings
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Figure 2: Pearson correlations between automatic met-
rics (rows) and expert-rated dimensions (columns). Val-
ues indicate weak-to-moderate alignment at best; EM is
largely uninformative, and BERTScore correlates most
with Relevance rather than factual Accuracy.

Overall, alignments are weak to moderate. The
strongest association is BERTScore with Relevance
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(r = 0.42), followed by ROUGE-L with Relevance
(r = 0.34). Correlations with Accuracy are only
modest across metrics (BLEU ~ 0.22, ROUGE-
L ~ 0.29, BERTScore ~ 0.32), and associations
with Fluency are uniformly low (r < 0.20). Termi-
nology exhibits the weakest alignment overall (e.g.,
EM =~ —0.07). Notably, Exact Match is effectively
uncorrelated with all expert dimensions, showing
its weakness when faced with paraphrased or par-
tially correct answers. These findings reinforce that
surface-similarity metrics (BLEU, ROUGE. EM)
and even semantic similarity (BERTScore) do not
reliably capture factual correctness, completeness,
or terminological precision in domain-specific QA.

~
~

Furthermore, the correlation analysis (Figure 1)
reveals significant limitations in current automatic
evaluation metrics for botanical QA assessment.
BERTScore demonstrates the strongest alignment
with expert judgments, showing moderate correla-
tions with semantic dimensions: Relevance (r =
0.422***), Accuracy (r = 0.316**), and Complete-
ness (r = 0.297**). ROUGE-L exhibits weaker
but statistically significant correlations, particularly
with Relevance (r = 0.339***) and Completeness
(r = 0.259*"). BLEU shows minimal correla-
tions across all dimensions (r < 0.257), with only
Relevance reaching significance (r = 0.257**).



Exact Match proves largely uninformative with
weak correlations (r < 0.244) and limited sig-
nificance. Critically, all automatic metrics show
negligible correlations with Terminology assess-
ment (r < 0.109, mostly non-significant), which
highlights their inability to capture domain-specific
linguistic accuracy crucial for specialized QA sys-
tems. The moderate correlations overall (highest
r = 0.422) indicate that automatic metrics cap-
ture only partial aspects of expert-valued quality,
with BERTScore being the most reliable predic-
tor, while human evaluation remains essential for
comprehensive assessment in specialized domains.

6 Conclusion

We highlight the limitations of widely used auto-
matic evaluation metrics: BLEU, ROUGE, Exact
Match, and BERTScore in capturing the factual ac-
curacy, completeness, and domain-specific fidelity
of LLM-generated answers in scientific question
answering. Our comparative analysis against ex-
pert ratings reveals that these metrics often reward
superficial overlap while failing to penalize crit-
ical omissions, hallucinations, or terminological
imprecision.

We argue that relying solely on these metrics can
lead to misleading conclusions about model per-
formance, particularly in high-stakes fields such as
biodiversity. As illustrated through both aggregate
scores and specific examples, expert-based evalu-
ation provides a more reliable lens for assessing
output quality in domain-adapted QA systems.

Future work should prioritize the development of
evaluation frameworks that integrate domain exper-
tise, task-specific criteria, and human-in-the-loop
feedback. Doing so is not only methodologically
sound but ethically necessary to ensure the safe
deployment of LLMs in scientific and ecological
applications.

7 Limitations

While our analysis highlights important shortcom-
ings of automatic evaluation metrics in domain-
specific QA, several limitations remain.

First, our study focuses on a single domain,
botanical and ecological question answering using
a dataset of 100 expert-rated examples. Although
the findings are indicative, they may not fully gen-
eralize, to the same degree, to all other scientific or
technical fields with different terminological struc-
tures or reasoning demands.
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Second, expert evaluation, while more reliable
than surface-level metrics, introduces its own sub-
jectivity. Although we employed a biodiversity ex-
pert with domain knowledge, future work should in-
clude multiple annotators to assess inter-annotator
agreement.

Third, our evaluation primarily addresses short-
form, extractive QA responses. Longer, multi-step,
or generative answers may pose different chal-
lenges, particularly around discourse coherence,
reasoning chains, and multi-document grounding
areas not fully captured in our current setup.

Finally, we did not explore recent or emerging
evaluation methods such as LLM-as-a-judge or
retrieval-augmented verification, which may com-
plement expert-based evaluation or improve factu-
ality assessment in future iterations.

Addressing these limitations in future work will
be critical to building more robust and trustwor-
thy evaluation pipelines for domain-adapted QA
systems.
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