
R2LM 2025

Proceedings of the
First Workshop on Comparative Performance Evaluation:

From Rules to Language Models

associated with
The 15th International Conference on

Recent Advances in Natural Language Processing
RANLP’2025

Edited by Alicia Picazo-Izquierdo, Ernesto Luis Estevanell-Valladares, Ruslan Mitkov,
Rafael Munoz Guillena and Raul Garcia Cerda

11 September, 2025
Varna, Bulgaria



First Workshop on Comparative Performance Evaluation:
From Rules to Language Models

Associated with the International Conference
Recent Advances in Natural Language Processing

RANLP’2025

PROCEEDINGS

Varna, Bulgaria
11 September 2025

Online ISBN 978-954-452-102-8

Designed by INCOMA Ltd.
Shoumen, BULGARIA

ii



Preface

The rapid growth of deep learning and large language models has transformed the field of natural lan-
guage processing (NLP), driving remarkable progress in tasks that once seemed out of reach. Yet, as
these models scale in size and capability, critical challenges remain. Issues of interpretability, robust-
ness, long-context reasoning, and the substantial data and computational resources required continue to
raise questions about their universality. At the same time, rule-based and knowledge-based approaches,
once considered traditional or even outdated, are being reconsidered. Their strengths in precision, ex-
plainability, and adaptability to low-resource or domain-specific contexts make them valuable comple-
ments to data-driven methods. This workshop aims to unite researchers from various fields of symbolic,
statistical, and hybrid methods to assess their comparative performance, understand their limitations,
and explore how they can work together most effectively. By encouraging dialogue between different
research methodologies and highlighting emerging trends such as retrieval-augmented generation, neu-
rosymbolic AI, and knowledge graph-driven systems, we aim to establish a path towards more robust,
efficient, and transparent NLP technologies. We hope that the contributions gathered here will not only
advance methodological understanding but also inspire a more balanced and inclusive vision for the
future of language technology.
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Abstract

In recent years, large language models (LLMs)
have demonstrated impressive capabilities in
generating human-like textual content. How-
ever, their proficiency in accurately verifying
quotes and citations remains uncertain. This
study benchmarks the effectiveness of contem-
porary LLMs in assessing the relationship be-
tween claims and their cited evidence. To ad-
dress existing limitations, we propose a novel
hybrid approach that integrates multiple veri-
fication techniques to robustly evaluate claim-
citation alignment.

By systematically combining linguistic pars-
ing, confidence-based semantic verification,
and graph neural network modeling, this pa-
per aims to show the enhanced accuracy and
interpretability of automated quote and cita-
tion verification processing using our method,
setting a strong baseline against current LLM
capabilities.

1 Introduction

Large language models (LLMs) now draft con-
tracts, summarize court opinions, and tutor stu-
dents with prose that rivals expert human writing.
Yet this fluency masks a structural weakness: cur-
rent systems freely invent citations, mangle quo-
tations, and misattribute facts (5; 6; 16). Existing
“factuality” benchmarks inspect whether a single
sentence is plausible, they rarely ask the harder,
document-level question, Does the cited source ac-
tually say what the model claims it does? (9; 11; 3).
Consequently, a model can ace popular truthfulness
tests while still propagating fabricated evidence
(1; 28).

Stop gap fixes remain inadequate. Retrieval-
augmented generation merely fetches documents,

it does not verify that the retrieved span truly sup-
ports the claim (7; 15). Entailment models judge
sentence pairs in isolation, ignoring metadata such
as author, edition, or publication date (20; 11).
Chain-of-thought prompting adds reasoning steps,
but those steps themselves can hallucinate, com-
pounding error instead of correcting it. The field
therefore, lacks a unified benchmark and methodol-
ogy that (i) supplies ground-truth claim–evidence
pairs, (ii) measures citation alignment end-to-end,
and (iii) stresses models with real-world edge cases
such as paraphrased quotes, partial attributions, and
outdated editions (22; 11).

We address this gap by pairing a meticulously
curated dataset with a hybrid verification pipeline.
The dataset contains 500 claim–quote pairs drawn
from news, legal opinions, scientific papers, and
classic literature, each manually labeled for ci-
tation correctness. The pipeline chains retrieval,
textual entailment, and bibliographic cross-checks
into a single decision graph, rejecting any claim
unless all stages confirm support. Benchmark-
ing GPT-4, Claude 3, Gemini 1.5, Llama 3, and
Mistral 7B under this stricter regime reveals that
even top models overlook up to 37% of misattribu-
tions—failure modes invisible to traditional factu-
ality scores (5; 11).

Our main contributions in this work are as fol-
lows:

• Citation-Alignment Dataset: a domain-
diverse, expert-annotated benchmark focused
on whether a quoted span is genuinely present
and contextually faithful to its cited source.

• Hybrid Verification Pipeline: a modular
graph that integrates retrieval, entailment, and
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metadata checks, yielding strict pass-fail judg-
ments rather than scalar plausibility scores.

• Comprehensive LLM Evaluation: the first
head-to-head comparison of five leading LLM
families on citation alignment, uncovering sys-
tematic errors that prior metrics miss.

2 Related Work

2.1 Factuality and Hallucination Surveys

Recent work has mapped the ’hallucination’ prob-
lem, LLMs confidently yielding plausible but un-
supported statements, in fine detail. Wang et al.
(5) present a comprehensive survey of factuality
challenges, grouping failure modes and proposing
concrete mitigations. Huang et al. (6) build on
this by showing how model scale, decoding strate-
gies, and noisy training data each fuel factual drift.
Wang et al. (10) synthesize these findings into a
unified framework spanning knowledge extraction,
retrieval methods, and domain-specific evaluations.
Chen et al. (11) introduce FELM, a long-form
factuality benchmark that demonstrates even state-
of-the-art evaluators miss subtle inconsistencies.
By inspecting each token as it’s generated, Barbero
et al. (8) catch hallucinations in real time, snar-
ing unsupported fragments before they can snow-
ball. Building on this, Bazarova et al. (14) intro-
duce a topological divergence method for attention
graphs, which converts attention weights into topo-
logical signatures and rings an alarm whenever
the divergence exceeds learned norms, delivering
best-in-class detection accuracy and seamless trans-
fer across domains.

2.2 Grounded Citation Methods

Retrieval-augmented generation (RAG) has be-
come the backbone of citation grounding. Thorne
et al. (9) established the Fact Extraction and Veri-
fication (FEVER) benchmark, pairing claims with
supporting Wikipedia passages and setting early
standards. Menick et al. (1) then trained Go-
pherCite, a 280B-parameter model, to emit exact in-
line quotes alongside its answers, reaching 80–90%
accuracy on open-domain QA. Huang et al. (6)
fine-tuned LLaMA-2-7B to generate line-level ci-
tations instead of coarse document IDs, boosting
precision by over 14% on the ALCE benchmark.
Zhang et al. (7) survey the evolving RAG land-
scape, while Zhang et al. (12) expand to Poly-
FEVER, a multilingual, multi-hop testbed. Peng

et al. (15) round out this picture by introducing
unanswerability checks, ensuring systems grace-
fully abstain when evidence is lacking.

2.3 Self-Verification

Self-verification routines have emerged to tighten
factual accuracy beyond retrieval. Dhuliawala et
al. (2) proposed the Chain-of-Verification (CoVe)
pipeline: the model drafts an answer, generates
check-questions, answers them, and then composes
a final response, dramatically reducing unsupported
claims. Min et al. (3) introduced FActScore, an
automated metric that breaks text into atomic facts
and measures support against trusted sources, align-
ing within 2% of human judgment on biography
summaries.

2.4 Quotation Attribution and Multi-Modal
Verification

Grounded methods extend beyond factoids to dia-
logues and multi-modal content. Michel et al. (4)
show that LLaMa3 can accurately attribute lines
of dialogue to characters across a 28-novel cor-
pus, illustrating how citation techniques translate
to narrative text. Recent work by Pang et al. (21)
introduces HGTMFC, a hypergraph transformer
model that uses fine-grained semantic interactions
between text and images for claim verification.
This system outperforms prior multi-modal models
by using higher-order relationships between textual
claims and visual evidence nodes through a hyper-
graph and line graph propagation. The TREC 2024
RAG Track introduces a citation accuracy bench-
mark, revealing that LLMs like GPT-4o achieve
over 70% alignment with human judgment when
verifying grounded citations, even in complex re-
sponses (22). However, despite many advance-
ments in factual accuracy, LLMs continue to ex-
hibit significant challenges in generating reliable
and accurate citations. Benchmarks compiled by
Patel and Anand (28) reveal that even state-of-the-
art models often achieve a near-zero accuracy when
generating citations, highlighting a critical region
for potential research in robust verification.

2.5 Graph-Based and Kernel-Baseline
Approaches

Johnson et al. (23) introduce a single, fully
shared encoder-decoder neural machine transla-
tor model that uses a simple target-language to-
ken and a joint subword vocabulary to translate
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among dozens of languages, achieving state-of-
the-art BLEU on major benchmarks, improving
low-resource pair performance, and enabling sur-
prisingly effective zero-shot translation by implic-
itly learning an interlingual representation. Banko
et al. (24) build upon the technique of informa-
tion extraction by employing kernel-based meth-
ods and graphical models in order to analyze
smaller, domain-specific text to identify and ex-
tract pre-defined sets of relationships, laying the
groundwork for data-driven linguistic process-
ing. Kriege et al. (25) provide a comprehen-
sive fifteen-year survey of graph-kernel methods,
covering neighborhood-aggregation (Weisfeiler-
Lehman), assignment-based, substructure, walk-
and-path, and attributed-graph approaches. They
categorize each technique by feature-extraction
paradigm, computational strategy (explicit versus
implicit mapping), and support for discrete labels
or continuous attributes. Through an extensive em-
pirical study across a variety of datasets, they de-
rive practical guidelines for selecting and tuning
graph kernels. More recently, developments in
deep learning have extended the usage of graph-
based paradigms into advanced graph neural net-
works (GNNs), using them as powerful tools to
analyze non-Euclidean data through interdepen-
dencies, helping advance tasks in data mining to
natural language understanding by adapting princi-
ples in the graph structures of deep learning (26).
Within the development of NMT specifically, re-
cent advancements have been shown with the in-
tegration of GNNs, in particular the multi-level
community awareness graph neural network (MC-
GNN) proposed by Nguyen et al. (27), which can
explicitly model composite semantics like morphol-
ogy, syntax, and complex linguistic information by
leveraging graph structures, sometimes substituting
components to enhance the quality of translation.

2.6 Gaps and Our Contribution

Despite its strengths, our CoVeGAT introduces a
novel citation verification pipeline that combines
dependency-based SVO extraction with graph at-
tention mechanisms, outperforming traditional clas-
sifiers on benchmark datasets. However, several
key limitations remain. First, the pipeline depends
heavily on the accuracy of SVO extraction; parsing
errors, especially in idiomatic or complex construc-
tions, cascade through the entire system. Second,
our CoVeGAT assumes claims can be fully decom-

posed into discrete triplets, which overlooks tempo-
ral reasoning, multi-sentence context, and implicit
premises that our sliding-window backup cannot
capture. Third, the dense semantic graphs required
for each citation pair can be computationally expen-
sive to construct at scale. Finally, CoVeGAT’s per-
formance hinges on access to high-quality, domain-
specific labeled data for fine-tuning the graph atten-
tion model, limiting its generalizability across dis-
ciplines. Future work may explore integrating neu-
ral semantic parsers, lightweight graph construc-
tion methods, or few-shot adaptation strategies to
address these constraints and extend CoVeGAT’s
applicability to real-world, low-resource domains.

3 Methodology

Our overall goal is to take unstructured text,
namely, free-form claims paired with their support-
ing citations, and convert it into a graph-structured
dataset that explicitly records which triplets are
supported or contradicted by the citation. This al-
lows downstream models to reason about which
pieces of a claim hold up against evidence and
which do not. To achieve this, we have developed a
fully automated dataset construction pipeline (See
Figure 1), comprising four sequential stages.

By the end of this pipeline, every claim-citation
pair is represented as a small graph whose nodes
and edges are richly tagged with support scores,
forming a large, trainable dataset for any model
that needs to reason over evidence.

3.1 Triplet Extraction

We utilize the spaCy NLP library (17) to perform
semantic parsing on both claims and their corre-
sponding citation texts. Each complex sentence
is simplified into structured Subject-Verb-Object
(SVO) triplets, capturing fundamental semantic re-
lationships. This process explicitly captures nega-
tion within verbs by prefixing negated verbs with
“NOT ”. The decomposition of these sentences
helps reduce textual complexity and enables fo-
cused comparisons between claim and citation con-
tent.

If no clear SVO triplets are extracted using
this dependency parsing, our method defaults to a
sliding-window trigram approach, similar in spirit
to open information extraction (18; 24). This en-
sures robust extraction even from short or less well-
structured texts. Our multi-tiered approach to pars-
ing effectively distills complex sentences into fun-
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Figure 1: Overview of the CoVeGAT architecture. First, claim–citation pairs are passed through an SVO-based
triplet extractor (with a trigram fallback) to produce semantic subject–verb–object nodes, whose embeddings
are obtained via BERT. Edges between claim and citation triplets are weighted by verification scores produced
by GPT-3.5-turbo. The resulting weighted graph is then fed into a graph attention classifier (GAT), with ELU
activations, global mean pooling, and a final linear layer to produce a normalized output score in [0, 1].

damental semantic relationships, facilitating pre-
cise comparisons between claim and citation.

3.2 Chain-Of-Verification (CoVe)

To be able to assess the evidential support provided
by the citations accurately, CoVe utilizes an exter-
nal model, simulated via OpenAI’s GPT-3.5-turbo.
Each extracted triplet from a claim is evaluated
against the citation text, which results in confidence
scores ranging from 0 to 1. Scores closer to 1 in-
dicate higher confidence and stronger evidential
support, while scores closer to 0 indicate low confi-
dence and weak or no evidential support. This re-
flects the likelihood of semantic entailment. These
scores serve as quantifiable measures of evidential
strength between individual triplets, extending the
Chain-of-Verification framework (2) and aligning
with recent work evaluating LLMs as factuality
judges (16).

3.3 Graph Construction

We construct a weighted semantic graph by repre-
senting claim and citation triplets as nodes. Edges
between these nodes are established based on CoVe-
derived confidence scores (2), which effectively
encode the strength of evidential relationships as
edge weights. This graph captures the nuanced
semantic dependencies and interactions between
claim statements and their potential evidential ref-
erences, enabling downstream reasoning through
graph attention mechanisms (19).

3.4 Graph Attention Network (GAT) Analysis
The final stage of this process involves analyzing
the constructed graph using a graph attention net-
work (GAT) (19). This neural network architecture
leverages node features, derived from BERT em-
beddings of triplet components (39), and weighted
edges in order to aggregate semantic information.
The GAT model specifically pools information
from claim-side nodes to make graph-level clas-
sifications, ultimately determining whether a claim
is supported by its citation.

By integrating semantic parsing, confidence-
based verification, and advanced graph neural net-
works, CoVeGAT provides an interpretable ap-
proach to automated quote and citation verification.

4 Experimental Methodology

4.1 Dataset
Source. Our experiments use AVeriTeC—a 4 568-
claim benchmark for real-world fact verification
that aggregates checks from 50 independent organ-
isations. From the official release, we draw exactly
500 claims from the dev.json split, retaining only
the raw claim texts and their ground-truth verdicts.
The dev partition is preferred because it is entirely
disjoint from the training data supplied with the
dataset, ensuring our evaluation corpus is unseen
by any baseline that might have been pre-trained
on the original training split.

To create a balanced testbed, we generate a one-
to-one set of 500 fabricated counterparts. Each
fabricated claim is derived from its real twin by

4



Model Label accuracy Macro-F1 Abstain rate

Perplexity 70 B 28.2 % 43.4 % 71.7 %
GPT-4o 72.2 % 76.2 % 17.7 %
Gemini 1.5 Pro 82.5 % 86.3 % 10.8 %
DeepSeek-MoE 67 B 69.7 % 80.1 % 30.3 %
Copilot-Turbo 76.4 % 82.4 % 19.1 %
Claude 3 Opus 44.3 % 57.2 % 55.7 %
Mistral-7B-Instr. 81.4 % 87.0 % 15.4 %

Table 1: Model performance on classification task

applying a single, controlled perturbation chosen
uniformly at random:

• Named-entity substitution (e.g., swapping
“Angela Merkel”)

• Numerical alteration (changing dates, counts,
or magnitude)

• Temporal shift (advancing or back-dating
events)

• Causal inversion (reversing cause and effect
clauses)

All edits are automated by the Python script pro-
vided in our code repository and manually spot-
checked to eliminate obvious lexical cues that
would trivialise classification.

The procedure yields a 1,000-item dataset with a
perfectly balanced label distribution: 500 accurate
and 500 inaccurate statements.

4.2 Evaluation

Evaluation Metrics. We report three standard mea-
sures:

• Label Accuracy (LA) – the fraction of quotes
whose predicted label exactly matches the
gold 3-way label set (Accurate / Inaccurate
/ Cannot Determine).

• Macro-F1 – the unweighted F1 average over
the two decisive classes (Accurate and Inaccu-
rate); any Cannot Determine output is treated
as an error. This balances precision and recall
and is insensitive to the 50 / 50 class split.

• Abstain Rate – the percentage of quotes that
a model marks Cannot Determine, included
because several LLMs prefer to hedge rather
than commit.

For the non-parametric CoVe-Kernel baseline,
we also log the raw kernel-score distribution and
the hit rate at the empirical decision cutoff τ =
0.025 (see Implementation section).

Baselines. We benchmark seven large-language
models plus one embedding-based system:

• Perplexity 70B (PPL-70B) (31) – Commercial
MoE model accessed via the Perplexity AI
chat API.

• GPT-4o (36) – OpenAI’s flagship model (June
2025 weights).

• Gemini 1.5 Pro (37) – Google Gemini; ab-
stains least often (108 “cannot-determine” de-
cisions in our run).

• DeepSeek-MoE 67B (32) – Chinese–English
mixture-of-experts model.

• GitHub Copilot Turbo (33) – GPT-4-Turbo
derivative served in Copilot Chat.

• Claude 3 Opus (34) – Anthropic’s top-tier
model; most cautious, highest abstain rate.

• Mistral 7B-Instruct (35) – Open-weights
model queried through the HuggingFace In-
ference API, included to gauge how a freely
available 7B model fares.

• CoVe-Kernel – Our reproduction of Chain-
of-Verification: MiniLM embeddings (38),
RBF kernel, τ = 0.025 → “Accurate” if the
claim–evidence distance is below the thresh-
old, “Inaccurate” if above, and “Cannot Deter-
mine” in a ±0.002 band around τ .

All LLMs are evaluated zero-shot. Each receives
batches of 25 quotes with the fixed prompt:
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“For each numbered statement, reply on
its own line with one of:
Accurate and true | Inaccurate and false
| Cannot determine.
Be specific in your evaluation and rely
on trustworthy sources when possible.”

Decoding temperature is 0.0, and responses are
capped at four tokens per quote to prevent extra
commentary.

Refer to Table 1 for the complete results.

5 Results

5.1 Overall Performance

On the mixed dataset of 1,000 shuffled quotes (500
authentic, 500 fabricated), Google Gemini 1.5 Pro
achieves the highest raw accuracy (82.5 %) while
the open-weights Mistral-7B-Instruct posts the best
balanced score (87.0 % macro-F1). GPT-4o fol-
lows at 72.2 %, its accuracy held back by a habit of
replying, cannot determine about one claim in six.

Models that abstain heavily lose ground: Claude
3 Opus and Perplexity 70 B hedge on more than
half of the inputs and finish below the 50 % line
despite respectable precision on the items they do
judge.

The results exhibit a clear trend. With identical
prompts and deterministic decoding, models that
frequently answer Cannot Determine (i.e., adopt
a cautious strategy) suffer lower overall accuracy,
whereas more decisive systems—such as Gemini
1.5 Pro and LLaMA-2-7B-Instruct—achieve higher
scores, albeit at the cost of occasional confident er-
rors on fine-grained numeric edits. Model size
alone is not the primary determinant of perfor-
mance; with well-designed instruction tuning, a
7-billion-parameter model can match, and in cer-
tain metrics surpass, commercial systems in the
70–100 billion-parameter range.

5.2 Methodology performance

We also ran a non-parametric CoVe-Kernel check
on the 500-item set supplied. Each row contains an
RBF similarity score between a quote and its evi-
dence; by convention, a score below 0.025 is taken
to mean “the quote is false” (i.e. CoVe thinks it
has spotted a factual mismatch). Under that single
rule the system flags 482 of 500 quotes correctly,
an accuracy of 96.4 %, leaving only 18 errors.

All 18 mistakes lie inside a very narrow band
just above the threshold (0.025 – 0.035). Inspection

shows three recurring causes:

1. Tiny numeric edits. Changing “42 million”
to “41 million” shifts only one token and
barely moves the embedding, nudging the
score above τ even though the meaning flips.

2. Entity swaps with extra framing. Sentences
like “It is widely believed that Theresa May
. . . ” add hedging phrases the original lacked;
the additional words expand vector distance
enough to miss the cutoff.

3. Causal inversions hidden in long sentences.
When “X led to Y” becomes “Y led to X” in-
side a 30-word clause, most tokens stay iden-
tical, and cosine distance again changes only
marginally.

Because every error sits within 0.010 of the
boundary, simply lowering τ to a score such as
0.022 would raise recall on false claims without cre-
ating many false positives; but it would also erase
any chance of labelling a quote true. The underly-
ing limitation is that MiniLM embeddings are too
coarse-grained for subtle factual reversals; swap-
ping the encoder for a task-tuned cross-encoder or
introducing a small margin band (Cannot Deter-
mine for 0.023–0.027) are straightforward ways to
harden the system.

In short, with a hand-picked threshold CoVe-
Kernel can spot blatant fabrications with high pre-
cision, but it remains brittle around fine-grained nu-
meric or causal tweaks—exactly the corner cases
that modern LLMs also find most challenging.

6 Discussion

Our evaluation of eight citation-verifying systems,
including several advanced LLMs and one hybrid
non-parametric method, reveals key trends about
the strengths and limitations of current approaches
to automated claim citation verification. The results
demonstrate that while LLMs have made progress
in factual reasoning, their ability to judge claim-
evidence alignment consistently remains uneven,
especially in adversarial or subtly perturbed con-
texts.

6.1 Performance vs. Prudence Tradeoff
A clear pattern emerges in the relationship between
decisiveness and performance. Models like Gem-
ini 1.5 Pro and Mistral-7B-Instruct, which issue
definitive judgments with relatively low abstention
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rates (10.8% and 15.4%, respectively), achieve the
highest overall accuracy and macro-F1 scores. In
contrast, Claude 3 Opus and Perplexity 70B adopt
a cautious stance, abstaining from over half the in-
puts, underperforming on both precision weighted
and overall correctness. This emphasizes a cen-
tral challenge in ethical LLM deployment: overly
conservative models risk failing to flag misinfor-
mation, while confident ones may propagate false-
hoods when it does not reflect factual correctness.

Furthermore, model size was not the primary
determinant of performance. Despite having fewer
parameters, Mistral-7B-Instruct outperformed sev-
eral larger commercial systems, highlighting the
value of instruction tuning and alignment strategies
over raw scale. This suggests that accessible, open
weight models, when carefully tuned, can achieve
advanced performance in citation-sensitive tasks
without requiring proprietary infrastructure.

6.2 Fine-Grained Factuality Remains Elusive
Both LLMs and the CoVe-Kernel method strug-
gled with subtle perturbations, especially numeric
alterations and causal inversions. In contrast, the
CoVe-Kernel system achieved 96.4% accuracy on
its benchmark, with every error clustered near the
decision threshold, revealing a sensitivity to edge
cases. Such failure modes emphasize that vector
distance, while capturing semantic similarity, is in-
sufficient for ensuring factual equivalence. In prac-
tical terms, changing “42 million” to “41 million”
or flipping cause-effect relationships produced only
minor shifts in embedding space, small enough to
evade detection by both LLMs and shallow sim-
ilarity functions, highlighting a need for deeper
analysis beyond word overlap in critical domains
like journalism and legal review.

6.3 Ethical Implications and Design
Considerations

Our findings carry several implications for the de-
sign and deployment of LLMs in citation-sensitive
environments. First, models that over-rely on con-
fidence or refuse to abstain when uncertain about
data may contribute to hallucinated factuality, the
illusion of truth created by authoritative tone and
plausible structure. Second, the tendency of some
models to abstain excessively raises the risk of eth-
ical ambiguity, failing to identify misinformation
when a judgment is expected.

The high performance of a relatively simple
CoVe-Kernel baseline further raises questions

about the interpretability and transparency of LLM
outputs. Unlike most LLMs, which offer little in-
sight into why a given citation was judged as ac-
curate, the kernel-based method provides direct
access to distance thresholds and can be calibrated
to balance precision and recall. This suggests that
hybrid systems, like our CoVE-Kernel system, may
offer a more robust path forward for citation verifi-
cation.

7 Conclusion

This study evaluated whether state-of-the-art LLMs
can reliably distinguish true statements from min-
imally perturbed fabrications. We constructed
a 1,000-item test set by pairing 500 verified
AVeriTeC claims with single-edit counterparts,
each manually validated to remove superficial cues.
Seven zero-shot LLMs and a CoVe-Kernel baseline
were assessed using label accuracy, macro-F1, and
abstention rate.

Decisive models like Google Gemini 1.5 Pro
(82.5 % accuracy) and Mistral-7B Instruct (87.0 %
macro-F1) consistently outperformed cautious sys-
tems such as Claude 3 Opus and Perplexity 70 B,
which abstained on over half of the inputs and fell
below 50 % overall accuracy. The CoVe-Kernel
approach, relying on MiniLM embeddings with
a single RBF cutoff, achieved 96.4 % accuracy,
underscoring the competitiveness of simple, inter-
pretable methods.

These results reveal a pronounced trade-off be-
tween decisiveness and restraint: lower absten-
tion rates drive higher accuracy, whereas excessive
hedging imposes substantial performance costs.
Crucially, model scale alone does not determine
success; instruction tuning and calibrated absten-
tion thresholds are equally decisive.

Future work should (1) enhance small encoders
or cross-encoders to detect subtle numeric and
causal perturbations and (2) develop fully inte-
grated pipelines that unify fine-grained citation
(“sanitation”), systematic self-verification (“veri-
fication”), and atomic evaluation metrics such as
FActScore. Such end-to-end frameworks promise
to advance the reliability and transparency of LLM-
based fact-verification systems.

8 References

References
[1] Menick, J.; Kadav, A.; Jaques, N.; Chen, M.;

Petrov, M.; Hesse, C.; Clark, C. Teaching Language

7



Models to Support Answers with Verified Quotes.
arXiv:2203.11147, 2022.

[2] Dhuliawala, S.; Min, S.; Zhan, C.; Narayan-
Chen, T.; Yasunaga, M.; McCann, B.; Prabhakaran,
V. Self-Verification Improves Few-Shot Reasoning.
arXiv:2305.14251, 2023.

[3] Min, S.; Krishna, K.; Lyu, X.; Lewis, M.; Yih, W.-t.;
Koh, P. W.; Iyyer, M.; Zettlemoyer, L.; Hajishirzi, H.
FActScore: Fine-grained Atomic Evaluation of Fac-
tual Precision in Long Form Text Generation. 2023.

[4] Michel, G.; Epure, E. V.; Hennequin, R.; Cerisara,
C. Evaluating LLMs for Quotation Attribution in
Literary Texts: A Case Study of LLaMa3. 2024.

[5] Wang, Y.; Wang, M.; Manzoor, M. A.; Liu, F.;
Georgiev, G.; Das, R. J.; Nakov, P. Factuality of
Large Language Models: A Survey. In Proceedings
of EMNLP 2024, 2024.

[6] Huang, L.; Yu, W.; Ma, W.; Zhong, W.; Feng, Z.;
Wang, H.; Chen, Q.; Peng, W.; Feng, X.; Qin, B.;
Liu, T. A Survey on Hallucination in Large Lan-
guage Models: Principles, Taxonomy, Challenges,
and Open Questions. arXiv:2311.05232, 2023.

[7] Zhang, Y.; Liu, S.; Qin, Z.; Wan, X.; Feng, Y. Evalu-
ation of Retrieval-Augmented Generation: A Survey.
arXiv:2405.07437, 2024.

[8] Barbero, A.; Carvalho, J.; Bode, N.; West, A.; Peter-
son, J. Robust Hallucination Detection in LLMs via
Adaptive Token Selection. arXiv:2504.07861, 2025.

[9] Thorne, J.; Vlachos, A.; Christodoulopoulos, C.; Mit-
tal, A. FEVER: a Large-scale Dataset for Fact Extrac-
tion and Verification. In EMNLP, 2018.

[10] Wang, C.; Liu, X.; Yue, Y.; Tang, X.; Zhang, T.;
Cheng, J.; Yao, Y.; Gao, W.; Hu, X.; Qi, Z.; Wang,
Y.; Yang, L.; Wang, J.; Xie, X.; Zhang, Z.; Zhang,
Y. Survey on Factuality in Large Language Mod-
els: Knowledge, Retrieval and Domain-Specificity.
arXiv:2310.07521, 2023.

[11] Chen, S.; Zhao, Y.; Zhang, J.; Chern, I.-C.; Gao,
S.; Liu, P.; He, J. FELM: Benchmarking Factuality
Evaluation of Large Language Models. In NeurIPS
Workshops, 2023.

[12] Zhang, H.; Anjum, S.; Fan, H.; Zheng, W.; Huang,
Y.; Feng, Y. Poly-FEVER: A Multilingual Fact Ver-
ification Benchmark for Hallucination Detection in
LLMs. arXiv:2503.16541, 2025.

[13] Ma, H.; Xu, W.; Wei, Y.; Chen, L.; Wang, L.; Liu,
Q.; Wu, S.; Wang, L. EX-FEVER: A Dataset for
Multi-hop Explainable Fact Verification. In Findings
of ACL, pp. 9340–9349, 2024.

[14] Bazarova, A.; Yugay, A.; Shulga, A.; Ermilova,
A.; Volodichev, A.; Polev, K.; Belikova, J.; Parchiev,
R.; Simakov, D.; Savchenko, M.; Savchenko, A.;
Barannikov, S.; Zaytsev, A. Hallucination Detection
in LLMs with Topological Divergence on Attention
Graphs. 2025.

[15] Peng, et al. Unanswerability Evaluation for Re-
trieval Augmented Generation. 2024.

[16] Fu, X.-Y.; Laskar, M. T. R.; Chen, C.; Tn, S. B. Are
Large Language Models Reliable Judges? A Study
on the Factuality Evaluation Capabilities of LLMs.
In GEM Workshop at NeurIPS, pp. 310–316, 2023.

[17] Honnibal, M.; Montani, I. spaCy 2: Natural Lan-
guage Understanding with Bloom Embeddings, Con-
volutional Neural Networks and Incremental Parsing.
TACL, 5, 2017.

[18] Mausam; Schmitz, M.; Soderland, S.; Bart, R.; Et-
zioni, O. Open Language Learning for Information
Extraction. In EMNLP-CoNLL, 2012.
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Abstract

This study compares methods for detect-
ing violent videos, which are crucial for
ensuring real-time safety in surveillance
and digital moderation. It evaluates four
approaches: a random forest classifier, a
transformer model, and two multimodal
vision-language models. The process in-
volves preprocessing datasets, training
models, and assessing accuracy, inter-
pretability, scalability, and real-time suit-
ability. Results show that traditional meth-
ods are simple but less effective. The trans-
former model achieved high accuracy, and
the multimodal models offered high vio-
lence recall with descriptive justifications.
The study highlights trade-offs and pro-
vides practical insights for the deployment
of automated violence detection.

1 Introduction

Concerns about harmful content have
prompted the UK government to implement
the Online Safety Act 2023, which encourages
proactive content moderation and violence
prevention both online and offline (GOV UK
Department for Science, 2025). As smart
cities evolve, citizens demand enhanced safety
measures and swift emergency responses,
pressuring authorities to adopt automation
tools (Pujol et al., 2020). Governments are
facing the rapid growth of video content in
surveillance and digital applications, making

manual analysis impractical. This drives the
need for real-time video systems that identify
patterns for safety and emergencies (Sabha
and Selwal, 2024). Social media platforms
also struggle to manage vast video volumes
in near real-time (Pujol et al., 2020), amid
increasing circulation of violent content,
including hate crimes and terrorist attacks
(Studer, 2017). Many platforms, such as
Facebook and YouTube, attempt to moderate
content through automated tools; however, the
scale and immediacy of live streaming make
this nearly impossible (Pujol et al., 2020).

Automatic violence detection is difficult due
to its inherent subjectivity. Violent acts are not
always visually explicit and depend on con-
text, like body posture, group dynamics, or
weapons, posing barriers to definition (Naik
and Gopalakrishna, 2017). Other issues in-
clude illumination variance, which affects out-
door video quality due to changes in lighting,
such as day/night transitions or weather, im-
pacting colour and contrast (Kaur and Singh,
2024).

Fortunately, AI offers promising tools, partic-
ularly through computer vision (CV) and ma-
chine learning models trained to classify vi-
sual data. This project explores and compares
four such methods for detecting violence: Ran-
dom Forest classifier, TimeSformer, Llama 3.2
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Vision Instruct and Janus Pro. This project
aims to investigate the effectiveness of cutting-
edge machine learning technologies in detect-
ing real-world violence. This research has ap-
plications ranging from enhancing online mod-
eration to improving street safety in cities.

2 Background

Recent research indicates that machine learn-
ing models are increasingly supporting video
classification, particularly in the context of vi-
olence detection (VD).

2.1 Violence detection (VD) software

Before Deep Learning (DL) methods, VD was
seen as recognising specific human actions
(Peixoto et al., 2020). Following initial ap-
proaches, DL techniques improved VD re-
sults (Peixoto et al., 2020), notably with 3D
convolutional neural networks for extracting
spatio-temporal patterns (Ding et al., 2014).
However, many models remain computation-
ally intensive, often using multi-stream input
and stacked LSTM layers, with limited de-
tails on their complexity (Ullah et al., 2019)
(Ullah et al., 2022). Some researchers focus
on models balancing performance and effi-
ciency. One achieved 87.25% accuracy with
just 0.27 million parameters (Cheng et al.,
2021a) using depth-wise separable convolu-
tions from Pseudo-3D Residual Networks (Qiu
et al., 2017) and MobileNet (Howard et al.,
2017), thereby reducing complexity without
compromising accuracy. The VD field has
evolved from handcrafted features to advanced
DL models that interpret video spatio-temporal
cues.

2.2 Random Forest

Random Forests are a popular machine learn-
ing model used for classification and forecast-
ing, requiring high-quality data for training.
They improve algorithms and user behaviour

analysis, aiding pattern recognition (Salman
et al., 2024). The model excels in classifi-
cation and regression, using cross-validation
for accuracy and handling missing data effec-
tively (Achari and Sugumar, 2024). It also
reduces bias by training multiple decision trees
on random subsets of data, making it one of
the most reliable techniques in ML (Salman
et al., 2024). Random forests are often used in
hybrid models for VD. For example, a study
developed a facial recognition assault system
using Random Forest, achieving 98% precision
and 97.5% accuracy, showing ensemble meth-
ods enhance safety (Ohwosoro et al., 2024).

2.3 TimeSformer

Video understanding tasks, such as VD, re-
quire models to interpret spatial and tempo-
ral features. TimeSformers, which utilise
a transformer-based architecture with spatio-
temporal attention, reason across frames and
time (Bertasius et al., 2021a). Research has
found TimeSformer performs well in Deep-
Fake detection (Chen et al., 2024). The archi-
tecture is suitable for VD, where an extended
temporal context is key. TimeSformer differs
from standard Transformers in that it learns
spatio-temporal features directly from frame
patches. Research shows that “divided atten-
tion,” applying temporal and spatial attention
separately, achieves the highest video classifi-
cation accuracy (Bertasius et al., 2021b).

2.4 Large Language Models

Following ChatGPT’s launch, attention has fo-
cused on large language models (LLMs) (Tian
et al., 2024), especially for their strong per-
formance in classification (Al Faraby et al.,
2024), summarisation (Doss et al., 2024), data
and code generation (Shimabucoro et al., 2024)
(Nejjar et al., 2025). The rapid development
of LLMS is clear in the late 2023 and early
2024 releases of Google’s Gemini, Anthropic’s
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Claude 3, and OpenAI’s GPT-4 (Shahriar et al.,
2024). These models represent a significant
leap in capabilities, transitioning from text-
only to multimodal understanding across text,
images, and audio, with enhanced parameters
and speed (Shahriar et al., 2024). LLMs’ abil-
ity to understand and generate extensive data
has created opportunities, such as Llama3.2,
which addresses predatory conversations and
abusive messages (Arora, 2025). However,
these models can gain vision capabilities. Vi-
sion in LLMs means adapting transformer
models from language to interpret images (Yen-
duri et al., 2024). This has expanded the gener-
ative pre-trained transformer (GPT) to include
vision. Since multimodal LLMs are relatively
new, many research areas are still in their early
stages (Wang et al., 2024). OpenAI’s GPT-4
release in May 2024 marked a key shift, as it
was the first to interpret emotions from videos
(Islam and Moushi, 2024), opening up new ap-
plications. Yet, using multimodal LLMs for
VD in videos remains under-explored, with re-
search gaps this project aims to fill (Jaafar and
Lachiri, 2023).

3 Data

The violent samples in both datasets depict
real-world street fight scenarios recorded un-
der varying conditions. Non-violent samples
include everyday activities like walking, eating,
and playing sports, representing a wide range
of non-aggressive behaviours. This diversity
provides a realistic setting for evaluating safety
monitoring and automated incident detection
systems.

3.1 Ethical concerns

All datasets used in this study were obtained
from publicly available academic sources. No
new data was collected, annotated, or shared
during the project. The RLVS dataset was
sourced from Kaggle (Mustafa, 2020) and in-

troduced initially by Soliman et al. (Soliman
et al., 2019). The RWF-2000 dataset was down-
loaded from Hugging Face and first presented
by Cheng et al. (Cheng et al., 2021b). Both
datasets contain publicly available videos de-
signed for violence detection research. None
of the content includes personally identifi-
able information, as all videos were either
anonymised or publicly accessible.

3.2 RLVS Dataset

A subset of the Real-Life Violence Situations
(RLVS) dataset comprising 957 violent sam-
ples and 839 non-violent samples was used for
training, validation, and in-distribution testing.
As a result, the final dataset used in this study.
A consistent train/validation/test split was gen-
erated and saved in a persistent JSON file to
support reproducibility.

Figure 1: Example frames from RLVS. Left: vio-
lent, Right: non-violent

3.3 RWF-2000 Dataset

The RWF-2000 dataset was used solely for out-
of-distribution testing to assess generalisation
beyond the training data. A subset of 383 vio-
lent and 395 non-violent was used for testing
to reduce computational load, especially for
the vision-language models. Models were nei-
ther trained nor fine-tuned on RWF-2000, and
no manual labelling or editing was done.
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4 Methodology

4.1 Data Preprocessing

A unified pipeline ensured consistent inputs
across models. Videos were uniformly sam-
pled every 15 frames, with up to 16 frames
per clip. Frames were resized to 224 × 224;
clips with fewer than 8 valid frames were dis-
carded. Training and validation sets were aug-
mented with brightness, contrast, and satura-
tion shifts (±20%), hue shifts (±0.1), horizontal
flips, random crops, and rotations (±10°), ap-
plied consistently across frames to preserve
temporal coherence. RLVS was split via strat-
ified sampling (20% test, 10% validation);
for RWF-2000, a subset was used for test-
ing only. Motion features were derived from
Farneback optical flow, summarised with statis-
tics (mean, variance, skewness, range, etc.)
and a high-motion pixel count. Frames were
saved as JPEGs (for LLMs) and as tensors
(T × C ×H ×W ) in PyTorch format for effi-
cient loading.

4.2 Random Forest

To establish a classical baseline, a Random
Forest classifier was trained on motion features
derived from dense optical flow.

4.2.1 Training
The Random Forest model was trained on mo-
tion statistics derived from dense optical flow,
including mean, median, standard deviation,
maximum, minimum, range, skewness, vari-
ance, and the proportion of high-motion pix-
els per frame. These features capture both
overall motion intensity and its distribution
across frames. Labels were assigned automati-
cally from dataset filename prefixes (‘violent-’
or ‘nonviolent-’), consistent with the dataset’s
original annotation scheme. Hyperparameters
were optimised via grid search with five-fold
cross-validation, using ROC-AUC as the scor-
ing metric due to class imbalance. The best

model employed 100 estimators, a maximum
depth of 8, a minimum sample split of 10, a
minimum sample leaf of 4, and balanced class
weighting. This configuration was retrained on
the whole training set and evaluated on the test
set.

4.2.2 Feature Importance

Post-training, feature importances revealed
that mean and minimum motion magnitudes
were the most influential predictors, underscor-
ing the role of motion intensity in distinguish-
ing between violent and non-violent activity.

4.2.3 Interpretability of Random Forest

The Random Forest provides insight into
which features drive classification. For exam-
ple, a high mean motion magnitude strongly
predicted violent sequences, such as street
fights, whereas a low minimum flow magni-
tude aligned with stable, non-violent scenes.
However, the model also produced false pos-
itives in contexts like crowd surges at sports
events, where collective movement mimicked
aggression. These results suggest that RF’s
interpretability is valuable, but its rule-like mo-
tion thresholds are not robust across diverse
scenarios.

4.3 TimeSformer

To establish a DL benchmark, a transformer-
based video classification model was imple-
mented using the TimeSformer architecture.
TimeSformer builds on the Vision Transformer
(ViT) framework by introducing a mechanism
to handle both spatial and temporal dimensions
in video data. Rather than using traditional
3D convolutions, it applies divided attention
across space and time separately, enabling ef-
ficient and scalable video understanding from
raw pixel data.
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4.3.1 Model Configuration
The TimeSformer model used was
facebook/TimeSformer-base-
finetuned-k400, pre-trained on the
Kinetics-400 dataset (Bertasius et al., 2021a).
To adapt it for binary violence detection,
the classification head was replaced with a
fully connected layer producing two logits.
Frames were converted to floating point and
normalised by dividing by 255.0, preserving
dynamic range without distorting pixel intensi-
ties. Temporal tensors were zero-padded as
needed. Labels were inferred from filename
prefixes. The entire model was fine-tuned to
adapt specifically to the task.

4.3.2 Training Configuration
Training used the Hugging Face Trainer API
with a batch size of 6. The model was opti-
mised for cross-entropy loss with label smooth-
ing (0.1), a learning rate of 5e-5, and cosine
scheduling, along with a 25% warm-up. Early
stopping had a patience of 2 steps. Regularisa-
tion included weight decay (0.2) and gradient
clipping (norm 1.0). Evaluation occurred ev-
ery 1000 steps, saving the best model based on
validation log loss. Seeds were fixed at 42 for
reproducibility. Training ran on a SLURM job
with an NVIDIA A5000 GPU.

4.4 Interpreting TimeSformer decisions

We analyse the model’s posterior p(violence |
x) without binarisation. To expose its deci-
sion process, we extract self-attention from
each transformer block during a forward pass.
(output attentions=true) and apply
attention rollout: heads are averaged, an iden-
tity residual added, rows normalised, and at-
tention matrices multiplied across layers to
form a single CLS→patch relevance map. This
is reshaped into a g × g grid and tempo-
ral tubelets to yield spatial heatmaps (time-
averaged). In the Kinetics-400 TimeSformer,

inputs are 224 × 224 with 16 × 16 patches
(g = 14) and tubelet size 8, so 16 frames give
Teff = 2 temporal tokens inferred at run time.
For windowed videos, video-level probabili-
ties are aggregated with monotone poolers that
preserve probabilistic semantics: max, mean,
top-k mean, log-sum-exp (temperature τ ), and
noisy-OR 1−∏

i(1− pi). Evaluation utilities
proper scoring rules (negative log-likelihood,
Brier) and calibration/ranking metrics (ROC–
AUC, PR–AUC, ECE/MCE).

4.5 Multimodal LLMs: Llama 3.2 Vision
and Janus-Pro-7B

To assess the potential of multimodal large
language models for violence detection,
Meta’s Llama 3.2 Vision Instruct model and
DeepSeek’s Janus-Pro-7B were used.

4.5.1 Llama 3.2 Vision Instruct Model
Configuration

The model (meta-Llama/Llama-3.2-
11B-Vision-Instruct) was loaded via
Hugging Face Transformers (meta, 2024) with
mixed-precision evaluation. Inputs were pro-
cessed using AutoProcessor for image normal-
isation and prompt tokenisation. Generation
was limited to 200 tokens with deterministic
decoding (do sample=False, temperature=0.2)
to ensure stable outputs. Each frame was eval-
uated using the following prompt: ”This image
is part of a public dataset of street and public
scenes used for academic research. Start your
response with a yes or no if violence is depicted
in this image. Then describe what is happen-
ing. If a violent or aggressive incident occurs,
describe what happened and identify those in-
volved. If there isn’t any violence, describe
the scene as peaceful or non-violent. Use sim-
ple language and avoid complex terms where
possible.”
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4.5.2 Janus-Pro-7B Vision Model
Configuration

Janus was loaded using AutoModelFor-
CausalLM with mixed precision enabled. The
Janus-specific VLChatProcessor was used to
process images and chat-style prompts, ensur-
ing consistent resizing, normalisation, and to-
kenisation. The prompt used was identical to
that used with Llama. Generation parameters
were configured with do sample=False, repeti-
tion penalty=1.0, and a maximum of 200 new
tokens to produce deterministic and focused
outputs.

4.6 Testing Methodology

To evaluate model effectiveness and general-
isability, two testing settings were used: in-
domain testing on the RLVS test split and
out-of-domain testing on a subset of RWF-
2000. This allowed assessment of performance
within the original data distribution and in un-
seen environments. A unified preprocessing
and evaluation pipeline standardised video ex-
traction, transformation, and organisation for
both datasets. The RLVS test set consisted of
363 videos (194 violent and 169 non-violent),
which were held out from training and vali-
dation. The RWF-2000 subset included 778
videos (383 violent, 395 non-violent), enabling
fair cross-model comparison. To improve ro-
bustness and simulate real-world variability,
data augmentation was applied at the video
level with a 50% probability during RLVS
training and validation. Extracted frames were
then formatted as inputs for the three mod-
els. For input preparation, the Random Forest
model used optical flow between consecutive
frames to extract nine motion statistics form-
ing fixed-length feature vectors. The TimeS-
former model received RGB frame tensors of
shape (16, 3, 224, 224) and applied spatial
and temporal self-attention for classification.
Llama and Janus processed frames individually

with a fixed prompt; a zero-shot text classifier
classified their generated text outputs to assign
violent or non-violent labels. Outputs were
compared to ground truth labels, with confu-
sion matrices used to analyse false positives
and negatives. Performance metrics included
accuracy, precision, recall, and F1-score.

5 Evaluation

5.1 In-Domain Testing (RLVS)

Model Accuracy Precision Recall F1 Time (s)

Random Forest 77.96% 0.7614 0.8556 0.8058 0.01
TimeSformer 96.41% 0.9547 0.9793 0.9669 39.90
LLaMA 78.24% 0.7154 0.9845 0.8286 99 309.80
Janus Pro 74.38% 0.6772 0.9948 0.8058 9 904.08

Table 1: In-domain RLVS test set performance.

Table 1 summarises model performance on
the RLVS test set. TimeSformer performed
strongest, achieving high accuracy and a bal-
anced precision–recall trade-off with inference
times suitable for near-real-time surveillance.
LLaMA and Janus Pro reached very high re-
call, but this came at the cost of precision, often
misclassifying non-violent group behaviour as
violent. Random Forest was the fastest model,
classifying samples almost instantly; however,
its reliance on simple motion statistics made it
prone to errors in ambiguous scenarios, such
as crowd surges. These results suggest that
TimeSformer is best suited for automated mon-
itoring, while multimodal models may be more
valuable in forensic review or moderation con-
texts where interpretability is prioritised. Ran-
dom Forest, despite weaker performance, re-
mains attractive for highly constrained deploy-
ments. The error distributions for each RLVS
model are illustrated in the corresponding con-
fusion matrices (Figure 2), which make explicit
the balance between false positives and false
negatives discussed above.
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Predicted
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117 52
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Random Forest (RLVS)

Non-Violent Violent
Predicted
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Violent
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ue
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4 190

TimeSformer (RLVS)

Non-Violent Violent
Predicted

Non-Violent
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ue

191 76

3 93

LLaMA 3.2 (RLVS)

Non-Violent Violent
Predicted

Non-Violent

Violent

Tr
ue

193 92

1 77

Janus Pro (RLVS)

Figure 2: Confusion matrices on the RLVS test set
(rows = true labels, columns = predicted labels).

5.2 Out-Of-Domain Testing (RWF-2000)

Model Accuracy Precision Recall F1 Time (s)

Random Forest 54.24% 0.5754 0.2689 0.3665 0.01
TimeSformer 68.76% 0.6590 0.7571 0.7047 82.16
LLaMA 64.78% 0.5873 0.9635 0.7298 193 729
Janus Pro 74.68% 0.6691 0.9635 0.7898 21 706

Table 2: Out-of-domain RWF-2000 test set perfor-
mance.

Table 2 presents the performance of all models
on the RWF-2000 dataset. Janus Pro achieved
the highest F1 score (0.79) with near-perfect
recall (0.96), demonstrating strong zero-shot
transfer capabilities. LLaMA achieved similar
recall but with lower precision, resulting in a
higher number of false positives. Both models
generated interpretable outputs, though their
runtimes were extremely high. TimeSformer
generalised well, despite being fine-tuned only
on RLVS, achieving balanced scores and com-
pleting inference in just over a minute. Ran-
dom Forest performed poorly under distribu-
tion shift, with low recall and F1, reflecting
limited robustness. Overall, Janus Pro showed
the strongest zero-shot generalisation, while
TimeSformer offered a better balance of speed
and accuracy. LLaMA remained interpretable,

but it was computationally intensive. Random
Forest remained the most efficient but least
adaptable. Error patterns under distribution
shift are shown in the RWF-2000 confusion
matrices (Figure 3), which emphasise the mod-
els’ differing capacities to generalise.

Non-Violent Violent
Predicted

Non-Violent

Violent

Tr
ue

319 76

280 103

Random Forest (RWF-2000)

Non-Violent Violent
Predicted

Non-Violent

Violent

Tr
ue

245 150

93 290

TimeSformer (RWF-2000)

Non-Violent Violent
Predicted

Non-Violent

Violent

Tr
ue

370 183

14 211

LLaMA 3.2 (RWF-2000)

Non-Violent Violent
Predicted

Non-Violent

Violent

Tr
ue

370 260

14 134

Janus Pro (RWF-2000)

Figure 3: Confusion matrices on the RWF-2000
test set (rows = true labels, columns = predicted
labels).

5.3 Decision evidence and probability
quality

On 778 test windows (383 violent; 395
non-violent), the model yields ROC–AUC
0.767 and PR–AUC 0.764 from raw posteri-
ors. Probability quality is moderate (negative
log-likelihood 1.94; Brier 0.288) and calibra-
tion indicates over-confidence (ECE 0.286, 15
bins). Cumulative gains show that the top 10%
of windows by p(violence | x) contain 18.3%
of violent windows (Lift@10% 1.83). Aggre-
gating windows improves video-level ranking:
noisy OR reaches ROC–AUC 0.800 (PR–AUC
0.751), while top-k mean (k = 3) gives the
best proper scoring (negative log-likelihood
1.851; Brier 0.287) and the lowest ECE among
the poolers.
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Pooler ROC–AUC ↑ NLL ↓
max 0.787 2.011
mean 0.755 1.854
noisy–OR 0.800 2.149
log–sum–exp 0.759 1.864
top-k mean 0.761 1.851

Table 3: Video-level pooling of window probabilities
(no thresholds). Best per column in bold.

5.4 Qualitative evidence

Spatial overlays for high-confidence violent
windows focus on converging bodies and
limbs, with temporal peaks in the tubelet that
captures contact. Low confidence violent win-
dows show diffuse attention, often in pre- or
post-event frames, under occlusion, or when
brief actions are split across tubelets. High con-
fidence non-violent windows emphasise crowd
surges or celebratory gestures that are visually
salient yet non-violent. Figure 4 shows exam-
ples.

High-confidence
violent

p(violence | x) ≈
0.999754

Low-confidence
violent

p(violence | x) ≈
0.000418

High-confidence
non-violent

p(violence | x) ≈
0.999993

Figure 4: Spatial attention overlays (CLS→patch rele-
vance) for three representative windows.

5.5 Evaluation Findings

5.5.1 Notable Observations
TimeSformer consistently achieved the best
balance of precision and recall across both
datasets. Its confusion matrices indicated
lower rates of false positives and false nega-
tives, supporting its reliability in varied scenar-
ios. LLaMA Vision exhibited a strong bias to-
wards recall, detecting violent content aggres-
sively but occasionally misclassifying benign
scenes as violent. This trade-off may be accept-

able in high-sensitivity contexts but is less suit-
able where false positives carry a significant
cost. Random Forest performed reliably on
RLVS, particularly in identifying non-violent
scenes, but its accuracy declined on RWF-2000.
This shows its handcrafted features generalise
poorly to more varied or noisy data.

5.5.2 Error Analysis and Interpretability
TimeSformer’s errors primarily resulted from
crowded or celebratory scenes, which pro-
duced false positives, and short, low-contrast
violent clips, which resulted in false negatives.
LLaMA and Janus Pro often hallucinated ag-
gression, labelling cricket games as violent.
Random Forest struggled with camera shake
and noisy backgrounds, exposing its reliance
on clean motion signals. Interpretability also
varied. TimeSformer’s attention maps high-
lighted human interactions, usually aligning
with the source of violence. LLaMA and Janus
Pro generated natural language explanations,
offering detailed scene descriptions of actors,
actions, and context, such as environments and
expressions. These outputs exposed system-
atic biases and helped diagnose false positives.
They also added value in human-in-the-loop
scenarios where moderators could review justi-
fications alongside predictions.

5.5.3 Summary of Findings
TimeSformer delivered the highest overall per-
formance, with strong generalisation and the
fewest false positives. Its ability to model spa-
tial and temporal features makes it well-suited
for continuous, high-precision surveillance in
environments where alert reliability is critical.

LLaMA Vision and Janus Pro achieved the
highest recall, demonstrating strong sensitivity
to violent content and producing interpretable
natural language explanations. These qualities
make them valuable for content moderation
and investigative or regulatory settings, where
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comprehensive flagging and explanation are
prioritised. However, their lower precision and
very high inference times limit their suitability
for real-time or autonomous applications.

Random Forest, while fast and transparent,
generalised poorly to RWF-2000. Its simplic-
ity and efficiency still make it viable for con-
trolled edge deployments, such as low-power
CCTV units, where latency and interpretability
take precedence over accuracy. Overall, these
findings emphasise distinct deployment niches:
TimeSformer as the most balanced and scal-
able solution, multimodal LLMs for human-
in-the-loop systems, and Random Forest for
resource-constrained contexts. Together, they
illustrate the trade-offs between accuracy, in-
terpretability, and efficiency that must guide
real-world adoption of violence detection sys-
tems.

6 Conclusion

6.1 Project Limitations

This study has several limitations. The models
were not trained to detect weapons, as this was
not included in the datasets used in this project,
which limits their ability to detect armed vi-
olence. No post-hoc calibration was applied,
ensuring fairness across models but potentially
constraining accuracy and generalisability. At-
tention maps serve as explanatory aids rather
than causal attributions but consistently empha-
sise physical interaction.

6.2 Future Work

Future work should evaluate these models in
real-time surveillance or moderation settings.
Adding audio cues, such as raised voices, could
support earlier detection. Another approach
is to incorporate textual commentary from
speech transcripts or subtitles, as verbal threats
often precede violence. LLMs can process
text and video jointly, enabling cross-modal

reasoning. In contrast, models like TimeS-
former would need auxiliary NLP components
or architectural changes. Methodological steps
include aligning subtitles with video frames,
fine-tuning multimodal encoders, and com-
paring late-fusion against joint-embedding ap-
proaches to determine which best captures tem-
poral and semantic dependencies. Such integra-
tion could provide richer context and improve
robustness in safety-critical applications.

6.3 Summary

This project compared four approaches to
AVD in video: a Random Forest baseline, the
transformer-based TimeSformer, LLaMA 3.2
Vision Instruct and Janus Pro, evaluated on
RLVS and RWF-2000 datasets. TimeSformer
achieved the strongest balance of accuracy and
efficiency, making it suitable for real-world de-
ployment. LLaMA Vision demonstrated high
recall and interpretability, which is valuable
in settings with human oversight; however,
computational demands limit its scalability.
The Random Forest was lightweight and inter-
pretable but struggled to generalise, highlight-
ing the limits of handcrafted features. Overall,
transformer-based models appear most promis-
ing when balancing performance and scalabil-
ity. Future directions include model distilla-
tion, real-time optimisation, and audio integra-
tion.
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Abstract
The growing use of generative AI in academic
writing raises urgent questions about author-
ship and the integrity of scientific communi-
cation. This study addresses the detection of
AI-generated scientific abstracts by construct-
ing a temporally anchored dataset of paired
abstracts—each with a human-written version
that contains scientific abstracts of works pub-
lished before 2021 and a synthetic version
generated using GPT-4.1. We evaluate three
approaches to authorship classification: zero-
shot large language models (LLMs), fine-tuned
encoder-based transformers, and traditional
machine learning classifiers. Results show
that LLMs perform near chance level, while a
LoRA-fine-tuned DistilBERT and a PassiveAg-
gressive classifier achieve near-perfect perfor-
mance. These findings suggest that shallow lex-
ical or stylistic patterns still differentiate human
and AI writing, and that supervised learning is
key to capturing these signals.

1 Rationale

The proliferation of generative artificial intelli-
gence (AI) models, particularly large language
models (LLMs), has significantly reshaped con-
tent creation across domains (Kreps et al., 2022),
including scientific writing. While these mod-
els offer powerful tools for drafting, summarising,
and translating academic texts, their capacity to
autonomously generate scientific abstracts raises
ethical concerns regarding authorship, originality,
and the integrity of scholarly communication. In
the context of peer-reviewed publication, the need
of distinguishing between human-written and AI-
generated content is becoming increasingly press-
ing. Without reliable detection methods, academic
institutions, publishers, and reviewers face the risk
of unknowingly legitimising AI-generated content,
undermining trust in the scholarly record. As such,
there is an urgent need for robust tools capable of

accurately identifying AI-generated scientific writ-
ing, particularly in the early, high-stakes stages of
academic dissemination—namely, paper abstracts.

Several recent approaches have emerged to ad-
dress this challenge. Tools such as OpenAI’s AI
Text Classifier and GPTZero have attempted to
leverage statistical and linguistic features to differ-
entiate AI from human writing, with varying levels
of success. In parallel, research studies have inves-
tigated stylometric patterns, perplexity metrics, and
discourse-level anomalies as potential indicators of
synthetic text. However, most of these efforts suffer
from limitations including small or general-domain
datasets, lack of temporal anchoring (e.g., com-
paring texts written before the advent of LLMs),
and insufficient validation on high-quality, domain-
specific academic corpora. Consequently, there
remains substantial room for advancement in this
area.

Our study seeks to address the above gaps by
constructing a temporally controlled and domain-
specific corpus for AI writing detection in scientific
abstracts. By compiling a set of abstracts published
prior to 2021—before the rise of transformer-based
language models—and juxtaposing them with a
parallel set of abstracts generated by state-of-the-
art LLMs for the same papers, we aim to compare
different models to distinguish between human and
AI-generated scientific writing. This approach not
only ensures a clear temporal boundary between
human-authored and synthetic texts but also con-
tributes a novel, curated dataset to the field of natu-
ral language processing.

The remainder of this paper is structured as fol-
lows: Section 2 reviews related work on AI text
detection and scientific authorship analysis. Sec-
tion 3 details the construction of the human and
synthetic abstract corpora. Section 4 outlines our
model architecture and experimental setup, as well
as the results obtained. Finally, Section 5 discusses
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the implications of our findings and Section 6 in-
cludes conclusions as well as directions for future
research.

2 Related Work

The growing use of generative artificial intelligence
(GAI), particularly large language models (LLMs),
in scientific writing has inspired a broad spectrum
of academic research. Recent research explores
customisation strategies, potential pitfalls, and the
promising capabilities of these tools in scholarly
contexts. This section covers the use of genera-
tive AI in scientific writing and highlights different
state-of-the-art methods for detecting AI-generated
content.

2.1 AI-generated scientific writing

Emerging research highlights the ways in which
commercial AI systems are being adapted for sci-
entific use. Some studies compare multiple AI
chatbots to demonstrate performance across aca-
demic writing tasks, with GPT-4 scoring highest in
quantitative assessments, though all models failed
to produce original scientific contributions (Lozić
and Štular, 2023). Similarly, Biondi-Zoccai et al.
(2025) provide a detailed overview of AI tools tai-
lored for manuscript drafting, refinement, and lit-
erature review. While tools like ChatGPT, Gram-
marly, and SciSpace Copilot are becoming increas-
ingly embedded in academic workflows, the au-
thors caution against their uncritical adoption. In a
practical example, Babl and Babl (2023) test Chat-
GPT’s capacity to generate a conference abstract
from fictitious data. The output, despite minor
hallucination in the references, was structurally
sound and content-appropriate, raising concerns
over undetectable AI involvement in academic sub-
missions.

A major concern addressed in the literature is
the issue of hallucinations—false or fabricated in-
formation produced by AI. (Athaluri et al., 2023)
(2023) thoroughly examine this phenomenon in sci-
entific writing, warning of its potential to mislead
readers and reviewers and to contaminate academic
discourse. Another critical analysis comes from
Jenko et al. (2024), who evaluate AI-generated lit-
erature reviews in musculoskeletal radiology. The
study reveals significant factual inaccuracies and
shallow content, concluding that current AI tools
cannot yet replace expert domain knowledge in
scientific synthesis. These risks are echoed in

(Biondi-Zoccai et al., 2025), who warn of AI’s
susceptibility to generating fraudulent datasets and
paper mill content. Traditional plagiarism detec-
tors are ineffective against this sophisticated output,
calling for robust AI detection mechanisms.

Despite these issues, several sources under-
score the potential benefits of AI-assisted writing.
(Huang and Tan, 2023) (2023) describe how Chat-
GPT can improve review article composition by
accelerating literature organisation, enhancing lin-
guistic clarity, and assisting non-native English
speakers. They argue that AI serves best as a co-
authoring assistant—providing structural and lin-
guistic support while the scientist retains control
over content and critical interpretation.

2.2 Detection of AI-generated content

As large language models (LLMs) such as GPT-4o
and DeepSeek become capable of producing highly
coherent and human-like text across multiple do-
mains and languages, researchers have responded
by developing diverse strategies and platforms to
identify machine-generated content. These ap-
proaches generally fall into three categories: tra-
ditional machine learning, transformer-based de-
tection models, and zero-shot evaluations using
state-of-the-art LLMs themselves.

Early efforts in AI text detection relied heav-
ily on traditional machine learning models using
surface-level linguistic features (Alghamdi et al.,
2023); (Jawahar et al., 2020). These include met-
rics such as token diversity, sentence length dis-
tributions, part-of-speech frequencies, and syn-
tactic patterns. Classifiers such as Support Vec-
tor Machines (SVMs), trained on engineered fea-
tures extracted from labelled datasets, have demon-
strated moderate success. However, with the rise
of transformer-based architectures, detection strate-
gies have increasingly moved toward fine-tuned
pretrained language models. Fine-tuning mod-
els such as BERT and DeBERTa-v3 on domain-
specific corpora, often with techniques like Low-
Rank Adaptation (LoRA), have shown improved
performance (Hans et al., 2024);(He et al., 2021). A
third, more recent direction involves evaluating the
ability of advanced LLMs to detect AI-generated
content in a zero-shot setting (Papageorgiou et al.,
2024); (Forment et al., 2025). This strategy lever-
ages the generative model itself—such as GPT-4o-
mini—to assess whether a given text appears AI-
generated.
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Benchmark datasets have played a crucial role
in driving these developments. Notable resources
include the AuTexTification corpus (used in Iber-
LEF 2023 and 2024), GPT-2 Output Dataset, HC3
and HC3 Plus for chat-based detection (Su et al.,
2024), and domain-specific sets like TweepFake
(Fagni et al., 2021) and MGTBench (He et al.,
2024). These corpora span a range of languages,
modalities, and genres—offering fertile ground for
cross-domain benchmarking.

Detection tasks have also become the focus of
organised evaluation campaigns. Shared tasks such
as the IberLEF AuTexTification challenge, the Se-
mEval 2024 Task 8 on authorship verification, and
upcoming initiatives at RANLP and COLING have
galvanised research efforts by offering competi-
tive benchmarks and standardised test sets. These
tasks increasingly emphasise multilingualism and
domain diversity, reflecting real-world challenges
where generative AI is used in both high-resource
and under-resourced linguistic settings.

All in all, current detection platforms rely on a
spectrum of techniques, from transparent ML clas-
sifiers (Alghamdi et al., 2023) to opaque but pow-
erful deep learning systems (Hashmi et al., 2024);
(Mahmud et al., 2024). Despite incremental gains
in accuracy, no approach currently guarantees ro-
bust, generalisable detection across domains, lan-
guages, and use cases. The limitations of zero-shot
LLM detection and the rising fluency of AI out-
puts all point to the need for hybrid approaches and
labelled datasets.

3 Dataset

This project focuses on the development of a struc-
tured, balanced, and semantically coherent dataset
designed to support research on the automatic iden-
tification and classification of machine-generated
versus human-written scientific abstracts. In order
to evaluate this task with high fidelity and domain
diversity, we compiled a dataset that not only spans
a wide range of scientific disciplines but also en-
sures that each data point includes two correspond-
ing versions of the same abstract: one written by a
human and another generated by a machine.

The entire data pipeline—from initial collection
to the final preparation of train and test sets—was
carefully engineered to respect the semantic in-
tegrity of abstract pairs and the thematic propor-
tionality of the dataset. This section outlines the
key stages of that process, namely the dataset com-

pilation via API scraping and metadata filtering,
followed by a custom train-test split procedure that
guarantees class balance, category proportionality,
and the preservation of human-machine abstract
pairs.

3.1 Original and generated abstracts

The human-written abstracts were collected lever-
aging the Semantic Scholar Graph API to retrieve
metadata and abstracts for a wide range of scien-
tific papers across multiple disciplines. The query
process was domain-driven, using keywords and
filters to target articles in areas such as medicine,
physics, environmental science, engineering, com-
puter science, chemistry, biology, and materials
science.

For each query result, the script extracted sev-
eral fields of interest, including the paper’s title,
abstract, year of publication, venue, DOI, unique
paper ID, and URL. Additional metadata was col-
lected when available through integrations with the
Unpaywall and Crossref APIs, which were used to
verify open-access status and ensure the retrievabil-
ity of the original documents.

To maintain linguistic and disciplinary consis-
tency, the script applied a series of filtering criteria.
First, only abstracts written in English were re-
tained, as determined using the langdetect library.
A minimum abstract length threshold was enforced
to guarantee sufficient content for accurate lan-
guage detection. Second, the script discarded non-
research content, such as editorials or metadata-
only entries, and prioritised papers for which a
PDF was accessible or openly licensed. A human
curation and review process was also implemented
to verify abstract consistency and validity.

Once cleaned and filtered, each abstract was
stored along with its associated metadata in a struc-
tured format. These abstracts constitute the human-
authored portion of the final dataset.

The machine-generated abstracts were produced
using the model GPT-4.1. For each scientific article
retrieved in the previous stage, the first 10 pages
of the full-text document were used as input to the
model. These pages were either extracted from
the available PDFs or obtained through additional
metadata queries and processing pipelines that re-
constructed the document’s main body content.

The GPT-4.1 model was prompted to generate
an abstract that closely followed the conventions
of scientific abstract writing: summarising the re-
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Domain Human Machine
biology 13,057 12,512
business 7,047 6,763
chemistry 11,770 10,838
computer science 9,163 8,361
economics 6,410 6,943
education 14,503 10,028
engineering 12,044 11,140
environmental science 18,313 13,229
materials science 8,574 7,740
medicine 20,063 17,782
physics 28,910 26,160
sociology 7,413 6,249

Table 1: Total word count per category for human- and
machine-written abstracts.

search problem, methodology, and key findings in
a concise and coherent format. No abstract was
generated unless a minimum threshold of source
content was available (i.e., a full 10-page span or
an equivalent amount of text). This ensured that the
machine-generated abstract had sufficient context
and detail to mirror the function and structure of
the original human-written abstract.

All generated abstracts were paired with their
corresponding human-written versions using the pa-
per’s title as a unique ID, and both versions shared
the same category and metadata. This pairing pro-
cess resulted in a clean and balanced dataset where
each title appears exactly twice—once under the
label human and once under the label machine.

The total word count analysis reveals consistent
patterns across categories, with human-written ab-
stracts generally containing slightly more words
than their machine-generated counterparts. This
trend is observed in nearly all disciplines, most
notably in fields like medicine, physics, and envi-
ronmental science, which show the highest overall
word volumes. The discrepancy in length may re-
flect differences in content density, verbosity, or
summarisation strategies between human authors
and the language model.

3.2 Split with pair integrity

Once the full dataset of human–machine abstract
pairs had been compiled and validated, the next
step was to divide it into a training set and a test
set, in a way that would enable reliable supervised
learning and fair evaluation. This division was
carried out with particular attention to three key

Figure 1: Train split

requirements: semantic pairing integrity, class bal-
ance, and thematic proportionality across scientific
categories.

The core structural unit of the dataset is the ab-
stract pair, consisting of one human-written and
one machine-generated version of the same scien-
tific paper. In order to prevent data leakage and
preserve the semantic boundary between training
and test samples, it was essential that these pairs
remain intact during the split. That is, both the hu-
man and machine versions of a given abstract had
to be assigned to the same subset—either training
or test. Splitting the two across subsets would have
introduced significant risk of semantic overlap, as
both versions are derived from the same source
paper and often convey similar core content.

To enforce this constraint, the split was per-
formed at the level of the paper title, which
uniquely identifies each pair. Only titles that ap-
peared exactly twice in the dataset—once with each
version—were eligible for inclusion. The total pool
of such valid pairs was then randomly divided into
training and test sets using an 80/20 stratified split,
with stratification based on the category assigned
to each paper. This ensured that the topical distri-
bution of abstracts across disciplines (e.g., physics,
medicine, computer science) remained proportion-
ally balanced in both subsets.

After assigning titles to either the training or
test set, all associated abstracts and metadata were
recovered using the title as the join key. This ap-
proach guaranteed that the final training and test
sets were (i) fully balanced in terms of class la-
bels (human and machine); (ii) proportionally dis-
tributed across scientific categories (iii) free from
any leakage or overlap of semantically equivalent
texts.

Following the train–test split, a final validation
step was performed to ensure the integrity of the
abstract pair structure within each subset. This
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Figure 2: Test split

involved verifying that each paper ID appeared
exactly once per version (i.e., once for the human-
written abstract and once for the machine-generated
one), and that both instances were assigned to the
same subset.

This was achieved by counting the frequency of
each ID in the training and test sets independently.
The results of this verification confirmed that all
pairs were preserved and correctly assigned, with
no instances of cross-subset leakage or structural
inconsistencies.

4 Experiments

This study investigates the capacity of computa-
tional models to classify scientific abstracts ac-
cording to their authorship—human or machine-
generated. The classification task was designed as
a binary decision problem and explored through
three complementary modelling approaches: (1)
prompt-based classification using large language
models (LLMs), (2) supervised fine-tuning of
a transformer-based classifier with parameter-
efficient adaptation, and (3) traditional machine
learning pipelines based on bag-of-words represen-
tations.

4.1 Experimental setup

In this section we aim to explore which model
and configuration performs best when classifying
human vs. machine generated text. To this end,
different setups have been explored and are detailed
below.

Prompt-based LLM classification In the first
setup, a suite of instruction-tuned large language
models (LLMs) was used to perform zero-shot clas-
sification. Each model was prompted with a re-
search abstract and asked to determine whether it
had been written by a human or generated by a
machine. A fixed prompt template was used for

all models to ensure consistency and comparability
across predictions.

• System prompt: You are a diligent assistant
that labels research abstracts. Reply strictly
with either ’human’ or ’machine’ and nothing
else.

• User prompt: Classify the following abstract
as written by a human or by a machine. An-
swer with only ’human’ or ’machine’. Ab-
stract: * Classification: *

No few-shot examples were provided, and no ad-
ditional formatting was required from the model
output beyond the binary label. Different mod-
els with different parameter configuration and size
were used:

• OpenAI: GPT-4.1, o4-mini, GPT-4o-mini

• LLaMa 4: llama4-scout-instruct-basic, lama4-
maverick-instruct-basic

• Qwen3: qwen3-30b-a3b, qwen3-235b-a22b

• DeepSeek: deepseek-r1-basic

Fine-tuned transformer with LoRA To comple-
ment zero-shot inference with supervised learning,
we employed the AutoGOAL AutoML framework
(Estevez-Velarde et al., 2020) to automatically ex-
plore and optimise deep learning pipelines based
on transformer architectures. AutoGOAL was ex-
tended to include 44 pipeline variants across 13
transformer-based language models (introduced by
Estevanell-Valladares et al., 2024), sourced from
the Hugging Face model hub (Jain, 2022). These
models included various fine-tuning strategies: full
fine-tuning, partial fine-tuning (top-layer adapta-
tion), and Low-Rank Adaptation (LoRA).

Training and evaluation were performed on a
workstation equipped with an NVIDIA RTX 4090
GPU, allowing efficient gradient-based learning
across configurations. Each pipeline was evaluated
using 2-fold stratified cross-validation on the train-
ing set. The best-performing pipeline selected by
AutoGOAL used LoRA fine-tuning over a Distil-
BERT base model.

Traditional machine learning baseline To es-
tablish a non-neural baseline, we also constructed
and tuned a traditional machine learning pipeline
built on sparse vector representations. The pipeline
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consisted of a HashingVectorizer for text featurisa-
tion and a PassiveAggressiveClassifier for classifi-
cation.

The HashingVectorizer was configured to use
over two million features, binary encoding, and L1
normalisation, transforming text into a fixed-length
sparse binary representation. The classifier was
optimised with a high aggressiveness parameter
(C=9.991) and evaluated using stratified validation
on the training set.

4.2 Results

The performance of the large language mod-
els (LLMs) on the binary classification
task—determining whether a scientific ab-
stract was written by a human or generated by an
AI—revealed a consistent trend: despite strong
general-purpose capabilities, the models exhibited
difficulty distinguishing between the two classes in
a reliable manner.

Across all LLMs evaluated, F1 scores remained
low, rarely exceeding 0.34. The best-performing
model, Qwen3-235B, achieved an F1 score of
0.335, followed closely by GPT-4.1 and DeepSeek-
R1, with scores of 0.333 and 0.332 respectively.
Accuracy scores hovered near 49–50% for most
models, suggesting that predictions were often
close to chance level in aggregate, despite marginal
gains in class-specific precision or recall. The con-
fusion matrix in Figure 3 suggests that Qwen3-
235B, which is the best LLM, almost always mis-
takes every machine-generated abstract for human
writing.

This performance gap highlights a critical lim-
itation of general-purpose LLMs when applied
to subtle authorship attribution tasks involving
highly similar content, such as pairs of human- and
machine-written scientific abstracts derived from
the same paper. The task appears to require more
fine-grained discriminative capabilities than current
zero-shot prompting strategies afford.

In contrast, the best-performing model emerged
from a supervised approach using LoRA fine-
tuning on top of the distilbert-base-multilingual-
cased encoder. This configuration, discovered
through AutoGOAL’s AutoML pipeline search,
achieved a markedly superior F1 score of 0.974,
with equivalent levels of accuracy, precision,
and recall. These results underscore the value
of task-specific training, particularly when us-
ing parameter-efficient fine-tuning techniques like

Figure 3: Confussion matrix for the best-performing
LLM

Model Acc P R F1
LoRA DistilBERT 0.974 0.974 0.974 0.974
PassiveAggressive 0.972 0.972 0.972 0.972
Qwen3-235B 0.490 0.357 0.490 0.335
GPT-4.1 0.487 0.328 0.487 0.333
DeepSeek-R1 0.494 0.280 0.493 0.332

Table 2: Accuracy, precision, recall, and F1 score of
the best-performing models across the classification ap-
proaches.

LoRA.
The fine-tuned encoder demonstrated consistent

and robust performance across all metrics, cor-
rectly classifying nearly all abstracts in the test set.
This outcome confirms that the classification sig-
nal—though subtle—can be captured by a discrim-
inative model when exposed to labelled examples
during training.

The traditional ML pipeline, consisting of a
HashingVectorizer and a PassiveAggressiveClassi-
fier, also performed strongly. With an F1 score of
0.972, it rivaled the fine-tuned transformer despite
relying solely on sparse feature representations and
linear decision boundaries. This result highlights
that surface-level textual features may encode suf-
ficient information to distinguish between human
and machine authorship in abstracts, possibly due
to differences in vocabulary frequency, sentence
structure, or lexical density.

5 Discussion

The results of our experiments reveal a notable
pattern in the performance of the classification
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models: large language models (LLMs), including
cutting-edge systems such as GPT-4.1 and Qwen3-
235B, consistently performed near chance level
in distinguishing between human- and machine-
written scientific abstracts. In contrast, both the
fine-tuned transformer model and the traditional
classifier achieved near-perfect performance, with
F1 scores of 0.974 and 0.972 respectively.

This sharp discrepancy raises several important
questions about the nature of the detection task
and the limitations of zero-shot LLM inference.
The underwhelming results of the LLMs may stem
from the zero-shot setup used in the experiments.
Although LLMs have demonstrated broad com-
petence in a range of generative and reasoning
tasks, their performance in subtle classification
settings—particularly without task-specific train-
ing—is often limited. In our case, the classification
task relies on capturing fine-grained, often imper-
ceptible linguistic differences between two texts
that are topically identical and structurally simi-
lar. These nuances may not be readily detectable
without additional context or calibration.

Another contributing factor is the in-domain sim-
ilarity of the texts. Since both human- and machine-
generated abstracts summarise the same research
paper, they often share terminology, structure, and
even phrasing. This results in minimal surface-
level variation—precisely the kind of variation that
LLMs may overlook in the absence of tailored
prompting or fine-tuning.

Furthermore, LLMs are inherently generative,
not discriminative. When repurposed for binary
classification in a zero-shot setting, they rely heav-
ily on probabilistic reasoning and internal priors,
which may not be accurate for a highly specific
detection task such as this. Their inability to iden-
tify stylistic markers of synthetic writing without
explicit examples severely limits their utility in au-
thorship verification.

The success of both the traditional PassiveAg-
gressive classifier and the LoRA-fine-tuned Dis-
tilBERT suggests that authorship signals do ex-
ist in the data, but they are subtle and best cap-
tured by models with explicit supervision. The
dataset shows a consistently higher word count
in the generated versions by domain, which may
have been a clear indicator for these models. There
may be some lexical patterns such as “This pa-
per/study/review presents/examines/provides. . . ”

The PassiveAggressive classifier, leveraging a

simple bag-of-words approach, likely benefits
from capturing statistical regularities in vocabu-
lary use, lexical density, or syntactic patterns that
differ—perhaps subtly but consistently—between
human and machine writers. These cues might in-
clude phrase redundancy, sentence-initial tokens,
or unnatural repetition that are hard to detect per-
ceptually but easily exploited by statistical models.

The DistilBERT model, fine-tuned via LoRA,
excels likely because it is explicitly trained on the
classification objective, allowing it to learn nuanced
distinctions over multiple layers of abstraction. The
results highlight the value of supervised discrimina-
tive learning even in tasks where the classes appear
nearly indistinguishable to a human reader or an
unadapted LLM.

These findings carry significant implications:

• The detection of AI authorship may not re-
quire deep semantic modelling, but rather ben-
efits from the exploitation of shallow stylis-
tic inconsistencies. This opens opportunities
for lightweight, interpretable, and resource-
efficient detection systems.

• Future detection strategies should consider
ensemble approaches, combining the broad
generalisation of LLMs with the precision of
discriminative classifiers.

6 Conclusions and Future Work

This study investigated the detection of AI-
generated content in scientific abstracts by evaluat-
ing a range of modelling strategies, including zero-
shot prompting of large language models (LLMs),
fine-tuned transformer encoders, and traditional
machine learning classifiers. Surprisingly, the most
advanced LLMs—including GPT-4.1 and Qwen3-
235B—performed at near-chance levels in the bi-
nary classification task. In contrast, a lightweight
encoder-based model fine-tuned with Low-Rank
Adaptation (LoRA) and a traditional PassiveAg-
gressive classifier achieved near-perfect classifica-
tion accuracy.

These findings suggest that while LLMs excel
at text generation and general reasoning, they are
not well-suited for fine-grained authorship attri-
bution in a zero-shot setting, especially when the
candidate texts share substantial semantic overlap.
On the other hand, task-specific supervised ap-
proaches—both neural and statistical—are capable
of capturing subtle linguistic cues that differentiate
human- and machine-generated writing.
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Several limitations should be noted: (i) LLMs
were tested exclusively in zero-shot mode, without
prompt tuning, few-shot examples, or in-context
learning strategies; (ii) all synthetic abstracts were
produced by GPT-4.1, which may limit general-
izability; (iii) the study focused exclusively on
English-language abstracts.

Building on this limitations, several promising
directions can be pursued:

• Explainable detection: Integrating explainabil-
ity tools (e.g., SHAP, attention visualisation)
into detection pipelines could reveal which
linguistic features signal machine authorship
and support trust in automated tools.

• Multilingual detection: Expanding the dataset
and experiments to include other languages
would allow evaluation of AI authorship de-
tection across diverse linguistic and cultural
contexts.

• Human-in-the-loop verification: Combining
automated detection with expert judgment
could yield hybrid frameworks that balance ef-
ficiency and reliability in academic publishing
workflows.

• Comparison with abstracts from scientific pa-
pers published after gen-AI open-source tools,
with the purpose of inferring whether auto-
matic writing is being used in scientific writ-
ing.
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An open-source software framework to create artifi-
cial intelligence assistants deployed and integrated
into learning management systems. Computer Stan-
dards Interfaces, 92:103940.

Abhimanyu Hans, Avi Schwarzschild, Valeriia
Cherepanova, Hamid Kazemi, Aniruddha Saha,
Micah Goldblum, Jonas Geiping, and Tom Goldstein.
2024. Spotting llms with binoculars: Zero-shot
detection of machine-generated text.

Ehtesham Hashmi, Sule Yildirim Yayilgan, Muhammad
Yamin, Subhan Ali, and Mohamed Abomhara. 2024.
Advancing fake news detection: Hybrid deep learn-
ing with fasttext and explainable ai. IEEE Access,
12:44462 – 44480.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention.

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes,
and Yang Zhang. 2024. Mgtbench: Benchmarking
machine-generated text detection.

Jingshan Huang and Ming Tan. 2023. The role of chat-
gpt in scientific communication: writing better sci-
entific review articles. American Journal of Cancer
Research, 13(4):1148–1154. Epub April 15, Pub-
lished April 30.

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks
Lakshmanan, V.S. 2020. Automatic detection of ma-
chine generated text: A critical survey. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 2296–2309, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Nathan Jenko, Sisith Ariyaratne, Lee M. Jeys, Scott
Evans, Krishna P. Iyengar, and Rajesh Botchu. 2024.
An evaluation of ai generated literature reviews in
musculoskeletal radiology. The Surgeon, 22(3):194–
197.

28



Sarah Kreps, Miles McCain, and Miles Brundage. 2022.
All the news that’s fit to fabricate: Ai-generated text
as a tool of media misinformation. Journal of Exper-
imental Political Science, 9:104–117.
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Abstract
We address hyperbole detection as a bi-
nary classification task, comparing rule-
based methods, fine-tuned transformers (BERT,
RoBERTa), and large language models (LLMs)
in zero-shot and few-shot prompting (Gemini,
LLaMA). Fine-tuned transformers achieved the
best overall performance, with RoBERTa attain-
ing an F1-score of 0.82. Rule-based methods
performed lower (F1 = 0.58) but remain effec-
tive in constrained linguistic contexts. LLMs
showed mixed results: zero-shot performance
was variable, while few-shot prompting no-
tably improved outcomes, reaching F1-scores
up to 0.79 without task-specific training data.
We discuss the trade-offs between interpretabil-
ity, computational cost, and data requirements
across methods. Our results highlight the
promise of LLMs in low-resource scenarios
and suggest future work on hybrid models and
broader figurative language tasks.

1 Introduction

Hyperbole, a common figure of speech that in-
volves deliberate exaggeration, plays an important
role in natural language communication by con-
veying emphasis, emotion, and humor. Detecting
hyperbole automatically is a challenging yet valu-
able task for natural language processing (NLP),
with applications in sentiment analysis, position
detection, sarcasm recognition, and computational
humor. Despite its linguistic and practical signifi-
cance, hyperbole detection remains underexplored
compared to related figurative language phenom-
ena such as metaphor, irony, and sarcasm (Zhang
and Wan, 2021; Troiano et al., 2018; Zhang et al.,
2024).

The first systematic work on hyperbole detec-
tion was carried out by Troiano et al. (2018), who
introduced HYPO, the first dataset dedicated to
exaggeration detection. Their study framed hyper-
bole detection as a supervised binary classification

problem and demonstrated that semantic features,
particularly those that capture quantity and quality,
two core linguistic dimensions of exaggeration, en-
abled traditional classifiers such as logistic regres-
sion to achieve beyond chance performance. How-
ever, these early rule-based and feature-engineered
approaches, although interpretable, suffered from
limited generalizability and required extensive lin-
guistic knowledge (Chen et al., 2022; Oprea and
Magdy, 2019; Eke et al., 2021).

The field progressed with the adoption of deep
learning methods, motivated by the need for richer
semantic representations. Early neural models
such as CNNs and LSTMs provided moderate im-
provements Ghosh and Veale (2016); Chen et al.
(2022), and Kong et al. (2020) demonstrated that
deep learners could substantially outperform tradi-
tional models. Their introduction of HYPO-cn, a
Chinese dataset, further expanded the scope of re-
search, showing that LSTM-based systems combin-
ing handcrafted and embedding features achieved
up to 85.4% accuracy.

A major breakthrough came with the advance
of transformer-based models. Fine-tuning BERT
on the HYPO dataset improved accuracy to 80%
(Zhang and Wan, 2021), significantly surpassing
earlier methods and confirming the effectiveness
of learned contextual representations for hyperbole
detection. Further refinements, such as multitask
training with literal paraphrases, achieved addi-
tional gains (Biddle et al., 2021; Schneidermann
et al., 2023).

More recently, research has turned towards large
language models (LLMs). While LLMs such as
LLaMA, BLOOM, and ChatGPT exhibit strong
general-purpose language understanding, studies
show that their zero-shot hyperbole detection per-
formance is weak, reflecting an incomplete grasp of
this figurative device (Badathala et al., 2023). Even
when able to recognise prototypical hyperboles,
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LLMs struggle with cases involving overlap with
metaphors or context-dependent exaggeration. To
address these shortcomings, recent work explores
advanced prompting techniques (Zheng et al., 2025;
Xu et al., 2024) and hybrid approaches combin-
ing LLMs with human expertise, rule-based veri-
fication, or emotion-aware modules (Cohen et al.,
2025; Qu et al., 2024).

In this paper, we conduct a comprehensive com-
parison of three distinct approaches for hyper-
bole detection: (1) a handcrafted rule-based sys-
tem, (2) fine-tuned transformer models, and (3)
prompt-based inference with LLMs in zero-shot
and few-shot settings. Our evaluation on bench-
mark data reveals the strengths and limitations of
each paradigm in terms of accuracy, computational
efficiency, and generalisability. We show that while
fine-tuned transformers achieve the highest perfor-
mance, LLMs offer competitive results with min-
imal task adaptation, and rule-based methods re-
main viable in constrained scenarios.

The contributions of this study are as follows:
(i) an empirical analysis and comparative evalua-
tion of hyperbole detection using diverse method-
ologies ranging from rule-based methods through
deep learning models to large language models, (ii)
a thorough evaluation of prompt-based LLMs ap-
plied to this task, and (iii) insight into the strengths
and limitations of each method within the task’s
challenging landscape.

The rest of the paper is structured as follows.
Section 2 overviews related work. Section 3 de-
tails the data used in this study. Section 4 presents
the experimental setup, outlining the approaches
employed, while Section 5 reports the evaluation
results. Section 6 offers discussion of the results.
Finally, Section 7 summarises the main findings
and proposes future research directions.

2 Related Work

While NLP has long studied figurative language
phenomena such as metaphor, irony, and sarcasm,
hyperbole detection has only recently emerged as a
dedicated research topic. It was largely overlooked
until Troiano et al. (2018) introduced the HYPO
dataset, the first corpus of hyperbolic and literal
sentences. Their work framed hyperbole detection
as a supervised binary classification problem and
demonstrated that handcrafted features grounded in
linguistic theory—particularly quantity and quality
distinctions—enabled traditional classifiers such as

logistic regression to achieve up to 76% F1 score
when literal paraphrases were used as negative ex-
amples.

Early approaches mainly relied on rule-based
methods and lexical heuristics (Burgers et al.,
2016). These methods exploited cues such as ex-
treme adjectives, interjections, or polarity intensi-
fication (Kunneman et al., 2015) to identify exag-
gerations. While interpretable, such systems were
brittle and lacked scalability to diverse real-world
data. The release of HYPO enabled systematic
experimentation with machine learning methods,
establishing a foundation for subsequent research.

The next wave of studies adopted neural mod-
els, motivated by their ability to capture deeper
semantic information. Ghosh and Veale (2016) ex-
plored early neural network architectures, while
Kong et al. (2020) showed that deep learning ap-
proaches substantially outperformed feature-based
models. Their work introduced HYPO-cn, a Chi-
nese dataset, and demonstrated that an LSTM-
based model could achieve 85.4% accuracy by in-
tegrating embeddings with handcrafted features.

Transformer-based models soon set the state of
the art. Zhang and Wan (2021) reported that fine-
tuning BERT on HYPO improved accuracy to 80%,
a significant leap over the best traditional baseline
of 72%. Biddle et al. (2021), Badathala et al. (2023)
and Schneidermann et al. (2023) extended this line
of research by using multitask learning and literal
paraphrases as privileged information, showing that
transformers could exploit more nuanced contex-
tual signals.

More recently, researchers have evaluated LLMs
such as LLaMA, BLOOM, and ChatGPT for hy-
perbole detection. Although these models perform
well on a wide range of NLP tasks, their zero-
shot performance on hyperbole classification is
poor, revealing a limited understanding of exag-
geration (Badathala et al., 2023). Even ChatGPT,
which can correctly classify prototypical hyper-
boles, struggles with multi-class cases involving
metaphor-hyperbole overlaps. To improve LLM
performance, studies have investigated advanced
prompting methods, including chain-of-thought
reasoning, which helps models articulate reasoning
but still fails to capture the emotional and contex-
tual subtleties of hyperbole (Zheng et al., 2025; Xu
et al., 2024).
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Split Label Source # sentences Total per label Total per split

train

0
HYPO L 1979

2917

5834

HYPO - literal 469
HYPO - paraphrase 469

1
HYPO - hyperbole 469

2917HYPO L 767
HYPO XL 1681

dev

0
HYPO L 120

360

720

HYPO - literal 120
HYPO - paraphrase 120

1
HYPO - hyperbole 120

360HYPO L 120
HYPO XL 120

test

0
HYPO L 120

360

720

HYPO - literal 120
HYPO - paraphrase 120

1
HYPO - hyperbole 120

360HYPO L 120
HYPO XL 120

Total: 7274

Table 1: Data splits.

3 Data

In this section, we describe the datasets used in our
experiments, along with the procedure for splitting
the data into training, development, and test sets.

3.1 Used datasets
We used three existing datasets: HYPO (Troiano
et al., 2018), HYPO L, and HYPO XL 1.(Zhang
and Wan, 2021)

HYPO contains 2,127 sentences, with 709 exam-
ples of hyperbole and 1,418 without. Of the non-
hyperbolic sentences, 709 are literal paraphrases
of the hyperbolic ones (where hyperbolic words
or phrases were replaced with literal equivalents).
The remaining 709 non-hyperbolic sentences fea-
ture the same phrases in their literal sense.

HYPO L consists of 3,226 sentences: 1,007 with
hyperbole and 2,219 without. These sentences
were first automatically annotated and then human-
verified for accuracy.

HYPO XL is made up of 17,862 automatically
annotated sentences, all of which contain hyper-
bole.

3.2 Data splits
The original datasets exhibit a high degree of class
imbalance. To enable robust training and evalua-

1https://github.com/yunx-z/MOVER

tion, we constructed a balanced dataset through a
two-stage process.

In the first stage, we merged the HYPO and
HYPO L datasets and recast the task as binary clas-
sification, assigning a label of 1 to hyperbolic sen-
tences and 0 to non-hyperbolic ones. We then sam-
pled additional hyperbolic instances from HYPO
XL to achieve an equal number of examples for
each class in the combined dataset.

In the second stage, we partitioned the data into
training, development, and test sets. Both the de-
velopment and test sets are perfectly balanced, con-
taining 720 sentences each—360 hyperbolic and
360 non-hyperbolic—while also maintaining an
equal distribution across the original data sources.
The training set consists of the remaining 5,834 sen-
tences, evenly split between the two classes. How-
ever, in contrast to the development and test sets,
the distribution of examples across data sources in
the training set is not uniform.

Table 1 summarises the size and composition of
each data split.

4 Experimental setup

We frame hyperbole detection as a binary sentence
classification task, where each input sentence is
labeled as either hyperbolic or non-hyperbolic. In
this section, we describe the model architecture,
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training configuration, and evaluation methodology
used in our experiments. The objective is to com-
pare the performance of a rule-based approach with
two deep learning models and two large language
models for the task of hyberbole detecton.

4.1 Rule-based method
Our rule-based approach to automatic hyperbole
detection integrates lexical, syntactic, and seman-
tic cues derived from established linguistic re-
sources and syntactic analyses. The system lever-
ages a combination of handcrafted lexicons, pattern
matching, and semantic incongruity detection to
identify exaggerated language indicative of hyper-
bole.

4.2 Data Preprocessing and Linguistic
Analysis

For linguistic analysis, input sentences are pro-
cessed using Stanza POS tagging (Qi et al., 2020),
which provides tokenization, part-of-speech tag-
ging, lemmatisation, and dependency parsing. This
comprehensive linguistic annotation enables pre-
cise syntactic and semantic analysis necessary for
detecting subtle forms of exaggeration.

4.2.1 Lexical Resources and Hyperbole
Lexicons

We curate several lexicons capturing common hy-
perbolic expressions across various semantic do-
mains. To construct these lexicons, we manually
reviewed the training set exclusively, deliberately
excluding the development and test sets to avoid
bias.

• Quantity and Size Adjectives: Adjectives
such as endless, gigantic, and limitless that
represent exaggerated quantities or magni-
tudes.

• Intense Emotion Verbs and Adjectives:
Verbs and adjectives conveying heightened
emotional states (e.g., die, cry, terrified, ec-
static), used to detect emotional overstate-
ments.

• Temporal Exaggerators: Nouns and adverbs
denoting exaggerated durations (e.g., eternity,
forever, centuries).

• Hyperbolic Idiomatic Expressions: A pre-
defined set of verb-object pairs known to form
hyperbolic idiomatic expressions (e.g., cry me
a river, break heart).

4.2.2 Rule-Based Detection of Hyperbolic
Patterns

A collection of syntactic and lexical rules is applied
to each processed sentence to identify potential
hyperbolic cues:

1. Exaggerated Quantity or Size: Detection of
adjectives from the quantity and size lexicons
or large numeric expressions (e.g., million,
billion).

2. Unrealistic Comparisons: Identification of
comparative constructions typical of hyper-
bole, such as similes employing patterns like
as . . . as or like a.

3. Emotional Overstatement: Recognition of
verbs and adjectives associated with intense
emotions, with special handling for frequent
colloquial hyperbolic phrases (e.g., so hun-
gry).

4. Temporal Exaggeration: Detection of tem-
poral terms implying extreme duration.

5. Superlative Forms: Identification of superla-
tive adjectives (e.g., biggest, most incredible).

The complete set of rules and the associated lex-
icons are provided in the Appendix (see Appendix
A for the lexicons and Appendix B for the rule
set)2.

4.2.3 Semantic Incongruity Analysis
To complement surface-level rules, we incorporate
semantic checks to detect incongruities frequently
present in hyperbolic expressions:

• WordNet Domain Analysis: Utilizing the
WordNet lexical database, semantic domains
for verbs and nouns are extracted to assess se-
mantic compatibility. Abstract subjects paired
with concrete predicates may signal hyper-
bole.

• Verb-Object Selectional Preferences: By
comparing verb domains against expected
noun domains, the system flags semanti-
cally incongruous verb-object pairs (e.g., eat
horse).

• Idiomatic Hyperbole Pairing: Known id-
iomatic hyperbolic pairs are matched directly
to capture conventionalised exaggerations.

2Available at: https://drive.google.com/
file/d/1JWRMGPyb7mWrWj0DrEV-JHUjVWge3C_
P/view?usp=sharing
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4.3 Fine-tuning Transformer Models
For our experiments with transformer-based mod-
els, we selected BERT and RoBERTa. For both
models, we adopted the standard architecture pro-
vided by the Hugging Face Transformers library.

4.3.1 BERT model
Model Architecture We use a standard
transformer-based architecture for binary sen-
tence classification, based on the pretrained
bert-base-cased model from the Hugging
Face Transformers library. This version of
BERT consists of 12 transformer layers, each
with 12 self-attention heads and a hidden size
of 768. The model is implemented using the
BertForSequenceClassification class,
which appends a linear classification layer on top
of the [CLS] token representation to predict one
of two class labels: hyperbolic or non-hyperbolic.
The model is fine-tuned end-to-end on our
task-specific data.

Training Configuration The model is fine-tuned
using the AdamW optimiser with a learning rate
of 2× 10−5 and trained for 3 epochs with a batch
size of 16. A linear learning rate scheduler without
warm-up steps is used throughout training. Sen-
tences are tokenised using the BertTokenizer,
with all inputs truncated or padded to a maximum
length of 128 tokens.

Evaluation Methodology Model performance
is assessed on the test set. We report standard
classification metrics, including accuracy, preci-
sion, recall, and F1-score, computed using the
scikit-learn library. Evaluation is conducted
in batches using PyTorch’s no grad() context
to disable gradient tracking. Predicted labels are
stored alongside the gold labels to support detailed
error analysis.

4.3.2 RoBERTa model
Model Architecture We use the multilingual
XLM-RoBERTa base model for our experi-
ments, treating the task as a binary sentence clas-
sification problem. The model follows a standard
transformer encoder architecture, consisting of 12
layers, each with 768 hidden units and 12 self-
attention heads. On top of the transformer back-
bone, a classification head is added—a fully con-
nected layer followed by a softmax layer that out-
puts a probability distribution over two classes: hy-
perbolic and non-hyperbolic.

Training Configuration The model is fine-tuned
using the Hugging Face Transformers library. In-
put texts are tokenised using the corresponding
AutoTokenizer, with truncation and padding
applied to ensure a maximum sequence length
of 128 tokens. Training is performed using the
AdamW optimiser with a learning rate of 2e-5,
over 3 epochs, and with a batch size of 16. A linear
learning rate scheduler without warm-up steps is
employed. The model is trained using the cross-
entropy loss.

Evaluation Methodology We evaluate model
performance on both the development and test sets
using standard classification metrics: accuracy, pre-
cision, recall, and F1-score. Predictions are ob-
tained by selecting the class with the highest soft-
max probability.

4.4 LLM-based methods

For the large language model (LLM) experiments,
we evaluated two instruction-tuned models: Gem-
ini (proprietary, accessed via API) and LLaMA
(open-weights, accessed via the Hugging Face
Transformers library). Both models were tested
in zero-shot and few-shot configurations. The
task required the model to predict whether a
given sentence contains hyperbole, returning either
"hyperbole" or "not hyperbole".

4.4.1 Prompting Strategies
In the zero-shot setting, each model was given only
a natural language instruction along with the input
sentence, as shown below:

You are a helpful assistant for
↪→ detecting hyperbole.

Classify the following text into one of
↪→ two categories: hyperbole or not
↪→ hyperbole.

Hyperbole is a figure of speech that
↪→ uses extreme exaggeration to
↪→ emphasize a point or create a
↪→ strong impression. It is not
↪→ meant to be taken literally and
↪→ is often used for humor or
↪→ dramatic effect.

Output only the predicted label (either
↪→ hyperbole or not hyperbole) and
↪→ nothing else.

Now classify the following text:

Text: {text}
Classification:
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In the few-shot setting, the prompt included
the same instruction followed by several example
text–label pairs, illustrating both hyperbolic and
non-hyperbolic cases. An example prompt is given
below:

You are a helpful assistant for
↪→ detecting hyperbole.

Classify the following text into one of
↪→ two categories: hyperbole or not
↪→ hyperbole.

Hyperbole is a figure of speech that
↪→ uses extreme exaggeration to
↪→ emphasize a point or create a
↪→ strong impression. It is not
↪→ meant to be taken literally and
↪→ is often used for humor or
↪→ dramatic effect.

Here are some examples:

{examples}

Now classify the following text:

Text: {text}
Classification:

The examples were selected to cover a range of
syntactic and semantic structures typically associ-
ated with hyperbolic and literal expressions.

4.4.2 Inference Parameters
To ensure consistent model behaviour across condi-
tions, we fixed the following decoding parameters:

• Temperature: 0 (to enforce deterministic out-
put)

• Max tokens: 5 (to limit responses to concise
labels)

Gemini was accessed via its official API, while
LLaMA was executed locally using the Hugging
Face Transformers interface with identical prompt
structures and generation settings.

The outputs from both models were normalised
to binary labels, with "hyperbole" mapped to
the positive class (1) and "not hyperbole" to
the negative class (0). Any non-standard outputs
were either discarded or resolved using simple pat-
tern matching heuristics.

4.4.3 Evaluation Protocol
All LLM outputs were evaluated against the held-
out test set used consistently across all models. We
computed standard classification metrics, including

accuracy, precision, recall, and F1-score. This al-
lowed for direct and fair comparison with both the
rule-based baseline and the fine-tuned transformer
models.

5 Results

This section presents the evaluation outcomes of
the tested approaches on the classification task. We
report performance metrics across different exper-
imental setups. The results provide insights into
the effectiveness and comparative strengths of each
method.

The results, summarised in Table 2, show a clear
performance difference across the evaluated meth-
ods.

5.1 Rule-Based method

The rule-based method was built using a set of man-
ually designed rules based on common patterns
found in hyperbolic expressions—for example, ex-
treme adjectives, intensifiers, or emotional phrases.
This system achieved an accuracy of 56%, a preci-
sion of 0.55, a recall of 0.60, and an F1-score of
0.58.

These results indicate that the rule-based system
is capable of detecting certain prototypical cases of
hyperbole, particularly when the language follows
well-defined and recognisable patterns. However,
its performance declines when faced with more
subtle, context-dependent, or creatively expressed
instances. This suggests that while rule-based ap-
proaches can offer interpretability and precision in
constrained settings, they lack the flexibility needed
to generalise across the diverse and often ambigu-
ous forms of hyperbolic language found in natural
discourse.

While the overall performance is relatively low
compared to machine learning models, the rule-
based system is still useful. It provides insight
into which linguistic features are most important
for hyperbole and serves as a transparent and inter-
pretable baseline.

5.2 Fine-Tuned Transformer Models

Both BERT and RoBERTa performed much better
than the rule-based system.

• BERT achieved an accuracy of 81%, with pre-
cision of 0.86 and an F1-score of 0.80. BERT
tends to be cautious, favouring precision over
recall. This means it is good at avoiding false
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Method Model Accuracy Precision Recall F1-score
Rule-based - 0.56 0.55 0.60 0.58
Fine-Tuned Transformer BERT 0.81 0.86 0.75 0.80
Fine-Tuned Transformer RoBERTa 0.82 0.81 0.83 0.82
LLM zero-shot Gemini-2.5-flash-lite 0.71 0.80 0.58 0.67

Meta-Llama-3-8B-Instruct 0.68 0.80 0.47 0.59
LLM few-shot Gemini-2.5-flash-lite 0.78 0.80 0.78 0.79

Meta-Llama-3-8B-Instruct 0.74 0.68 0.88 0.77

Table 2: Results on the test set.

positives, which is helpful in situations where
incorrect detection could be problematic.

• RoBERTa performed slightly better than
BERT. It achieved the best overall results,
with an accuracy of 82%, recall of 0.83, and
F1-score of 0.82. RoBERTa was better at
finding true cases of hyperbole (higher recall)
while still keeping precision high, possibly
due to its stronger pre-training.

5.3 Large Language Models (LLMs)
We also tested large instruction-tuned models,
Gemini and LLaMA, in zero-shot and few-shot
settings. These models were not fine-tuned on our
dataset, but we gave them task instructions (and a
few examples, in the few-shot setting) at inference
time.

• Gemini Zero-Shot had moderate perfor-
mance, with accuracy of 72% and F1-score of
0.67. It was highly precise (0.80) but missed
many true cases (recall: 0.58), meaning it was
conservative in predicting hyperbole.

• Gemini Few-Shot improved significantly.
With just a few examples, its accuracy rose to
80%, and its F1-score reached 0.79, showing
that few-shot prompting can help LLMs better
understand the task.

• LLaMA Zero-Shot had weaker performance,
with a low recall of 0.46 and F1-score of 0.60,
even though precision remained high (0.80).
Like Gemini, it was overly cautious.

• LLaMA Few-Shot improved the most in re-
call (0.88), meaning it detected many true hy-
perboles, but at the cost of lower precision
(0.68) and more false positives. This suggests
it became overconfident in labelling hyperbole
after seeing a few examples.

6 Discussion

Among all models, RoBERTa achieved the high-
est overall performance (F1 in the low 80s), high-
lighting the effectiveness of fine-tuned transformer
models for hyperbole detection. BERT and Gem-
ini Few-Shot also performed competitively (F1 in
the high 70s), showing that both supervised learn-
ing and few-shot prompting can yield strong results.
Although the gap between fine-tuned transformers
and few-shot LLMs is relatively small, it is prac-
tically meaningful: supervised transformers con-
sistently generalise better across data splits, while
few-shot LLMs offer flexible, annotation-free al-
ternatives that trade a few points of accuracy for
drastically lower requirements in labelled data.

While the rule-based method performed less well
in aggregate metrics (F1 around the high 50s), it
remains valuable in certain settings. One of the
main challenges we faced was the difficulty of
capturing the full range of hyperbolic expressions
through a fixed set of handcrafted rules. Hyper-
bole often relies on creative, context-dependent
language, which makes it hard to exhaustively de-
fine through linguistic patterns alone. As a result,
the system struggled with generalisation and cover-
age. Nevertheless, in highly constrained domains
where hyperbolic forms are stable and predictable,
such systems may perform comparably to neural
approaches, especially when transparency and effi-
ciency are prioritised.

Although the zero-shot LLMs (Gemini and
LLaMA) were less accurate overall (F1 in the high
50s), they show strong potential in low-resource
settings. Their performance improves significantly
with just a few examples, making them flexible
tools for tasks where annotated data is limited or
unavailable. Nevertheless, LLMs are computation-
ally expensive to run and may produce inconsistent
outputs depending on prompt design and input for-
mulation.
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Taken together, these results highlight a trade-
off between performance, data requirements, and
computational costs: fine-tuned transformers de-
liver the strongest accuracy but require labelled
data; few-shot LLMs offer near-competitive results
with minimal annotation; and rule-based systems,
though weakest in absolute performance, provide
efficiency and interpretability in specialised con-
texts.

7 Conclusion and Future work

This paper casts the task of hyperbole detection
as a binary classification problem, comparing
rule-based methods, fine-tuned transformer mod-
els, and large language models (LLMs) in both
zero-shot and few-shot configurations. Our find-
ings demonstrate that fine-tuned transformer mod-
els—particularly RoBERTa—offer the most robust
performance overall, with F1 scores in the low 80s,
clearly outperforming both handcrafted rule sys-
tems and prompt-based LLMs across standard eval-
uation metrics.

The relative performance differences are signif-
icant: while few-shot LLMs achieved F1 in the
high 70s, suggesting they are competitive with fine-
tuned transformers in practical terms, their advan-
tage lies in requiring no annotated training data.
By contrast, zero-shot LLMs and rule-based meth-
ods, both yielding F1 in the high 50s, lag behind in
predictive accuracy but retain value in specific con-
ditions—such as absence of labelled data, domain-
specific constraints, or the need for interpretability.
This performance spectrum indicates that model
choice should be guided by resource availability
and task requirements rather than accuracy alone.

Future work could explore hybrid approaches
that combine the interpretability of rule-based sys-
tems with the generalisability of neural models. In
addition, improving prompt engineering strategies
and model calibration may further enhance the re-
liability of LLMs in zero-shot settings. Finally,
expanding the task to include more nuanced figura-
tive language phenomena, such as irony, may offer
a more comprehensive understanding of exaggera-
tion in natural language.
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Abstract

In this paper, we evaluate the performance of
various fine-tuned, transformer-based models
in translating Akkadian into English. Using
annotated Akkadian data, we seek to establish
potential considerations when developing mod-
els for other low-resource languages, which do
not yet have as robust data. The results of this
study show the potency, but also cost ineffe-
ciency of Large Language Models compared
to smaller Neural Machine Translation models.
Significant evidence was also found demon-
strating the importance of fine-tuning machine
translation models from related languages.

Keywords: transformer, neural machine trans-
lation, low-resource, Akkadian

1 Rationale

Ancient languages serve as vital links to our cul-
tural and historical heritage. Akkadian, once the
lingua franca of Mesopotamia (George, 2007), ex-
emplifies this connection. Massive digitisation ini-
tiatives such as ORACC and the CDLI projects
have generated extensive corpora of transliterated
cuneiform texts (Tinney et al., 2025; CDLI Con-
tributors, 2025); for instance, the Ur III corpus
comprises over 72,000 transcribed texts, yet only
2.2% have been translated into modern languages
(Punia et al., 2020). This stark bottleneck under-
scores the need for robust machine translation (MT)
tools that can democratise access to these historical
records for Assyriologists and scholars alike.

Since the introduction of the Transformer ar-
chitecture (Vaswani et al., 2017), MT solutions
have swiftly moved away from statistical models
in favour of neural approaches. The surge in aca-
demic interest in low-resource languages – charac-
terised by their limited digital presence and sparse
representation in training data – has further high-
lighted the challenges faced by contemporary Large

Language Models such as ChatGPT or Gemini in
low-resource scenarios (Hasan et al., 2024). These
languages necessitate tailored strategies to achieve
robust translations, whether through fine-tuning on
curated sentence pairs or via methods like Retrieval
Augmented Generation (RAG), as explored by Shu
et al. (2024). However, this study focuses exclu-
sively on fine-tuning.

Akkadian itself, though extinct and largely con-
fined to the realm of Assyriology, benefits from a
uniquely rich, highly annotated corpus1 with many
bidirectional translations – an advantage seldom
seen in low-resource languages. This abundance
of quality data obviates the need for extensive
data augmentation techniques often employed in
projects for under-documented languages (e.g., as
described in NLLB, 2022). Instead, Akkadian of-
fers an ideal testbed for evaluating the performance
of different pre-trained transformer architectures –
both sequence-to-sequence (seq2seq) models and
causal (decoder-only) models – in a low-resource,
morphologically distinct setting. Additionally, the
relative simplicity of the cuneiform transliteration
system, in which wedge clusters represent syllables
(Schmandt-Besserat, 2014), enables a straightfor-
ward conversion into the Latin alphabet, making
Akkadian particularly amenable to phonetic-like
translation tasks.

Our investigation evaluates how model archi-
tecture, parameter count, and the nature of pre-
training data (including exposure to related Semitic
languages) influence translation quality. By estab-
lishing a performance baseline for Akkadian-to-
English translation, our study not only addresses a
critical gap in the digitisation and translation of an-
cient texts but also lays the groundwork for broader
applications of MT for low-resource languages.

1Entries in Oracc contain descriptions such as line rulings,
which are not necessary regarding this paper, but may be
useful for future research into Akkadian OCR

39

https://doi.org/10.26615/978-954-452-102-8-005


The remainder of this paper is structured as fol-
lows. Section 2 provides a background on related
work, including an overview of Akkadian, the digi-
tisation efforts of cuneiform texts, and research on
MT for low-resource languages. Section 3 details
the methodologies used to fine-tune and train the
models, along with the compromises made during
data preparation, and the metrics used for evalua-
tion. Section 4 offers a comprehensive evaluation
of the results, and Section 5 and 6 conclude with a
discussion of the study’s implications and potential
directions for future research.

2 Preliminaries

2.1 Akkadian

Akkadian is an extinct East Semitic language that
was spoken in Mesopotamia – roughly correspond-
ing to modern-day Iraq. Historically, it was written
in cuneiform on clay tablets using a wedge-based
script. Each cuneiform symbol represents a sylla-
ble; for example, to write the word “cat,” the script
would use two distinct symbols, representing “ca”
and “at” respectively (as illustrated by examples
from the British Museum). The transliteration of
these cuneiform texts into the Latin script forms
the source for our machine translation (MT) task.

Akkadian qualifies as a low-resource language
due to its limited online presence (Magueresse
et al., 2020). For the majority of low-resource
languages, this results in difficulty obtaining good
training data – ideally a dataset of parallel sen-
tences. Recent efforts to leverage technology for
preserving cultural heritage and enhancing digital
inclusivity (Galla, 2018; Joshi et al., 2020) have
elevated interest in such languages. Notably, col-
laborative projects like CDLI and Oracc have been
instrumental in digitising vast collections of clay
tablets, thereby providing a rich bilingual corpus
that is rarely available for other low-resource lan-
guages.

There are a few important caveats when using
Akkadian as a benchmark. Although Akkadian was
originally written in cuneiform, its digitised repre-
sentation in CDLI and Oracc is transliterated into
the Latin script. Consequently, the performance
of our MT models specifically reflects translation
challenges for low-resource languages presented in
this format. Additionally, Akkadian occasionally
incorporates Sumerian elements – sumerograms
or logograms – into its script. For instance, the
Akkadian word for “king” is pronounced “sharum”

yet may be rendered with the Sumerian term “Lu-
gal.” These instances are statistically infrequent
and unlikely to significantly affect overall model
performance.

This study leverages Akkadian’s unique position
as a well-annotated yet low-resource language to
evaluate and refine neural machine translation tech-
niques, ultimately contributing to both the preser-
vation of ancient cultural heritage and the advance-
ment of MT for underrepresented languages.

2.2 Low-Resource Languages
The digital preservation of ancient languages is vi-
tal not only for maintaining the cultural heritage
of communities but also for tapping into a vast
potential market – after all, there are nearly 3 bil-
lion speakers of low-resource languages worldwide
(Kshetri, 2024). Initiatives such as Meta’s No
Language Left Behind (NLLB Team, 2022) have
shown that investment in multilingual translation
goes beyond charity; it opens up entire emerging
markets while preserving unique cultural identities.
In this context, Akkadian stands out as a partic-
ularly interesting case study. Its status as a low-
resource language is compounded by the fact that
our source material is transliterated text – the con-
version of ancient cuneiform (originally inscribed
on clay tablets using wedge impressions) into the
Latin alphabet. An example of this transliteration
process is evident in the texts provided by Oracc
(2025).

2.3 Low-Resource Comparisons and
Cuneiform Translation

Solutions to translate Akkadian have been explored
previously. Krueger (2023a) details the develop-
ment of an AI Cuneiform Corpus – a resource for
Assyriology that leverages a fine-tuned T5 trans-
former model to generate translations of both Sume-
rian and Akkadian texts. His work employs bidi-
rectional translation training, whereby the model
is also trained to translate back from English to
the source language. This strategy helps stabilise
convergence across epochs, even though the work
does not report modern metrics, such as BLEU
scores, to benchmark its performance. The model’s
availability on HuggingFace (Krueger, 2023b) en-
ables direct, side-by-side comparisons with other
approaches, making it a valuable reference point
for our own T5 experiments.

During a period of heightened interest in the
machine translation of ancient languages, Punia
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et al. (2020) evaluated multiple architectures for
translating Sumerian to English. Their study com-
pared a Base Translator – an LSTM-based model
without pre-trained embeddings – against an Ex-
tended Translator that incorporated pre-trained em-
beddings from the Wikipedia corpus (Pennington
et al., 2014), as well as a Transformer-based model.
Despite Transformers’ well-known advantage in
handling long sequences through self-attention,
the brevity of cuneiform inscriptions (with an av-
erage of just 2.8 tokens per phrase in Punia’s
dataset) appears to limit the benefits of this archi-
tectural choice. As a result, the Extended Transla-
tor achieved a slightly higher BLEU score (21.6)
compared to the Transformer (20.9), though the
Transformer still outperformed the Base Trans-
lator. These findings underscore that while self-
attention offers robust performance overall, fine-
tuning specifics – such as access to pre-trained em-
beddings – can be particularly crucial in scenarios
where input sequences are very short.

Shu et al. (2024) further contribute to this discus-
sion by demonstrating how Retrieval Augmented
Generation (RAG) can be used effectively in low-
resource settings – in their case, for Cherokee trans-
lation. Their RAG model, although yielding moder-
ate BLEU scores, showed impressive semantic un-
derstanding as measured by BERTScore. This sug-
gests that even when lexical overlap is low, models
can capture deep semantic meaning if properly con-
textualised through additional data retrieval. While
these findings point to the potential of large lan-
guage models when fine-tuned or augmented appro-
priately, the higher computational costs involved
also highlight the appeal of achieving strong perfor-
mance through more focused, fine-tuning methods
– exactly the approach taken in this project.

3 Data and methodology

3.1 Corpora

A major reason for the choice of Akkadian as the
language of interest is the organisation of data that
exists. Assyriologists have worked to digitise the
world’s discovered cuneiform tablets into organ-
ised corpora. Since this digitising process occurred
over many years, there are inconsistencies within
the standardisation of cuneiform, a problem dis-
cussed by Krueger (2023a). Some symbols are
translated in ASCII, whereas more modern forms
maybe transliterated using accented Unicode char-
acters. For this project, data was gathered from

the Oracc (2025) and CDLI (2025) corpora. These
corpora are extensive and hold enough translation
examples to train a competent translator.

3.1.1 Oracc Corpus

The Oracc corpus grew out of recognition of the
limitation present in the Electronic Text Corpus of
Sumerian Literature (Black et al., 2002). ETCSL
was initiated by Jeremy Black and Graham Cun-
ningham of the University of Oxford, and had the
ambitious goal to create an online corpus with
Sumerian literary texts, along with their English
translations (Ebeling, 2007). Though a valuable
resource, it was limited in many aspects. Its fo-
cus on Sumerian was problematic when consid-
ering cuneiform, a writing system used to write
countless, linguistically unrelated languages. Fur-
thermore, ETCSL was largely static, limiting the
ability of the community to contribute and stunting
its development. Recognising these limitations, the
Oracc corpus was developed. It allowed for richer
annotation, beyond just translations (Oracc, 2019),
and emphasised openness and collaboration. Oracc
includes glossaries for each subproject within the
overall corpus. These glossaries provide informa-
tion about all the words used within the subproject.
While this is not useful for this project, since the
model should be able to learn words from exposure
during fine-tuning, it does have potential to be use-
ful when considering a technique like RAG (Shu et
al., 2024) discussed earlier. These glossaries could
be used to scrape a wordlist, which can be used as
context for larger models with very potent few-shot
capabilities.

3.1.2 CDLI

The Cuneiform Digital Library Initiative (CDLI),
unlike Oracc, focuses on being a digital archive
for the objects themselves. As such, the tablets
have high quality photos and line art, occasion-
ally with transliterations. It has an emphasis on
unpublished materials, allowing researchers to ac-
cess tablets worldwide for research and study. Both
CDLI and Oracc provide a valuable resource for
this project. Scraping their data allows for translit-
erated Akkadian to be gathered en masse. Further-
more, it allows for untranslated, but still transliter-
ated, texts to be gathered. While not vital to this
project, it is important to a project such as AICC,
which used Krueger’s model to translate previously
undeciphered texts into English.
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3.2 Methodology
3.2.1 Models used
The transformers chosen for comparison primar-
ily differ in their architecture, pre-training scope
and parameter size. Broadly, the models chosen
can be split into Sequence-to-sequence (encoder-
decoder) and causal (decoder-only) architectures.
The seq2seq models used here are considered Neu-
ral Machine Translation (NMT) solutions, whereas
the causal models are considered LLM models.
The models chosen were as follows:

• T5-base (Raffel et al., 2020): 250 million pa-
rameter encoder-decoder model that was used
by Krueger (2023a) to translate Akkadian and
Sumerian. Uses C4 corpus with mostly En-
glish text scraped from the web, and is trained
to perform a variety of tasks, including trans-
lation. Since this model was used by Krueger,
it serves as a baseline and sense check for the
quality of our own experiments.

• MarianMT (Junczys-Dowmunt et al., 2018):
MarianMT has roughly 75 million parameters,
and is an encoder-decoder model specifically
designed for translation tasks. It has half the
layers of T5-base, and is trained on the OPUS
corpus (Tiedemann, 2012), which contains
parallel corpora in multiple languages. This
model provides insight in the tradeoff between
fine-tuning a multi-purpose model as opposed
to a model designed specifically for transla-
tion.

• Qwen 0.5B-Instruct (Yang et al., 2024): A
500 million parameter decoder-only model. It
is inherently multilingual, being trained across
multiple languages. It also utilises some ad-
vancements to the transformer architecture,
such as Rotary Positional Embeddings, which
may allow it to better understand semantics
within sentences. It also uses Grouped-Query
Attention, which may allow for faster infer-
ence times.

• Mistral 7B (Lachaux et al., 2023): A 7 bil-
lion parameter decoder-only model developed
by Mistral AI that leverages Grouped-Query
Attention for faster inference. With a param-
eter count 14 times that of Qwen 0.5B, it
offers enhanced few-shot translation perfor-
mance. The model employs a Byte-Pair En-
coding (BPE) tokeniser adapted for transla-

tion, ensuring robust handling of both ASCII
and Unicode inputs. Training on consumer
hardware is made feasible by using quanti-
sation techniques (Gholami et al., 2022) and
LoRA (Hu et al., 2021), with most parameters
remaining unchanged during fine-tuning.

We seek to establish the performances of these
various transformer-based NMT and LLM models –
each with different architectures, parameter counts
and specifity. As stated, the models chosen for this
experiment are MarianMT, T5, Qwen 0.5B instruct,
and Mistral 7B. These models are advanced enough
to provide worthwhile translations, but can still be
trained on consumer hardware, and run cheaply. T5
and MarianMT are encoder-decoder transformers,
whereas Qwen and Mistral are decoder-only trans-
formers. The decoder-only architecture not only
reduces model size, but also does not need labelled
input that a encoder-decoder model might (Fu et al.,
2023). This means it can be more readily trained
with available data on the internet, hence why it is
favoured by the larger language models. This might
be of benefit in few-shot capabilities when trans-
lating Akkadian to English. Architecturally, Qwen
and Mistral use more modern techniques when em-
bedding and using multiple attention heads. Qwen,
for example, uses Rotary Positional Embeddings
(RoPE). This gives the model an advantage in un-
derstanding relative word relations by reducing the
influence words have on one another with distance,
as opposed to T5’s relative positional embeddings,
which cannot decay dependencies as effectively
(Su et al., 2024). It also benefits faster inference,
because of improvements such as Grouped-Query
Attention, and has a significantly higher context
window then MarianMT and T5.

An important compromise was made in order
to train Mistal 7B. Given the limited VRAM on
consumer hardware, methods were used to lessen
this burden. Namely, through the Unsloth library,
Low-Rank Adaptation (LoRA) was used to freeze
the original model weights, and only train newly
injected matrices. In its introductory paper by
Hu et al. (2021), it was shown that LoRA dras-
tically lowers the resources required to train. GPT
175B’s VRAM consumption during training using
LoRA reduced VRAM consumption form 1.2TB
to 350GB. Despite this, empirical evidence has
also shown that the fine-tuned capability of LoRA
trained models equals, or occasionally outperforms
fully-trained models (Agiza et al., 2024; Peters
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et al., 2019). As such, the outcome can still be
considered alongside the other models.

3.2.2 Evaluation Metrics
Translation quality will be assessed using the fol-
lowing metrics:

• BLEU (Papineni et al., 2002): A widely used
metric for evaluating machine translation qual-
ity, BLEU measures the overlap between n-
grams in the generated translation and ref-
erence translations, and includes a brevity
penalty. It is particularly effective for assess-
ing lexical similarity.

• BERTScore (Zhang et al., 2019): This met-
ric evaluates semantic similarity by compar-
ing contextual embeddings of words in the
generated translation against those in refer-
ence translations. BERTScore measures the
accuracy of semantic meaning, making it use-
ful for assessing whether the model captures
intended meanings of text, even if the exact
words differ.

• ROUGE2 (Lin, 2004): This metric measures
bigram overlap between the generated and
reference translations. By capturing both
precision and recall of contiguous word se-
quences, it assesses whether key multi-word
expressions and local phrasal structures are
preserved. In doing so, ROUGE2 comple-
ments BLEU by providing insight into the
preservation of phrase-level content.

3.2.3 Gathering
Oracc provides API’s to access lists of projects
hosted, given in JSON format. Each project has
its own collected corpus of cuneiform translitera-
tions that can be navigated through. Each project
provides different types of documents, and it is im-
portant to appreciate the difference between these
when considering a translator. For example, a
project such as akklove (2025), contains Akkadian
love literature. Within this corpus are lengthy po-
ems that incorporate descriptive vocabulary. On
the other hand, a corpus such as The Royal Inscrip-
tions of Assyria online (Grayson et al., 2025) con-
tains royal inscriptions, which are often shorter and
much more repetitive than akklove. It is important
to appreciate the bias and diversity of the dataset
in order to make best use of it. Data scraped from
these projects are in the form of ATF files, a format

specifically designed to digitise cuneiform tablets,
whilst maintaining metadata about its format.

Krueger (2023b) had already scraped the cor-
pora, and using the same training data provides
a foundational benchmark to assess our models
against existing solutions. Overall, 95,629 samples
were used, with a split of 90% training (86,066)
and 10% testing (9,563). A validation set was not
used in this case, since tuning of hyperparameters
was not performed. Instead, a learning rate of 2e-
5 was used for all models, with varying numbers
of epochs. This is a common learning rate for
fine-tuning transformer models, and was used by
Krueger (2023a).

4 Experiments and Results

The models were each trained with a different num-
ber of epochs. MarianMT models, along with T5,
were trained for 15 epochs, while Qwen 0.5B was
trained for 3. Mistral7B was only trained for 1
epoch. This is mostly due to limitations in compute,
but provides insight into the few-shot capabilities
of the larger models.

4.1 All Sentences
Table 1 reports BLEU, ROUGE-2 and BERTScore
over all test sentences.

• Prec - ROUGE2 Precision
• Recall - ROUGE2 Recall
• F1 - ROUGE2 F1
It shows 6 fine-tuned models. The LLM’s, Mis-

tral 7B and Qwen 0.5B, as opposed to the NMT
models, MarianAr (Arabic�English), MarianEs
(Spanish�English), Krueger (T5) and T5. The
models are ordered by BLEU score, with Mistral
7B achieving the highest BLEU of 0.478, followed
by MarianAr at 0.453, Krueger at 0.416, Qwen at
0.403, T5 at 0.376 and MarianEs at 0.122.

Table 1: Evaluation on all sentences

Model BLEU Prec Recall F1 BERT

Mistral 0.478 0.527 0.494 0.501 0.930
MarianAr 0.453 0.541 0.508 0.512 0.931
Krueger 0.416 0.530 0.484 0.493 0.930
Qwen 0.403 0.516 0.487 0.491 0.929
T5 0.376 0.420 0.397 0.399 0.914
MarianEs 0.122 0.198 0.303 0.209 0.842

Mistral’s 7 billion-parameter model achieved the
highest BLEU of 0.478 (3 sf), indicating strong
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n-gram overlap with the reference. MarianAr fol-
lowed at 0.453 – a 5.2% deficit – while Krueger’s
and Qwen trailed at 0.416 and 0.403 respectively.
Our T5, trained for only 15 epochs, reached 0.376,
and MarianEs (Spanish�English) lagged at 0.122,
a 74.5% drop relative to Mistral.

In ROUGE-2 Precision, MarianAr led with 0.541
(54.1% of generated bigrams in the reference), fol-
lowed by Krueger (0.530), Mistral (0.527) and
Qwen (0.516), all within a 4.6% band. T5 and
MarianEs fell to 0.420 and 0.198. For Recall, Mar-
ianAr attained 0.508, Mistral 0.494, Qwen 0.487
and Krueger 0.484. Combined F1 placed MarianAr
at 0.512, Mistral at 0.501 and the next best systems
within 4.1%.

On BERTScore most models clustered around
0.930-0.931, effectively within margin of error.
MarianAr scored 0.931, with Mistral, Krueger and
Qwen at 0.930. T5 scored 0.914 and MarianEs
0.842.

4.2 Long Sentences (Reference ≥ 4 words)

Table 2 shows metrics when restricting to sentences
with four or more reference tokens.

Table 2: Evaluation on long sentences

Model BLEU Prec Recall F1 BERT

Mistral 0.473 0.549 0.510 0.519 0.928
MarianAr 0.446 0.562 0.522 0.529 0.929
Krueger 0.407 0.554 0.499 0.510 0.928
Qwen 0.395 0.532 0.496 0.503 0.927
T5 0.370 0.434 0.407 0.409 0.911
MarianEs 0.149 0.230 0.340 0.242 0.854

BLEU dipped slightly for all models (e.g. Mis-
tral from 0.478�0.473, MarianAr 0.453�0.446),
while MarianEs rose from 0.122�0.149. Precision
increased across the board – MarianAr reached
0.562, Krueger 0.554 – preserving the rank order.
Recall and F1 mirrored this improvement (Maria-
nAr recall 0.522, F1 0.529). BERTScore remained
effectively unchanged.

4.3 Short Sentences (Reference < 4 words)

Table 3 isolates sentences shorter than four words.

Table 3: Evaluation on short sentences

Model BLEU Prec Recall F1 BERT

Mistral 0.602 0.408 0.407 0.404 0.938
Qwen 0.593 0.430 0.435 0.428 0.942
Krueger 0.586 0.404 0.406 0.401 0.940
MarianAr 0.541 0.426 0.429 0.423 0.941
T5 0.520 0.346 0.348 0.344 0.927
MarianEs 0.016 0.025 0.103 0.031 0.778

Short sentences boosted BLEU markedly for all
except MarianEs: Mistral rose to 0.602, Qwen
to 0.593, Krueger to 0.586, each surpassing Mar-
ianAr’s 0.541. Qwen led ROUGE-2 precision
(0.430), recall (0.435) and F1 (0.428). BERTScore
peaked at 0.942 for Qwen, with MarianAr at 0.941
and Krueger 0.940.

4.4 Significance Testing

To determine the statistical significance of the dif-
ferences in BLEU scores between models, we con-
ducted significance tests. Table 4 presents the p-
values and confidence intervals for BLEU delta
between pairs of models.

Table 4: Significance Test Results (BLEU Delta)

Model 1 Model 2 BLEU ∆
Lower CI

BLEU ∆
Upper CI

p-value

Krueger MarianAr –4.10 –3.31 0.00
Krueger Mistral7b –7.00 –5.68 0.00
Krueger MarianEs 27.72 30.08 0.00
Krueger Qwen05 0.87 1.63 0.00
Krueger T5 3.58 4.32 0.00

MarianEs MarianAr –33.65 –31.50 0.00
MarianEs Mistral7b –36.05 –34.31 0.00
MarianEs Qwen05 –28.77 –26.45 0.00
MarianEs T5 –25.98 –23.91 0.00
MarianAr Mistral7b –3.15 –2.14 0.00
MarianAr Qwen05 4.49 5.39 0.00
MarianAr T5 7.24 8.06 0.00
Mistral7b Qwen05 6.94 8.23 0.00
Mistral7b T5 9.75 10.86 0.00
Qwen05 T5 2.28 3.13 0.00

The significance testing results in Table 4 pro-
vide a detailed statistical analysis of the differences
in BLEU scores between pairs of models. The table
includes the lower and upper confidence intervals
for the BLEU delta, along with the corresponding
p-values. All p-values are less than 0.05, indicating
that the differences in BLEU scores between the
models are statistically significant.
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4.5 Inference Timings
Table 5 compares wall-clock times to translate 500
sentences2.

Table 5: Inference time for 500 sentences

Model Total Time (s) Per Sentence (s)

MarianAr 108 0.22
T5 242 0.48
Qwen 348 0.70
Mistral 1786 3.57

MarianAr was fastest at 108s (0.22s/sentence),
over four times quicker than Mistral’s 1786s (3.57
s/sentence). T5 and Qwen required 242s and 348s,
respectively. Inference speed is an important metric
when considering practical applications, and the
tradeoff between speed and quality needs to be
considered.

4.6 Summary
Overall, MarianAr and Mistral are the top perform-
ers: MarianAr leads in all metrics except BLEU
(where Mistral narrowly wins). Krueger’s T5 sur-
passes our 15-epoch T5 and Qwen in semantic
scores, highlighting the impact of extended train-
ing and transfer. Short sentences favour few-shot
LLM generalisation (Mistral, Qwen), while longer
contexts modestly reduce recall. Finally, smaller
specialised models (MarianMT) offer the best trade-
off of speed and quality for practical low-resource
language translation.

Shown in Figure 1 are translations between
transliterated Akkadian and English, using the Mar-
ianAr model.

5 Discussion

When interpreting these results, it’s important to
remember that our cuneiform corpus is highly repet-
itive – many near-identical phrases appear in both
training and test splits, inflating absolute scores.
While this doesn’t undermine comparisons between
models, it does caution against assuming similar
performance on a more varied low-resource dataset.

Firstly, our T5 baseline (15 epochs) underper-
forms Krueger’s T5 (30 epochs) across both BLEU
and BERTScore, despite identical hyperparameters.
Krueger’s additional epochs – and his bidirectional
training (English�Akkadian/Sumerian) – helped

2MarianAr was used for timing MarianMT, it can be as-
sumed MarianAr will be roughly equivalent.

Example 1 - Astronomical Text:

Source:
( mul2 -e)-sza2- sag - gir2-tab 20 si 6 zi ir kur
gin ge6 7 sag ge6 sin ina igi mul2# - kur -
sza2- kir4 -szil- pa 3 kusz3 beta Scorpii
Translation:
The 6th, ZI IR, the east wind blew. Night of
the 7th, beginning of the night, the moon was 3
cubits in front of theta Ophiuchi
Example 2 - Royal Inscription:

Source:
(d#)na3#-ku-du-ur2-[ri-uri3] lugal ba-
bila2#[(ki)] za-ni-in e2-sag-il2# u3 e2-zi-da#
ibila a-sza-re-du sza (d)na3-ibila-uri3 lugal

babila2(ki)
Translation:
Nebuchadnezzar, king of Babylon, who provides
for the E-sagil and the Ezida, foremost son of
Nabopolassar, kingship of Babylonia

Figure 1: Example translations from the MarianAr
model showing transliterated Akkadian to English

convergence. This technique is not viable for Mari-
anMT’s single-direction architecture, but it signals
that smaller models without LLM-style few-shot
strength benefit substantially from extended fine-
tuning.

Overall, MarianAr (Arabic�English) deliv-
ers the best balanced performance. It leads in
ROUGE2 and BERTScore, and only narrowly trails
Mistral-7B on BLEU. By contrast, MarianEs (Span-
ish�English) lags dramatically, confirming that
even a distantly related Semitic language imbues
the model with useful implicit grammatical and
lexical knowledge – despite script mismatches and
millennia of divergence.

The few-shot prowess of large causal LLMs also
shines through. Mistral-7B achieves the top BLEU
after a single epoch, and Qwen-0.5B, with three
epochs, matches or bests others on very short sen-
tences (<4 words). These results suggest their vast
pre-training mitigates sparse data, particularly for
lexical matching.

Inference speed highlights practical trade-offs.
Although Mistral-7B excels in raw BLEU, its 7
billion parameters slow throughput severely. In
contrast, MarianMT variants – especially MarianAr
– combine strong quality with sub-second latency,
making them better suited for real-world, resource-
constrained deployment.
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6 Conclusions and Future Work

In this paper we have demonstrated that careful
adaptation of existing NMT architectures can un-
lock high-quality Akkadian�English translation
even under severe data scarcity. Our experiments
show that fine-tuning a MarianMT model pre-
trained on Arabic (MarianAr) delivers the best
balance of surface accuracy (BLEU), semantic fi-
delity (ROUGE2, BERTScore), and inference effi-
ciency. Despite the millennia that separate Arabic
and Akkadian – and the mismatch between Ara-
bic script and romanised transliteration – Maria-
nAr’s internalised Semitic grammar and vocabu-
lary proved remarkably transferrable. At the same
time, we observed that large causal LLMs such
as Mistral-7B and Qwen-0.5B require only one to
three epochs to rival or exceed other models on
shorter sentences, underlining their potent few-shot
adaptation. Yet the hefty parameter counts of these
LLMs incur a tangible latency penalty, reaffirming
the practical importance of lightweight, specialised
NMT when deployment speed and resource bud-
gets are at a premium.

Looking ahead, several avenues promise to ex-
tend and deepen these findings. First, pushing
MarianAr and our T5 baseline through additional
epochs and systematic hyperparameter sweeps will
clarify the point of diminishing returns and guard
against overfitting. Second, a mixture-of-experts
framework – where a fast NMT core handles rou-
tine or formulaic passages while a heavyweight
LLM tackles longer or more ambiguous sentences
– could marry speed with versatility. Third, aug-
menting our pipeline to ingest raw cuneiform im-
ages and output English translations would bridge
OCR/transliteration and MT, yielding a seamless
toolchain for Assyriologists. Finally, applying
this comparative lens to other under-documented
Semitic and ancient languages will test the gener-
ality of “pre-train on related language + fine-tune”
and few-shot paradigms across diverse scripts,
dialects, and time periods. By pursuing these
threads, we aim to push the frontier of low-resource,
historical-language translation ever closer to full
academic and cultural utility.

Acknowledgments

This work has been partially supported by the
CIDEXG/2023/12 project, funded by the Gener-
alitat Valenciana.

References
Ahmed M. Agiza, Kai Zhu, Tianlong Zhang, and Shijie

Han. 2024. Mtlora: Low-rank adaptation approach
for efficient multi-task learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 16196–16205.

Jeremy Black, Graham Cunningham, Eleanor Robson,
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Abstract

We propose a fine-tuning strategy for English
Multiclass Hope Speech Detection using Mis-
tral, leveraging two complementary datasets:
PolyHope and CDB, a new unified framework
for hope speech detection. While the former
provides nuanced hope-related categories such
as GENERALIZED, REALISTIC, and UNREAL-
ISTIC HOPE, the later introduces linguistically
grounded dimensions including COUNTERFAC-
TUAL, DESIRE, and BELIEF. By fine-tuning
Mistral on both datasets, we enable the model
to capture deeper semantic representations of
hope. In addition to fine-tuning, we developed
advanced prompting strategies which provide
interpretable, zero-shot alternatives and further
inform annotation and classification designs.
Our approach achieved third place in the multi-
class (Macro F1=71.77) and sixth in the binary
(Macro F1=85.35) settings.

1 Introduction

Hope speech detection has recently evolved into a
specialized area of classification within NLP, aimed
at distinguishing constructive and future-oriented
statements from neutral or negative content. While
several datasets have been proposed to support this
task (Goldberg et al., 2009; Palakodety et al., 2020;
Chakravarthi, 2020; Balouchzahi et al., 2023a,b),
their annotation schemas vary widely—ranging
from affective taxonomies to structurally grounded
categories—making generalization across label
sets a persistent challenge.

This paper investigates whether structurally di-
vergent but semantically related taxonomies can
be combined to improve model performance on
multiclass hope speech detection. We focus on two
English-language datasets: PolyHope (Balouchzahi
et al., 2023b), which classifies hope expressions
into affective categories (GENERALIZED, REALIS-
TIC, and UNREALISTIC HOPE), and CDB (Ferreira

Leite da Silva et al., 2025), which bases its classifi-
cation on the semantic notion of modality (Kratzer,
1991; Portner, 2009) in the broad sense, as encom-
passing propositional attitudes and speech acts (Gi-
annakidou and Mari, 2021, 2026), and thus en-
coding the propositional structure of hope-related
speech (COUNTERFACTUAL, DESIRE, BELIEF).
Despite having disjoint label sets, both datasets
target overlapping semantic phenomena. We treat
them as complementary sources of supervision and
fine-tune a Mistral-7B model on the merged corpus
using a parameter-efficient strategy.

Our methodology is informed by recent find-
ings in multi-task and cross-taxonomy learning.
Prior work shows that combining tasks with high
structural complementarity can produce synergistic
gains in generalization, a phenomenon referred to
as the “cocktail effect” (Brief et al., 2024). For
example, Lai et al. (2024) proposed Multi-Task
Implicit Sentiment Analysis (MT-ISA) which lever-
ages auxiliary sentiment tasks to enhance main-
task performance, while Ivison et al. (2023) Data-
Efficient Fine-Tuning (DEFT) which shows that
structural similarity between tasks is often a more
reliable indicator of transfer effectiveness than
surface-level alignment or data volume. Building
on these insights, we treat PolyHope and CDB not
as competing annotation schemes, but as comple-
mentary lenses on the semantic domain of hope. In-
stead of aligning or mapping between taxonomies,
we fine-tune a generative model on both datasets
simultaneously, alternating prompt formats within
a single training pipeline. This setup enables the
model to internalize both affective and proposi-
tional representations of hope.

In addition to supervised fine-tuning, and draw-
ing on recent surveys of prompting strategies
(Schulhoff et al., 2025; Fagbohun et al., 2023;
White et al., 2023), we propose three zero-shot
prompting methods tailored to the PolyHope tax-
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onomy for hope speech detection: Confidence-
Structured Output Prompting, Multiple Reason-
ing Path Prompting, and Decision Tree Prompt-
ing. These strategies—developed specifically for
this study—were designed to enhance model inter-
pretability and decision consistency, particularly
in multiclass scenarios where category boundaries
are conceptually nuanced. By integrating struc-
tural supervision with reasoning-aware prompting,
we evaluate both supervised and prompt-based ap-
proaches within a unified framework.

Our submission to the RANLP-2025 shared task
ranked 3rd in the English multiclass classification
track and 6th in the binary. Results suggest that
cross-taxonomy fine-tuning without explicit task
weighting, can yield competitive generalization per-
formance. The codebase and prompt templates will
be released publicly to support further research in
structure-aware hope speech classification1. Our
main contributions are:

1. A cross-taxonomy LLMs fine-tuning strat-
egy leveraging structurally complementary
datasets.

2. Proposal and evaluation of reasoning-aware
zero-shot prompting strategies tailored to
hope speech multiclass classification.

3. A qualitative error analysis of the best model,
highlighting systematic confusion patterns in
hope classification.

We begin in Section 2 with a review of previous
work in the field. Section 3 details the datasets
employed in the shared task. Our methodology
is described in Section 4, and the corresponding
results are reported in Section 5.

2 Related Work

2.1 Hope Speech Datasets

Prior research on hope speech has explored a
range of perspectives, from peace-oriented dis-
course (Palakodety et al., 2020) to multilingual
detection for promoting inclusion (Chakravarthi,
2020). Other works have examined expressions of
regret and past-oriented hope (Balouchzahi et al.,
2023a), and the expression of wish in products re-
views and political discussions (Goldberg et al.,
2009).

1https://github.com/Priyaaa-hub/Shared-task-prompts.git

Figure 1: The COUNTERFACTUAL-DESIRE-BELIEF
(CDB) model (Ferreira Leite da Silva et al., 2025).

The PolyHope dataset (Balouchzahi et al.,
2023b) used in the shared task is annotated with
four categories of future-oriented hope-related ex-
pressions: (a) NOT-HOPE, indicating the absence of
hope; (b) GENERALIZED HOPE, referring to vague
or non-specific statements of hope; (c) UNREAL-
ISTIC HOPE, denoting overly optimistic or implau-
sible expectations; and (d) REALISTIC HOPE, cap-
turing grounded and plausible expressions of hope.
In contrast, the ReDDit dataset (Balouchzahi et al.,
2023a) focuses exclusively on past-oriented hope,
specifically targeting expressions of retrospective
longing or regret.

Building on these prior works, the CDB model
(Ferreira Leite da Silva et al., 2025) introduces
a more fine-grained and linguistically grounded
classification system. Unlike PolyHope and ReD-
Dit, which each target a single temporal dimension
of hope, the CDB model incorporates both: one
class for past-oriented hope, two distinct classes
for future-oriented hope, and one for the not-hope
instances. This classification is grounded in the
degree of speaker commitment implied by each
expression, allowing for a more nuanced frame-
work for annotation and classification. The model
defines four core classes that subsume previous
classification schemes, as illustrated in Figure 1:
(a) NOT-HOPE: indicating the absence of any hope-
related expression. (b) COUNTERFACTUAL: which
captures expressions of regret and represents past-
oriented hope. (c) DESIRE: encompassing future-
oriented expressions of mere desire or wishful
thinking that lack strong speaker commitment. (d)
BELIEF: which also encodes future-oriented hope,
but in this case grounded in epistemic or deontic
considerations.
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This taxonomy enables a more linguistically in-
formed and temporally aware analysis of hope
speech across discourse contexts. Two annotators
achieved a Cohen’s kappa of 74.88 for the binary
classification task, and 70.46 for the multiclass clas-
sification, indicating substantial agreement given
the subjectivity of the task.

2.2 Hope Speech Automatic Detection

Several shared tasks have also advanced the study
of hope speech in multilingual and multicultural set-
tings. At LT-EDI 2022 (Chakravarthi et al., 2022),
LT-EDI 2023 (Kumaresan et al., 2023) and Iber-
LEF 2023 (Jiménez-Zafra et al., 2023), the task
was framed as binary classification in a variety of
languages. These tasks laid the foundation for more
detailed distinctions explored in subsequent years.

The IberLEF 2024 shared task (Garcı́a-Baena
et al., 2024) introduced a two subtasks reflecting
distinct dimensions of hope: (1) Hope for Equal-
ity, Diversity, and Inclusion to detect supportive
speech toward vulnerable groups, (2) Hope as Ex-
pectations that requires multi-class classification
of generalized, realistic, and unrealistic expres-
sions of future-oriented hope. Approaches based
on transformer models, as well as those leverag-
ing prompting with large language models (LLMs),
have both demonstrated competitive performance.
For instance, the top-ranked system in Subtask
(1) (Thuy and Thin, 2024) employed a zero-shot
prompting strategy using ChatGPT-3.5, incorpo-
rating class definitions into the prompt in both En-
glish and Spanish. Their solution explored multiple
prompting techniques—zero-shot, one-shot, three-
shot, and chain-of-thought (CoT)—combined with
six different information strategies, including role-
defining, class explanations, and task-specific con-
cepts. The best performance was achieved using
a one-shot prompt and an information-rich strat-
egy that defined both class meanings and model
roles, yielding a Macro F1-score of 0.7161 on the
out-of-domain Spanish test set.

In Subtask (2), the winning team (Bui Hong
et al., 2024) adopted a supervised approach, com-
bining multilingual transformer models with rigor-
ous data pre-processing and augmentation. Their
method leveraged data combination across English
and Spanish corpora and generated synthetic sam-
ples for minority classes using Gemini LLMs. Clas-
sification was performed via fine-tuned models
such as XLM-R, mDeBERTa, and RoBERTuito,

and predictions were aggregated using a max vot-
ing ensemble. This robust pipeline achieved the
highest scores in the multiclass subtasks for both
English (Macro F1 = 72.00) and Spanish (Macro F1
= 66.68), highlighting the effectiveness of multilin-
gual augmentation and ensemble-based inference.

As we can see, the progression of hope
speech detection methods—from traditional ma-
chine learning models to transformer architectures
and, more recently, to prompt-based large language
models—reflects a broader shift in NLP toward
more flexible and powerful approaches, particularly
for multilingual and cross-domain applications.

3 Datasets

We rely on two datasets, PolyHope and CDB. We
first present them, then explain their complemen-
tarity.

3.1 PolyHope Dataset

The dataset consists of 8,256 tweets collected in
2022, covering topics such as abortion rights, racial
justice, religion, and politics. As illustrated in Ta-
ble 2, the dataset exhibits moderate imbalance, with
category NOT-HOPE comprising nearly half of the
instances, while the remaining categories are no-
tably less represented (GENERALIZED HOPE being
more than twice as frequent as REALISTIC HOPE

and nearly three times as frequent as UNREALIS-
TIC HOPE). As the test set was not provided, we
only report the statistics of the train and dev sets in
the tables.

3.2 The CDB Dataset

The CDB dataset comprises 4,370 texts in total,
of which 3,092 were randomly selected and re-
annotated from existing corpora (WISH (Goldberg
et al., 2009), PolyHope (Balouchzahi et al., 2023b),
and HopeEDI (Chakravarthi, 2020)), and 1,278
were newly collected from X (formerly Twitter)
and Reddit (HopeDrone). As shown in Table 3,
the dataset exhibits a slight class imbalance in the
binary setting, with the HOPE category accounting
for 57.28% of the total instances. In the multiclass
setting, however, the distribution is more skewed:
while NOT-HOPE remains the largest single class,
the DESIRE category represents nearly one-third of
the dataset, followed by BELIEF at just over one-
fifth. The COUNTERFACTUAL category is notably
underrepresented, comprising less than 5% of all
texts. These proportions remain consistent across
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Category HopeDrone PolyHope WISH Corpus HopeEDI Total

COUNTERFACTUAL 15 (0.34%) 112 (2.56%) 62 (1.42%) 14 (0.32%) 203 (4.65%)
DESIRE 224 (5.13%) 682 (15.60%) 360 (8.24%) 113 (2.59%) 1,379 (31.56%)
BELIEF 390 (8.92%) 202 (4.62%) 226 (5.17%) 103 (2.36%) 921 (21.08%)
NOT-HOPE 649 (14.85%) 279 (6.39%) 569 (13.02%) 370 (8.47%) 1,867 (42.72%)

Total 1,278 (29.24%) 1,275 (29.18%) 1,217 (27.85%) 600 (13.73%) 4,370 (100%)

Table 1: The CDB dataset, following Ferreira Leite da Silva et al. (2025). The ”Total” column aggregates the
instance counts across all four datasets—HopeDrone, PolyHope, WISH Corpus, and HopeEDI—for each class in
the CDB taxonomy. The bottom row summarizes the total number and relative size of each dataset.

Binary Train Dev Total

NOT HOPE 2,245 (49.44%) 816 (49.45%) 3,061 (49.44%)
HOPE 2,296 (50.56%) 834 (50.55%) 3,130 (50.56%)

Multiclass Train Dev Total

NOT HOPE 2,245 (49.44%) 816 (49.45%) 3,061 (49.44%)
GENERALIZED HOPE 1,284 (28.28%) 467 (28.30%) 1,751 (28.28%)
REALISTIC HOPE 540 (11.89%) 196 (11.88%) 736 (11.89%)
UNREALISTIC HOPE 472 (10.39%) 171 (10.36%) 643 (10.39%)

Table 2: Distribution of classes for binary and multi-
class settings (PolyHope) by Split. The ”Total” column
presents the aggregate number of instances for each
class, obtained by summing the respective values from
the training and development splits.

the training and test splits.
Importantly, we verified that 1,020 texts in the

CDB dataset were originally drawn from the Poly-
Hope corpus used in the shared task—543 from the
training set, 203 from the development set, and 274
from the test set. This overlap is explicitly reported
to ensure transparency. During fine-tuning, the Mis-
tral model was trained jointly on the PolyHope and
CDB training sets. Crucially, the PolyHope test
set remained unlabeled and was never used during
training. Although some texts may have been seen
with alternative annotations from the CDB taxon-
omy, their original PolyHope labels were hidden
throughout. Rather than constituting test contam-
ination, this setup enables robust cross-taxonomy
learning and allows the model to internalize diver-
gent labeling schemes over shared inputs.

Binary Label Train Test Total

NOT-HOPE 1,599 (43.03%) 268 (40.98%) 1,867 (42.72%)
HOPE 2,117 (56.97%) 386 (59.02%) 2,503 (57.28%)

Multiclass Label Train Test Total

NOT-HOPE 1,599 (43.03%) 268 (40.98%) 1,867 (42.72%)
DESIRE 1,149 (30.92%) 230 (35.17%) 1379 (31.56%)
BELIEF 801 (21.56%) 120 (18.35%) 921 (21.08%)
COUNTERFACTUAL 167 (4.49%) 36 (5.50%) 203 (4.65%)

Table 3: Distributions of classes for binary and multi-
class settings (CDB model) by Split.

3.3 Cross-Taxonomy Comparison

Figures 2 and 3 illustrate the cross-taxonomy rela-
tionship between PolyHope and CDB, as reported
in (Ferreira Leite da Silva et al., 2025). Each figure
presents a correlation matrix based on randomly
selected 1,022 PolyHope instances that were re-
annotated using the CDB schema.

Figure 2: CDB vs. PolyHope binary annotations.

As previously stated, these datasets are not com-
peting but complementary. Despite what Figure 2
may initially suggest—many instances labeled as
NOT HOPE in PolyHope are reclassified as HOPE

in CDB—the multiclass perspective reveals their
compatibility. In Figure 3, we observe that the
CDB category DESIRE serves as a good approxi-
mation for all three hope categories in PolyHope.

The fact that most PolyHope instances labeled
as GENERALIZED, REALISTIC, or UNREALISTIC

hope are mapped to the DESIRE category in CDB
highlights a key difference between the taxonomies:
CDB places greater emphasis on temporal and
modal structure, while PolyHope focuses on plau-
sibility and affective nuance.

This also reflects, among other factors, a
structural divergence—PolyHope excludes past-
oriented hope from its schema, whereas CDB ex-
plicitly encodes it through the COUNTERFACTUAL

category. The divergence becomes even more ap-
parent in the multiclass comparison (cf. Figure 3),
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Figure 3: CDB vs. PolyHope multiclass annotations.

where there is no one-to-one mapping between cat-
egories across the two taxonomies.

We provide below some examples of PolyHope
and CDB annotations. Instances (1) and (2) show
cases where utterances labeled as NOT HOPE in
PolyHope were annotated as BELIEF in CDB:

(1) “Don’t expect Chris Rock to talk about ‘the
slap’ when he performs Friday at the AVA at
Casino del Sol.”

(2) “Getting on your knees to pray should stay off
the football field and stay in church settings.”

Similarly, utterances (3) and (4) labeled as NOT

HOPE in PolyHope, were classified as COUNTER-
FACTUAL in CDB, due to the presence of past-tense
constructions:

(3) “Thank you for being brave and speaking
up—your work is so beautiful! Wish we had
met in NFT NYC.”

(4) “I wish it was Speak Now, but the signs seem
to point to 1989.”

This structural mismatch has direct implications
for training strategies. While the multiclass setup
benefits from the complementarity of both tax-
onomies, the binary classification reveals overlap-
ping boundaries that risk making the label space
more concorrente than complementary. We there-
fore did not adopt the multi-task learning in the bi-
nary setting, as merging categories could introduce
conflicting signals during training. Conversely, in
the multiclass scenario, the alignment between af-
fective subtypes and temporal-motivational roles
supports more synergistic learning.

4 Methodology

4.1 Models

We designed models based on transformers and
Large Language Models (LLMs). The reported
scores are averaged over 3 runs on the PolyHope
development set, as the test set has not been re-
leased. The hyper-parameters used for fine-tuning
both the LLMs and transformer based models are
available in the supplementary material associated
to this submission.

4.1.1 Transformers

We use BERT (Bidirectional Encoder Representa-
tions from Transformers) as a baseline transformer
model for hope speech classification. Known for its
strong performance across a variety of NLP tasks,
BERT was fine-tuned separately for both binary
and multiclass classification.

4.1.2 Large Language Models

We make use of two models:

–GPT-4, the Generative Pretrained Transformer
4 developed by OpenAI, was also explored in our
experiments. Although its performance on the
development dataset was comparatively lower,
it was still used to generate predictions under a
zero-shot prompting strategy for the test set and
included in the final submission.

–Mistral FT. It is the Mistral-7B-Instruct-v0.3,
a 7-billion parameter open-weight LLM developed
by Mistral AI, optimized for instruction-following
tasks. We fine-tune Mistral using a parameter-
efficient strategy based on QLoRA, a lightweight
variant of Low-Rank Adaptation (LoRA) that en-
ables scalable tuning of large language models with
limited compute. This setup allows us to fine-tune
Mistral-7B on structurally complementary datasets
(PolyHope and CDB) while preserving efficiency
and reducing overfitting. Unlike prior work com-
paring multiple adaptation methods, our goal is not
to benchmark fine-tuning techniques, but rather to
validate the value of combining taxonomically di-
vergent supervision sources. During training, each
instance included three fields: a dataset-specific
prompt, the corresponding input text, and the gold
classification label.

The set of prompting strategies used to fine-tune
Mistral are as follows:
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1. Zero-Shot Prompting: The prompt includes
a description of the task, definitions for each
label, and the expected output format, without
providing any training examples.

2. Few-Shot Prompting: In addition to the task
description and label definitions, this prompt
includes two randomly chosen examples per
class. There are 4 examples for binary clas-
sification (2 - HOPE and NOT HOPE), and 8
examples for multiclass classification (2 per
class resp.). Each example is paraphrased be-
fore including it in the prompts to prevent
overfitting and ensure the model learns from
the examples and does not rely on the specific
phrasing. We use a tool called quillbot2 for
paraphrasing the chosen examples after which
these examples are included in the prompt for
classification.

3. Decision Tree Prompting: This strategy im-
plements a logical flowchart in prompt form,
requiring the model to follow a step-by-step
decision process. We pose several sequential
queries to the model, inquiring about the pres-
ence of hope, any specific goal mentioned, and
the feasibility of the goal by asking whether it
involves a particular result and whether they
are attainable or not. This prompt was elabo-
rated based on the concept of Decision Tree
Reasoning for Prompting, proposed as a struc-
tured decomposition strategy within the Tree-
of-Thought framework by Yao et al. (2023),
and categorized under Logical and Sequential
Processing in (Fagbohun et al., 2023). It ex-
pands on classic Chain-of-Thought prompting
by introducing a branching logic format for
inference.

4. Confidence-Structured Output Prompting:
This technique generates both a classification
label and a graded confidence score for each
category, based on observable features of the
input. The prompt structure guides the model
through identifying hope-related language, as-
sessing the specificity of the desired outcome,
and evaluating its feasibility. These compo-
nents are followed by a confidence estimate
for each label and the final classification. The
method is inspired by uncertainty-aware rea-
soning and structured prediction techniques in

2https://quillbot.com/paraphrasing-tool

LLMs. This prompt was elaborated based on
the concept of Uncertainty-Routed Chain-of-
Thought (CoT) prompting, proposed in (Schul-
hoff et al., 2025), and classified under Thought
Generation and Self-Criticism strategies. It
leverages confidence estimation techniques to
refine final predictions.

5. Multiple Reasoning Path Prompting: This
method encourages LLMs to perform a multi-
perspective analysis of the text by decompos-
ing the reasoning process into three steps: lin-
guistic cues, goal assessment, and contextual
framing. Each perspective contributes to the fi-
nal classification. Such an approach is related
to multi-perspective CoT prompting. This
prompt was elaborated based on the concept
of Multi-View or Multi-Faceted Reasoning, ex-
plicitly discussed in (Schulhoff et al., 2025)
under Contrastive CoT and Meta-CoT, and
structurally aligned with the Cognitive Verifier
pattern in (White et al., 2023), which decom-
poses reasoning into modular sub-analyses to
enhance robustness and explanatory power.

The prompts used for LLMs and the hyper-
parameters used for fine-tuning both the LLMs
and transformer-based models, are provided in the
Appendix.

4.2 Submitted Systems
A total of 9 systems have been submitted for the
shared task:

1. Binary Classification: GPT-4, Mistral FT
(Zero-shotP , Few-shotP , Confidence ScoreP ,
Multiple ReasoningP ).

2. Multiclass Classification: BERTP , GPT-4,
Mistral FT (Zero-shotP , Zero-shotP+CDB)

Where Promptd indicates Mistral FT model
fine-tuned with one of the previous 5 Prompt on
the dataset d ∈ {P, P + CDB}. BERTP has
only been fine-tuned on PolyHope, GPT4, being
prompted in a zero-shot fashion. These configura-
tions were selected based on their superior perfor-
mance on the development set (see next Section).

5 Results

Table 4 presents the results for the binary classifica-
tion, best scores are in bold font. We observe that
most Mistral FT variants achieve relatively stable
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Development Set Test Set

Model P R F1 Acc P R F1 Acc

GPT-4 77.78 76.83 76.55 76.73 53.00 52.02 51.87 77.00

Mistral FT Variants

Zero-shotP 84.19 84.17 84.18 84.18 85.06 84.85 84.97 84.98
Few-shotP 83.08 83.01 83.01 83.03 85.44 85.34 85.35 85.37
Confidence ScoreP 83.66 83.62 83.63 83.64 85.30 85.25 85.26 85.27
Multiple ReasoningP 84.03 83.98 83.99 84.00 85.01 84.91 84.92 84.93

Table 4: Performances of binary classification in development vs. test sets in terms of macro P, R and F1 scores.

Development Set Test Set

Model P R F1 Acc P R F1 Acc

BERTP 71.01 66.58 68.24 74.30 73.31 69.28 70.78 77.14
GPT-4 53.55 47.62 42.55 56.67 55.80 49.54 44.87 57.86

Mistral FT Variants

Zero-shotP 68.12 68.49 68.07 74.00 68.66 69.97 69.12 75.06
Zero-shotP+CDB 70.40 69.98 70.12 75.58 71.19 71.09 71.11 76.80

Table 5: Multiclass classification results in the development vs. test sets in terms of macro P, R, and F1 scores.

Binary Multiclass

Label P R F1 Label P R F1

BERTP

HOPE 80.00 86.81 83.27 GEN. HOPE 64.86 76.66 70.26
NOT HOPE 85.23 77.82 81.36 REAL. HOPE 69.33 53.06 60.12

UNREAL. HOPE 66.91 54.39 60.0
NOT HOPE 82.94 82.23 82.58

GPT-4P

HOPE 83.48 67.27 74.50 GEN. HOPE 76.81 11.35 19.78
NOT HOPE 72.09 86.40 78.60 REAL. HOPE 31.27 64.29 42.07

UNREAL. HOPE 39.02 28.07 32.65
NOT HOPE 67.11 86.76 75.68

Mistral FT
Zero-shotP Zero-shotP

HOPE 83.75 85.25 84.49 GEN. HOPE 72.25 61.88 66.67
NOT HOPE 84.64 83.09 83.86 REAL. HOPE 53.62 64.29 58.47

UNREAL. HOPE 64.24 61.99 63.10
NOT HOPE 82.35 85.78 84.03

Few-shotP Zero-shotP+CDB

HOPE 81.99 85.13 83.53 GEN. HOPE 70.45 66.38 68.36
NOT HOPE 84.18 80.88 82.50 REAL. HOPE 59.62 64.80 62.10

UNREAL. HOPE 67.72 62.57 65.05
NOT HOPE 83.79 86.15 84.95

Confidence-scoreP Confidence-scoreP
HOPE 82.94 85.13 84.02 GEN. HOPE 52.38 30.62 38.65
NOT HOPE 84.38 82.11 83.23 REAL. HOPE 19.45 54.59 28.69

UNREAL. HOPE 24.64 39.77 30.43
NOT HOPE 76.89 19.98 31.71

Multiple ReasoningP Multiple ReasoningP

HOPE 83.29 85.49 84.38 Gen. Hope 37.87 63.81 47.53
NOT HOPE 84.76 82.48 83.60 REAL. HOPE 24.41 31.63 27.56

UNREAL. HOPE 33.33 1.75 3.33
NOT HOPE 70.28 51.59 59.51

Table 6: Performances per class in the development set in both binary and multiclass settings.
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performance across all prompting strategies, with
only minor variations, outperforming GPT4. The
highest performance is observed using Few-shot
prompting trained on the PolyHope dataset.

Table 5 shows the results for the multiclass
classification task, where Mistral has been fine-
tuned either on PolyHope or PolyHope+CDB. The
PromptP+CDB setups consistently outperform
PromptP by approximately 2%, indicating that
incorporating the additional CDB data enhances
the model’s capacity for fine-grained classification.

We finally provide in Table 6 per-class perfor-
mance results for both the binary and multiclass
classification tasks on the development set, as the
testset has not been released. It offers a compre-
hensive overview of all evaluated strategies.

Overall, our system achieved a 6th place ranking
in the Binary Classification task and a 3rd place in
the Multiclass Classification task on the English
dataset. These results confirm the effectiveness of
our tailored prompting and fine-tuning strategies,
particularly for multiclass scenarios.

6 Error Analysis

Here we analyze the most frequent misclassifica-
tions—377 instances—as predicted by our best
model Mistral FT using Zero-ShotP+CDB on the
development set. These errors can be grouped into
two main categories:

– Generalized Hope (Gold) vs. Not Hope (Predic-
tion)

1. GENERALIZED HOPE (Gold) → NOT HOPE

(Prediction) = 90 instances, as in “This is aw-
ful. Please pray for these poor people. No
one should have died that way, but will this ad-
ministration do anything? Nope, they have a
clown tribunal to attend to, and a constitution
to ignore”.

2. NOT HOPE (Gold) → GENERALIZED HOPE

(Prediction) = 81 instances, as in “All task
done [...] thank you and wish me luck”.

These confusions suggest that the model
struggles with vague or subtle expressions of hope
(highlighted in bold in the examples). In (a), for
instance, short hopeful spans are embedded in
longer neutral or non-hopeful content, which may
dominate the model’s representation. Conversely,
in (b), lexical cues like hope or wish lead to

overgeneralization.

– REALISTIC HOPE (Gold) vs. GENERALIZED
HOPE (Prediction)

1. GENERALIZED HOPE (Gold) → REALISTIC

HOPE (Prediction) = 53 instances, like in “I
just hope my 3 years of Spanish lessons and
streak are still there”.

2. REALISTIC HOPE (Gold) → GENERALIZED

HOPE (Prediction) = 34 instances, e.g., “Well
I hope we’re singing Turn Out the Lights the
Party’s Over, when this hearing is done.”

In these last two cases, the model may struggle to
distinguish between grounded, outcome-oriented
hopes and more diffuse or emotive expressions,
suggesting limited sensitivity to contextual or prag-
matic features that signal speaker intent.

7 Conclusion

We proposed novel prompting strategies that
achieved top-tier performance in the shared task.
In addition, our fine-tuning methodology demon-
strates the feasibility of combining structurally
distinct datasets—each with its own label taxon-
omy—for multiclass classification using large lan-
guage models and transformer architectures. This
cross-taxonomy approach enables richer supervi-
sion and improved generalization.

In the future, we plan to consider the idea of
unifying hope speech taxonomies via latent label
modeling or joint annotation projection. This could
offer a principled way to formalize cross-taxonomy
alignment.
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Limitations

The prompting strategies we explored such as deci-
sion tree prompting, confidence-structured output
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prompting, and multiple reasoning path prompting-
were selected precisely for their cross-domain gen-
eralization, as highlighted in recent work (e.g.,
(Schulhoff et al., 2025; White et al., 2023)). How-
ever, we acknowledge that task-specific adaptation
is often necessary to fully leverage their benefits.

For instance, the structural logic of decision tree
prompting can be transferred across tasks, but the
branching criteria must be adapted to the domain’s
ontology. Similarly, while the general idea behind
confidence-structured output prompting is domain-
agnostic (e.g., eliciting outputs with associated self-
assesses certainty), the format and calibration of
confidence levels might require tuning. In multiple
reasoning path prompting, the principle of diverse
inference paths remain reusable, but the types of
reasoning paths must reflect the target task’s cog-
nitive demands. In short, while the strategies are
reusable at a conceptual level, they often require
lightweight, task-aware instantiations to reach opti-
mal performance.
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Dı́az. 2022. Overview of the Shared Task on Hope
Speech Detection for Equality, Diversity, and Inclu-
sion. In Proceedings of the Second Workshop on
Language Technology for Equality, Diversity and In-
clusion, pages 378–388, Dublin, Ireland. Association
for Computational Linguistics.

Oluwole Fagbohun, Rachel Harrison, and Anton
Dereventsov. 2023. An Empirical Categorization
of Prompting Techniques for Large Language Mod-
els: A Practitioner’s Guide. Journal of Artificial
Intelligence, Machine Learning and Data Science,
1:1–11.

Daniel Garcı́a-Baena, Fazlourrahman Balouchzahi,
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Cumbreras, Daniel Garcı́a-Baena, José Antonio
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A Model Hyper-parameters

Tables 7 and 8 present the hyperparameter used to
fine-tune the transformer-based models and large
language models in our experiments.

Parameter Value
Pre-trained Model BERT-base-uncased
Max Sequence Length 256
Batch Size 16
Learning Rate 2× 10−5

Optimizer AdamW
Number of Epochs 10

Table 7: Hyperparameter for BERT fine-tuning.

Parameter Value
Sequence Length 2048
Gradient Accumulation 2
Learning Rate 2× 10−5

Scheduler Cosine
Number of Epochs 3
Lora Rank (r) 8
Save Checkpoints Every 1000 steps

Table 8: Hyperparameter for fine-tuning Mistral.

B Prompt Design and Examples

B.1 Prompt Structure
Figures 4, 5, 6, 7, and 8 illustrate the various
prompting strategies applied in assessing the large
language model.

Figure 4: Zero-Shot (Multiclass).

B.2 Dataset Prompt Examples
Figures 9 and 10 illustrate the prompt example
instances from the PolyHope and CDB datasets,
including the prompt, input text, and corresponding
gold classification labels.
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Figure 5: Few-Shot (Binary).

Figure 6: Decision Tree (Multiclass).

Figure 7: Multiple Reasoning (Multiclass).

Figure 8: Confidence Score (Multiclass).

Figure 9: Prompt, input instance, and gold classification
in the PolyHope dataset.

Figure 10: Prompt, input instance, and gold classifica-
tion in the CDB dataset.
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Abstract

This study investigates whether adding
anaphora resolution as a preprocessing step
before fine-tuning the text summarisation
application in Large Language Model (LLM)
can improve the quality of summary output.
We conducted two sets of training with the
T5-base model and BART-large model using
the SAMSum dataset. One used the original
text and the other used the text processed
by a simplified version of MARS (Mitkov’s
Anaphora Resolution System). The experiment
revealed that when T5-base model was
fine-tuned on the anaphora-resolved inputs,
the ROUGE-1, ROUGE-2 and ROUGE-L
metrics were improved from 45.8567, 22.0195
and 38.0433 to 48.0281, 24.4447 and 40.3584
respectively (Wilcoxon signed-rank test
p-value less than 0.01 and paired t-test p-value
less than 0.01). In contrast, BART-large model
only had a slight improvement after fine-tuning
under the same conditions, which was not
statistically significant. Further analysis of the
generated summaries confirmed that anaphora
resolution was helpful in semantic alignment.
In conclusion, this study demonstrates that
adopting anaphora resolution as a preprocess-
ing step for LLM fine-tuning is effective in
enhancing the performance of summarisation
in T5-base model. Although it did not reach
statistical significance on BART-large, it still
has practical value for small LLM or scenarios
with limited computing resources.

1 Introduction

In recent years, the rapid development of Large
Language Model (LLM) has greatly contributed
to the advancement of various areas in Natural
Language Processing (NLP). With the increasing
ability of these models to understand and generate
language, text summarisation is an important and
widely used application that increasingly relies on

LLM for processing. Whether it is news summari-
sation, meeting record organisation, or social me-
dia content compression, LLM has demonstrated a
strong ability to generate summaries (Gusev, 2020;
Pan et al., 2024; Blekanov et al., 2022).

To further improve the performance of LLM on
specific tasks, fine-tuning is one of the most com-
mon strategies. By fine-tuning on the downstream
task dataset, the model can better adapt to the target
task and improve the quality of the output. How-
ever, the effect of fine-tuning depends not only on
the model structure design and training arguments,
but also on the characteristics of the input data. In
this background, anaphora resolution is particularly
important. It refers to the automatic identification
of the antecedent to which an expression (such as a
pronoun or a noun phrase) in a text refers, and is an
essential part of language interpretation. As Mitkov
(2002) pointed out, anaphora resolution is a vital
task for computers to comprehend natural language.
Nevertheless, most of the past studies have focused
on the internal evaluation of the anaphora resolu-
tion itself or analysing its overall impact on specific
applications. Mitkov et al. (2007, 2012) have also
investigated the results of anaphora resolution and
coreference resolution (not only backward-pointing
references but includes all mentions referring to
the same entity) in NLP applications, and indicated
that anaphora resolution can bring some degree of
performance improvement. However, there is no
systematic study to explore whether anaphora reso-
lution as a data preprocessing step can significantly
improve the fine-tuning effect of LLM. Therefore,
in this paper, we conduct experiments aiming at the
following core question:

Can anaphora resolution preprocess-
ing improve LLM summarisation fine-
tuning?
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2 Related Work

Before understanding anaphora resolution, it is cru-
cial to clarify the basic concept of anaphor, which
is a word or phrase that points back to a previous
reference in a discourse, such as a personal pro-
noun (he, she, it) or a definite noun phrase. In
contrast, antecedent is the previous entity refer-
enced by anaphor, usually in noun phrase (NP).
Take the sentence mentioned by Mitkov (2022) as
an example:

The Queen said the UK will succeed
in its fight against the coronavirus pan-
demic, in a rallying message to the na-
tion. She thanked people for following
government rules to stay at home.

In this case, She is the anaphor and the Queen is the
antecedent, which establishes semantic relationship
in the discourse. Anaphora resolution is the pro-
cess for identifying the antecedent of an anaphor.
Among some early approaches, Lappin and Leass
(1994) developed an algorithm based on syntac-
tic structures and heuristic rules that effectively
combines semantic and discourse information for
anaphora resolution. Ge et al. (1998) introduced a
statistical approach to the construction of anaphora
resolution decision tree using a data-driven method.

Mitkov (1998); Mitkov et al. (2002) proposed
a different approach to knowledge-poor anaphora
resolution. This method was later evolved into
MARS (Mitkov’s Anaphora Resolution System),
which is a fully automated system for anaphora
resolution. MARS has the advantage of simplicity,
fast operation, and the ability to achieve about 60%
accuracy in technical manuals without relying on
knowledge bases.

In addition to discourse-level preprocessing tech-
niques, modern text summarisation applications
rely heavily on pre-trained LLMs. Early on,
the Sequence-to-Sequence (Seq2Seq) neural net-
work summarisation model (Sutskever et al., 2014)
was developed. This model applies an ‘encoder-
decoder’ framework to encode the entire text be-
fore generating a summary. In simple terms, the
entire paragraph is encoded into a vector. The de-
coder then uses this vector and the generated words
to generate a summary word by word. However,
the vector cannot accommodate long texts, and
key information from the beginning can be easily
missed. Therefore, many studies have incorporated
‘attention’ into the encoder-decoder architecture

(Bahdanau, 2014; Rush et al., 2015; Luong et al.,
2015). During encoding, the state of each position
is output. For each generated word, the decoder
calculates a set of attention weights to focus on
the most relevant positions. Subsequent research
has incorporated the Transformer (Vaswani et al.,
2017), using multi-head self-attention to model the
entire text. In the encoder, self-attention is used
to enable each word in a text to look back at other
words in the text and determine which to focus
on at the moment. The decoder uses masked self-
attention to focus only on the generated portion,
and cross-attention to allow the model to consider
the most relevant parts of the original text when
outputting the summary.

Among them, T5 (Text-to-Text Transfer Trans-
former) (Raffel et al., 2020) is a representative
Transformer model. In addition to the architec-
ture mentioned above, the core concept of T5 is
span corruption. During pre-training, a continuous
segment of text is first removed from the origi-
nal source, prompting the model to reconstruct the
omitted passage. This is like asking the model to
understand the context and fill in the missing con-
tent with its own words, just like the ability to read
and retell the text required for summarisation. The
design is not only flexible, but also allows it to per-
form well on a variety of summary datasets (Zhang
et al., 2020; Hasan et al., 2021; Guo et al., 2021).

In contrast, BART (Bidirectional and Auto-
Regressive Transformers) (Lewis et al., 2019) is
another representative Transformer model. Un-
like T5, in addition to removing consecutive seg-
ments, BART also utilises a denoising autoencoder
to scramble the input before requiring the model to
recover it. This is done to train the model to have
greater understanding and reconstruction capabili-
ties. This destruction-reconstruction method also
enables BART to perform well on summary tasks
(Yu et al., 2020; Yadav et al., 2023).

However, most studies have focused on the op-
timisation of the model itself, and have rarely ex-
plored the need for semantic enhancement of the
input data in the fine-tuning process. Therefore,
this is exactly the problem that this study aims to
investigate.

3 Data

The dataset used in this study is SAMSum Corpus
(Gliwa et al., 2019), a manually annotated conver-
sation summary dataset of simulated two-person
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real-time chats in everyday life. There are more
than 16,000 conversations in this dataset, each con-
taining multiple rounds of speech with correspond-
ing concise summaries. The dialogues are written
and annotated by linguists, with a clear seman-
tic structure and consistent style. The dataset is
widely used in summarisation research and is one
of the most common standardised assessment cor-
pora available.

SAMSum is particularly suitable for this study
due to the following reasons. Firstly, the data are
multi-round spoken dialogues with a large number
of pronouns, which are very likely to be ambiguous,
and this is exactly the context in which anaphora
resolution can be useful. Secondly, the output sum-
maries of SAMSum are all abstractive style, so
the model needs to have a deep understanding of
semantics and discourse coherence in order to pro-
duce high quality summaries. By comparing the ef-
fect of fine-tuning before and after anaphora resolu-
tion, the effect of discourse clarity on model learn-
ing can be effectively observed. Although other
datasets such as MeetingBank (Hu et al., 2023) and
CNN/DailyMail (Nallapati et al., 2016) were also
considered, most of these datasets do not have the
conversational interactivity of SAMSum and do
not require as much to identify antecedents in sum-
maries. Furthermore, these datasets are larger than
SAMSum. Given limited computing resources,
SAMSum may be the most cost-effective choice.

However, the dataset has some limitations. As
the conversations are simulated, they may not be as
natural as real social platform conversations, and
the scenarios are relatively focused on everyday
conversations, which lacks topic diversity. Never-
theless, SAMSum is highly representative in terms
of data quality, annotation consistency and task
relevance, and is a suitable test to assess whether
LLM benefits from discourse-level preprocessing
such as anaphora resolution.

4 Methodology

The methodology of this study is divided into two
stages. Firstly, anaphora resolution is performed
on the dialogue texts of the training set in the SAM-
Sum dataset using a self-implemented simplified
version of MARS, in which the anaphor are re-
placed by their inferred antecedents. Then, T5 and
BART models are fine-tuned using the anaphora
resolution and the unprocessed versions of the data.
Finally, by comparing the performance of the mod-

els in generating summaries on the test set, we
analyse whether introducing anaphora resolution
in data preprocessing can effectively improve the
performance of the summarisation. In other words,
we start with LLM that has been pre-trained on
a large-scale corpus. To help the model learn to
output summaries based on inputs, we fine-tune it
on the SAMSum dataset, aligning its generated dis-
tribution with the target summaries. After training,
during inference and testing, the model employs
an autoregressive approach, conditioning on previ-
ously generated tokens to generate the next token.
This study aims to investigate whether perform-
ing anaphora resolution on the SAMSum dataset
during the fine-tuning phase can improve the final
summarisation performance of the model.

4.1 Anaphora Resolution with MARS

In this study, a simplified version of MARS
(Mitkov’s Anaphora Resolution System) is used,
with the core logic continued from the frame-
work of Mitkov et al. (2002), which is approxi-
mately the same as its five processing phases. First,
the system applies the FDG Parser from Conexor
(Tapanainen and Jarvinen, 1997) to perform part-of-
speech (POS) tagging, lemmatisation, and depen-
dency parsing on the input text to extract compound
NPs for subsequent use. Then, in the second stage,
the system identifies potential referential pronouns
and filters out non-referential ‘it’ by the machine
learning method developed by Evans (2001). In
the third stage, for each identified referential pro-
noun, NPs are selected as antecedent candidates
from the heading of the paragraph, the current sen-
tence and the first two sentences. Further filtering
is performed according to grammatical constraints,
requiring gender and number agreement between
candidates and pronouns, and excluding grammat-
ically impossible combinations. The fourth stage
applies a set of antecedent indicators to all qualified
candidates, which contain a total of 14 preferential
and impeding factors, and each candidate receives
a set of scores based on these indicators to measure
its likelihood of becoming an antecedent. Finally,
in the fifth stage, the candidate with the highest to-
tal score is chosen as the antecedent of the anaphor.
In case of a tie, the most recent highest-scoring
candidate is chosen.

However, there are many differences in the im-
plementation details. First, in the syntactic analysis
stage, considering the open source and efficiency
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issues, spaCy (Honnibal et al., 2020) is used to
replace the original FDG Parser to perform POS
tagging, dependency parsing, and to count the fre-
quency of occurrence for NPs. In the second stage
of pleonastic it filtering, the machine learning clas-
sifier proposed by Evans (2001) is abandoned and
part of the discrimination rule proposed by Paice
and Husk (1987) is applied instead. For the third
stage of candidate extraction, the gender agree-
ment check is omitted because of the uncertainty
in the correspondence between names and genders
in the conversation dataset and the high risk of
gender mismatch. During the fourth stage, the orig-
inal 14 indicators other than boost pronoun are em-
ployed. However, collocation match only compares
the lemma without creating a collocation database,
and term preference replaces the original TF-IDF
method with the highest-frequency occurring NPs.
In addition, instead of implementing a Genetic Al-
gorithm (GA) for automatic weight optimisation
(OrĂsan et al., 2000), the system adopts a fixed
score, which is expected to run in a more stable
and lighter way.

4.2 Fine-Tuning Setup

This study utilises T5-base and BART-large. T5-
base is a publicly available version of the inter-
mediate pre-training model in the T5 architecture,
which has about 220M parameters with a complete
encoder-decoder structure. BART-large is a high-
level pre-training model based on the BART archi-
tecture, including a 12-layer encoder and a 12-layer
decoder, with a total of approximately 402M pa-
rameters. These models strike a balance between
resource consumption and model performance. In
addition, this model selection can also take into ac-
count the variations in the scale of two parameters
and test the performance of models with different
structures. The original version of the SAMSum
dataset has been divided into training and testing
sets, so this study directly follows its default parti-
tioning for model training and testing without any
additional adjustment. We have designed two sets
of inputs. One is the original dialogue data and the
other is the anaphora-resolved version by MARS.
Each is used to fine-tune models with the same
structure and settings, so that a fair comparison
can be made as to whether anaphora resolution
improves model summarisation.

For the training arguments, the batch size is set
to 8, the learning rate is set to 0.0001, and the

training is conducted with 3 epochs. In order to
retain some of the pre-training knowledge and re-
duce the consumption of resources, the weights of
the first three encoder layers in both T5-base and
BART-large are frozen. The optimiser employs
AdamW (Loshchilov and Hutter, 2017) with a lin-
ear scheduler, where the learning rate decreases
as the training progresses. Moreover, ROUGE-1,
ROUGE-2 and ROUGE-L are considered as the
summary quality assessment metrics in the test set
(Lin, 2004).

In order to verify the differences in summary
quality between different input versions are not
due to random fluctuations, this study conducts
Wilcoxon signed-rank tests (Wilcoxon, 1992) and
paired Student’s t-tests on the ROUGE-1, ROUGE-
2, and ROUGE-L metrics of each sample in the
test set. All tests are one-tailed, with the alterna-
tive hypothesis that the anaphora-resolved result
increases higher ROUGE metrics. Furthermore, the
Holm–Bonferroni method (Holm, 1979) is used to
correct the multiple comparison results of the three
metrics, with the significance level set to 0.01.

To ensure the reproducibility of our experiments,
we set the number of random seeds to 413, and use
the L4 GPU of Google Colab for training.

5 Results

After anaphora resolution on the SAMSum dataset,
2,479 (91.679%) of the 2,704 target pronouns were
replaced. Consistent with the original MARS, the
antecedent candidates in this study were restricted
to the current sentence and the two preceding sen-
tences. Of these replaced pronouns, approximately
48.81% had their antecedents in the same sentence,
31.18% in the previous sentence, and 20.01% in the
previous two sentences. On average, each dialogue
contained 3.3 pronouns. Anaphora resolution only
slightly altered the input length, increasing each di-
alogue (per sample) by an average of 1.3056 tokens
and 35.6174 characters. Moreover, this section re-
ports the performance of the four fine-tuned models
on the SAMSum test set in turn. First, two sets of
results are presented for T5-base (original vs. re-
solved), and then two sets of results for BART-large
(original vs. resolved).

5.1 T5-base

Table 1 lists the ROUGE metrics of the T5-base
model on original input and the anaphora-resolved
input. From the results, it could be seen that
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with the integration of anaphora resolution, the
model showed significant improvement in all three
ROUGE metrics. The one-tailed Wilcoxon signed-
rank test (W-test) and the paired Student’s t-test
(t-test) results including test statistics, raw p-values,
and Holm–Bonferroni adjusted p-values are re-
ported in Tables 2, 3 and 4. All three ROUGE
scores had p-values close to zero, confirming that
the performance improvement brought by anaphora
resolution is highly significant.

Model ROUGE-1 ROUGE-2 ROUGE-L
Raw 45.8567 22.0195 38.0433
Resolved 48.0281 24.4447 40.3584

Table 1: ROUGE comparison for T5-base

Test ROUGE-1 ROUGE-2 ROUGE-L
W-test 154033.50 127586.00 151217.50
t-test 6.31 6.04 6.08

Table 2: Test statistics for Wilcoxon signed-rank test
(W-test) and paired Student’s t test (t-test) on T5-base
ROUGE metrics

Test ROUGE-1 ROUGE-2 ROUGE-L
W-test 0 0 0
t-test 0 0 0

Table 3: Raw p-values for Wilcoxon signed-rank test
(W-test) and paired Student’s t-test (t-test) on T5-base
ROUGE metrics

A dialogue from the SAMSum test set further
demonstrated the semantic contrast between the
two models. The summaries generated from the
original model were compared with those from
the anaphora-resolved model, as well as the arti-
ficial reference summaries. In this dialogue, Igor
expresses his workload and depression during the
two weeks before leaving his job, and John gives
advice and counselling. However, the summary
generated by the original model only mentioned
that Igor was overloaded with work and focused
on the persuasion of John to ‘stop thinking and
start doing’. It completely ignored the frustration
of Igor and the assessment of John that it was ir-
responsible to assign too much work during the
notice period. In contrast, the model summary after
anaphora resolution not only captured the ‘demo-
tivated’ mood of Igor, but also correctly reflected
the criticism of excessive work allocation by John.

Test ROUGE-1 ROUGE-2 ROUGE-L
W-test 0 0 0
t-test 0 0 0

Table 4: Holm–Bonferroni corrected p-values for
Wilcoxon signed-rank test (W-test) and paired Student’s
t test (t-test) on T5-base ROUGE metrics

This allowed the generated content to take into ac-
count both emotions of Igor and opinions of John,
and was closer to the dual narrative of the reference
summary. The full dialogue and model outputs can
be found in Appendix A.1.

5.2 BART-large
Table 5 lists the ROUGE metrics of the BART-
large model on original input and the anaphora-
resolved input. From the overall trend, BART-large
had slightly increased in all three ROUGE metrics
after anaphora resolution, indicating that the se-
mantic consistency of the generated summary has
improved. The one-tailed Wilcoxon signed-rank
test (W-test) and the paired Student’s t-test (t-test)
results including test statistics, raw p-values, and
Holm–Bonferroni adjusted p-values are reported in
Tables 6, 7 and 8. However, the results indicate that
these improvements are not statistically significant.
The p-values of these three scores are all greater
than 0.01.

Model ROUGE-1 ROUGE-2 ROUGE-L
Raw 49.6463 26.5392 41.9366
Resolved 50.0213 26.8944 42.1020

Table 5: ROUGE comparison for BART-large

Test ROUGE-1 ROUGE-2 ROUGE-L
W-test 109756.50 91295.00 111061.00
t-test 0.12 0.23 0.05

Table 6: Test statistics for Wilcoxon signed-rank test
(W-test) and paired Student’s t test (t-test) on BART-
large ROUGE metrics

On the semantic level, the BART-large model
also showed obvious differences on the same test
examples in Section 5.1. The original model men-
tioned that John suggested Igor to do what he had
to do. The model after anaphora resolution clearly
conveyed the view of John that it was irresponsible
to assign too much work during the notice period.
The full dialogue and model outputs can be found
in Appendix A.2.
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Test ROUGE-1 ROUGE-2 ROUGE-L
W-test 0.3909 0.3399 0.5790
t-test 0.4520 0.4106 0.4798

Table 7: Raw p-values for Wilcoxon signed-rank test
(W-test) and paired Student’s t test (t-test) on BART-
large ROUGE metrics

Test ROUGE-1 ROUGE-2 ROUGE-L
W-test 1 1 1
t-test 1 1 1

Table 8: Holm–Bonferroni corrected p-values for
Wilcoxon signed-rank test (W-test) and paired Student’s
t test (t-test) on BART-large ROUGE metrics

6 Discussion

This study confirms that adding anaphora resolu-
tion before fine-tuning can significantly improve
the summary quality of the T5-base model, reach-
ing high significance in all ROUGE metrics. For
BART-large, although there was a small gain, it
did not pass the significance test, indicating that
its marginal benefit on large models is relatively
limited.

The actual summary examples also confirmed
the above results. The summary of the T5-base
model without anaphora resolution only focuses
on the heavy workload and ignores the emotional
clues. After anaphora resolution, it can fully
present the frustrated state of Igor. Although BART-
large can add details about the evaluation of John
for over-allocation of work and irresponsibility af-
ter anaphora resolution, the overall summary qual-
ity does not change much.

We believe that this difference stems from three
main factors. First, replacing ambiguous pronouns
with explicit noun phrases can greatly reduce the
ambiguity of the input and facilitates direct align-
ment of semantic roles. Second, strengthening
the coherence of the text allows the model to
learn the correspondence between characters and
context more efficiently. For small models, this
lightweight preprocessing can significantly reduce
the noise during fine-tuning and improve learning
effects. Third, the model does not have to remem-
ber or learn the antecedents corresponding to dif-
ferent pronouns during training, and perhaps self-
attention can be aligned without having to span
large distances. However, for models with larger
capacity and deep context modeling capabilities,
the benefits are relatively diminishing. Moreover,

we speculate that pre-training method of destroy-
ing the input enables BART to strengthen its under-
standing of entity and paragraph coherence during
the reconstruction process, so the marginal benefit
of anaphora resolution is relatively small compared
to T5.

7 Conclusions and Future Work

This study investigates whether preprocessing with
anaphora resolution before LLM fine-tuning for
summary application can improve the model per-
formance. By fine-tuning the T5-base model and
the BART-large model on the SAMSum dataset
with the original text and the text processed by
the simplified version of MARS. The results show
that T5-base achieves highly significant gains in
ROUGE-1, ROUGE-2, and ROUGE-L metrics af-
ter anaphora resolution, which fully demonstrates
how anaphora resolution enhances the ability of the
model to capture semantic coherence. BART-large,
on the other hand, only shows a small and non-
significant increase in each metric, indicating that
its innate contextual understanding already covers
most parsing relationships, and thus has limited
marginal benefits.

This study is still limited to the SAMSum dataset
and two models. The applicability of other corpora,
languages, or larger-scale LLMs remains to be ver-
ified. In addition, the interaction between hyperpa-
rameters (such as learning rate, number of frozen
layers) and the benefits of anaphora resolution also
needs to be systematically explored. Future re-
search can further expand to more models and
datasets. For example, at the model level, experi-
ments can be conducted using larger LLMs such
as GPT-NeoX-20B (Black et al., 2022) or Llama
2 (Touvron et al., 2023). At the data level, differ-
ent styles and topics of summary datasets such as
MeetingBank (Hu et al., 2023) or CNN/DailyMail
(Nallapati et al., 2016) can be considered. Further-
more, according to a comparative study by Mitkov
and Ha (2024), the use of state-of-the-art anaphora
resolution methods based on deep learning (such
as DeBERTa-based token labelling) may further
improve the accuracy, which in turn may lead to
stronger summarisation performance.
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Iustin Dornescu, and Miguel Rios. 2012. Coref-
erence resolution: To what extent does it help nlp
applications? In Text, Speech and Dialogue: 15th
International Conference, TSD 2012, Brno, Czech Re-
public, September 3-7, 2012. Proceedings 15, pages
16–27. Springer.

Ruslan Mitkov, Richard Evans, Constantin Orăsan,
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A Example Dialogue and Model Outputs

Input Dialogue

Igor: Shit, I’ve got so much to do at work
and I’m so demotivated.
John: It’s pretty irresponsible to give that
much work to someone on their notice
period.
Igor: Yeah, exactly! Should I even care?
John: It’s up to you, but you know what
they say...
Igor: What do you mean?
John: Well, they say how you end things
shows how you really are...
Igor: And not how you start, right?
John: Gotcha!
Igor: So what shall I do then?
John: It’s only two weeks left, so grit
your teeth and do what you have to do.
Igor: Easy to say, hard to perform.
John: Come on, stop thinking, start do-
ing!
Igor: That’s so typical of you! ;)

Reference Summary Igor has a lot of work on
his notice period and he feels demotivated. John
thinks he should do what he has to do nevertheless.

A.1 T5-base
Summary from Raw Model Igor has a lot of
work to do. John advises him to stop thinking and
start doing.

Summary from Anaphora-Resolved Model
Igor has a lot of work to do. He is demotivated.
John thinks it’s irresponsible to give that much
work to someone on their notice period.

A.2 BART-large
Summary from Raw Model Igor has a lot of
work to do at work. John advises him to do what
he has to do.

Summary from Anaphora-Resolved Model
Igor has a lot of work to do at work. John reckons
it’s irresponsible to give so much work to someone
on their notice period.
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Abstract

With the rise of Generative AI (GenAI) models
in recent years, it is necessary to understand
how they performed compared with other Deep
Learning techniques, across tasks and across
different languages. In this study, we bench-
mark ChatGPT-4 and XML-RoBERTa, a mul-
tilingual transformer-based model, as part of
the Multilingual Binary and Multiclass Hope
Speech Detection within the PolyHope-M 2025
shared task. Furthermore, we explored prompt-
ing techniques and data augmentation to de-
termine which approach yields the best perfor-
mance. In our experiments, XML-RoBERTa
frequently outperformed ChatGPT-4. It also
attained F1 scores of 0.86 for English, 0.83 for
Spanish, 0.86 for German, and 0.94 for Urdu
in Task 1, while achieving 0.73 for English,
0.70 for Spanish, 0.69 for German, and 0.60
for Urdu in Task 2.

1 Introduction

Hope speech detection is an emerging area in Nat-
ural Language Processing (NLP) that identifies an
expectation, desire, or aspiration focused on the
future, aimed at a particular or broad event or out-
come, which plays a significant role in shaping hu-
man behavior, choices, and emotions (Balouchzahi
et al., 2023). This task has become increasingly im-
portant in the digital age, particularly on social me-
dia platforms where content spread can contribute
significantly to emotional well-being. Its relevance
was especially highlighted during global crises
such as the COVID-19 pandemic, in such contexts,
fostering a sense of hope through language plays
a crucial role in promoting resilience and mental
health (Yadav et al., 2023; Surya Sai Eswar et al.,
2022).

Our code is publicly available at https://github.
com/DianaPME/PolyHope-M-RANLP-2025

Recent research efforts have focused on of ad-
vanced machine and deep learning techniques to
improve the accuracy of hope speech detection
(Sidorov et al., 2024; Ahmad et al., 2024). In
particular, transformer-based models have been
applied to several NLP tasks and have proved a
superior performance compared to other state-of-
the-art models (Sidorov et al., 2023). However,
the widespread adoption of large language mod-
els (LLMs) have transformed how text is repre-
sented and understood, particularly in multilin-
gual settings (Chakravarthi, 2022; Kadiyala, 2024).
This phenomenon has provoked researchers to ex-
plore the performance on sentiment analysis of
new GenAI models against traditional transformer-
based ones (Krugmann and Hartmann, 2024; Anas
et al., 2024; Bu et al., 2024).

Despite these efforts, the experiments on the liter-
ature explore sentiment analysis broadly and there
is no existing research, to the best of our knowl-
edge, comparing GenAI and traditional models in
hope classification. Therefore, in this study, we
benchmarked ChatGPT-4 against XML-RoBERTa.
We chose these specific models due to their popular-
ity and performance in similar studies (Krugmann
and Hartmann, 2024; Krasitskii et al., 2024; Shrid-
hara et al., 2023). Furthermore, we explored the
effectiveness of various strategies designed to op-
timize model performance. Specifically, we used
one-shot and few-shot prompting techniques on
the generative model, and data augmentation for
RoBERTa.

Through a detailed evaluation of these ap-
proaches, the research provides a comprehensive
analysis of how these two models compare to each
other when applied to detect hope speech across
diverse linguistic settings, including English, Span-
ish, German, and Urdu, within the framework of
the PolyHope-M at RANLP 2025 shared task (Fa-
zlourrahman et al., 2025), which emphasizes the

67

https://doi.org/10.26615/978-954-452-102-8-008


value of harnessing existing multilingual datasets
to navigate the complexities of linguistic and cul-
tural diversity in sentiment analysis. Through this
approach, it supports efforts to close communica-
tion gaps and cultivate safer, more inclusive digital
communities.

2 Related Work

Social media platforms play a central role in shap-
ing public discourse and offer a vast repository
of user-generated content for linguistic analysis.
These platforms provide concise and context-rich
data, making them a widely used source for NLP
research. Among the popular tasks explored in this
domain is hate speech detection, which involves
the identification and classification of language that
conveys hostility, incites violence, or reinforces
harmful stereotypes (Shridhara et al., 2023).

While this task aims to identify and mitigate
negative online behavior, another emerging area of
research is hope speech detection which serves as
a source of encouragement for many people during
times of illness, stress, loneliness, or depression
(Garcı́a-Baena et al., 2023; Garcı́a-Baena et al.,
2024), emphasizing the promotion of mental well-
being in digital spaces (Zhu, 2022).

Relevant to this emerging task is the growing
focus on diversifying the languages represented in
hope speech datasets, enabling models to general-
ize better across linguistic and cultural contexts,
support cross-linguistic transfer learning, and cap-
ture semantic nuances that vary across cultures.
The HopeEDI dataset is one such effort, consist-
ing of English, Malayalam, and Tamil YouTube
comments (Chakravarthi, 2020). However, as high-
lighted by Gowda et al. (2022), creating effec-
tive multilingual models for hope speech detec-
tion presents substantial challenges, particularly
due to language diversity and the presence of var-
ious scripts. This underscores the need for tech-
niques such as data augmentation, including back-
translation, where text is translated into another
language and then back to the original to gener-
ate synthetic data. These methods are essential
for expanding linguistic coverage and improving
model performance in diverse language contexts
(LekshmiAmmal et al., 2024).

On this line of research, the IberLEF (Garcı́a-
Baena et al., 2023; Garcı́a-Baena et al., 2024; Butt
et al., 2025) and RANLP (Sidorov et al., 2024;
Balouchzahi et al., 2025) workshops on Hope

Speech Detection introduce a new multilingual
challenge by expanding the understanding of hope
speech. It does so through the construction of a
corpus that allows for both binary classification,
identifying tweets as either Hope or Not Hope, and
a more nuanced fine-grained categorization into
three distinct types: Generalized Hope, Realistic
Hope, and Unrealistic Hope. These efforts make
a crucial and challenging contribution by filling
a notable gap in annotated datasets dedicated to
hope, since existing resources tend to omit it or
misclassify it as a generic positive emotion, result-
ing in inaccurate predictions (Butt et al., 2025). In
addition, the task provides a platform to evaluate
the capabilities of advanced models in processing
data across diverse linguistic contexts (Balouchzahi
et al., 2022; Krasitskii et al., 2024).

In automated hope speech detection, various
methods have been explored to improve perfor-
mance. The introduction of transformer-based
architectures has significantly impacted advance-
ments in NLP. Models such as BERT, RoBERTa,
and DistilBERT have outperformed traditional ap-
proaches, as they achieve remarkable results in a
variety of applications, including hope speech de-
tection, with the multilingual versions demonstrat-
ing the ability to effectively handling a range of
languages (Dowlagar and Mamidi, 2021; Hossain
et al., 2021; Sidorov et al., 2023).

On the other hand, the increasing use of Genera-
tive AI tools, particularly Large Language Models
such as GPT 3 and over, has introduced promising
possibilities for hope speech detection. These mod-
els can be guided using various prompting tech-
niques, including zero-shot prompting, few-shot
prompting, and chain-of-thought prompting, to gen-
erate relevant and meaningful responses (Thuy and
Thin, 2024).

Since the popularization of GenAI, several re-
searchers have been working comparing these mod-
els to the more traditional transformer-based mod-
els. Krugmann and Hartmann (2024) performed
a binary and three-class sentiment classification
experiment between GenAI and transformer-based
models. Their experiments show that fine-tuned
transfer-learning models frequently outperform
general-purpose LLMs. Similarly, in an study
made by Anas et al. (2024), RoBERTa attained the
best performance against GenAI models in prod-
uct review analysis. However, GenAI have also
surpassed transformer-based models in other stud-
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ies, for example, Konstantinos et al. (2024) con-
cludes that GPT 3.5 is better at product review
evaluations than BERT and RoBERTa. In another
instance, ChatGPT 3.5 archived the best perfor-
mance at the IberLEF 2024 hope competition for
the binary task, surpassing transformer-based en-
tries (Garcı́a-Baena et al., 2024).

This experiments showcase that there is still
much to learn about the use of Generative AI mod-
els for sentiment analysis, not to mention for hope
detection or across languages.

3 Dataset

The dataset used in this study is sourced from the
PolyHope-M dataset, which is part of the RANLP
2025 shared task https://www.codabench.org/

competitions/5635/. It extends the original Poly-
Hope dataset (Balouchzahi et al., 2023) by translat-
ing its English keywords into Spanish and German,
with careful validation by native speakers to ensure
linguistic and contextual accuracy. Tweets were
collected using the Tweepy API and annotated by
three qualified annotators per language, with final
labels determined by majority vote. Additionally,
also in line with the original PolyHope dataset,
(Balouchzahi et al., 2025) replicated its label de-
scriptions and definitions to develop a comparable
dataset in Urdu, thereby maintaining consistency
with prior work while expanding to a low-resource
language. The resulting dataset is a combination of
the original English, Spanish, German, and newly
created Urdu data, representing the first multiclass
hope speech detection dataset covering these four
languages. This multilingual dataset enables com-
prehensive analysis and modeling of hope speech
across diverse linguistic and cultural contexts, ad-
dressing a critical gap in the literature.

The data provided consists of Twitter texts in
English, Spanish, German, and Urdu and is divided
into three subsets: a training set, a development
set, and a final test set. The development and test
datasets each included three columns. One con-
tained the tweet text, another provided the binary
classification label (Hope or Not Hope), and the
third represented the multiclass classification la-
bel (Generalized Hope, Realistic Hope, Unrealistic
Hope, or Not Hope). In contrast, the test set in-
cluded only the tweet text. It is important to note
that the distribution across languages was imbal-
anced, with the number of Spanish and German
tweets being approximately twice that of English

and Urdu.

4 Methodology

4.1 Data processing

Our first step in the methodology was to clean the
data to enhance the performance of the models.
The text preprocessing involved standardizing the
text to lowercase, trimming extra spaces, elimi-
nating HTTP links, and removing Twitter-specific
elements such as user mentions and retweet tags
(rt). It also included filtering out non-alphabetical
characters specific to each language, deleting emo-
jis that appeared multiple times, and replacing the
remaining emojis with their textual descriptions.

4.2 Data augmentation

As previously mentioned, a class imbalance was
observed between the languages. To help mitigate
this, data augmentation was applied by translating
the original Spanish training data into English and
the original English training data into Urdu, as
only a direct translation pathway from English to
Urdu was available. The resulting translated texts
were then added to the respective English and Urdu
training sets.

For this translation task, we used the Helsinki-
NLP pre-trained machine translation model with
the MarianMT tokenizer from the HuggingFace
library. Specifically, we used “Helsinki-NLP/opus-
mt-en-ur” for English to Urdu and “Helsinki-
NLP/opus-mt-es-en” for Spanish to English. The
translation was executed on a Google Colab en-
vironment with GPU support, using the free-tier
account. This model was selected for its ease of
implementation and efficient inference times.

4.3 XLM-Roberta

For the XLM-RoBERTa model, we converted the
labels into numerical values and used a merged
training set that combined all four languages. The
training parameters used were: number of train
epochs: 3, learning rate: 1e-5, and max se-
quence length: 64. These parameters were selected
through trial and error, given the limited compu-
tational resources available. We utilized Google
Colab with a GPU, but due to constraints on the
number of available GPU units, we were limited
by the parameters allowed in this configuration.
Nevertheless, the parameters were primarily based
on those used in the study presented by (Qu et al.,
2021).
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4.4 ChatGPT-4

We used the GPT-4 model that was available since
2023 but was discontinued on April 2025. Due to
the limited number of available tokens, we chose to
use the UI or chat versions instead. For each sub-
task and language, a specific prompt was defined,
which will be explained in the next subsection. Fur-
thermore, taking advantage of the model’s chat
capabilities, we provided the dataset in batches for
classification.

4.4.1 Zero-Shot Prompts
For the zero-shot prompts, we adopted a unified
approach, using the same prompt for binary classi-
fication in the four languages. Similarly, a single
prompt was designed for the multiclass classifi-
cation task across all languages. This decision
was made under the assumption that the model
would generalize the task regardless of the input
language. To further assist the model, we included
the class descriptions provided on the contest page
directly within the prompt for clearer guidance.
The prompts used are shown below.

Binary Classification Prompt

Below, there is a list of lines of text.
Your job is to decide whether the given
text reflects hope or lack of hope by clas-
sifying it as either Hope or Not Hope.
The definitions are:
-Hope: Hope is a crucial human emo-
tion that influences decision-making, re-
silience, and social interactions.
-Not Hope: Not Hope is a text that does
not express hope.
Please, give the answer in the format
”number, classification”. Don’t forget
the comma instead of a dot in your an-
swer
#### Text to classify ####

Multiclass Classification Prompt

Below, there is a list of lines of text.Your
job is to classify the text as a General-
ized Hope, Realistic Hope, Unrealistic
Hope, or Not Hope. The definitions are:
- Generalized Hope: A broad sense of
optimism not tied to specific outcomes.
- Realistic Hope: Expectations grounded

in achievable goals. - Unrealistic Hope:
Desires for outcomes that are unlikely or
impossible.
- Not Hope: Not hope is that belonged
to neither category above. Texts that do
not express hope.
Please, give the answer in the format
”number, classification”. Don’t forget
the comma instead of a dot in your an-
swer
#### Text to classify ####

4.4.2 Few-Shot Prompts
For the few-shot prompts, we selected three ran-
dom samples from each class in the training set,
creating three example shots. We opted to use sep-
arate prompts for each language, as the examples
would be specific to each language. The structure
of the prompt is consistent with the zero-shot clas-
sification; the only difference is the inclusion of
examples with both text and labels, which vary de-
pending on the language. The same set of examples
was used across all models.

5 Results

We evaluated the performance of the fine-tuned
XML-RoBERTa model against ChatGPT-4 in hope
speech detection in four languages: English, Span-
ish, German, and Urdu. This evaluation was per-
formed over two tasks: binary and multiclass.
The binary task was measured using accuracy
and macro-averaged F1-score as evaluation met-
rics, while the multiclass task used accuracy and
weighted-average F1-score.

XML-RoBERTa consistently outperformed
ChatGPT-4 across languages and tasks (Figure
1 and Figure 2). Table 1 shows that RoBERTa
without data augmentation achieved the highest
performance in both tasks in the English set.
Similarly, in Spanish (Table 2, RoBERTa without
augmentation again led binary classification. But
the pattern breaks in multiclass classification,
where RoBERTa yielded the best F1-score, while
RoBERTa trained with data augmentation obtained
the highest accuracy.

For the German and Urdu datasets, RoBERTa
also outperformed ChatGPT-4. In German, the
data augmentation version had better performance
in multiclass task, while the single version in binary
(Table 3). In the case of Urdu, as shown in Table
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Figure 1: Average F1-score for both models, ChatGPT-4
(2023-2025) and RoBERTa, in the binary hope detection
task.

Roberta Chat
Model

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
F1

 S
co

re

Figure 2: Average F1-score for both models, ChatGPT-4
and RoBERTa, in the multiclass hope detection task.

4) the single version slightly outperformed its aug-
mented counterpart in both tasks. Notably, all per-
formance differences between RoBERTa models
with and without data augmentation were minimal.

Figures 3 and 4 clearly show that both mod-
els performed better on the binary classification
task compared to the multiclass one. However,
there is no clear trend regarding the effectiveness of
zero-shot versus few-shot prompting strategies for
ChatGPT-4. Although few-shot prompting yielded
slightly better results in 5 out of 8 evaluations, the
differences were not substantial.

Regarding the effect of data augmentation, the
results suggest that RoBERTa’s performance re-
mains largely stable regardless of its inclusion. A
slight advantage was noted for the non-augmented
model across tasks.

For the test set predictions, we submitted
RoBERTa results with and without data augmenta-
tion. Augmentation improved Spanish results, hurt
Urdu performance, and had negligible impact on
English and German. Tables 5, 6, 7, and 8 present
a comparison between the top five places in the
competition. Our scores secured a place on the
leaderboard for all tasks across the four languages.

(a) Binary Task
Model Strategy F1-Score Accuracy
Model 1 Zero 0.6851 0.6860
Model 1 Few 0.7338 0.7351
Model 2 NA 0.8433 0.8436
Model 2 Aug. 0.8415 0.8418

(b) Multiclass Task
Model Strategy F1-Score Accuracy
Model 1 Zero 0.5428 0.5721
Model 1 Few 0.5453 0.5648
Model 2 NA 0.7497 0.7460
Model 2 Aug. 0.745261 0.7418

Table 1: Results on the English dataset across all models
and combinations of tasks and strategies. ChatGPT-4 is
denoted as Model 1; XLM-Roberta as Model 2. “Aug”
refers to data augmentation applied to the training set.

(a) Binary Task
Model Strategy F1-Score Accuracy
Model 1 Zero 0.7006 0.7010
Model 1 Few 0.6949 0.6958
Model 2 NA 0.8432 0.8433
Model 2 Aug 0.8405 0.8407

(b) Multiclass Task
Model Strategy F1-Score Accuracy
Model 1 Zero 0.5095 0.4873
Model 1 Few 0.5439 0.5097
Model 2 NA 0.7572 0.7529
Model 2 Aug 0.7533 0.7479

Table 2: Results on the Spanish dataset across all models
and combinations of tasks and strategies. ChatGPT-4 is
denoted as Model 1; XLM-Roberta as Model 2. “Aug”
refers to data augmentation applied to the training set.

Specifically, we achieved first place in both binary
and multiclass tasks for English, fifth and first place
for Spanish binary and multiclass tasks respectively,
fourth and second place for German, and sixth and
fourth place for Urdu binary and multiclass tasks
respectively.

Figure 5 shows the confusion matrices obtained
on the development set for RoBERTa across lan-
guages. In English, the model more accurately pre-
dicts Hope than Not Hope, but tends to misclassify
Hope as Not Hope more often, reflecting a slight
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Figure 3: F1 scores for zero vs few prompt strategy with
ChatGPT-4 (2023-2025) across all datasets.
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(a) Binary Task
Model Strategy F1-Score Accuracy
Model 1 Zero 0.7734 0.7773
Model 1 Few 0.7740 0.7785
Model 2 NA 0.8813 0.8830
Model 2 Aug 0.8778 0.8797

(b) Multiclass Task
Model Strategy F1-Score Accuracy
Model 1 Zero 0.5912 0.5682
Model 1 Few 0.5814 0.5546
Model 2 NA 0.8344 0.833888
Model 2 Aug 0.8350 0.8343

Table 3: Results on the German dataset across all models
and combinations of tasks and strategies. ChatGPT-4 is
denoted as Model 1; XLM-Roberta as Model 2. “Aug”
refers to data augmentation applied to the training set.

(a) Binary Task
Model Strategy F1-Score Accuracy
Model 1 Zero 0.8082 0.8110
Model 1 Few 0.8323 0.8343
Model 2 NA 0.9456 0.9457
Model 2 Aug 0.9268 0.9272

(b) Multiclass Task
Model Strategy F1-Score Accuracy
Model 1 Zero 0.6203 0.6227
Model 1 Few 0.6127 0.6239
Model 2 NA 0.7547 0.7586
Model 2 Aug 0.7085 0.7109

Table 4: Results on the Urdu dataset across all models
and combinations of tasks and strategies. ChatGPT-4 is
denoted as Model 1; XLM-Roberta as Model 2. “Aug”
refers to data augmentation applied to the training set.

bias toward Hope. In the Spanish and German sets,
while in Spanish RoBERTa is better at classifying
Hope contrarily to German, the model makes more
frequent errors misclassifying Hope than Not Hope.
And Urdu shows the most balanced results.

Analyzing the multiclass confusion matrices in
Figure 6, we observe distinct performance patterns
across languages. In English, the model most ac-
curately classifies Not Hope, followed by mod-
erate success with Generalized Hope, and lower
accuracy for Realistic Hope and Unrealistic Hope.
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Figure 4: F1 scores for normal and data augmentation-
trained RoBERTa across all datasets.

(a) Binary Task
User name Acc Avg Mac F1
dmadera 0.8634 0.8632
nomanjaffar11 0.8629 0.8629
oluwatobi 0.8610 0.8608
julkarnaeen 0.8610 0.8606
teddymas 0.8557 0.8548

(b) Multiclass Task
User name Acc Avg Mac F1
dmadera 0.7801 0.7304
nomanjaffar11 0.7729 0.7121
priya27 0.7680 0.7111
ahmedembedded 0.7622 0.7028
teddymas 0.7457 0.6999

Table 5: Comparison with top 5 results in the competi-
tion for Task 1 and Task 2 for English.

(a) Binary Task
User name Acc Avg Mac F1
nomanjaffar11 0.8499 0.8498
teddymas 0.8479 0.8478
julkarnaeen 0.8407 0.8407
priiyo9 0.8405 0.8404
dmadera 0.8334 0.8326

(b) Multiclass Task
User name Acc Avg Mac F1
dmadera 0.7660 0.7067
teddymas 0.7358 0.6856
nomanjaffar11 0.7533 0.6856
abit7431 0.7377 0.6711
priiyo9 0.7433 0.6706

Table 6: Comparison with top 5 results in the competi-
tion for Task 1 and Task 2 for Spanish.

The most frequent confusions involve Generalized
Hope being misclassified as Realistic Hope and
as Not Hope. For Spanish, the model performs
strongly on Not Hope and reasonably well on Gen-
eralized Hope, but struggles more with Realistic
Hope and Unrealistic Hope. On the other hand,
for German, the model excels at identifying both
Not Hope and Generalized Hope, while achieving
moderate accuracy on Realistic Hope and perform-
ing poorly on Unrealistic Hope. Finally, for Urdu,
the model shows strong performance on Not Hope,
decent accuracy on Generalized Hope and Unreal-
istic Hope, but severely underperforms on Realistic
Hope. The most frequent misclassifications are
between Generalized Hope and Unrealistic Hope

6 Discussion

The results indicate that RoBERTa consistently out-
performed ChatGPT-4 across most tasks and lan-
guages, particularly in the more structured binary
classification setting. These findings are consistent
with prior research in related NLP tasks, where fine-
tuned supervised transformers such as RoBERTa
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Figure 5: Confusion matrices for the binary classifica-
tion task of the best model (XLM-RoBERTa) across
four languages: English (top left), Spanish (top right),
German (bottom left), and Urdu (bottom right).

Figure 6: Confusion matrices for the multiclass classifi-
cation task of the best model (XLM-RoBERTa) across
four languages: English (top left), Spanish (top right),
German (bottom left), and Urdu (bottom right).

(a) Binary Task
User name Acc Avg Mac F1
teddymas 0.8746 0.8726
nomanjaffar11 0.8742 0.8715
abit7431 0.8668 0.8638
dmadera 0.8647 0.8633
unstoppable 0.8576 0.8568

(b) Multiclass Task
User name Acc Avg Mac F1
nomanjaffar11 0.8345 0.7013
dmadera 0.8229 0.6968
teddymas 0.8135 0.6944
abit7431 0.8172 0.6778

julkarnaeen 0.8004 0.6741

Table 7: Comparison with top 5 results in the competi-
tion for Task 1 and Task 2 for German.

(a) Binary Task
User name Acc Avg Mac F1
abit7431 0.9499 0.9498
nomanjaffar11 0.9499 0.9498
teddymas 0.9499 0.9498
oluwatobi 0.9480 0.9480
ahmedembedded 0.9461 0.9461
dmadera 0.9451 0.9451

(b) Multiclass Task
User name Acc Avg Mac F1
nomanjaffar11 0.7836 0.6526
abit7431 0.7736 0.6482
teddymas 0.7655 0.6314

dmadera 0.7769 0.6079
priiyo9 0.7636 0.6015

Table 8: Comparison with top 5 results in the competi-
tion for Task 1 and Task 2 for Urdu.

often outperform Large Language Models (LLMs)
on tasks requiring nuanced understanding of short
texts. For instance, Krugmann et al. (2024) and
Zhang (2024) highlight that models like SiEBERT
and RoBERTa excel on short-form content where
LLMs tend to struggle.

Furthermore, our results are also similar to those
in the baseline experiments made by Sidorov et
al. (2024) and Balouchzahi et al. (2025). Table 9
shows the comparison between the baseline results
obtained with RoBERTa variants presented by the
authors and our Test set results. Sidorov et al. used
the model “FacebookAI/xlm-roberta-base” for En-
glish, Spanish, and German. Balouchzahi et al.
used “urduhack/roberta-urdu-small” for the Urdu
dataset. All models were obtained through Hug-
gingFace. Meanwhile, we used the same model for
all datasets (“xlm-roberta-large”) and fine-tuned
it using the training set plus data augmentation.
As the table shows, we outperformed the baseline
results, confirming that XML-RoBERTa is a pow-
erful transformer for hope detection and that the
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(a) Binary Task
Authors ENG ES GER UR
1 0.8623 0.8369 0.8704 -
2 - - - 0.6961
3 0.8632 0.8326 0.8633 0.9451

(b) Multiclass Task
Authors ENG ES GER UR
1 0.6907 0.6801 0.6878 -
2 - - - 0.4801
3 0.7304 0.7067 0.6968 0.6079

Table 9: Comparison of Avg Macro F1 scores between
baseline results from Sidorov et al. (1), and Balouchzahi
et al. (2), and our proposed method (Madera et al. (3))
evaluated on the test set.

addition of data augmentation can lead to better
performance.

Interestingly, our experiments showed a strong
performance in under-resourced languages such as
Urdu and German, an unexpected outcome given
that English and Spanish are more prominently rep-
resented in large-scale datasets and benchmarks
(Balouchzahi et al., 2025). The binary confu-
sion matrices indicate that linguistic features or
language-specific training data characteristics influ-
ence how the model allocates predictions between
the two classes, with German and Spanish showing
the strongest biases toward ‘Not Hope’ compared
to English and Urdu. The fact that both models
maintained reasonable effectiveness across these
languages suggests that multilingual models like
XLM-RoBERTa can successfully transfer knowl-
edge to underrepresented languages. However, fur-
ther investigation is needed to confirm this trend
and to ensure equitable performance across diverse
linguistic contexts.

In contrast, for the multiclass classification task,
all models perform best at predicting ‘Not Hope’,
with the exception of German, where the model
excels. Across Spanish, German, and Urdu, ‘Real-
istic Hope’ consistently emerges as the most chal-
lenging class to predict. This multiclass analysis
highlights the model’s difficulties in distinguishing
nuanced hope categories across languages, with
each language exhibiting distinct patterns of confu-
sion between specific class pairs.

It is important to note that we trained RoBERTa
with scarce computational resources and a short
time-period. Therefore, while we obtained supe-
rior results, these can be improve with prolonged
training or further hyperparameter optimization.

Finally, regarding ChatGPT-4, we recommend
exploring additional prompting techniques and test

in smaller batch settings. Generative AI has great
potential for sentiment analysis and its continu-
ous growth in use (Kim, 2024), including cases
of emotional companionship, justifies the need for
continued research on how they can detect complex
emotions such as hope.

7 Conclusion

Hope speech detection is a growing field in NLP
that seeks to identify expressions of expectation,
aspiration, or encouragement. These emotions have
a key role on human behavior and emotional well-
being (Balouchzahi et al., 2023). In the present
study, we evaluate and compare the effectiveness
of two approaches: transformer-based model XML-
RoBERTa with and without data augmentation, and
the generative large language model ChatGPT-4
using zero-shot and few-shot prompting. We use
the multilingual dataset provided by the PolyHope-
M shared task at RANLP 2025, and assess both
binary and multiclass classification tasks across
English, Spanish, German, and Urdu.

The results demonstrate that RoBERTa consis-
tently outperformed ChatGPT-4 across all tasks and
languages, with notable higher performance in the
binary classification setting. These findings sup-
port prior evidence that supervised model remain
highly effective for short-text emotion detection,
while LLMs may struggle due to their context de-
pendence. For future work, we suggest exploring
other prompts that leverage the LLMs generative
abilities for better classification, as well as further
hyperparameter optimization for RoBERTa mod-
els.
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nafu Lambebo Tonja, José Antonio Garcı́a-Dı́az, Se-
len Bozkurt, Bharathi Raja Chakravarthi, Hector G.
Ceballos, Rafael Valencia-Garcı́a, Grigori Sidorov,
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Abstract

Large Language Models (LLMs) are increas-
ingly used in scientific question answering
(QA), including high-stakes fields such as bio-
diversity informatics. However, standard eval-
uation metrics such as BLEU, ROUGE, Exact
Match (EM), and BERTScore remain poorly
aligned with the factual and domain-specific
requirements of these tasks. In this work, we
investigate the gap between automatic metrics
and expert judgment in botanical QA by com-
paring metric scores with human ratings across
five dimensions: accuracy, completeness, rel-
evance, fluency, and terminology usage. Our
results show that standard metrics often mis-
represent response quality, particularly in the
presence of paraphrasing, omission, or domain-
specific language. Through both quantitative
analysis and qualitative examples, we show that
high-scoring responses may still exhibit criti-
cal factual errors or omissions. These findings
highlight the need for domain-aware evaluation
frameworks that incorporate expert feedback
and raise important ethical concerns about the
deployment of LLMs in scientific contexts.

1 Introduction

Large language models (LLMs) are increasingly
fine-tuned and deployed for question answering
(QA) in specialized domains such as biodiversity,
medicine, and scientific research. These models
offer compelling fluency and broad generalization
capabilities, making them attractive for automating
knowledge access in fields where information is
complex and rich in terminology. However, eval-
uating their effectiveness in the real-world, espe-
cially in high-stakes contexts, remains a critical
challenge.

Despite impressive reported performance, most
QA systems are evaluated using lexical overlap
metrics such as BLEU (Papineni et al., 2002),

ROUGE (Lin, 2004), or Exact Match (EM) (Ra-
jpurkar et al., 2016a). These metrics, while easy to
compute, have well-documented limitations: they
reward surface similarity over factual accuracy, fail
to penalize hallucinated content, and systematically
favor longer redundant answers that may appear
plausible but lack precision (An et al. (2024b);
Maynez et al. (2020)). In scientific and techni-
cal domains where answers must be both correct
and complete, such metrics can inflate perceived
performance and mask serious factual deficiencies.

This issue is especially pronounced in domain-
specific Question Answering (QA), where small
inaccuracies, such as an incorrect botanical trait or
a misrepresented medical guideline, can undermine
the reliability of the entire system. Recent studies
in medical QA (Singhal et al. (2023); Moor et al.
(2023)) and scientific QA (Taylor et al., 2022a)
demonstrate that even fine-tuned LLMs often gen-
erate answers that sound correct but are either par-
tially wrong, incomplete, or not grounded in verifi-
able sources. However, these limitations are rarely
visible in standard evaluation scores, leading to mis-
guided claims about model readiness and potential
misuse in real-world deployments.

In this paper, we critically examine how current
evaluation practices contribute to an overestima-
tion of fine-tuned LLM performance in domain-
specific QA tasks. Our analysis focuses on botan-
ical trait extraction, a high-stakes scientific appli-
cation where factual precision and accurate use
of terminology are essential. However, the eval-
uation challenges we highlight are not limited to
botany. They also apply to fields such as medicine
and law, where even small factual errors can have
serious consequences (Singhal et al., 2022; Wei-
dinger et al., 2021). In legal contexts, for example,
recent efforts have emphasized the importance of
expert-annotated datasets and domain-tuned mod-
els to ensure accurate interpretation of statutes and
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regulations (Al Mouatamid et al., 2023).
Biodiversity data, for example, serves as the

foundation for ecological research, conservation
policy, endangered species monitoring, and climate
impact studies. Errors in trait extraction can propa-
gate into global biodiversity databases such as the
Global Biodiversity Information Facility (GBIF)1,
leading to misclassifications, flawed scientific con-
clusions or misinformed policy decisions. Even
minor hallucinations or omissions (e.g., in leaf mor-
phology or species distribution) can distort down-
stream analysis or fieldwork.

We analyze cases where model outputs receive
high automatic scores but fail expert evaluation due
to factual inaccuracies, incompleteness, or loss of
critical context. We propose a set of evaluation
principles for scientific QA that prioritize factual
faithfulness, information coverage, and grounding
in verifiable sources, dimensions often invisible to
surface-level metrics like BLEU or EM.

Our findings highlight the need to move beyond
BLEU and toward evaluation frameworks that re-
flect the true utility and limits of LLMs in high-
precision domains.

2 Background and Motivation

Automated question answering (QA) systems, in-
cluding fine-tuned large language models (LLMs),
are commonly evaluated using lexical overlap met-
rics originally developed for tasks such as machine
translation and summarization. Among the most
widely adopted are BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and Exact Match (EM) (Ra-
jpurkar et al., 2016a) and token-level F1 from
extractive QA benchmarks such as SQuAD (Ra-
jpurkar et al., 2016a). These metrics compute n-
gram overlap between system outputs and refer-
ence answers, either as precision (BLEU), recall
(ROUGE), or strict equality (EM). Their popularity
is largely due to their ease of implementation, re-
producibility, and long-standing use in benchmark
comparisons.

However, a growing body of work has ques-
tioned the adequacy of these metrics in genera-
tive QA settings, where answers are open-ended,
multi-sentence, and potentially phrased in ways not
captured by reference strings. BLEU and ROUGE
focus on surface-level n-gram similarity and do
not assess whether an answer is factually correct,
complete, or grounded. For example, Maynez

1https://www.gbif.org

et al. (2020) showed that summarization models
frequently hallucinate content that is not supported
by the source text, but still receive high ROUGE
scores. An et al. (2024b) found similar trends in
long-form QA: answers that are fluent but incor-
rect or incomplete are often rewarded by BLEU
and ROUGE, while semantically valid but lexi-
cally diverse answers are penalized. These find-
ings are echoed in previous critiques (Yang et al.,
2018) that demonstrated that metrics such as BLEU
and ROUGE poorly capture answer quality in both
yes/no and entity-centric QA formats.

Despite these limitations, overlap-based metrics
remain dominant, including in domain-specific QA
systems. Biomedical, legal, and scientific QA mod-
els routinely report BLEU, ROUGE, and Exact
Match (EM) as primary evaluation metrics (Lee
et al., 2021) (Singhal et al., 2023), often without
rigorous human evaluation or claim-level verifica-
tion (Thorne et al., 2018). In practice, this can
lead to inflated perceptions of model performance,
especially when answers contain hallucinated or
missing information that metrics fail to penalize.
This risk is amplified in high-stakes domains such
as medicine or biodiversity science, where users
may trust a model’s fluent output without realizing
that it lacks factual correctness or critical details.

The continued reliance on these metrics presents
not only a technical concern, but an ethical one
Ferdaus et al. (2024). By overstating model relia-
bility, current evaluation practices may contribute
to misleading claims of safety and readiness, po-
tentially enabling misuse or over-deployment in
sensitive contexts. As LLMs are increasingly pro-
posed as tools for scientific assistance and clinical
support, evaluating them using metrics that do not
reflect truthfulness, completeness, or verifiability
is insufficient and potentially dangerous.

3 Related Work

As large language models (LLMs) are increasingly
deployed in high-stakes domains, their evaluation
has become a focal point of methodological con-
cern and ethical debate. This section reviews work
on QA evaluation metrics, factuality assessment,
domain-specific QA challenges, and the responsi-
ble deployment of LLMs. Our contribution builds
on these foundations by examining how inadequate
metrics can systematically misrepresent the real
capabilities of fine-tuned models in scientific con-
texts.
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3.1 Evaluation Metrics for LLM Question
Answering

Traditional QA evaluation is heavily based on n-
gram overlap metrics such as BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), and Exact
Match (EM) (Rajpurkar et al., 2016b). However,
these metrics often fail to capture semantic correct-
ness, factual consistency, or completeness, espe-
cially in open-ended or domain-specific QA tasks.
Studies have shown that token-level overlap cor-
relates poorly with human judgment on complex
QA (Yang et al., 2018; Maynez et al., 2020)). The
L-Eval benchmark introduced by An et al. (2024a)
further demonstrated that BLEU and ROUGE do
not align with human preferences, particularly in
long-context reasoning tasks. They are also biased
toward verbose, lexically similar outputs, further
inflating scores for answers that may be inaccurate
or incomplete.

More sophisticated semantic similarity metrics,
such as BERTScore (Zhang et al., 2020), ad-
dress paraphrastic variation, but remain sensitive
to domain-specific terminology and formatting.
In response, some QA evaluations now combine
overlap-based metrics with embedding-based simi-
larity and human assessment. There is also increas-
ing interest in using LLMs themselves as evaluators
(LLM-as-a-judge) (Zheng et al., 2023), although
these introduce new biases (Dubois et al., 2025). In
general, there is a growing consensus that surface-
level metrics are insufficient to capture factual ac-
curacy in generative QA.

3.2 Factuality and Hallucination Detection in
LLMs

In light of these limitations, recent research has
focused on factuality: whether generated answers
are supported by verifiable evidence. Maynez et al.
(2020) and Pagnoni et al. (2021) found that sum-
marization systems often hallucinate content while
scoring highly on ROUGE. These findings moti-
vated the development of claim-level verification
benchmarks such as FRANK (Pagnoni et al., 2021),
HaDeS (HAllucination DEtection dataSet) (Liu
et al., 2022), and TruthfulQA (Lin et al., 2022),
which assess hallucination at the token level.

Several methods now use retrieval-augmented
QA (Lewis et al., 2021), natural language infer-
ence, or question decomposition to verify gener-
ated content (e.g., QAFactEval (Fabbri et al., 2022),
RefChecker (Hu et al., 2024), Attributable to Iden-

tified Sources (AIS) (Rashkin et al., 2023)). How-
ever, even retrieval-based systems can hallucinate
when the retrieved content is incomplete or am-
biguous (Moor et al., 2023). Hence, detection re-
mains challenging, with token-level hallucination
detectors achieving only ∼70% F1 in specialized
domains, indicating that hallucination remains a
persistent issue even with dedicated detectors.

3.3 Evaluation in Domain-Specific QA
Systems

Evaluating QA systems, in scientific domains,
introduces unique challenges. Domain-specific
LLMs such as Microsoft’s BioGPT (Luo et al.,
2022) and Meta’s Galactica (Taylor et al., 2022b)
perform well on tailored benchmarks but re-
quire expert-informed evaluation to ensure fac-
tual grounding (Singhal et al., 2023; Bélisle-Pipon,
2024). In medicine, for example, Med-PaLM’s
evaluation combined human review with metrics to
assess not just correctness, but also reasoning qual-
ity, potential harm, and trustworthiness (Singhal
et al., 2022). However, hallucinations and omis-
sions persisted, where LLMs struggled to contex-
tualize general knowledge into actionable recom-
mendations.

In botany and biodiversity informatics, research
is emerging on LLM-based extraction of scien-
tific facts from unstructured text, with recent stud-
ies achieving over 90% precision in tasks such as
species identification, geocoding, and data struc-
ture (Castro et al., 2024). However, these results of-
ten mask persistent challenges that standard metrics
fail to capture. Current LLMs show a concerning
tendency for delivering incorrect information that
raises concerns about their reliability in ecological
research applications (Gougherty and Clipp, 2024).
At the same time, extracting structured knowledge
from scientific text remains fundamentally chal-
lenging even for fine-tuned models (Dagdelen et al.,
2024).

The field faces several domain-specific obstacles
that standard metrics do not address. Term ambi-
guity represents a major challenge, as ecological
and botanical terminology often carries context-
dependent meanings that LLMs struggle to disam-
biguate correctly. Domain-specific syntax further
complicates extraction, as scientific literature em-
ploys specialized linguistic patterns and taxonomic
conventions that differ markedly from general text.
Additionally, the propagation of subtle errors poses
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particular risks in scientific contexts, where small
inaccuracies can compound into significant misrep-
resentations of ecological relationships or species
characteristics.

Perhaps most critically, current benchmarks of-
ten fall short in capturing the diverse behavior of
these models in real-world applications, with ex-
isting frameworks being limited by their focus on
general-purpose queries and lack of diversity across
specialized domains (Raju et al., 2024). The ab-
sence of curated benchmarks specifically designed
for biodiversity informatics, combined with limited
human-in-the-loop evaluation frameworks, makes
it difficult to reliably assess model factuality, com-
pleteness, or risk of systematic errors in scientific
knowledge extraction. Although domain-specific
datasets such as FloraNER have emerged for botan-
ical named entity recognition (Nainia et al., 2024),
these represent only narrow aspects of the broader
challenge of biodiversity informatics, leaving sig-
nificant evaluation gaps in other critical areas such
as ecological relationship extraction, species behav-
ior analysis, and cross-domain knowledge integra-
tion. This evaluation gap is particularly concern-
ing given that scientific problem-solving requires
domain expertise, understanding of long-context
information, and multi-step reasoning (Cui et al.,
2025) that may not be adequately tested by existing
metrics (Dorm et al., 2025).

3.4 Responsible Use and Deployment in
High-Stakes Domains

Ethical concerns about LLM deployment have in-
tensified in law, science, and medicine, where
overreliance on fluent but inaccurate outputs has
led to misinformation, bogus citations, and incor-
rect legal filings (Weidinger et al., 2021). There-
fore, Scholars have called for stricter evaluation,
transparency, and oversight, especially for systems
supporting scientific reasoning or clinical advice
(Bélisle-Pipon 2024; Giorgino et al. 2023).

Safeguards such as retrieval-augmented genera-
tion (RAG) (Chen et al., 2024), expert-led evalu-
ation, and alignment methods like reinforcement
learning from human feedback (RLHF) (Christiano
et al., 2023) exist, but are inconsistently applied.
Many published evaluations still rely heavily on
lexical overlap metrics.

While prior work notes the risks of halluci-
nation and the limits of automatic metrics, few
studies have examined these failures in domain-

specific QA. Our work addresses this gap through
targeted failure analyses and by proposing ethically
grounded evaluation principles centered on factual-
ity, completeness, and verifiable grounding, better
reflecting the needs of high-stakes scientific tasks.

4 Methodology

To investigate the ethical limitations of automatic
evaluation metrics in domain-specific question an-
swering (QA), we analyze a French-language QA
system fine-tuned on botanical texts. The system
follows a two-stage architecture: the first stage gen-
erates trait-specific questions from floristic descrip-
tions, and the second stage answers those questions
based on the same context.

In our experiments, we evaluate only the answer
generation stage, as factual reliability and complete-
ness are most critical for downstream use. Question
generation is included to relieve users from formu-
lating queries and to provide standardized prompts,
but its intrinsic quality was not separately assessed.

The QA system is based on LLaMA 22 and
LLaMA 33 models, fine-tuned using Low-Rank
Adaptation (LoRA) (Hu et al., 2021). The train-
ing dataset consists of 16,962 expert-verified ques-
tion–answer pairs constructed from unstructured
botanical descriptions. Each QA pair is associ-
ated with a specific botanical trait (e.g., leaf shape,
flower color, inflorescence length) and was de-
signed to reflect structured knowledge retrieval
from naturalistic text.

4.1 Evaluation Dataset

For evaluation, we curated a held-out test set of
1,697 botanical contexts from a distinct source cor-
pus not used during training. From this, a represen-
tative sample of 100 model outputs was randomly
selected using a reproducible pandas-based func-
tion for expert-based review. Each sample consists
of a botanical description (context), a trait-specific
question, and the system-generated answer

4.2 Human Evaluation Protocol

Each of the 100 outputs was independently re-
viewed by a biodiversity expert. The expert rated
each answer on a 1-5 Likert scale across five di-
mensions: Accuracy, Completeness, Relevance,
Fluency, and Terminology Usage (Table 1).

2https://huggingface.co/meta-llama/Llama-2-7b
3https://huggingface.co/meta-llama/Meta-Llama-3-8B
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Metric Meaning
Accuracy Factual correctness of the response
Completeness Inclusion of all relevant information from the context
Relevance Appropriateness of the answer given the question
Fluency Grammatical and stylistic quality
Terminology Usage Correct and domain-appropriate terminology

Table 1: Expert evaluation metrics for assessing response quality in domain-specific QA.

The expert was provided with the meaning of
each evaluation expert-based metric to ensure con-
sistent scoring in all examples.

4.3 Automatic Metrics

To assess how standard metrics reflect answer qual-
ity, we computed the following scores for the
same 100 examples: BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), BERTScore (Zhang et al.,
2020), and Exact Match (EM) (Rajpurkar et al.,
2016a). These metrics were computed using the
model outputs and their corresponding reference
responses from the training set. We then compared
these automatic scores to human ratings in order
to analyze discrepancies and identify failure cases
that raise ethical concerns.

4.4 Ethical Framing

This methodology is designed to reveal how
surface-level metrics such as BLEU and ROUGE
may produce inflated scores for outputs that are
fluent, but factually incorrect, incomplete, or mis-
leading. In scientific domains such as botany, such
evaluation gaps pose real risks, including the propa-
gation of inaccurate species descriptions, misclassi-
fications of traits, and loss of trust in automated sys-
tems. By pairing automatic metrics with domain-
expert assessment, our aim is to identify evaluation
failures that have ethical implications for the de-
ployment of LLMs in high-stakes QA tasks.

5 Results and Analysis

5.1 Quantitative Overview of Expert Ratings

We first report the average scores assigned by the
domain expert across the five evaluation dimen-
sions. As shown in Table 2, the model achieves
high average ratings in Accuracy (4.74), Botani-
cal Terminology Usage (4.78), and Completeness
(4.53), with slightly lower but still strong scores for
Relevance and Fluency (both at 4.48).

To assess whether surface-level qualities such
as fluency are indicative of factual correctness, we

Metric / Expert Dimension Mean Score
BLEU 51.48
ROUGE-L 77.13
Exact Match (EM) 0.22
BERTScore F1 0.93
Expert Accuracy 4.74
Expert Completeness 4.53
Expert Relevance 4.48
Expert Fluency 4.48
Botanical Terminology Usage 4.78

Table 2: Comparison of average automatic metric scores
with expert evaluation ratings (scale: BLEU/ROUGE in
%, EM in [0–1], Experts in [1–5]).

computed the Pearson correlation coefficients be-
tween the expert-rated dimensions (Table 3). Ac-
curacy and Completeness show a moderate corre-
lation (r = 0.52), while Fluency correlates only
weakly with Accuracy (r = 0.35) and even less
with Completeness (r = 0.17). The weakest cor-
relation is between Relevance and Terminology
(r = 0.08), and Fluency shows only a modest link
to Botanical Terminology, yet the highest compared
to other expert-based metrics (r = 0.42). These
findings suggest that well-written outputs are not
reliable indicators of factual quality.

Acc. Comp. Rel. Flu. Term.
Accuracy 1.00 0.52 0.52 0.35 0.16
Completeness 1.00 0.30 0.17 0.12
Relevance 1.00 0.17 0.08
Fluency 1.00 0.42
Terminology 1.00

Table 3: Pearson correlation matrix between expert eval-
uation dimensions.

5.2 Automatic Metrics vs. Expert Ratings
To evaluate how well commonly used automatic
metrics align with expert human judgment, we com-
pared BLEU, ROUGE-L, Exact Match (EM), and
BERTScore against five expert-evaluated dimen-
sions: Accuracy, Completeness, Relevance, Flu-
ency, and Botanical Terminology Usage. Table 2
reports the mean scores across 100 evaluated sam-
ples.
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Context: Twining herbaceous plant with alternate paripinnate leaves. Rachis 7 to 9 cm long, bearing 10 to 13 pairs
of rectangular leaflets 15 to 20 mm long, 6-8 mm wide, decreasing in size towards the base: apex and base almost
truncated. Pairs of leaflets spaced 4-7 mm apart. Upper side of the blade glabrous, underside with fairly dense
semi-erect white hairs. Petiole 2 to 15 mm long before the first pair of leaflets; rachis with fairly dense semi-erect red
hairs: stems with the same pubescence.
Question: What is the color of the hairs on the underside of the leaflets?
Fine-tuned LLM Answer: “The underside of the leaflets is covered with semi-erect, fairly dense white hairs.”
Reference Answer: The hairs are white.
Expert Evaluation: Accuracy: 5, Completeness: 5, Fluency: 5
Metrics: BLEU: 1.7, EM: 0, ROUGE-L: 22.22, BERTScore: 0.80
Comment: Correct and informative answer; metrics penalized due to elaboration.
Context: Small tree, 10 to 15 m tall, or a sarmentose-lianaceous shrub with alternate leaves. Obovate leaf blade, 8 to
18 cm long, or more, 5 to 9 cm wide at the top. Wedge-shaped base, broadly rounded top, sometimes truncated, or
with a short, sharp point in the middle. 7 to 9 lateral veins and, between them, nervils spaced 3-4 mm apart, parallel to
each other.
Question: What is the base of the leaves like?
Fine-tuned LLM Answer: “The base of the leaves is wedge-shaped.”
Reference Answer: The base of the leaves is wedge-shaped, the apex is broadly rounded or sometimes truncate, or
with a short abrupt point in the middle.
Expert Evaluation: Accuracy: 5, Completeness: 5, Fluency: 4
Metrics: BLEU: 8.23, EM: 0, ROUGE-L: 46.67, BERTScore: 0.84
Comment: Accurate and concise, but metrics suffer due to omission of less relevant details.
Context: Petiole 1 to 5 cm long, covered with the same whitish pubescence, as well as the stem and the 2 filiform
stipules 3 to 6 mm long. Axillary flowers, isolated, or in pairs, at the top of a peduncle 1 to 2 cm long. Golden yellow
corolla 20 mm wide, with 5 obtriangular petals, with a broad and emarginate apex. In the center, a short column
bearing numerous stamens. Calyx with 5 fairly wide triangular teeth at the base.
Question: Which organs are mentioned in the plant description?
Fine-tuned LLM Answer: “The mentioned organs are the petiole, stem, stipules, flowers, corolla, petals, column,
stamens, and calyx.”
Reference Answer: The mentioned organs are the petiole, stem, stipules, corolla, column, stamens, calyx, and
peduncle.
Expert: Accuracy: 5, Completeness: 4, Fluency: 5
Metrics: BLEU: 50.59, EM: 0, ROUGE-L: 80.0, BERTScore: 0.96
Comment: Nearly perfect, missing only the peduncle; EM fails despite strong factual match.

Table 4: Examples showing mismatch between automatic metrics and expert evaluation.

Discrepancies Between Metrics and Expert
Judgment: As illustrated in Table 4, even com-
plete and accurate factual answers can receive low
automatic scores due to linguistic variation or par-
tial overlap with reference. Despite high expert
ratings for accuracy and terminology usage, Exact
Match (EM) remains extremely low at 0.22. This
illustrates the inadequacy of EM in settings where
paraphrasing and linguistic variation are common.
Similarly, BLEU (51.48) and ROUGE-L (77.13)
(Table 2) reflect moderate overlap but remain insen-
sitive to omissions or hallucinations, two critical
failure modes in scientific QA.

Semantic vs. Factual Fidelity: BERTScore F1
(0.93) more closely tracks expert evaluations, sug-
gesting better alignment with semantic content.
However, BERTScore cannot distinguish between
correct information and plausible-sounding halluci-
nations, nor does it penalize factual incompleteness.
These results reinforce the notion that semantic sim-
ilarity does not imply factual fidelity.

Ethical Implications: These discrepancies raise
serious ethical concerns. In high-stakes domains
like biodiversity, law, and medicine, models can
receive strong automatic scores while omitting
crucial details or introducing unverifiable content.
Therefore, over-reliance on surface-level metrics
can mislead downstream users, researchers, or pol-
icymakers into trusting outputs that lack scientific
rigor.

We provide empirical evidence for the core
claim of this paper: that standard metrics such as
BLEU, ROUGE, EM, and BERTScore fail to cap-
ture the factual quality of LLM-generated answers
in domain-specific settings. We argue for incorpo-
rating expert validation and task-specific evaluation
frameworks as ethical imperatives in future work
on domain-adapted QA systems.

5.3 Alignment of Automatic Metrics with
Expert Ratings

To further quantify how well automatic metrics
track expert judgment, we computed Pearson cor-
relations between BLEU, ROUGE-L, EM, and
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Figure 1: Scatter plot matrix showing automatic metrics vs. expert evaluation dimensions (1–5 scale). Pearson
correlations shown with significance levels (*** p < 0.001, ** p < 0.01, * p < 0.05). n=100.

BERTScore and the five expert-rated dimensions
(Accuracy, Completeness, Relevance, Fluency, Ter-
minology). Figure 2 visualizes the results.

Figure 2: Pearson correlations between automatic met-
rics (rows) and expert-rated dimensions (columns). Val-
ues indicate weak-to-moderate alignment at best; EM is
largely uninformative, and BERTScore correlates most
with Relevance rather than factual Accuracy.

Overall, alignments are weak to moderate. The
strongest association is BERTScore with Relevance

(r ≈ 0.42), followed by ROUGE-L with Relevance
(r ≈ 0.34). Correlations with Accuracy are only
modest across metrics (BLEU ≈ 0.22, ROUGE-
L ≈ 0.29, BERTScore ≈ 0.32), and associations
with Fluency are uniformly low (r ≤ 0.20). Termi-
nology exhibits the weakest alignment overall (e.g.,
EM ≈ −0.07). Notably, Exact Match is effectively
uncorrelated with all expert dimensions, showing
its weakness when faced with paraphrased or par-
tially correct answers. These findings reinforce that
surface-similarity metrics (BLEU, ROUGE. EM)
and even semantic similarity (BERTScore) do not
reliably capture factual correctness, completeness,
or terminological precision in domain-specific QA.

Furthermore, the correlation analysis (Figure 1)
reveals significant limitations in current automatic
evaluation metrics for botanical QA assessment.
BERTScore demonstrates the strongest alignment
with expert judgments, showing moderate correla-
tions with semantic dimensions: Relevance (r =
0.422∗∗∗), Accuracy (r = 0.316∗∗), and Complete-
ness (r = 0.297∗∗). ROUGE-L exhibits weaker
but statistically significant correlations, particularly
with Relevance (r = 0.339∗∗∗) and Completeness
(r = 0.259∗∗). BLEU shows minimal correla-
tions across all dimensions (r ≤ 0.257), with only
Relevance reaching significance (r = 0.257∗∗).
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Exact Match proves largely uninformative with
weak correlations (r ≤ 0.244) and limited sig-
nificance. Critically, all automatic metrics show
negligible correlations with Terminology assess-
ment (r ≤ 0.109, mostly non-significant), which
highlights their inability to capture domain-specific
linguistic accuracy crucial for specialized QA sys-
tems. The moderate correlations overall (highest
r = 0.422) indicate that automatic metrics cap-
ture only partial aspects of expert-valued quality,
with BERTScore being the most reliable predic-
tor, while human evaluation remains essential for
comprehensive assessment in specialized domains.

6 Conclusion

We highlight the limitations of widely used auto-
matic evaluation metrics: BLEU, ROUGE, Exact
Match, and BERTScore in capturing the factual ac-
curacy, completeness, and domain-specific fidelity
of LLM-generated answers in scientific question
answering. Our comparative analysis against ex-
pert ratings reveals that these metrics often reward
superficial overlap while failing to penalize crit-
ical omissions, hallucinations, or terminological
imprecision.

We argue that relying solely on these metrics can
lead to misleading conclusions about model per-
formance, particularly in high-stakes fields such as
biodiversity. As illustrated through both aggregate
scores and specific examples, expert-based evalu-
ation provides a more reliable lens for assessing
output quality in domain-adapted QA systems.

Future work should prioritize the development of
evaluation frameworks that integrate domain exper-
tise, task-specific criteria, and human-in-the-loop
feedback. Doing so is not only methodologically
sound but ethically necessary to ensure the safe
deployment of LLMs in scientific and ecological
applications.

7 Limitations

While our analysis highlights important shortcom-
ings of automatic evaluation metrics in domain-
specific QA, several limitations remain.

First, our study focuses on a single domain,
botanical and ecological question answering using
a dataset of 100 expert-rated examples. Although
the findings are indicative, they may not fully gen-
eralize, to the same degree, to all other scientific or
technical fields with different terminological struc-
tures or reasoning demands.

Second, expert evaluation, while more reliable
than surface-level metrics, introduces its own sub-
jectivity. Although we employed a biodiversity ex-
pert with domain knowledge, future work should in-
clude multiple annotators to assess inter-annotator
agreement.

Third, our evaluation primarily addresses short-
form, extractive QA responses. Longer, multi-step,
or generative answers may pose different chal-
lenges, particularly around discourse coherence,
reasoning chains, and multi-document grounding
areas not fully captured in our current setup.

Finally, we did not explore recent or emerging
evaluation methods such as LLM-as-a-judge or
retrieval-augmented verification, which may com-
plement expert-based evaluation or improve factu-
ality assessment in future iterations.

Addressing these limitations in future work will
be critical to building more robust and trustwor-
thy evaluation pipelines for domain-adapted QA
systems.
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Abstract

Named Entity Recognition (NER) presents spe-
cific challenges in Serbian, a morphologically
rich language. To address these challenges, a
comparative evaluation of distinct model para-
digms across diverse text genres was conducted.
A rule-based system (SrpNER), a traditional
deep learning model (Convolutional Neural Ne-
twork – CNN), fine-tuned transformer architec-
tures (Jerteh and Tesla), and Large Language
Models (LLMs), specifically ChatGPT 4.0 Na-
no and 4.1 Mini, were evaluated and compared.
For the LLMs, a one-shot prompt engineering
approach was employed, using prompt instruc-
tions aligned with the entity type definitions
used in the manual annotation guidelines. Eva-
luation was performed on three Serbian datasets
representing varied domains: newspaper artic-
les, history textbook excerpts, and a sample of
literary texts from the srpELTeC collection. The
highest performance was consistently achieved
by the fine-tuned transformer models, with F1
scores ranging from 0.78 on newspaper artic-
les to 0.96 on primary school history textbook
sample.

1 Introduction

The task of Named Entity Recognition (NER)
involves identifying and classifying key informa-
tion, such as persons, locations, organisations, da-
tes, and other specific entities, within unstructured
text (Krstev et al., 2014; Frontini et al., 2020). Ac-
curate NER is crucial for numerous downstream
NLP applications, including information extracti-
on (Feng et al., 2022), question answering (Mollá
et al., 2006; Verma et al., 2023), and machine trans-
lation (Sulistyo et al., 2025). Historically, NER
systems have evolved through various approaches,
ranging from rule-based methods to those levera-
ging machine learning and deep learning. Rule-
based systems, exemplified by SrpNER for the Ser-
bian language (Krstev et al., 2014), which utilised

extensive lexical resources (Krstev, 2008; Vitas and
Krstev, 2012) and local grammars, demonstrated
high efficiency, particularly on specific text types
like news articles (achieving an F1 score of ap-
proximately 96% on newspaper texts). However,
their development necessitates significant lingui-
stic expertise, and adapting them to new classes,
domains or languages can be resource-intensive.

Moving beyond rule-based systems, machine le-
arning and deep learning approaches, including
models like Conditional Random Fields, Recurrent
Neural Networks (RNNs), and Convolutional Ne-
ural Networks (CNNs), became prevalent. While
demonstrating impressive results for high-resource
languages with extensive datasets, these models
also showed potential for more specific or chal-
lenging contexts. For example, CNN architectures
have been successfully employed for NER tasks in
specific low-resource domains, such as legal text in
Turkish (Çetindağ et al., 2023) or historical literary
text in Serbian (Šandrih Todorović et al., 2021), ac-
hieving competitive performance (F1 scores aprox
91%) on such datasets.

The advent of transformer-based models marked
a significant paradigm shift in NLP. BERT (Bi-
directional Encoder Representations from Trans-
formers) (Devlin et al., 2019) emerged as a cor-
nerstone model, setting new benchmarks across
a wide array of language understanding tasks. Its
architecture enables the learning of deep contextu-
alised representations, leading to superior perfor-
mance in tasks like NER (Zhang and Zhang, 2023).
BERT’s capability for transfer learning has proven
particularly beneficial for low-shot classification
tasks (Garrido-Merchan et al., 2023). The success
of BERT spurred the development of multilingual
models (Wang et al., 2020) and specialised models
for various non-English languages. For South Sla-
vonic languages, dedicated models like Bertić (Lju-
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bešić and Lauc, 2021), xlm-r-bertić 1 developed by
the CLARIN Knowledge Centre for South Slavonic
languages (CLASSLA), SRoBERTa (Cvejić, 2022),
and XLM-R based models jerteh-355-tesla (Iko-
nić Nešić et al., 2024) and TESLA-mini (Škorić,
2024) have been developed, demonstrating the ef-
fectiveness of the transformer architecture in this
linguistic context.

More recently, Large Language Models
(LLMs) (Brown et al., 2020) have demonstrated
remarkable zero-shot and few-shot abilities across
numerous NLP tasks via prompt engineering (Li
and Liang, 2021). This approach allows leveraging
the vast knowledge within frozen pre-trained
LLMs by crafting specific input prompts, appealing
greatly to low-resource scenarios as it avoids
resource-intensive training. However, applying
prompt learning directly to tasks like NER presents
unique challenges (Shen et al., 2023). While LLMs
excel at tasks aligned with their pre-training objec-
tives (e.g., text generation or "fill-in-the-blank"),
NER is fundamentally a sequence labelling task
requiring precise identification of entity spans and
types (Ma and Hovy, 2016). Early prompt-based
NER approaches, such as span-orientated methods
that enumerate all potential spans (Cui et al.,
2021) or type-oriented methods that query for
specific entity types (Liu et al., 2022), often
required multiple inference rounds or relied on
complex, hand-crafted prompt templates, limiting
their efficiency and practical applicability (Shen
et al., 2023). This inherent mismatch means that
despite the general capabilities of LLMs, achieving
robust and accurate NER performance via prompt
engineering is still an active area of research and
often requires careful prompt design or specialised
techniques.

This paper presents a comparative analysis of
the performance of different generations of mo-
dels applied to NER in Serbian. The comparison
of rule based, traditional deep learning approac-
hes, represented by a trained CNN model, with two
fine-tuned BERT models is presented. Furthermo-
re, the potential of leveraging contemporary LLMs
for Serbian NER through prompt engineering, uti-
lising the capabilities of the ChatGPT 4.0 mini and
ChatGPT 4.0 nano models was investigated. By
evaluating and comparing these diverse modelling
paradigms which is a major contribution of the this

1Classla/xlm-r-bertic · Hugging Face. (2023, December
18). https://huggingface.co/classla/xlm-r-bertic

study, we aim to provide insights into their rela-
tive strengths, weaknesses, and applicability for
Serbian NER, contributing to the understanding
of model evolution and resource efficiency in this
field.

2 Related Work

While NER has a long research history, its com-
parative evaluation across model generations re-
mains unevenly distributed across languages. In
particular, Serbian has seen a few dedicated sur-
veys or systematic comparisons only. The earliest
and most relevant work is by Vitas and Pavlović-
Lažetić (2008), who provided a general overview
of NER methods and linguistic resources for Serbi-
an, including rule-based systems. Since then, most
research has focused on domain-specific applica-
tions or evaluated individual systems. For instan-
ce, Sandrih et al. (2019) examined NER systems
for Serbian personal names, while Todorović et al.
(2021) developed models for recognising entities
in 19th-century Serbian literature. More recently,
Živković et al. (2022) assessed transformer-based
models in the clinical domain. However, none of
these works offer a broad, comparative evaluation
across diverse model paradigms, nor do they ad-
dress resource-efficiency concerns across domains.

In contrast, surveys on NER for English are abun-
dant and continuously updated. Well-cited founda-
tional works such as Nadeau and Sekine (2007),
Marrero et al. (2013), and Shaalan (2014) laid the
groundwork. More recently, deep learning–focused
surveys like Li et al. (2020), Keraghel et al. (2024),
and Warto et al. (2024) have provided extensi-
ve reviews of neural and transformer-based NER
systems. Domain-specific surveys also exist, such
as Ehrmann et al. (2023) for historical texts and Je-
hangir et al. (2023) for biomedical and multilingual
NER. This disparity further motivates our study,
which addresses a clear gap in the literature for Ser-
bian and offers a multi-paradigm evaluation from
rule-based through deep learning to LLM-based
NER systems.

The study by (Affi and Latiri, 2022) addresses
NER for the Arabic language, highlighting the chal-
lenges posed by its complex morphology which
often necessitates extensive handcrafted feature en-
gineering. To overcome this limitation, the authors
proposed a novel deep neural network architecture
combining CNN, LSTM, and BERT embeddings
to generate rich word representations without re-
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lying on external knowledge or handcrafted fea-
tures. Their approach achieved state-of-the-art re-
sults on the ANERCorp dataset, with F1-scores
of 93.34% and 93.68% using bidirectional LSTM-
CRF (BLC) and bidirectional GRU-CRF (BGC)
architectures, respectively. This work is relevant to
our study as it demonstrates the effectiveness of
advanced deep learning architectures (integrating
embeddings from models like BERT with sequen-
ce models like LSTM/GRU and CRF) for NER,
even for morphologically rich languages. Further-
more, it implicitly includes a comparison of the
performance between related architectures (LSTM
vs. GRU) within their proposed framework, which
aligns with our goal of comparing different model
types.

Shelar et al. (2020) conduct a comparative ana-
lysis of different existing libraries and tools for
NER, including Python’s spaCy, Apache OpenNLP,
and TensorFlow. The comparison was based on
key performance metrics such as training accuracy,
F-score, prediction time, model size, and ease of
training, using the same dataset across all evaluated
tools. A key finding was that Python’s spaCy gene-
rally achieved higher accuracy and better overall
results compared to the other tools tested. This pa-
per is highly relevant to our research as it serves as
a direct example of a comparative study of different
NER systems or implementations. Its methodology
of using standard performance metrics to evalua-
te distinct tools provides a valuable template and
context for our own comparison of various NER
models, even if our focus might be more on the
underlying model architectures rather than solely
the libraries used.

The research presented in (Ikonić Nešić et al.,
2024) investigates NER for the Serbian, focusing
on the integration of BERT models with the spa-
Cy library. The paper presents a comparison of
different architectures and techniques for prepa-
ring NER models, trained to recognise seven entity
types on a diverse Serbian dataset. Specifically, the
authors explored various configurations and tra-
ining pipelines within the spaCy framework, as
well as the impact of different BERT versions (va-
rying architectures, sizes, and pre-training corpora
containing Serbian). The goal was to evaluate the
trade-offs between model complexity and perfor-
mance. This research is relevant as it addresses
NER for a specific language (Serbian), which is
the focus of our study. Most importantly, the pa-

per explicitly conducts a comparison of different
configurations and variations of a powerful NER
approach (BERT+spaCy), analysing their impact
on performance, which relates to our objective of
comparing different NER models or different con-
figurations/implementations.

The current study provides a comprehensive
comparative analysis of NER models for the Serbi-
an, spanning rule-based systems, traditional mac-
hine learning approaches, modern deep learning
architectures, and LLMs. In contrast to prior work,
which has typically focused on specific domains or
isolated model types, our evaluation is conducted
across multiple real-world text genres including hi-
storical textbooks, news articles, and literary prose,
allowing for a robust assessment of model genera-
lisation and domain adaptability. By systematically
benchmarking diverse NER paradigms on both se-
en and unseen data, we offer novel insights into
the strengths and limitations of each approach, the-
reby contributing to the advancement of NER in
low-resource and morphologically rich languages.

3 Methodology

This section outlines the dataset preparation pro-
cess for model training, the training of CNN, two
BERT-based models, as well as the one-shot promp-
ting approach applied to LLMs.

3.1 Data Preparation

The preparation of the training dataset has been
ongoing for an extended period and constitutes a
part of the TESLA-NER-NEL corpus (Ikonić Nešić
and Utvić, 2024), which, in its final version, will
contain 150,000 sentences annotated with named
entities linked to Wikidata entries, as well as part-
of-speech (POS) tags and lemmatisation.

The training dataset was compiled through two
distinct annotation strategies: a semi-automated
procedure (srTESLA-SA) and a fully automated
one (srTESLA-FA). Within the semi-automated
workflow, a total of 53,417 sentences were ini-
tially labelled automatically using SrpNER (Kr-
stev et al., 2014) and jerteh-355-tesla (Ikonić Nešić
et al., 2024) model. For manual correction of pre-
annotated dataset, INCEpTION tool (Figure 1) was
used. The sentences were post-annotated by mul-
tiple trained annotators, and all annotations were
cross-checked by an expert. These sentences were
selected from (1) novels from SrpELTeC (Stanko-
vić et al., 2024) and SrpKor (Vitas et al., 2024)
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Figure 1: An example of annotation in INCEpTION

(23,273 sentences), (2) newspapers from SrpKor
(8,737 sentences), (3) legal documents from In-
tera (Stanković et al., 2017) (19,383 sentences) and
(4) wikipedia from srELEXIS (Krstev et al., 2024)
(2024 sentences).

The fully automated approach relied on two tech-
niques: the first utilised sentence templates and
structured lexical resources, including gazetteers
such as Leximirka (Stanković et al., 2018; Lazic
and Škoric, 2019), to generate annotated exam-
ples (srTESLA-lex); the second employed ChatGPT
4.0 for automatic annotation generation (srTESLA-
chat). This approach provided context-rich senten-
ces, facilitating disambiguation for NEL task, with
20,076 sentences in total.

The named entity tagset used in this study is alig-
ned with categories commonly applied in the anno-
tation of literary and historical texts, such as those
developed within the European Literary Text Col-
lection (ELTeC) (Stanković et al., 2024; Frontini
et al., 2020). It includes the following entity types:
personal names (PERS), geographical locations
(LOC), organizations (ORG), professional roles
and titles (ROLE), demonyms (DEMO), cultural
and artistic works (WORK), and events (EVENT).
Among these, locations (LOC) are the most frequ-
ent, with approximately 36,654 instances, followed
by personal names (PERS) with 13,636, and orga-
nization names (ORG) with around 11,060 occur-
rences (Table 1).

3.2 NER Modelling Approaches and
Configuration

The configuration and implementation of the
NER task across different modelling approaches is
presented in this subsection.

One-Shot LLM-based NER with spacy-llm

To explore the capabilities of modern LLMs for
Serbian NER, we employed a one-shot learning
strategy facilitated by the spacy-llm 2 libra-
ry. This approach avoids resource-intensive fine-
tuning by leveraging the model’s existing knowled-
ge through carefully crafted prompts.

Recognising that prompt performance is often
enhanced in multilingual contexts and by providing
concrete examples, we designed a custom prompt
template using the Jinja 3 templating language.
This allowed for a dynamic and structured input for
the LLMs. The core of our prompt is designed to
instruct the model to act as an expert in NER and
to identify entities within a given text according to
a specified set of categories.

The Jinja template is structured as follows:

Vi ste stručnjak za prepoznavanje
imenovanih entiteta (NER).

Vaš zadatak je da primite tekst i iz
njega izdvojite imenovane entitete.

Svaki entitet mora pripadati jednoj od
sledećih kategorija:
{{ ’, ’.join(labels) }}.

Ako neki deo teksta nije entitet, označ
ite ga kao: ‘==NONE==‘.

{%- if label_definitions %}
Ispod su definicije svake kategorije

koje će vam pomoći da tačno
prepoznate vrste imenovanih entiteta.
{%- endif %}
...
Pasus: {{ text }}
Odgovor:

The NER task was configured within the
spacy-llm framework by defining the set of en-
tity labels and providing their detailed description
specified below.

2https://spacy.io/usage/large-language-models
3https://jinja.palletsprojects.com/en/stable
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Class Description for annotators Count
LOC Names of continents, countries, populated places, geographic features, celestial bodies, etc. 36,654
ROLE Professional titles, functions, or social roles, such as doctor, director, king, or teacher. 15,170
PERS Personal names of individuals, including given names, surnames, and aliases of real or

fictional figures.
13,636

ORG Names of institutions, companies, political bodies, schools, hospitals, and other formal
organizations.

11,060

DEMO Demonyms indicating origin, nationality, or ethnic background, including adjectival forms
derived from locations.

7,559

WORK Titles of creative works such as books, poems, artworks, theatrical plays, and periodicals. 3,319
EVENT Specific historical or recurring events such as wars, revolutions, natural disasters, or

commemorations.
464

Table 1: Entity types with descriptions and frequency in the dataset.

[components.llm.task.label_definitions]
PERS = "Vlastita imena stvarnih ili izmi

šljenih pojedinaca li čna imena,
prezimena, nadimci, bogovi, sveci i
imenovane životinje."

ROLE = "Zanimanja, činovi, titule i
funkcije koje ljudi obavljaju, sa
ili bez ličnog imena; uključuje viš
erečna zvanja."

DEMO = "Nazivi naroda, etničkih grupa i
stanovnika mesta, kao i pridevi
izvedeni iz geografskih imena."

ORG = "Imena organizacija, institucija i
udruženja: kompanije, partije, š

kole, muzeji, kafane, crkve,
sportski k l u b o v i "

LOC = "Vlastita imena geografskih
lokacija: kontinenti, države,
regioni, gradovi, sela, planine,
reke, jezera, ulice, trgovi."

WORK = "Naslovi umetničkih i kulturnih
dela: knjige, pesme, filmovi, slike,
skulpture, spomenici, novine, video

-igre."
EVENT = "Nazivi dogad̄aja: praznici,

revolucije, ratovi, bitke,
demonstracije, festivali, sportski
dogad̄aji, prirodne katastrofe."

For these experiments, two specific mo-
dels were employed: gpt-4.1-mini and
gpt-4.1-nano. These models were tasked with
performing NER on our evaluation datasets using
the described one-shot prompting configuration.

CNN and Fine-Tuned Transformer Models

In addition to the LLM-based prompting met-
hod, we trained a CNN and two transformer-based
models to serve as comparative baselines. These
experiments were conducted within the spaCy fra-
mework, making use of the core library for the
CNN and the spacy-transformers extensi-
on for the transformer models.

The CNN model was configured using spaCy’s
standard multi-layer tok2vec architecture. This

component generates context-sensitive token vec-
tors which are then passed to the Named Entity
Recognition (ner) layer for classification.

The two transformer models leverage the
spacy-transformers library to integrate pre-
trained language models into the spaCy pipeli-
ne. The transformer’s contextual word embeddings
are fed into the ner component. The specific pre-
trained models used as a base for fine-tuning were:

• te-sla/TeslaXLM4 model is derived
from the large multilingual architecture,
FacebookAI/xlm-roberta-large, having been
further fine-tuned for the nuances of Serbian
and Serbo-Croatian. Comprising 561 million
parameters, its adaptation involved training
on a substantial 20-billion-token corpus en-
compassing both Latin and Cyrillic scripts
commonly used in Serbian. This comprehen-
sive fine-tuning process results in a model
that demonstrates high proficiency and robust-
ness across varying scripts and dialectal forms
(Škorić and Petalinkar, 2024).

• jerteh/Jerteh-3555 is based on the
RoBERTa-large architecture but was trained
from scratch exclusively on a monolingual
Serbian corpus of 4 billion tokens. With 355
million parameters, this model is specifical-
ly tailored to generate high-quality, context-
aware embeddings optimized for the Serbian
language environment (Škorić, 2024).

To ensure a fair comparison, all three models were
trained on the same dataset for a total of 10 epochs
for transformers and 5 epochs for CNN.

4https://huggingface.co/te-sla/TeslaXLM
5https://huggingface.co/jerteh/Jerteh-355
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4 Evaluation Results and Discussion

The trained models were evaluated for their per-
formance on the test set, as shown in Table 2.
To assess performance across different text types,
the models were evaluated on data from three di-
stinct sources: newspaper articles from Politika
newspapers (841 sentences), a sample from corpus
of history textbook for elementary school named
srHistory (331 sentences), and a sample of three
novels from the srpELTeC collection (SRP190706,
SRP191217, SRP191808) (Table 3) named srpEL-
TeC sample (544 sentences), were the literary texts
used for evaluation were explicitly excluded from
the training set. The distribution of named entities
across these datasets is shown in Figure 2.

Figure 2: Distribution of NE types across corpora

The models included in the comparison represent
distinct paradigms: the rule-based SrpNER, a tra-
ditional CNN, fine-tuned BERT models (Jerteh
and Tesla), and prompt-based LLMs (ChatGPT
4.0 Nano and ChatGPT 4.1 Mini). As an-
ticipated, the fine-tuned transformer models
Jerteh and Tesla generally achieved the hig-
hest overall F1 scores across the evaluation sets (Ta-
ble 3). Their strong performance stems from their
ability to learn complex contextual patterns from
the large and diverse training dataset as TESLA-
NER-NEL and generalise these patterns. The rule-
based SrpNER system demonstrated robustness,
performing strongly on domains it was specifically
designed for, such as newspaper articles, and main-
taining solid performance on other domains due to
its reliance on linguistic rules and lexicons, altho-
ugh it exhibits less flexibility than machine learning
models when encountering entirely new patterns

6Jelena Dimitrijević, Fati-Sultan (ELTeC edition)
7Veljko M. Milićević, Bespuće (Wasteland ELTeC edition)
8Milica Jankovic, Pre sreće (Before happiness ELTeC edi-

tion)

and types (e.g. EVENT). The CNN, a traditional de-
ep learning approach, proved more susceptible to
domain and style shifts; while capable of learning
effective local features, it is less adept at captu-
ring long-range context compared to transformers,
which can hinder performance on complex senten-
ces or subtle entity mentions. The prompt-based
LLMs approach show a notable decrease in perfor-
mance on the more challenging or domain-shifted
datasets (Table 3). A key aspect of LLM evaluation
approach involved providing the ChatGPTmodels
with detailed instructions and definitions for each
entity type directly in the prompt. These instruc-
tions were identical to those provided to human
annotators who created the gold standard dataset
used for training and evaluation. This consistency
ensures that both the LLMs and the supervised mo-
dels are attempting to solve the exact same NER
task definition. By leveraging the LLMs’ strong
instruction-following capabilities with the annota-
tion guidelines, we aimed to facilitate a direct and
fair comparison between the performance achieved
via prompt engineering and that of models expli-
citly trained on data annotated according to those
same guidelines. Despite this, the inherent nature
of prompt-based generation, as opposed to fine-
tuned sequence labelling, appears less optimal for
achieving high precision and recall on this specific
task without further adaptation, as detailed by their
class-level results (Table 4).

Analysing performance by dataset and entity
type reveals the impact of textual characteristics
(Table 4). The srHistory dataset has very strong
results from BERT models (Tesla F1 0.958,
Jerteh F1 0.884 overall), and exceptional per-
class performance for Tesla, achieving F1 sco-
res of 0.94 or higher for most entity types, inc-
luding PERS, LOC, ORG, DEMO, and EVENT
(Table 4b). This high performance, combined with
Tesla’s low FP count on this dataset (Table 3), sug-
gests the well known named entities and clear style
of a textbook, with is well suited to its capabiliti-
es. SrpNER and CNN also showed solid per-class
results on this dataset, outperforming the LLMs
on many entity types. On the newspapers dataset,
Tesla, Jerteh and SrpNER models performed
well on common entity types like PERS, LOC, and
ORG (Table 4a), likely because this domain aligns
closely with the newspaper portion of the training
data. SrpNER showed particularly high precision
for these classes, consistent with its rule-based na-
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Table 2: Precision, recall, and F1 for each entity type and model on a test dataset, including entity counts.

Class Count Tesla Jerteh CNN

P R F1 P R F1 P R F1

PERS 7,471 0.972 0.972 0.972 0.955 0.976 0.965 0.918 0.890 0.904
LOC 2,910 0.966 0.975 0.971 0.966 0.973 0.970 0.940 0.944 0.942
ROLE 2,719 0.844 0.820 0.832 0.825 0.837 0.831 0.795 0.756 0.775
DEMO 2,053 0.934 0.966 0.950 0.931 0.959 0.945 0.903 0.902 0.902
ORG 1,458 0.817 0.817 0.817 0.807 0.802 0.804 0.708 0.742 0.725
WORK 699 0.698 0.645 0.671 0.659 0.718 0.687 0.582 0.476 0.524
EVENT 100 0.736 0.670 0.702 0.685 0.630 0.656 0.786 0.330 0.465

Table 3: Summary of NER model performance across three distinct datasets

Dataset Total Entities Model TP FP FN P R F1

Newspaper articles 1,654

SrpNER 965 140 689 0.873 0.583 0.699
CNN 834 613 820 0.576 0.504 0.538
Jerteh 1,339 563 315 0.704 0.810 0.753
Tesla 1,375 476 279 0.743 0.831 0.785
Chat 4.0 Nano 1,027 735 627 0.583 0.621 0.601
Chat 4.1 Mini 1295 944 359 0.578 0.783 0.665

srHistory 638

SrpNER 472 117 166 0.801 0.740 0.769
CNN 487 98 151 0.833 0.763 0.796
Jerteh 559 68 79 0.892 0.876 0.884
Tesla 601 15 37 0.976 0.942 0.958
Chat 4.0 Nano 329 251 309 0.567 0.516 0.540
Chat 4.1 Mini 540 253 98 0.681 0.846 0.755

sprELTeC Sample 264

SrpNER 209 54 55 0.795 0.799 0.793
CNN 98 56 166 0.636 0.371 0.469
Jerteh 163 58 101 0.738 0.617 0.672
Tesla 200 29 64 0.873 0.758 0.811
Chat 4.0 Nano 135 338 129 0.285 0.511 0.366
Chat 4.1 Mini 221 179 43 0.553 0.837 0.666

ture, though with lower recall on some rarer types
(e.g., WORK, EVENT).

In contrast, the srpELTeC sample dataset presen-
ted the greatest challenge for most models, leading
to a significant overall performance drop, particu-
larly for the CNN (F1 0.469) and ChatGPT 4.0
Nano (F1 0.366). This is primarily attributable to
a substantial domain and style shift (19th-century
literary language vs. modern training data). A spe-
cific instance of the style shift impacting LLMs
was observed with the term Arnautin. This archa-
ic and historical term, originating from Turkish,
was not recognised by the ChatGPT 4.1 Nano mo-
del, while other models successfully identified it,
illustrating the potential sensitivity of LLMs to le-
xical and historical variations not prominent in the-
ir pre-training. The class-level results for ELTeC
(Table 4c) clearly show this difficulty across mul-
tiple entity types for these models. For example,
ChatGPT 4.0 Nano exhibited very low preci-
sion across several common classes (PERS, LOC,
DEMO). The CNN also showed low F1 scores on

most classes. Interestingly, the rule-based SrpNER
demonstrated relatively more stable per-class per-
formance on some types (e.g., ROLE F1 0.80)
compared to some data-driven models (Jerteh
ROLE F1 0.54, ChatGPT 4.1 Mini ROLE F1
0.60), suggesting its rules were less affected by
stylistic nuances than statistical patterns learned
by CNN or LLMs. Transformer models (Tesla
F1 0.811, Jerteh F1 0.672 overall), while still
the best performers on this challenging set, sho-
wed reduced per-class scores compared to other
datasets for types like ORG, ROLE, and WORK.
The ChatGPT 4.1 Mini model on srpELTeC
sample showed a pattern of higher recall but lower
precision compared to Tesla for some classes (e.g.,
PERS, LOC, DEMO), indicating it retrieved more
potential entities but with more false positives.

5 Conclusion/Future Work

In this study, a comparative evaluation of di-
verse NER model paradigms for Serbian was
conducted across distinct text genres: newspa-
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Table 4: Evaluation Results by Entity Type (Precision / Recall / F1)

(a) newspaper articles

Class SrpNER CNN Jerteh Tesla Nano Mini

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

PERS 0.92 0.67 0.77 0.76 0.55 0.64 0.89 0.92 0.90 0.91 0.91 0.91 0.65 0.78 0.71 0.89 0.87 0.88
LOC 0.85 0.86 0.86 0.67 0.67 0.67 0.83 0.87 0.85 0.86 0.90 0.88 0.65 0.78 0.71 0.84 0.78 0.81
ORG 0.89 0.36 0.51 0.46 0.28 0.35 0.76 0.70 0.73 0.75 0.75 0.75 0.60 0.46 0.52 0.58 0.73 0.65
ROLE 0.78 0.47 0.59 0.35 0.51 0.42 0.31 0.62 0.41 0.38 0.63 0.48 0.45 0.36 0.40 0.34 0.63 0.46
WORK 1.00 0.13 0.22 0.31 0.50 0.38 0.23 0.38 0.29 0.13 0.13 0.13 0.02 0.13 0.03 0.61 0.38 0.11
DEMO 1.00 0.07 0.13 0.46 0.56 0.50 0.58 0.93 0.71 0.58 0.94 0.72 0.29 0.31 0.30 0.20 0.96 0.33
EVENT 0.00 0.00 0.00 0.14 0.05 0.07 0.37 0.48 0.42 0.52 0.67 0.58 0.27 0.14 0.19 0.18 0.62 0.28

(b) srHistory

Class SrpNER CNN Jerteh Tesla Nano Mini

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

PERS 0.77 0.83 0.80 0.85 0.89 0.87 0.99 0.98 0.99 1.00 1.00 1.00 0.53 0.62 0.57 0.98 0.98 0.98
LOC 0.85 0.90 0.87 0.87 0.89 0.88 0.93 0.89 0.91 0.97 0.97 0.97 0.71 0.76 0.73 0.89 0.90 0.89
ORG 0.61 0.34 0.43 0.61 0.37 0.46 0.80 0.77 0.78 0.94 0.94 0.94 0.54 0.38 0.45 0.70 0.88 0.78
ROLE 0.69 0.56 0.62 0.76 0.65 0.70 0.84 0.86 0.85 0.99 0.86 0.92 0.50 0.10 0.17 0.62 0.49 0.55
WORK 0.00 0.00 0.00 1.00 0.06 0.12 0.29 0.31 0.30 1.00 0.50 0.67 0.08 0.25 0.13 0.47 0.50 0.48
DEMO 0.86 0.82 0.84 0.86 0.88 0.87 0.95 0.94 0.94 0.98 0.98 0.98 0.54 0.36 0.43 0.46 0.95 0.62
EVENT 0.71 0.57 0.63 0.86 0.29 0.43 0.73 0.76 0.74 1.00 0.81 0.89 0.17 0.10 0.12 0.19 0.48 0.27

(c) srpELTeC Sample (Literature)

Class SrpNER CNN Jerteh Tesla Nano Mini

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

PERS 0.65 0.73 0.69 0.72 0.40 0.52 0.65 0.72 0.69 0.82 0.91 0.86 0.27 0.87 0.41 0.62 0.91 0.74
LOC 0.87 0.70 0.78 0.63 0.60 0.61 0.73 0.87 0.79 0.81 0.95 0.88 0.29 0.81 0.43 0.64 0.97 0.77
ORG 0.00 0.00 0.00 0.30 0.75 0.43 0.25 0.25 0.25 1.00 0.50 0.67 0.00 0.00 0.00 0.20 0.25 0.22
ROLE 0.77 0.83 0.80 0.61 0.20 0.30 0.88 0.39 0.54 0.96 0.54 0.69 0.83 0.21 0.34 0.51 0.73 0.60
WORK 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.60 0.60 1.00 0.40 0.57 0.10 0.40 0.16 0.36 0.80 0.50
DEMO 1.00 0.80 0.89 0.67 0.53 0.59 1.00 0.73 0.85 1.00 0.80 0.89 0.06 0.03 0.04 0.52 0.83 0.64

per articles, history textbook excerpts, and a li-
terary sample. Evaluated models included a rule-
based system (SrpNER), a CNN, fine-tuned trans-
formers (Jerteh, Tesla), and prompt-based
LLMs (ChatGPT 4.o Nano and ChatGPT
4.1 Mini). Fine-tuned BERT based models ge-
nerally achieved the highest performance, demon-
strating strong generalisation from a diverse trai-
ning corpus, with Tesla showing exceptionally
high results on the history data. The rule-based
SrpNER proved robust, performing well on news
and showing resilience to stylistic shifts in literary
texts. The CNN was more susceptible to domain
variations. Prompt-based LLMs exhibited lower
performance for precise NER, particularly on the
challenging literary dataset, suggesting limitations
of prompting alone for complex sequence labelling
tasks despite using human annotation guidelines.
This analysis highlights the critical influence of
both model architecture and target domain charac-

teristics on NER performance in Serbian.
Based on these findings, our future research will

focus on enhancing LLM performance for Serbi-
an NER through refined prompting strategies (e.g.,
few-shot, PEFT) and exploring their potential in
hybrid systems. Addressing the challenges of do-
main and style shifts, notably for historical/literary
texts, is also crucial, potentially via dedicated do-
main adaptation techniques or advanced hybrid ap-
proaches. Further evaluation on a broader spectrum
of Serbian text types, including lower-resource do-
mains, is warranted. Finally, conducting detailed
qualitative error analysis and exploring few-shot
learning paradigms within supervised frameworks
are valuable avenues for improving NER perfor-
mance and reducing annotation effort in new doma-
ins.
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Abstract

We investigate the effects of three hints includ-
ing an introduction text, a few examples, and
prompting techniques to enhance the perfor-
mance of a Large-Language Model (LLM) in
detecting a spoiler review of a movie. Detecting
a spoiler review of a movie represents an impor-
tant Natural Language Processing (NLP) task
which resists the Deep Learning (DL) approach
due to its highly subjective nature and scarcity
in data. The highly subjective nature is also the
main reason of the poor performance of LLMs-
based methods, which explains their scarcity
for the target problem. We address this problem
by providing the LLM with an introduction text
of the movie and a few reviews with their class
labels as well as equipping it with prompts that
select and exploit spoiler types with reason-
ing. Experiments using 400 manually labeled
reviews and about 3200 LLM-labeled reviews
show that our CAST (Clue And Select Types
prompting) outperforms (0.05 higher) or is on
par with (only 0.01 lower) cutting-edge LLM-
based methods in three out of four movies in
ROC-AUC. We believe our study represents
an evidence of a target problem in which the
knowledge intensive approach outperforms the
learning-based approach.

1 Introduction

According to the Oxford Learner’s Dictionaries, a
spoiler is defined as “information that you are given
about what is going to happen in a film, television
series, etc. before it is shown to the public”1, which
can hinder or stop consumers’ enjoyment of a work
(Tsang and Yan, 2009). In this paper, we focus
our attention to spoiler reviews of a movie due
to their complex nature for NLP and their high
influence on our daily life. Manually setting mute
words (Golbeck, 2012) , e.g., the true criminal, or

1https://www.oxfordlearnersdictionaries.
com/definition/english/spoiler?q=spoiler

spoiler tags, though effective, are expensive due to
the necessary human labor. NLP-based automatic
detection could be a realistic solution depending
on its accuracy and cost.

Since movies are rich in variety and so are their
reviews, detecting a spoiler review is a highly
subjective task. Moreover, Guo and Ramakrish-
nan (2010) pointed out that constructing a large-
scale dataset with high-quality labels is difficult
for spoiler detection. These two reasons rule out
DL-based methods from consideration, even if they
have been quite successful in various NLP tasks.
LLMs could be considered as the state-of-the-art
solutions of the knowledge intensive approach due
to their high capabilities in various tasks and their
low costs in development. However, Zhang et al.
(2025b) pointed out that their text classification ca-
pabilities are limited and the development has been
slow, which we believe the reason for their scarcity
in the spoiler detection domain.

In this paper, we investigate three kinds of hints
to enhance the performance of spoiler review de-
tection by an LLM. The first hint is an introduction
text, which corresponds to domain knowledge in
the knowledge intensive approach. The second
hint is a few reviews with their binary class labels,
i.e., spoiler or not spoiler, which can be regarded
as examples for few-shot learning. The third hint
is spoiler types with a reasoning strategy, which
could be viewed as an inference strategy on sub-
classes for the LLM. Broadly speaking, exploiting
these three kinds of hints belongs to the widely-
used prompt engineering, though our motivation is
to obtain an evidence which suggests in the long
run the characteristics and the conditions of the
target problems in which the knowledge intensive
approach outperforms the learning-based approach.

Figure 1 shows two working examples of our
CAST on the movie “Hulk”, in which Bruce trans-
forms himself to a green heroic monster. The first
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SPOILER
input: I thought endowing Banner’s
father with the Absorbing Man’s
powers was a brilliant idea, symbol-
izing what his father indirectly did to
Bruce his whole life.
clue: “Absorbing Man’s powers”,
“father indirectly did to Bruce his
whole life”.
spoiler type: true identity, character
features, development of the story,
past, problem occurs.

→ spoiler level: 0.9999

NOT SPOILER
input: Seeing the green behometh
smash up tanks, helicopters etc had
me in aweof the amazing folks who
created the cgi.
clue: “seeing the green behometh”,
“amazing folks”.
spoiler types: appearance, develop-
ment of the story, true identity, past,
status/power.

→ spoiler level: 0.1559

Figure 1: Examples of spoiler and non-spoiler reviews
for “Hulk”. Spoiler levels are provided by our CAST.
The spoiler review mentions the identity of the final
villain. The non-spoiler review mentions unimportant
details.

review reveals the identity of the final villain, who
gave the power to Bruce and is thus a spoiler. CAST
correctly estimates its spoiler level to 0.9999 by se-
lecting four spoiler types, of which the red two
are correct, with its LLM. CAST also explains two
clues in its decision, which demonstrates its com-
prehensibility to the users. The second review, on
the other hand, just explains the widely-known ca-
pabilities of Hulk, and is thus not a spoiler. CAST
correctly estimates its spoiler level again.

2 Related Work

2.1 Spoiler Detection

Spoiler Detection methods can be classified into
classification-based, clues-based, and LLMs-based.
The first approach exploits the powerful capabili-
ties of the text classification methods. Wan et al.
(2019) proposed SpoilerNet, which inputs review

documents and item specificity information to Hi-
erarchical Attention Network (Yang et al., 2016).
Chang et al. (2021) proposed SDGNN, which com-
bines a Graph Neural Network (Marcheggiani and
Titov, 2017) that recognizes sentence dependencies
with a genre aware structure. We consider this ap-
proach is inadequate for our target problem due
to the lack of large-scale data and the variety in
movies and their reviews.

The second approach uses multiple frameworks
to extract features from various kinds of clues in-
cluding user data, movie metadata, and reviews.
The features could be passed to a Mixture of Ex-
perts for each genre (Zeng et al., 2024; Zhang et
al., 2025a). This approach is relevant to our CAST,
though the former doesn’t use an LLM for the main
purpose of spoiler detection.

The last approach is rare in spoiler detection,
possibly due to the limited capability of LLMs in
text classification (Zhang et al., 2025b). As we
explained in the previous section, we try to en-
hance the performance of this approach by using
three kinds of hints, which are not limited to the
data source. Since LLMs have achieved notable
successes in handling semantics (Schaeffer et al.,
2025), we believe they are also promising for our
target task.

2.2 Text Classification by LLM

Text classification using LLMs can be broadly clas-
sified into two approaches, i.e., the approach that
relies on fine-tuning and the one on few-shot learn-
ing.

As an example of the former, Zhang et al.
(2025b) proposed RGPT, of which fine-tuning is
based on the idea of Adaptive Boosting (Freund and
Schapire, 1997). Their fine-tuning is conducted in
multiple rounds, each of which updates the weight
distribution over the dataset based on the predic-
tions of the weak learner induced in the round. The
final prediction is based on weak learners with their
model weights obtained according to the predic-
tions.

As an example of the latter, Sun et al. (2023)
proposed Clue and Reasoning Prompting (CARP).
They pointed out that LLM-based methods are in-
ferior to fine-tuned models in text classification
tasks due to the lack of inference ability and token
length limitations in the former. CARP encourages
users to find clues such as keywords, tone, seman-
tic relations, and references from the text before
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reasoning, which strengthen its reasoning ability.
They succeeded in conducting few-shot learning
by sampling a few examples with the k-nearest
neighbor method and developed a voting method
among LLMs with various outputs. CARP out-
performs a powerful prompt engineering method
Zero-shot-Chain-of-Thought2 in text classification
performance (Kojima et al., 2022).

In the datasets used for spoiler detection, the la-
bels are typically collected from review sites3. It
has been pointed out that their quality is low due
to differences in spoiler standards between human
labelers and their mistakes, e.g., they occasionally
forget to add spoiler tags (Guo and Ramakrishnan,
2010). In other words, models trained on these
datasets are likely to exhibit low accuracy. There-
fore, we focus our attention to the second approach.

3 Target Problem

As we stated, our target problem is spoiler review
detection of a movie. We could have formalized
it as a classification problem by setting a binary
class label of spoiler and not spoiler as our output.
This formalization allows us to use accuracy as the
evaluation measure, which is easy to understand,
but necessitates a threshold that separates the two
classes. Setting an appropriate threshold is possible
when the misclassification costs, i.e., the cost of
a false positive and that of a false negative, are
known (Han et al., 2011), which is not the case
for us. We therefore formalized the target problem
as an estimation problem of the spoiler level of a
movie review from 0 to 1, the higher being more
likely to be a spoiler. As we will explain later, ROC-
AUC (Han et al., 2011) is adopted as our evaluation
measure.

The input to our target problem consists of set
{Ri,1, . . . , Ri,n(i)} of review texts and introduction
text Ii for movie i, where Ri,j and n(i) represent
the j-th review and the number of reviews, respec-
tively. The output of our target problem is spoiler
levels (Yi,1, . . . , Yi,n(i)), where Yi,j represents the
spoiler level of Ri,j .

Since the reviews can be sorted in descending
order based on their spoiler levels, we can compute
ROC-AUC of an output, which we adopt as our
evaluation measure (Han et al., 2011). We assume

2Kojima et al. (2022) succeeded in stabilizing the zero-shot
performance of LLMs and improving performance even in the
few-shot case by using the CoT (Chain-of-Thought) approach.

3IMDb (https://www.imdb.com/) and Goodreads
(https://www.goodreads.com/)

that the class label of Ri,j is available in every-
thing in the output. ROC-AUC corresponds to the
probability that a positive example, i.e., a spoiler
review in our case, is ranked higher than a neg-
ative example, i.e., a non spoiler. ROC-AUC is
widely adopted in detection problems where the
misclassification costs are unknown.

4 Proposed Method: CAST

4.1 Overview

Algorithm 1 CAST

Input: set {Ri,1, . . . , Ri,n(i)} of review docu-
ments and introduction text Ii of movie i.

Output: spoiler levels (Yi,1, . . . , Yi,n(i))
for j = 1 to n(i) do

for each sentence ri,j,k in Ri,j do
// Construct prompti,j,k.
ci,j,k = CLUE(ri,j,k)
ti,j,k = SelectType(ri,j,k, ci,j,k)
prompti,j,k

= BasePrompt(Ii, ri,j,k, ci,j,k, ti,j,k)
// Estimate PANSWER using LLM.
PSPOILER = P (“ SP”|prompti,j,k)
PNOT SPOILER = P (“ NOT”|prompti,j,k)
// Compute the spoiler level.

yi,j,k =
ePSPOILER

ePSPOILER + ePNOT SPOILER

end for
Yi,j = maxk yi,j,k

end for
Yi = (Yi,1, . . . , Yi,n(i))
return Yi

BasePrompt(Ii, ri,j,k, ci,j,k, ti,j,k) is shown
below.

This is a Spoiler Detection for input
movie reviews.
“Spoilers” is a description of a signif-
icant plot point or other aspect of a
movie, which if previously known may
spoil a person’s first experience of the
work.
A significant plot point is one that
cannot be predicted from the film’s
introduction or early developments.
List CLUES (i.e., keywords, phrases,
contextual information, semantic
meaning, semantic relationships, tones,
references) that support the spoiler
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detection of the input.
Finally, based on introduction, clues,
spoiler types, and the input, categorize
the overall ANSWER of input as
SPOILER or NOT SPOILER.

introduction: [example introduc-
tion 1]
review: [example review 1]
clue: [example clues 1]
spoiler types: [example types 1]
answer: [example answer 1]
...(7 few-shot examples follow.)

introduction: Ii
review: ri.j.k
clue: ci,j,k
spoiler types: ti,j,k
answer:

We propose CAST (Clue And Select Types
prompting), a spoiler detection method using an
LLM. As shown later in Figure 2, CARP is weak
against roundabout expressions, which are com-
mon in spoiler detection. We attribute this rea-
son to the fact that such expressions “confuse” the
LLM’s judgment. Therefore, in CAST, the LLM
is dynamically given spoiler types as hints for the
judgment.

First, clues CLUE(ri,j,k) are extracted from the
input review ri,j,k according to Sun et al. (2023),
where ri,j,k represents the k-th sentence of Ri,j .
Then, the LLM is given most of BasePrompt,
from the beginning to the second “clue:” so that
it outputs phrases that are clues for spoiler de-
tection. We show the example reviews in Ta-
bles 10, 11, and 12. Next, the LLM is given all
BasePrompt, which includes the output above as
CLUE(ri,j,k) and the spoiler types obtained with
SelectType(i,j,k, CLUE(ri,j,k)), which we will
explain in the next Sections.

Next, based on the input, clues, and spoiler types,
LLM outputs a probability distribution of the fol-
lowing tokens: “SPOILER”, “NOT SPOILER”,
and other words4. From the distribution, we calcu-
late the probability PSPOILER that the LLM outputs
“SPOILER” and the probability PNOT SPOILER that
it outputs “NOT SPOILER”5. Finally, we calculate

4We can obtain the distribution by setting the variable
logprobs to True in llama-cpp-python (https://github.
com/abetlen/llama-cpp-python).

5To be precise, we use “SP” and “NOT” instead of
“SPOILER” and “NOT SPOILER”, respectively, as the last

character relationships true identity
character features life or death
victory or defeat purpose
problem occurs trick
development of the story past
status/power appearance

Table 1: Spoiler types defined by Tajima and Nakamura
(2015).

the spoiler level yi,j,k using the softmax function
to eliminate the probability of other words, i.e., the
probabilities of “SP” and “NOT” sum up to 1. Yi,j
is the maximum value of yi,j,k in terms of k, as we
think the sentence that is most likely to be a spoiler
determines the spoiler level of the review.

To provide diverse input for the LLM, we used
eight few-shot examples that covered a range of
review types (a direct spoiler review, an indirect
spoiler review, an impression-only review, and a re-
view with unimportant content). In addition, these
examples were drawn from movies across various
genres to develop a method applicable to multiple
domains.

4.2 Selecting Spoiler Types

Since only one or a few spoiler types are relevant
to a review, inputing all 12 types to the LLM would
degrade the performance. We thus propose to select
relevant spoiler types using the LLM using the
following prompt.

Please select k spoiler types that are
most appropriate for the review and its
keywords from the following spoiler
types.

spoiler type: [all types]
review: [review]
keywords: [clues]
appropriate type:

In CAST, we use the spoiler types classified by
Tajima and Nakamura (2015). They collected 1370
spoilers from over 100 students and manually clas-
sified them into 12 types without any excess or
deficiency. We show them in Table 1.

two are not included in the vocabulary of Llama. These re-
placements are justified because the probabilities of “ILER”
and “SPOILER” right after “SP” and “NOT” are almost 1,
respectively.
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5 Experiments

5.1 Conditions

As datasets, Kaggle (Misra, 2022) and LCS (Wang
et al., 2023) are often used in recent spoiler detec-
tion studies (Zeng et al., 2024; Zhang et al., 2025a).
However, several papers argue that their labels are
not accurate due to their human labelers, whose
spoiler standards are not uniform (Guo and Ra-
makrishnan, 2010; Wan et al., 2019). We conduct
experiments on the IMDb dataset (Misra, 2022),
which one annotator relabeled manually6. We also
conducted the relabeling with an LLM. In our rela-
beling, we define a spoiler review as a review that
includes an important event shown in Table 7 in the
Appendix. The target movies and data sizes that
we used in our experiments are shown in Table 2.
The introduction texts were taken from the IMDb
movie page. We show them in Table 9.

In the relabeling with an LLM, we adopted the
following prompt.

This is to determine whether a review
contains spoilers.
“Spoilers” is a description of a signif-
icant plot point or other aspect of a
movie, which if previously known may
spoil a person’s first experience of the
work.
A significant plot point is one that
cannot be predicted from the film’s
introduction or early developments.
We will give you the title and signifi-
cant plots of the movie, so please use
that to determine whether the review
contains spoilers.

title: [title]
significant plots: [events]
review: [review]
label (True or False):

Here, [events] is the same as the event shown in
Table 7. In the relabeling, we used Llama3.1-8B
(Dubey et al., 2024). Table 3 shows the ratios of
the modified labels in our relabeling.

5.2 Baseline Methods

We employed Zero-Plus-Few-shot-Chain-of-
Thought (CoT) (Kojima et al., 2022) and CARP

6We admit the weakness of adopting a single annotator as
the quality is affected by his subjectivity.

(Sun et al., 2023) as the baseline methods. Al-
though CoT is not a method developed for text
classification, we use it as a baseline following Sun
et al. (Sun et al., 2023). As we have introduced,
CARP is a method for text classification by LLM.
To keep the setting fair, we did not employ its
voting method. We also tested variants of these
methods by omitting their reasoning process and/or
by employing the introduction text. Prompts of the
methods are shown in the Appendix. In comparing
CAST with the baseline methods, we used
Llama2-13B (Touvron et al., 2023) implemented
in llama-cpp-python7 as the backbone of the LLM.
In this experiment, we used Human labels. CAST
and CARP were also compared in experiments
using LLM labels with Llama2-13B, as well as in
experiments using human labels on more recent
LLM platform, Llama3.1-8B (Dubey et al., 2024).
We adopted +i-r as the condition due to its overall,
superior performance in the latter.

5.3 Few-shot Learning

Few-shot leaning is performed to standardize the
answer format and improve accuracy. Two reviews
(positive and negative) were collected from each
of four movies (“Million Dollar Baby”, “The Fast
and the Furious”, “Groundhog Day”, and “Match
Point”) in the IMDb dataset (Misra, 2022). To be
fair, the same examples were used by all methods8.
The examples are shown in Tables 10, 11 and 12.

5.4 Results

The results are shown in Table 4. We first focus
on the results on the datasets relabeled by a human,
which are considered more accurate those with the
LLM. For “Hulk” and “The Shawshank Redemp-
tion”, CAST is the best method. For “Mean Girls”,
it is the third best performing method, quite close
to the second one. For “Blood Diamond”, it is the
second best performing method overall and the best
performing method for “+intro -reasoning”. Over-
all, we conclude that CAST is the best method for
few-shot spoiler detection based on human values.
We then focus on the results on the LLM relabeled
dataset. Compared to CARP, it performs worse on
“Hulk” but slightly better on the other three movies.
A detailed analysis is provided in Section 6.

7abetlen/llama-cpp-python. https://github.com/
abetlen/llama-cpp-python

8The presence or absence of spoiler types or introduction
text is adjusted to match the method. The sampling method of
CARP was skipped as the examples were given.
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Hulk
The Shawshank

Redemption
Mean Girls

Blood
Diamond

Human 100 100 100 100
-spoiler 31 43 32 25
-not spoiler 69 57 68 75
LLM 523 1737 445 628
-spoiler 41 148 84 117
-not spoiler 482 1589 361 511

Table 2: Target movies and data size of the dataset.

Human LLM
Hulk 36% 83.2%
The Shawshank Redemption 43% 49.6%
Mean Girls 33% 73.7%
Blood Diamond 25% 74.4%

Table 3: Ratios of modified labels in our relabeling.

6 Detailed Analysis

6.1 Case Study
To investigate how CAST detects spoilers, we ana-
lyze the example of “Blood Diamond” in compar-
ison with CARP. The following contains spoilers
for “Blood Diamond”. In the final scene, the main
character (Leonardo DiCaprio) dies. This content
is clearly a spoiler. The review of Figure 2 includes
this content, but describes it in a roundabout way
(“I was hoping Leo would not die”). CARP is
affected by the roundabout expression and shows
poor performance, i.e., the spoiler level of about
0.78 is moderately high. On the other hand, in
CAST, we can see that the spoiler types, e.g., “life
or death”, selected dynamically lead the LLM to
output a very high spoiler level of about 0.97.

6.2 Useful Issues
We present several issues that we noticed in the
experiments, which could contribute to our future
research.

6.2.1 LLM is sensitive to cruel scenes
LLM over-identifies scenes involving injury or
death as spoilers. Usually, commenting on an in-
jury of a sub-character, especially toward the be-
ginning of the movie, is not a spoiler. This movie,
“Blood Diamond”, is set in a war zone and thus
contains many violent scenes, which are related to
the spoiler type “life or death”. Not only CAST
but also CARP and CoT are subject to this kind
of false positives, as they all employ LLMs. A

CARP
input: I was hoping Leo would not
die I really wanted him to get out of
Africa, but Zwick isn’t about happy
endings which i admire.
clue: “Leo”, “die”, “Zwick isn’t
about happy endings”.

→ spoiler level: 0.7886 △

CAST
input: I was hoping Leo would not
die I really wanted him to get out of
Africa, but Zwick isn’t about happy
endings which i admire.
clue: “Leo”, “die”, “Africa”.
spoiler types: life or death, true
identity, development of the story,
victory or defeat, problem occurs.

→ spoiler level: 0.9729 ⃝

Figure 2: Example of spoiler detection in a review of
“Blood Diamond”.
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Hulk
The Shawshank

Redemption
Mean Girls

Blood
Diamond

Human Relabel

Llama2-13B

CoT 0.7447 0.7209 0.8162 0.7072
+i 0.7176 0,7187 0.8580 0.7211
-r 0.6397 0.7340 0.7762 0.6450
+i -r 0.7218 0.7546 0.8736 0.5691
CARP 0.7433 0.7623 0.8350 0.6651
-f 0.6840 0.8209 0.6719 0.6347
+i 0.7087 0.7325 0.8244 0.6705
-r 0.7555 0.7475 0.7992 0.6373
+i -r 0.7129 0.7823 0.8534 0.5968
CAST 0.7685 0.7638 0.8208 0.7056
-f 0.7162 0.7825 0.7849 0.5696
+i 0.7761 0.7813 0.8603 0.6863

Llama3.1-8B
CARP +i -r 0.7232 0.7987 0.8470 0.7109
CAST +i 0.7377 0.8184 0.8732 0.7701

LLM Relabel

Llama2-13B
CARP +i -r 0.8505 0.8149 0.8272 0.7283
CAST +i 0.8219 0.8467 0.8273 0.7395

Table 4: ROC-AUC of the spoiler levels of each methods for four movies from the IMDb dataset (Misra, 2022). “-f”
represents a case that the prompt contains no few-shot example. “+i” represents a case that the prompt contains
an introduction of the movie. “-r” represents a case without reasoning, which corresponds to our CAST. “+r”
represents a case with reasoning, of which details will be explained in Section 7.2. The highest value for each film
is highlighted in bold fonts, the second highest in underlined.

Hulk
The Shawshank

Redemption
Mean Girls

Blood
Diamond

AllType 0.7602 0.7772 0.8695 0.6768
Embedding 0.7662 0.7764 0.8355 0.6645
LLM(k = 1) 0.7017 0.7919 0.8125 0.6864
LLM(k = 3) 0.7639 0.7597 0.8566 0.6704
LLM(k = 5) 0.7761 0.7813 0.8603 0.6863

Table 5: ROC-AUC for each spoiler type selection method.
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Hulk
The Shawshank

Redemption
Mean Girls

Blood
Diamond

CARP +reasoning 0.7087 0.7325 0.8244 0.6705
CARP -reasoning 0.7120 0.7746 0.8621 0.6277
CAST +reasoning 0.7139 0.7195 0.8235 0.7072
CAST -reasoning 0.7761 0.7813 0.8603 0.6863

Table 6: ROC-AUC for each method with and without reasoning.

input: The rebels make a speech
and then cut some kids arm off,
then there ready to do the same to
Solomon, but the rebel leader decides
to spare him and take him as a pris-
oner and use him as a worker, then
the movie continues on from there.
clue: “cut some kids arm off”,
“spare him and take him as a pris-
oner”.
spoiler type: life or death, problem
occurs, development of the story,
past, status/power.

→ spoiler level: 0.9997

Figure 3: Example which shows LLM is sensitive to
cruel scenes.

possible solution would be to strengthen the movie
introduction to discourage LLM from reacting to
the early scenes, or to use the synopsis included in
the IMDb dataset (Misra, 2022) to convince LLM
that the scenes are not important.

6.2.2 Spoiler type can increase false positive

Although spoiler types provide evidence of spoil-
ers and contribute to lowering the false negative
rate (Figure 2), they may also help to judge a non
spoiler example as a spoiler. We show an example
in Figure 4, which includes known descriptions
of the main character in “Hulk”. Unlike CARP (-
reasoning) which appropriately gives a low spoiler
level (0.1556), our CAST gave a high spoiler level
due to the spoiler types “past” and “character fea-
tures”. Possible solutions include explaining in the
prompt that some reviews may not be spoilers even
if they match the spoiler type, or setting types also
to the class of not spoiler. We suspect that there are
about three such types but believe we need more
evidence for further investigation.

input: Young Bruce grows up in an
adopted family, never knowing what
happened to his birth parents nor that
he may be carrying abnormal genes
as a result of his father’s work.
clue: “Young Bruce”, “never know-
ing”, “abnormal genes”.
spoiler type: past, character features,
true identity, development of the
story, problem occurs.

→ spoiler level: 0.9430

Figure 4: Example which shows spoiler types lead to an
excessive spoiler level.

7 Ablation Study

7.1 Methods for Selecting Types
We evaluate the effect of our spoiler type selection
in Section 4.1, which we call LLM. Here, we set
the number of choices k = 1, 3, 5 and use Llama2
(Touvron et al., 2023) as our LLM.

As an alternative, we introduce another method
which we call Embedding. Following the Dense
Passage Retriever (DPR) (Karpukhin et al., 2020),
we selected the spoiler type by the cosine simi-
larity between the embedding vectors of the clues
and the spoiler type. The embedding model is
RoBERTa (Liu et al., 2019), which is fine-tuned on
the spoiler domain dataset (Wan et al., 2019) and
its paraphrases by Llama2-13B. The loss function
is the same as DPR.

As a baseline method, we also compare AllType
that does not select spoiler types and uses all of
them. The experimental settings are based on Sec-
tion 5. We use the human-relabeled datasets. The
results are shown in Table 5. Overall, we conclude
that the results of LLM (k = 5) is the best. Fur-
thermore, an example is shown in Figure 5. This
example is about “the death of a person”, but Em-
bedding cannot select “life or death”, resulting in
a false negative. In contrast, LLM is able to cor-
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Embedding
input: I was hoping Leo would not
die I really wanted him to get out of
Africa, but Zwick isn’t about happy
endings which i admire.
clue: “Leo”, “die”, “Africa”.
spoiler type: problem occurs, past,
trick, character features, appearance,
character relationships.

→ spoiler level: 0.5457

LLM (k = 5)
...
spoiler type: life or death, true iden-
tity, development of the story, victory
or defeat, problem occurs.

→ spoiler level: 0.9729

Figure 5: Comparison of Select type methods: Embed-
ding and LLM (k = 5).

rectly select the spoiler type, and the output is also
correct. We used in the main experiments LLM
(k = 5) as our selection method.

7.2 Effect of Reasoning
Though reasoning is said to enhance the perfor-
mance of LLM (Wei et al., 2022; Kojima et al.,
2022; Sun et al., 2023), several researchers argue
against it. Chen et al. (2024) point out several cases
in which reasoning increases the probability of an
incorrect output in text classification. Therefore,
we investigate the effect of reasoning in CARP and
CAST. We write “+reasoning” and “-reasoning” for
with and without reasoning, respectively. We give
their prompts at the end of the Appendix. The ex-
perimental settings are based on Section 5. We use
the human-relabeled datasets.

The results are shown in Table 6. In both CARP
and CAST, “-reasoning” performs better. In fact,
there are almost no case where the correct answer
is obtained through reasoning. We conclude that
reasoning is unnecessary for our spoiler detection.

8 Conclusion

We show that in the field of spoiler detection, where
there is a lack of high-quality datasets, adding three
kinds of hints improves the performance of LLM-
based spoiler review detection of a movie. It is no
wonder that the introduction text and the few exam-

ples for few-shot learning are useful, as they repre-
sent typical domain knowledge and representative
cases. The types that we used represent subclasses
of the positive class. Our prompts instructs their
effective selection and usage, which could be also
useful in other text classification problems.

Our future research includes defining better
spoiler types as well as setting non-spoiler types.
Such types or sub-classes could be set dynamically
according to the given reviews, the introduction
text, and the few examples for few-shot learning.
Utilizing other kinds of additional data such as
synopses would deepen our understanding on the
target domain and the prompt engineering.
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A Details of the Experiments

We show important events of each movie in Table
7. Each sentence is taken from plot synopsis of
IMDb movie details in the IMDb Dataset (Misra,
2022). We show the prompts of baseline meth-
ods in Table 8. We show the introduction text of
each movie in Table 9. Each text is taken from the
movie’s IMDb page.

We show the reviews, the clues, the spoiler types,
the reasonings, and the answers used in the few-
shot learning in Tables 10 and 11.

We also show the introduction texts in the few-
shot learning in Table 12.

We show the prompts with and without reason-
ing for CARP and CAST.

CARP
prompt of + reasoning

This is a Spoiler Detection for input
movie reviews.
List CLUES (i.e., keywords, phrases,
contextual information, semantic
meaning, semantic relationships, tones,
references) that support the spoiler
detection of the input.
Next, deduce the diagnostic REA-
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Hulk There he proceeds to wreak havoc in the city until Betty arrives
and calms him down.
David taps into a powerline and becomes living electricity. Bruce
transforms into the Hulk and the two men battle.

The Shawshank Redemption Red believes Andy intends to use the hammer to engineer his
escape in the future but when the tool arrives and he sees how
small it is, Red puts aside the thought that Andy could ever use it
to dig his way out of prison.
He goes to a halfway house but finds it impossible to adjust to life
outside the prison. He eventually commits suicide.

Mean Girls In her efforts to get revenge on Regina, Cady gradually loses her
individual personality and remakes herself in the image of Regina.
She soon becomes as spiteful as Regina, abandoning Janis and
Damien and focusing more on her image.
Regina storms out, pursued by an apologetic Cady, and gets hit by
a school bus in her haste.
At the Spring Fling dance, Cady is elected Spring Fling Queen,
but in her acceptance speech, she declares her victory is meaning-
less: they are all wonderful in their own way and thus the victory
belongs to everyone.

Blood Diamond Dia is conscripted into the rebel forces, the brainwashing eventu-
ally turning him into a hardened killer.
Archer holds off the soldiers chasing them while Solomon and Dia
flee, and then makes a final phone call to Bowen, asking her to
help Solomon as a last favor before looking out over the beautiful
landscape of Africa once more and dying peacefully.

Table 7: Important events of each movie.
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CoT (Kojima et al., 2022)
You are detecting “Spoilers” in movie reviews.
“Spoilers” is a description of a significant plot point or other as-
pect of a movie, which if previously known may spoil a person’s
first experience of the work.
A significant plot point is one that cannot be predicted from the
filmś introduction or early developments.
Based on introduction, does the following review contain spoil-
ers?
introduction: [intro]
review: [review]
reasoning: Let’s think step by step. [reasoning]

CARP (Sun et al., 2023)
This is a Spoiler Detection for input movie reviews.
List CLUES (i.e., keywords, phrases, contextual information,
semantic meaning, semantic relationships, tones, references) that
support the spoiler detection of the input.
Next, deduce the diagnostic REASONING process from
premises (i.e., introduction, clues, input) that support the spoiler
detection.
Finally, based on the introduction, the clues, the reasoning and
the input, categorize the overall ANSWER of input as SPOILER
or NOT SPOILER.
introduction: [intro]
review: [review]
clues: [clue]
reasoning: [reasoning]

Table 8: Prompts of the baseline methods.

Hulk Bruce Banner, a genetics researcher with a tragic past, suffers a
lab accident that makes him transform into a raging, giant green
monster when angered, making him a target of forces seeking to
abuse his power.

The Shawshank Redemption A banker convicted of uxoricide forms a friendship over a quarter
century with a hardened convict, while maintaining his innocence
and trying to remain hopeful through simple compassion.

Mean Girls Cady Heron is a hit with The Plastics, the A-list girl clique at
her new school, until she makes the mistake of falling for Aaron
Samuels, the ex-boyfriend of alpha Plastic Regina George.

Blood Diamond A fisherman, a smuggler, and a syndicate of businessmen match
wits over the possession of a priceless diamond.

Table 9: Introduction texts of the movies.
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Million Dollar Baby input: I can’t find any reason for not loving this movie as much as
possible.
clues: “I can’t find”, “loving”.
spoiler type: life or death, character features, development of the
story, appearance.
reasoning: This review is just an opinion like “can’t find” and
“loving” and does not touch on the content of the movie. Therefore,
it does not match the spoiler type.
answer: NOT SPOILER.
input: When Maggie finally gets her title fight, an illegal punch by
her monster-like opponent sends her to the mat, landing head-first
on her corner stool- an event which in real life would disqualify her
opponent and possibly concuss Maggie instead wins her opponent
the fight and renders Maggie paralyzed, bedridden and ventilator-
dependent for the rest of her miserable life.
clues: “an illegal punch”, “Maggie paralyzed, bedridden”, “the
rest of her miserable life”.
spoiler type: problem occurs, life or death, character features, past,
character relationships, development of the story, appearance.
reasoning: This review is about Maggie suffering a concussion
and becoming bedridden, an event that changes her life and is a
key plot of the movie. Therefore, this review matches “problem
occurs” and “development of the story”.
answer: SPOILER.

The Fast and the Furious input: It is plot is plain and predictable but because it’s unique
itself and is origin of all illegal street racing movies so this makes
the meaning of the plot inconsequential.
clues: “plot is plain and predictable”.
spoiler type: past, trick, appearance.
reasoning: This review criticizes the storyline but does not reveal
any specifics. Therefore, it does not match the spoiler type.
answer: NOT SPOILER.
input: It’s beautiful to see Brian and Dom at the end: Brian
betrayed him and should arrest him but instead, they do the 10
second-race and don’t know what to think about each other.
clues: “It’s beautiful to see Brian and Dom”, “Brian betrayed him”,
“should arrest him”, “the 10 second-race”.
spoiler type: life or death, true identity, character features, trick,
past, character relationships, appearance, development of the story.
reasoning: This review is about the last scene of the movie and
my thoughts on that scene. Although it contains thoughts, this
review contains the important plot of the last scene of the movie.
Therefore, this review matches “character relationships” and “de-
velopment of the story”.
answer: SPOILER.

Table 10: Reviews, the clues, spoiler types, the reasonings, and the answers used in few-shot learning, part 1. The
information to be used is determined according to the conditions of each method (e.g., “reasoning” is omitted for
methods that do not perform reasoning).
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Groundhog Day input: This pattern happens over and over again until he realizes
he cannot escape Groundhog Day.
clues: “happens over and over again”, “cannot escape Groundhog
Day”.
spoiler type: life or death, character relationships, character fea-
tures, appearance.
reasoning: This review talks about the film repeating the same day
over and over again, which is the premise of the film and is also
used in the film’s introduction. Therefore, it does not match the
spoiler type.
answer: NOT SPOILER.
input: As, most notably, is the way that Andie MacDowell’s Rita
can so magically change her opinion of Phil the second that she
finds out that he plays an instrument.
clues: “Rita”, “magically change her opinion”.
soiler type: problem occurs, character relationship, life or death,
character features, trick, appearance.
reasoning: The review notes that Rita eventually develops feelings
for Connors, which is a key plot point in the film’s final conclusion.
Therefore, this review matches “tricks” and “character relation-
ship”.
answer: SPOILER.

Match Point input: Sensing an opportunity to climb the social ladder he starts
seeing her just as he meets Nola Rice (Scarlett Johanssen), an
aspiring American actress, whom he openly flirts with until he
realizes she’s Tom’s girlfriend, but an outsider in the Wilton house-
hold.
clues: “starts seeing her”, “he openly flirts”.
spoiler type: past, character features, trick.
reasoning: The review notes that Chris begins an affair, but this is
just an introduction to the film and not a major plot point. There-
fore, it does not match the spoiler type.
answer: NOT SPOILER.
input: Then she starts to get clingy and so he kills her.
clues: “starts to get clingy”, “he kills her”.
spoiler type: problem occurs, life or death, true identity, character
features, appearance.
reasoning: The review is about a woman who becomes annoyed
with a man and ends up killing her. Therefore, this review matches
“life or death” and “problem occurs”.
answer: SPOILER.

Table 11: Reviews, the clues, spoiler types, the reasonings, and the answers used in few-shot learning, part 2.
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Million Dollar Baby Frankie, an ill-tempered old coach, reluctantly agrees to train
aspiring boxer Maggie. Impressed with her determination and
talent, he helps her become the best and the two soon form a close
bond.

The Fast and the Furious Los Angeles police officer Brian O’Conner must decide where
his loyalty really lies when he becomes enamored with the street
racing world he has been sent undercover to end it.

Groundhog Day A narcissistic, self-centered weatherman finds himself in a time
loop on Groundhog Day.

Match Point At a turning point in his life, a former tennis pro falls for an actress
who happens to be dating his friend and soon-to-be brother-in-law.

Table 12: Introduction texts of the movies in the few-shot learning.

SONING process from premises (i.e.,
introduction, clues, input) that support
the spoiler detection.
Finally, based on the introduction, the
clues, the reasoning and the input,
categorize the overall ANSWER of
input as SPOILER or NOT SPOILER.
introduction: [intro]
review: [review]
clues: [clue]
reasoning: [reasoning]
answer:

prompt of – reasoning
This is a Spoiler Detection for input
movie reviews.
List CLUES (i.e., keywords, phrases,
contextual information, semantic
meaning, semantic relationships, tones,
references) that support the spoiler
detection of the input.
Finally, based on the introduction,
the clues and the input, categorize
the overall ANSWER of input as
SPOILER or NOT SPOILER.
introduction: [intro]
review: [review]
clues: [clue]
answer:

CAST
prompt of + reasoning

This is a Spoiler Detection for input
movie reviews.
“Spoilers” is a description of a signif-
icant plot point or other aspect of a
movie, which if previously known may
spoil person’s first experience of the

work.
A significant plot point is one that
cannot be predicted from the film’s
introduction or early developments.
List CLUES (i.e., keywords, phrases,
contextual information, semantic
meaning, semantic relationships, tones,
references) that support the spoiler
detection of the input.
Next, deduce the diagnostic REA-
SONING process from premises (i.e.,
introduction, clues, input) that support
the spoiler detection.
Finally, based on introduction, clues,
spoiler types, the reasoning and
the input, categorize the overall
ANSWER of input as SPOILER or
NOT SPOILER.
introduction: [intro]
review: [review]
clues: [clue]
spoiler type: [types]
reasoning: [reasoning]
answer:

prompt of - reasoning

This is a Spoiler Detection for input
movie reviews.
“Spoilers” is a description of a signif-
icant plot point or other aspect of a
movie, which if previously known may
spoil a person’s first experience of the
work.
A significant plot point is one that
cannot be predicted from the film’s
introduction or early developments.
List CLUES (i.e., keywords, phrases,
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contextual information, semantic
meaning, semantic relationships, tones,
references) that support the spoiler
detection of the input.
Finally, based on introduction, clues,
spoiler types, and the input, categorize
the overall ANSWER of input as
SPOILER or NOT SPOILER.
introduction: [intro]
review: [review]
clues: [clue]
spoiler type: [types]
answer:
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Abstract

We present a comprehensive evaluation of
structured decoding for text-to-table generation
with large language models (LLMs). While
previous work has primarily focused on un-
constrained generation of tables, the impact of
enforcing structural constraints during gener-
ation remains underexplored. We systemati-
cally compare schema-guided (structured) de-
coding to standard one-shot prompting across
three diverse benchmarks - E2E, Rotowire, and
Livesum - using open-source LLMs of up to
32B parameters, assessing the performance
of table generation approaches in resource-
constrained settings. Our experiments cover
a wide range of evaluation metrics at cell, row,
and table levels. Results demonstrate that struc-
tured decoding significantly enhances the valid-
ity and alignment of generated tables, particu-
larly in scenarios demanding precise numerical
alignment (Rotowire), but may degrade perfor-
mance in contexts involving densely packed
textual information (E2E) or extensive aggrega-
tion over lengthy texts (Livesum). We further
analyze the suitability of different evaluation
metrics and discuss the influence of model size.

1 Introduction

Automatically converting text into structured ta-
bles has become a key challenge in information
extraction and data-driven reporting. By convert-
ing unstructured content into tables, downstream
tasks such as knowledge-base construction (Liu
et al., 2023; Kruit et al., 2020), document summa-
rization, and web chatbot readability (Chen et al.,
2025) can be improved. Early work framed the task
as a sequence-to-sequence learning problem using
encoder-decoder architectures (Wu et al., 2022),
while the more recent approaches leverage LLMs
with different prompting techniques, often over
multiple stages. While recent advances in con-
strained decoding and grammar-based generation
have led to improvements in structured output tasks,

these methods have not yet been systematically
applied to the text-to-table task. As a result, the
impact of enforcing structural constraints during
generation remains underexplored. Our contribu-
tion is as follows: We compare schema-guided
decoding to one-shot prompting on E2E, Rotowire,
and Livesum to assess how schema enforcement
impacts validity and semantic quality of the result-
ing markdown tables at the cell, row, and table
levels. We also examine model-size effects using
open-source LLMs up to 32B parameters and eval-
uate metric suitability to guide future text-to-table
research.

2 Related work

The Text-to-Table generation task was introduced
by (Wu et al., 2022), who framed it as a sequence-
to-sequence learning problem within the field of
information extraction. They were using fine-tuned
BART-based models on pairs of texts and tables to
predict table representations based on the textual
input. Further works have been using Large Lan-
guage Models (LLMs) to solve the problem, with
key differences regarding the type of generated
markup sequence for table representation (Tang
et al., 2024), their prompting techniques (Coyne
and Dong, 2024), underlying datasets and whether
the overall table format (schema) was provided
to the model or not. The majority of the works
was providing the table schema either while train-
ing or prompting (Coyne and Dong, 2024; Jiao
et al., 2023; Tang et al., 2024), while the recent
work of Ahuja et al. (2025) did not. While these
prior studies have advanced text-to-table genera-
tion using either large-scale proprietary models or
fine-tuned open-source LLMs—often ranging from
7B to 70B parameters or more, our work system-
atically investigates schema-guided decoding in
smaller, publicly available open-source models. Re-
cent advances in generative artificial intelligence
have shown, that the generation of structured out-
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puts, such as tables, could benefit from constrained
decoding strategies (Park et al., 2025; Geng et al.,
2023). Notably, Geng et al. (2023) found that
”grammar-constrained LMs substantially outper-
form unconstrained LMs” on structured NLP tasks
like information extraction and constituency pars-
ing, while Tam et al. (2024) found, that these decod-
ing strategies degrade the semantical correctness
of generated outputs. Most existing evaluations fo-
cus on general text generation or specialized NLP
tasks, suggesting that the impact of constrained
decoding is task-dependent. This leaves gaps in
our understanding of how constraints affect content
generation for structured data representations, such
as tabular data.

3 Methodology

3.1 Data

Our benchmarking data consists of three datasets,
each with distinct characteristics spanning a spec-
trum of text-to-table challenges: the E2E dataset
(Novikova et al., 2017), the Rotowire dataset (Wise-
man et al., 2017), and the Livesum dataset (Deng
et al., 2024). E2E and Rotowire were originally de-
signed for the Table-to-Text generation task, while
Livesum was specifically created for the Text-to-
Table task. E2E and Rotowire, along with Wik-
iTableText (Bao et al., 2018) and WikiBio (Lebret
et al., 2016), were repurposed for Text2Table eval-
uation by Wu et al. (2022). However, aside from
Rotowire, these repurposed datasets lack structural
diversity, as they only feature simple tables with
two columns. For this reason, we only include E2E
as a representative of simple tables in our experi-
ments.

Descriptive statistics on the datasets show that
while the input texts for E2E are very short, with
an average of 24 words, the sizes in the other two
datasets are significantly larger: Rotowire with an
average of 308 words, and Livesum with 1,138
words on average (see Table 1). While E2E and
Livesum show a uniform distribution of row- and
column sizes, the Rotowire tables have a greater
diversity regarding their sizes. E2E, sourced from
the restaurant domain, consists of short textual de-
scriptions paired with two-row tables summarizing
restaurant attributes. Its focus lays on extracting
textual information from short texts into simple ta-
bles. The Rotowire dataset originates in the sport
domain and is a widely used benchmark in natu-
ral language generation and information extraction

(Sharma et al., 2024; Puduppully et al., 2019). Each
example contains one or more tables of statistics
on basketball players and teams (e.g., points, as-
sists, rebounds), paired with human-written game
summaries and it requires the identification and
assignment of sparsely mentioned numerical statis-
tics to player and team tables. Livesum (Deng et al.,
2024) also comes from the sports domain and com-
prises live soccer commentaries together with team
statistics. It demands the truthful aggregation of
atomic extraction units, such as individual events
(e.g., goals, fouls), that are distributed throughout
a longer text and organize them into comprehen-
sive tables, a task that likely demands enhanced
reasoning capabilities of the models.

Game Summary:
The Atlanta Hawks (46 - 12) beat the Orlando Magic (19 - 41) 95 - 88 on
Friday. Al Horford had a good all - around game, putting up 17 points, 13
rebounds, four assists and two steals in a tough matchup against Nikola
Vucevic. Kyle Korver was the lone Atlanta starter not to reach double
figures in points. Jeff Teague bounced back from an illness, he scored 17
points to go along with seven assists and two steals. After a rough start
to the month, the Hawks have won three straight and sit atop the Eastern
Conference with a nine game lead on the second place Toronto Raptors.
The Magic lost in devastating fashion to the Miami Heat in overtime
Wednesday. They blew a seven point lead with 43 seconds remaining and
they might have carried that with them into Friday’s contest against the
Hawks. Vucevic led the Magic with 21 points and 15 rebounds. Aaron
Gordon (ankle) and Evan Fournier (hip) were unable to play due to injury.
The Magic have four teams between them and the eighth and final playoff
spot in the Eastern Conference. The Magic will host the Charlotte Hornets
on Sunday, and the Hawks will take on the Heat in Miami on Saturday.

Team:
Team Losses Total points Points in 4th quarter Wins
Hawks 12 95 46
Magic 41 88 21 19

Player:
Player Assists Points Total rebounds Steals
Nikola Vucevic 21 15
Al Horford 4 17 13 2
Jeff Teague 7 17 2

Figure 1: Example from the Rotowire dataset showing a
game summary with the corresponding team and player
box scores.

3.2 Prompting & Generation

For generating structured tables from text using
Large Language Models (LLMs), we follow two
different methods: free-form (unstructured) gener-
ation and schema-guided (structured) decoding.

In the free-form approach, LLMs generate a
markdown sequence for a given input text. A
one-shot instruction prompt, empirically refined
through iterative experimentation, encourages the
model to adhere to the desired table output format.
Specifically, we provide the intended table struc-
ture in the prompt, specifying header cells as well
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Table Input Text
Dataset N Rows min Rows max Rows mean Cols min Cols max Cols mean N Word min Word max Word mean
E2E 4693 2 2 2.00 1 7 5.40 4693 4 71 24.06
RW Teams 687 2 3 2.91 1 9 4.22

728 135 695 308.36
RW Players 724 2 16 7.49 1 17 7.94
LiveSum 754 3 3 3.00 9 9 9.00 754 724 1760 1138.40

Table 1: Descriptive statistics of the gold table data and the input texts for each dataset. For the Rotowire dataset we
show two rows that correspond to the different table types (Teams and Players).

as the number of columns and rows, inspired by
Tang et al. (2024).

In contrast, the schema-guided approach en-
forces tighter structural guarantees through decod-
ing constraints defined by a provided JSON schema.
To enable constrained decoding for structured ta-
ble generation, we implement a schema builder
that dynamically constructs a nested JSON schema
based on the table layout specified by the row and
column headers in the gold data. Cell values are
represented as nullable integers, while both row
and column headers are constrained to predefined
values.

ONE-SHOT
Instruction Prompt

Model

Team Table
TEAM Wins Pts
Hawks 46 95
Magic 19 88

Player Table
PLAYER Points Ast.

A. Horford 17 4
J. Teague 17 7

N. Vucevic 21

Guided Decoding Prompt

Model

Constrained Decoder

{
"Team": {
"Hawks": {
"wins": 46, ...

},
...

},
"Player": {
"Nikola Vucevic": {
"points": 21,
"assists": null, ...

},
...

}
}

(b) Guided Decoding w/ Structured JSON(a) Open Prompt w/ Markdown Tables

Pythonic
JSON

Schema

Figure 2: Comparison of open prompting and guided
decoding. In guided decoding, the decoder component
is constrained to a Pythonic JSON schema.

3.3 Parsing & Post-processing

The postprocessing step of the schema guided ap-
proach is comparatively simple. The LLM emits
JSON with Pydantic-safe keys, while the schema
keeps the true column names in each property’s
title metadata. We swap every key for its title (e.g.,
total points→ ‘Total Points’), then turn each
top-level object into a pandas DataFrame.

In case of unstructured (free-form) generation of
markdown tables, Large language models (LLMs)
often ignore rigid “table-only” instructions. Even
when explicitly asked to emit nothing but a Mark-
down table, they may

• prepend or append free-form prose,

• break a single table with stray blank lines or
malformed rows, or

• return several distinct tables in succession.

To robustly recover well-formed tabular data un-
der all of these failure modes, we adopt a two-stage,
candidate-based pipeline: we first extract every
pipe-delimited region that could be a table, then
validate each region against Markdown’s structural
rules. This separation lets us (i) retain all legiti-
mately produced tables, regardless of how many
the model generates. This is particularly impor-
tant for the Rotowire dataset, where the expected
output frequently consists of two tables; and (ii)
pinpoint exactly where and why a malformed can-
didate breaks the specification.

1. Candidate extraction. We scan the raw LLM
output line-by-line, grouping together each maxi-
mal run of lines that begin with a pipe (|). Every
such run becomes a candidate block: it might be a
complete table, a fragment, or just arbitrary pipe-
separated text. Because we postpone any judgment
of correctness, no genuine table can be missed.

2. Table validation & parsing. Each candidate
block is subjected to four sequential regex checks:

(i) Header integrity. The first line must start and
end with | and contain at least one non-pipe
character between consecutive pipes.

(ii) Separator row. The second line must also
be pipe-delimited and include at least three
hyphens per column (optionally flanked by
colons), satisfying Markdown’s header-body
separation rule.
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(iii) Row consistency. Every subsequent line must
open and close with | and, when split on
pipes, yield the same number of cells as the
header, guaranteeing a uniform column align-
ment.

(iv) Table size. Each table must have at least three
rows: One header, one separator and one data
row.

Only candidates that pass all four checks are split
on pipes, trimmed of whitespace, and assembled
into a structured grid (e.g., a DataFrame). Fail-
ures, such as missing pipes, malformed separators,
or mismatched cell counts, raise specific errors, en-
abling fine-grained diagnostics of LLM formatting
bugs.

Because the extraction and validation steps oper-
ate on each candidate independently, the pipeline
naturally recovers valid tables in their original or-
der, even when a single model invocation produces
multiple tables.

3.4 Evaluation

For constructing a mapping between table candi-
dates and gold table we are following a greedy table
assignment approach. For each candidate table we
are scoring the overlap between its column headers
and the gold table using case-insensitive match-
ing. The candidate table with the highest score is
then assigned for evaluation and if there is not at
least one table with at least one overlapping column
header found in the candidates for evaluation, we
mark the table as missing.

3.4.1 Metrics
For assessing the quality of the generated tables
we report performance at three granularity levels:
Cell-Level, Row-Level, and Table-Level. At the
strictest level, we measure table accuracy, defined
as the proportion of tables where every normalized
predicted cell exactly matches the corresponding
gold cell. At the row-level, we count a true positive
(TP) as a predicted row that exactly matches a gold
row (order-agnostic), a false positive (FP) as an
extra predicted row, and a false negative (FN) as a
missing gold row—suitable when rows represent
unique entities (e.g., player or team statistics). At
the cell-level, TP occurs when predicted and gold
values exactly match after normalization, FP when
a predicted cell exists but the gold cell does not,
and FN when a gold value exists but the prediction

is missing or incorrect. We then report F1 scores at
both cell and row levels.

We calculate the ROUGE-L Score (Lin, 2004)
and the Levenshtein ratio, a normalized measure
derived from Levenshtein distance (Levenshtein,
1966), to quantify string similarity upon table level,
after transforming the DataFrame into a table se-
quence, by deterministically applying a minimal
markdown table format. We also calculate the Lev-
enshtein ratio positionally on cell-level and cal-
culate the average over every (non-header) cell,
treating missing cells as empty strings.

For the Rotowire and Livesum datasets, we fur-
ther calculate Root Mean Square Error (RMSE),
since their inner cells are numeric. All metrics ex-
clude header cells, as these are always provided by
the schema-containing prompts. The metrics are
only calculated on tables that were present in the
generated output. Missing tables therefore do not
influence the calculation per metric, but we keep
track of the actual presence of expected tables in
the generated outputs.

3.5 Experimental Setup

Our experiments were performed on a single
node of the high-performance computing cluster
at the scientific computing cluster of the Univer-
sity of Leipzig1. The node contains two AMD(R)
EPYC(R) 7713 CPUs with 64 cores each, 1TB
RAM and eight Nvidia A30 GPUs, each with
24GB HBM2 RAM. For the generation we lever-
age the vLLM library (Kwon et al., 2023), with
a unified setup over all evaluated models: A
temperature of 0.0, a max model len of
6144 and max new tokens of 4096. For struc-
tured decoding we are using the xgrammar pack-
age. The code we used for generating and evaluat-
ing our models was made available in our Gitlab
Repository2.

4 Results

4.1 E2E

The Cell Level metrics, Levenshtein and F1, show
in general higher values than the ones for row
and table level. In comparison to Levenshtein and
Rouge-L on Table Level we see - apart from the
outlier - a clear expressed gain in performance with
rising parameter sizes.

1https://www.sc.uni-leipzig.de/
2https://github.com/JulianOestreich90/

text2table
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Presence (%) Cell Row Table
Model F1 Levenshtein F1 Accuracy Levenshtein ROUGE-L

U S U S U S U S U S U S U S
Qwen2.5-0.5B-Instruct 99.66 100.00 0.724 0.519 0.804 0.753 0.231 0.060 0.217 0.060 0.888 0.864 0.871 0.831
Qwen2.5-1.5B-Instruct 99.34 100.00 0.845 0.763 0.912 0.860 0.436 0.295 0.436 0.295 0.943 0.908 0.943 0.898
Qwen2.5-3B-Instruct 99.91 100.00 0.822 0.832 0.876 0.906 0.383 0.431 0.381 0.431 0.939 0.930 0.936 0.937
Qwen2.5-7B-Instruct 99.98 100.00 0.888 0.787 0.932 0.867 0.561 0.314 0.561 0.314 0.950 0.917 0.954 0.913
Qwen2.5-14B-Instruct 100.00 100.00 0.891 0.850 0.934 0.910 0.570 0.474 0.570 0.474 0.953 0.931 0.957 0.940
Qwen2.5-32B-Instruct 100.00 95.50 0.883 0.728 0.931 0.807 0.531 0.229 0.531 0.229 0.953 0.874 0.954 0.861
Falcon3-1B-Instruct 97.49 100.00 0.595 0.752 0.672 0.825 0.039 0.197 0.038 0.197 0.877 0.905 0.822 0.888
Falcon3-3B-Instruct 99.49 100.00 0.871 0.758 0.920 0.860 0.507 0.279 0.507 0.279 0.949 0.911 0.951 0.903
Falcon3-7B-Instruct 99.96 100.00 0.880 0.836 0.932 0.905 0.548 0.443 0.548 0.443 0.952 0.930 0.954 0.933
Falcon3-10B-Instruct 100.00 100.00 0.881 0.786 0.930 0.866 0.547 0.295 0.546 0.295 0.951 0.917 0.955 0.910
Phi-4-mini-Instruct 100.00 100.00 0.838 0.707 0.885 0.846 0.439 0.208 0.439 0.208 0.944 0.900 0.944 0.890
Phi-4 100.00 100.00 0.818 0.727 0.850 0.828 0.401 0.198 0.401 0.198 0.945 0.902 0.946 0.889

Table 2: Evaluation metrics on the E2E test set. For each metric, Unstructured (U) and Structured (S) results are
shown with the best model in bold and second best model underlined.

4.2 Rotowire

The evaluation results (Table 3, Table 4) demon-
strate that guided (structured) decoding consis-
tently improves model performance on the Ro-
towire dataset. Across both Team and Player tables,
all evaluated models achieve high table presence
rates, with structured decoding frequently reaching
or approaching 100%. Notably, the smallest model
(Qwen2.5-0.5B-Instruct) generates only 43% of
player tables in the unstructured setting, but rises
to 99.4% with guided decoding. For all core met-
rics - RMSE, cell F1, cell cell Levenshtein, row F1,
table exact match, Levenshtein, and ROUGE-L -
structured outputs generally yield equal or higher
scores than unstructured ones. The lowest RMSEs
are observed for the largest Qwen2.5 models with
structured decoding (e.g., 1.78 for Player, 6.05 for
Team). Both cell F1 and Lev-F1 scores are maxi-
mized in structured outputs of larger Qwen2.5 and
Falcon models, frequently exceeding 0.96.

An analysis of the errors that occured, when
validating the table candidates in the unstructured
outputs show (Figure 3), that by far the most com-
mon error type is the column missmatch. For all
different model families these error is reduced con-
stantly with an increase of model size, however the
Qwen and the Falcon family show a rise of candi-
date errors for the biggest evaluated models (32B
and 10B respectively). When comparing Falcon3-
7B and Falcon3-10B, it is to note, that while the
table presences only drop by 1%, the amount of
candidate errors rises overproportional.

4.3 Livesum

Results on the Livesum dataset (Table 5) indicate
that, while structured decoding increases the pres-
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Figure 3: Distribution of errors for parsing the table can-
didates from unstructured generation on the Rotowire
dataset. ‘Invalid row’ errors combine all errors with
invalid separator line, invalid headers and invalid data
rows. Tables are classified as ‘Too few rows’ with less
than 3 rows and ‘Column mismatch’ occurs when the
amount of columns over the table rows does not align.

ence rate always to 100%, it does not consistently
improve table quality. For most cell-level metrics,
unstructured outputs usually achieve better values.
Importantly, none of the generated tables - regard-
less of decoding strategy - perfectly matches the
ground truth, as evidenced by the absence of exact
matches at both row and table levels.

5 Discussion

5.1 Decoding Strategy across Tasks

Our results proved, that structured decoding consis-
tently boosts the presence of valid tables across all
three benchmarks: malformed outputs are far less
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Presence (%) Cell Row Table
Model RMSE F1 Levenshtein F1 Exact Match Lev ROUGE-L

U S U S U S U S U S U S U S U S
Qwen2.5-0.5B-Instruct 98.4 99.7 33.16 35.94 0.597 0.722 0.634 0.719 0.025 0.026 0.010 0.020 0.888 0.937 0.723 0.739
Qwen2.5-1.5B-Instruct 100.0 100.0 39.57 17.77 0.619 0.859 0.581 0.847 0.042 0.140 0.031 0.090 0.949 0.961 0.874 0.839
Qwen2.5-3B-Instruct 99.9 100.0 43.85 14.35 0.595 0.883 0.549 0.853 0.042 0.194 0.031 0.108 0.962 0.964 0.917 0.857
Qwen2.5-7B-Instruct 99.7 100.0 38.85 9.72 0.639 0.921 0.563 0.878 0.108 0.346 0.068 0.194 0.972 0.976 0.946 0.904
Qwen2.5-14B-Instruct 100.0 100.0 33.68 6.33 0.764 0.964 0.705 0.939 0.105 0.605 0.038 0.426 0.983 0.989 0.969 0.959
Qwen2.5-32B-Instruct 96.9 99.4 41.40 6.05 0.623 0.965 0.540 0.939 0.056 0.616 0.017 0.433 0.964 0.989 0.952 0.958
Falcon3-1B-Instruct 96.2 85.7 51.16 37.38 0.370 0.704 0.389 0.780 0.015 0.026 0.015 0.020 0.838 0.923 0.686 0.724
Falcon3-3B-Instruct 98.8 96.5 48.25 30.98 0.501 0.777 0.431 0.824 0.021 0.066 0.019 0.048 0.943 0.946 0.885 0.776
Falcon3-7B-Instruct 100.0 100.0 35.69 10.39 0.730 0.928 0.670 0.886 0.074 0.394 0.033 0.234 0.980 0.980 0.957 0.923
Falcon3-10B-Instruct 100.0 100.0 47.07 7.52 0.595 0.951 0.501 0.919 0.031 0.539 0.020 0.374 0.974 0.986 0.966 0.948
Phi-4-mini-Instruct 100.0 80.3 33.20 32.53 0.750 0.628 0.693 0.553 0.063 0.082 0.031 0.051 0.975 0.951 0.936 0.807
Phi-4 100.0 100.0 47.80 6.44 0.675 0.937 0.527 0.899 0.018 0.600 0.015 0.405 0.967 0.989 0.968 0.957

Table 3: Evaluation metrics on the Team Tables of the Rotowire test set. For each metric, Unstructured (U) and
Structured (S) results are shown with the best model in bold and second best model underlined.

Presence (%) Cell Row Table
Model RMSE F1 Levenshtein F1 Accuracy Levenshtein ROUGE-L

U S U S U S U S U S U S U S U S
Qwen2.5-0.5B-Instruct 43.1 99.4 11.47 10.98 0.661 0.697 0.550 0.633 0.001 0.022 0.000 0.006 0.684 0.925 0.522 0.674
Qwen2.5-1.5B-Instruct 70.9 100.0 8.97 7.97 0.736 0.763 0.630 0.683 0.054 0.105 0.004 0.025 0.854 0.936 0.706 0.747
Qwen2.5-3B-Instruct 88.5 100.0 6.96 4.97 0.751 0.898 0.655 0.835 0.114 0.270 0.026 0.046 0.909 0.945 0.769 0.798
Qwen2.5-7B-Instruct 95.3 100.0 6.19 3.22 0.745 0.938 0.638 0.894 0.133 0.455 0.021 0.112 0.939 0.954 0.846 0.838
Qwen2.5-14B-Instruct 96.3 100.0 4.99 2.19 0.837 0.964 0.756 0.934 0.301 0.623 0.061 0.188 0.962 0.955 0.919 0.851
Qwen2.5-32B-Instruct 77.1 99.4 5.12 1.78 0.794 0.971 0.689 0.946 0.223 0.687 0.037 0.224 0.892 0.957 0.843 0.859
Falcon3-1B-Instruct 35.6 84.1 12.58 14.74 0.649 0.536 0.526 0.532 0.002 0.013 0.001 0.006 0.690 0.872 0.534 0.606
Falcon3-3B-Instruct 92.7 96.7 6.70 7.15 0.663 0.656 0.569 0.585 0.102 0.059 0.015 0.021 0.914 0.933 0.775 0.699
Falcon3-7B-Instruct 95.2 100.0 4.79 3.48 0.854 0.924 0.778 0.874 0.271 0.433 0.059 0.119 0.957 0.954 0.879 0.835
Falcon3-10B-Instruct 94.2 100.0 5.88 2.41 0.780 0.961 0.673 0.930 0.186 0.609 0.026 0.189 0.940 0.956 0.909 0.851
Phi-4-mini-Instruct 87.2 81.1 4.96 7.30 0.859 0.826 0.779 0.731 0.268 0.203 0.038 0.044 0.972 0.952 0.884 0.784
Phi-4 100.0 100.0 6.11 2.01 0.838 0.956 0.733 0.923 0.164 0.634 0.006 0.196 0.970 0.956 0.956 0.852

Table 4: Evaluation metrics on the Player tables of the Rotowire dataset for Unstructured (U) vs. Structured (S)
generation with the best model in bold and second best model underlined.

common than with one-shot prompting. Beyond
mere presence, it improves table quality on both
Rotowire tasks (Team and Player), whereas it is
counterproductive on E2E and Livesum. On the
Rotowire benchmark, the schema eliminates most
errors: even the smallest model (Qwen2.5-0.5B)
shows an increased performance once structured de-
coding is applied, and the gains grow significantly
with parameter size. In contrast, unstructured gen-
eration struggles on team tables to reliably align
values with the correct entities, likely due to the
dense and entangled presentations of statistics for
both teams in the source text. The picture flips
on the E2E dataset: critical attributes are densely
packed within short utterances, and the freedom of
unconstrained decoding lets larger models capture
subtle lexical cues better than a rigid schema. The
results for Livesum show, that even though struc-
tured decoding guarantees full coverage of the ta-
bles it does also not raise the quality metrics. Here
we assume that the reason is due to the high rea-
soning requiring task and aggregating information
over long contexts, a task where already Tam et al.
(2024) showed, that reasoning skills are lowered,

when enforcing high structural constrained.
In short, strict schema-guided decoding is help-

ful when numerical information can be directly
extracted from sparsely spread information in the
text (Rotowire) but can hinder performance when
textual information is densely packed (E2E). For
Livesum, the models must infer final values by ag-
gregating evidence scattered across long articles, a
reasoning-heavy task that neither decoding strategy
handles well.

5.2 Influence of Model Size

Overall, we observe a clear positive relationship
between model size and the validity and quality
of generated tables. However, this trend does not
hold uniformly across all datasets and decoding
methods. Notably, our largest evaluated model,
Qwen2.5-32B, demonstrates superior performance
on the Livesum and Rotowire datasets according
to most metrics, yet it unexpectedly shows reduced
table presence, particularly pronounced on the Ro-
towire dataset in both decoding settings, and on
the E2E dataset with structured decoding. It also
showed significantly reduced table quality with re-
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Figure 4: The influence of Qwen parameter size on the RMSE for unstructured vs. structured generation on the
different table types with numerical cells.

Presence (%) Cell Row Table
Model RMSE F1 Levenshtein F1 Accuracy Levenshtein ROUGE-L

U S U S U S U S U S U S U S U S
Qwen2.5-0.5B-Instruct 99.7 100.0 3.49 7.64 0.481 0.460 0.768 0.755 0.000 0.000 0.000 0.000 0.925 0.922 0.674 0.625
Qwen2.5-1.5B-Instruct 99.6 100.0 3.66 6.37 0.549 0.403 0.789 0.516 0.000 0.000 0.000 0.000 0.931 0.936 0.693 0.690
Qwen2.5-3B-Instruct 96.7 100.0 3.11 2.84 0.562 0.586 0.798 0.783 0.000 0.000 0.000 0.000 0.932 0.937 0.695 0.714
Qwen2.5-7B-Instruct 98.5 100.0 2.91 3.08 0.490 0.571 0.777 0.773 0.000 0.000 0.000 0.000 0.928 0.935 0.683 0.710
Qwen2.5-14B-Instruct 97.1 100.0 2.32 2.81 0.647 0.581 0.826 0.727 0.000 0.000 0.000 0.000 0.942 0.938 0.735 0.727
Qwen2.5-32B-Instruct 99.9 100.0 2.17 2.83 0.670 0.573 0.837 0.693 0.002 0.000 0.000 0.000 0.944 0.939 0.747 0.728
Falcon3-1B-Instruct 82.1 100.0 3.99 7.56 0.440 0.308 0.727 0.713 0.000 0.000 0.000 0.000 0.900 0.879 0.653 0.574
Falcon3-3B-Instruct 92.3 100.0 3.42 5.41 0.528 0.557 0.783 0.790 0.000 0.000 0.000 0.000 0.929 0.932 0.690 0.706
Falcon3-7B-Instruct 100.0 100.0 3.13 5.34 0.577 0.439 0.803 0.515 0.000 0.000 0.000 0.000 0.934 0.924 0.701 0.693
Falcon3-10B-Instruct 100.0 100.0 2.79 4.27 0.579 0.587 0.803 0.750 0.000 0.000 0.000 0.000 0.934 0.936 0.702 0.728
Phi-4-mini-Instruct 100.0 100.0 3.47 6.86 0.595 0.472 0.796 0.505 0.000 0.000 0.000 0.000 0.933 0.939 0.718 0.717
Phi-4 100.0 100.0 2.47 3.01 0.648 0.555 0.826 0.708 0.000 0.000 0.000 0.000 0.942 0.934 0.736 0.720

Table 5: Evaluation metrics on the Livesum test set. For each metric, Unstructured (U) and Structured (S) results are
shown with the best model in bold and second best model underlined.

spect to the metrics, than smaller models of the
same family on E2E. For tables containing numer-
ical values, we further investigated the RMSE to
better reflect true table fidelity, as string-based met-
rics may provide misleading interpretations here.
Larger models typically yielded lower RMSE val-
ues, however, the Rotowire Team Tables showed
consistently high RMSE under unstructured de-
coding, regardless of model size, which suggests
limitations specific to that scenario. In contrast,
structured decoding consistently improved RMSE
performance on these tables.

In summary, while larger models generally
enhance table generation quality and validity,
our work also showed exceptions, particularly
Qwen2.5-32B, where increased model size ad-
versely affects table presence and certain perfor-
mance aspects.

5.3 Suitability of Evaluation Metrics

Our findings indicate a limited suitability of com-
mon NLP metrics at the table level. Despite high
Levenshtein ratios and ROUGE-L scores, the mod-
els never achieve exact row- or table-level matches,
indicating that such metrics may overestimate the
true quality of the generated tables. A similar ob-
servation can be made for finegrained cell level
metrics, such as the F1 Score or Cell-level Leven-
shtein. In contrast, RMSE provides a informative
assessment for numerical tables, directly quanti-
fying the deviation from ground truth, but is not
applicable to tables with textual cells. The strict ex-
act match metrics at row and table level accurately
indicate whether the generated table matches the
ground truth, but they fail to account for seman-
tically equivalent variations or minor deviations
in string expression. The Levenshtein score on
positional cell level has been found useful, as it
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clearer expresses the differences in performance
between the different model sizes, while not being
as strict as the exact match metrics. In general the
metrics were able to consistently indicate, whether
structured decoding performed better or worse on
a given benchmark; however, due to their individ-
ual limitations, actual table quality is often best
assessed through human evaluation.

5.4 Limitations

All our benchmarks assume known schemas for
table generation; we do not address open-schema
or schema-inference scenarios, as explored in re-
cent work (Ahuja et al., 2025). Our experiments
are also limited to a specific one-shot prompt and
a structured decoding prompt, and do not consider
alternative prompting strategies that might yield
better performance. Additionally, we evaluate only
a subset of available models, ranging from 0.5B
to 32B parameters, from three developers (tiiuae,
Qwen, Microsoft), none of whom publish their
training data. As a result, we cannot rule out the
possibility that some models may have been ex-
posed to our benchmark datasets during training.
Furthermore the selected benchmarks represent just
a limited range of domains and table types. Our
results may not generalize to other datasets, espe-
cially those with more complex tables, larger sizes,
or more diverse content. Our evaluation also as-
sumes accurate table extraction and preprocessing
from ground truth and LLM responses. Any errors
or inconsistencies in preprocessing could impact
the reported metrics.

6 Conclusion & Future Work

Our study demonstrated that the impact of struc-
tured decoding on information extraction in the
context of Text-to-Table generations is highly task
dependent. We derived the following key conclu-
sions:

• Decoding strategy: Schema-guided decod-
ing is improving the presence of tables and
reducing malformed outputs significantly, but
it depresses the table quality where textual
facts are densely packed within the input or
have to be aggregated over long context.

• Model size: The relationship between model
size and table generation quality follows pre-
dictable trends in most cases, with larger mod-
els generally producing higher validity and

quality tables. Results on the Rotowire Team
tables however show for the unstructured set-
ting, that scale alone does not guarantee opti-
mal performance for table generation tasks.

• Evaluation Metrics: String-based NLP met-
rics on Table level overestimate table quality.
While exact match metrics are to strict for
probabilistic generated content, they reflect
the actual table qualities better. A mixed vari-
ant, utilizing NLP based soft-match metrics
positionally on cell or row level, seems more
promising.

Considering the limitations identified in our
work, we recommend several promising directions
for future research. First, there is significant value
in exploring methods for schema inference, moving
beyond the exclusive use of predefined schemas.
Further research should also address the generation
of more complex tables, such as those exhibiting
greater variability in size, multi-line headers, or
merged cells. Additionally, we encourage the de-
velopment of advanced methods for constrained
decoding that go beyond the application of stan-
dard JSON schemas. For instance, XML-grammars
or the design and implementation of table-specific
grammars tailored to the target table sequence lan-
guage, alongside systematic evaluation of their
computational efficiency. Finally, we emphasize
the need for novel evaluation metrics and Text-to-
Table datasets, ideally complemented by human
assessments, to more robustly measure the effec-
tiveness of generated tables and better capture the
nuances of real-world use cases.
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Abstract 

Machine translation has significantly 

advanced due to the development of 

transformer architecture, which is utilised 

by many modern deep-learning models. 

However, low-resource languages, such as 

Lithuanian, still face challenges stemming 

from the limited availability of training 

data and resource constraints. This study 

examines the translation capabilities of 

Neural Machine Translation (NMT) 

models and Large Language Models 

(LLMs), comparing their performance in 

low-resource translation tasks. 

Furthermore, it assesses the impact of 

parameter scaling and fine-tuning on their 

effectiveness in enhancing model 

performance. The evaluation showed that 

while LLMs demonstrated proficiency in 

low-resource translation, their results were 

lower compared to NMT models, which 

remained consistent across smaller 

variants. However, as model size increased, 

the lead was not as prominent, correlating 

with automatic and human evaluations. The 

effort to enhance translation accuracy 

through fine-tuning proved to be an 

effective strategy, demonstrating 

improvements in vocabulary expansion 

and structural coherence in both 

architectures. These findings highlight the 

importance of diverse datasets, 

comprehensive model design, and fine-

tuning techniques in addressing the 

challenges of low-resourced language 

translation. This project, one of the first 

studies to focus on the low-resourced 

Lithuanian language, aims to contribute to 

the broader discourse and ongoing efforts 

to enhance accessibility and inclusivity in 

Natural Language Processing. 

1 Introduction 

The field of Natural Language Processing (NLP) 

has been essential in enhancing access to 

information and promoting inclusivity across 

different languages. Machine Translation (MT) 

was developed to utilise computers in overcoming 

communication gaps and facilitating cross-

linguistic cooperation, with early efforts focusing 

on translating Russian to English. However, 

despite significant advancements in LLMs, MT 

and NLP in general, many low-resourced 

languages remain underrepresented and 

overlooked by the rapidly growing AI industry.  

It is worth noting that Machine Translation has 

long been a key focus in NLP with the aim of 

enabling computers to translate natural language 

automatically. Initially, the field was dominated by 

the Rule-Based (RB) approach, which relied on 

manually constructed linguistic rules and 

dictionaries. However, this method was prone to 

error, resource intensive and had scalability 

implications when transferring rules between 

different languages (Wang et al., 2022). Due to 

these limitations, interest in RB systems declined, 

leading to a slowdown in the progress within the 

MT field. Nevertheless, some continued, resulting 

in the development of highly accurate RB systems 

such as Systran and DeepL, while they later 

transitioned first to statistical and after that to 

neural network-based architectures. 

The field saw meaningful breakthroughs with 

the adoption of corpus-based methods following 

the Statistical Machine Translation (SMT), which 

was reintroduced in the early 1990s by IBM 

researchers (Brown et al., 1990). SMT leverages 

large parallel texts and probabilistic models to 

make predictions on the most likely translation. 

Initially, these systems relied on single-word 

mappings, although this introduced many errors in 

semantic meaning and word reordering, leading to 

a shift toward phase-based translation (Lopez, 
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2008). This approach was the foundation for an 

early version of the Google Translate engine. 

Despite these advancements, SMT struggled with 

long-distance word ordering and data sparsity 

issues, particularly for linguistically distant 

language pairs (Wang et al., 2022). 

The introduction of deep learning techniques, 

such as a sequence-to-sequence model structure, 

transformed MT. These models, powered by neural 

networks utilised an encoder-decoder framework 

that mapped input sentences to variable-length 

vector representations, ensuring the retention of 

sentence structure and meaning (Sutskever, 2014). 

The addition of the attention mechanisms allowed 

the decoder layer to focus solely on the relevant 

input encodings, improving translation fluency and 

overcoming SMT weaknesses (Bahdanau, 2014). 

This neural process was extended to multilingual 

machine translation, where shared encoded 

representations could be supported by multiple 

decoder layers for different target languages (Dong 

et al, 2015). 

The Transformer model architecture 

revolutionised NLP by introducing self-attention 

mechanisms, removing the need to use recurrence 

and process one token at a time. Unlike earlier 

models, these properties allow the model to read all 

tokens simultaneously, capturing broad contextual 

relationships regardless of sentence length. This 

parallel processing led to a significantly faster 

training on large datasets, making Transformers the 

foundation of NMT models and LLMs (Vaswani, 

2017). NMT models follow a sequence-to-

sequence framework, mapping an input sequence 

from the source language to the target language. 

Where LLMs are typically categorised as auto-

encoding or auto-regressive models, either using 

encoder or decoder-only architectures, with the 

latter being more frequent and following the 

objective of accurately predicting the next token in 

the sequence (Dong et al., 2019).  

The performance of LLM and NMT models is 

dependent on the availability and quality of the 

training corpus. These models typically rely on 

high-resourced languages, such as English and 

German, with low-resourced languages receiving 

significantly less representation due to data 

limitations (Scao et al., 2022). NMT models are 

usually pre-trained on parallel corpora, which 

enables a comprehensive representation of 

language distribution. In contrast, LLMs are 

trained on diverse texts without targeting 

multilingualism, which often limits their ability to 

support low-resource tasks (Paupard, 2024).  

To address this disparity, researchers reinforced 

insufficient parallel corpora with monolingual data 

(Znang and Zong, 2016). However, a high 

monolingual data ratio can diminish models 

learning outcomes, calling for back-translation, 

which automatically incorporates translations to 

monolingual texts (Sennrich et al., 2015).  

An equally critical aspect is dataset quality, 

particularly in low-resource settings. A study found 

that noisy texts can drastically degrade translation 

accuracy, making cleaned and filtered datasets 

essential for reliable training (Khayrallah and 

Koehn et al., 2018). This is highly relevant for 

underrepresented languages, where datasets are 

often accumulated using web scraping techniques 

such as Common Crawl, which collect texts from 

various internet sources (Toral et al., 2017; Baack, 

2024). These findings highlight the key challenges 

for both NMT models and LLMs that require high 

volumes of training data but are constrained to 

limited, low-quality, low-resourced language texts.   

The open source and distillation techniques seek 

to bridge this gap and support a transparent and 

community-driven development process to direct a 

more inclusive and comprehensive language 

technology (White et al., 2024). While advocates 

for the closed-source design argue that it offers 

better security and data protection guarantees (Xi, 

2025). Despite these claims, closed-source models 

remain vulnerable to various security risks, 

including adversarial attacks, suggesting that their 

motivations may be ineffective (Das et al., 2025).  

To utilise both open-source accessibility and 

closed-source performance, researchers have 

turned to knowledge distillation, where smaller 

student models learn from larger teacher models. 

This technique reduces computational demands 

while ensuring high accuracy and maintainability 

of core capabilities (Hsieh et al., 2023). The 

effectiveness was demonstrated by models like 

Deepseek, which outperformed state-of-the-art 

models in multiple evaluation benchmarks 

(Deepseek-AI, 2025).  

The present study will experiment with the 

distilled versions of both NMT and LLM, 

including NLLB and Gemma models (Costa-Jussà 

et al., 2022; Team et al., 2024).  Although NLLB is 

fully open-sourced, Gemma follows an open-

weights approach where only the model’s 

parameters are made available without source 
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code. While not as transparent as open-source, this 

still enables customisation and adaptation, 

supporting resource-constrained teams working on 

low-resourced language tasks (Zhao et al., 2023). 

Finally, it is worth noting that the field of Low-

Resource NLP has gained significant attention in 

recent years, as demonstrated by the growing 

number of research contributions addressing data 

scarcity and model adaptability challenges, further 

emphasising the need to improve machine 

translation for languages like Lithuanian (Pakray, 

2025). The present study is significant in 

highlighting the insufficient support and inclusion 

of Lithuanian, a low-resourced language, in 

modern deep-learning tools and LLMs, an area of 

study that has received little attention. Researchers 

in developing translation models often neglect the 

underrepresented languages due to the limited 

availability of parallel corpora, which are essential 

for training accurate translation systems 

(Chakravarthi et al., 2019). As a result, models 

trained on small or insufficiently diverse datasets 

often produce inaccurate translations and 

hallucinations (Poupard, 2024).  

The findings from this study aim to contribute 

to the enhancement of translation technology, 

making NLP tools more inclusive and accessible 

for speakers of less commonly spoken languages. 

Furthermore, by understanding the limitations of 

pre-trained models and the benefits of fine-tuning, 

this research can provide insights in directing 

future machine translation efforts for other low-

resource languages. 

The rest of the paper is structured as follows: 

Section 2 outlines related work, Section 3 presents 

the methodology and Section 4 provides evaluation 

results, discussion and error analysis. Finally, 

Section 5 summarises the work with a conclusion.  

2 Related Work 

Several studies have addressed the disparity in 

lesser-spoken languages by developing more 

linguistically inclusive models. The No Language 

Left Behind (NLLB) team supported over 200 

underrepresented languages by training a 

multilingual NMT model on high-quality parallel 

and monolingual datasets and adopting self-

supervised learning. These unconventional training 

methods demonstrated enhanced translation 

performance in low-resource settings even for 

languages where explicit training was not 

undertaken (Costa-Jussà et al., 2022). 

 Martins et al. (2024) trained the EuroLLM 

model to address the lack of open-weight LLMs for 

European languages. The authors used a parallel 

corpus that included nearly an equal number of 

English and non-English representations. Their 

findings indicated that carefully curated datasets 

and a custom tokeniser enabled the model to 

outperform much larger competitors in translation 

tasks. 

Nakvosas et al. (2024) discussed the insufficient 

number of Lithuanian language tokens in the 

Llama model. They employed a supervised fine-

tuning (SFT) technique to improve the model’s 

performance in English-Lithuanian tasks. This 

approach involved training a pre-existing model on 

a high-quality custom dataset, allowing it to 

enhance its learning and generation accuracy, 

especially in handling previously unseen data 

(Church et al., 2021).  

Another fundamental challenge is the high 

computational costs associated with training LLMs 

and NMT models as they often contain billions of 

parameters, requiring extensive memory, storage 

and processing power (Hadi et al., 2023). These 

demands create significant barriers for smaller 

research teams, especially in underrepresented 

linguistic communities. 

To address resource constraints, researchers 

have explored performance-efficient fine-tuning 

(PEFT) techniques. One widely adopted approach 

is quantisation, which reduces the precision of 

model parameters (e.g., to 8-bit or 4-bit), lowering 

memory usage without experiencing major 

performance loss (Dettmers et al., 2024). Low-

Rank Adaptation (LoRA) further optimises 

resource requirements by applying fine-tuning 

only to targeted layers, preserving strong 

multilingual performance while reducing trainable 

parameters (Hu et al., 2021). These techniques 

provide effective solutions to optimise resource 

usage, democratising access to LLMs and NMT 

models for low-resourced language researchers. 

Finally, a key research question is whether 

LLMs can match or surpass well-established NMT 

models in low-resource language translation. 

While multilingual LLMs such as Gemma and 

Llama have demonstrated effectiveness in high-

resourced translation tasks, achievements in low-

resourced languages, such as Lithuanian, have 

often remained undiscovered. Furthermore, LLM 

architecture may suffer from accuracy loss and 

hallucinations, where models generate fabricated 
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information when handling large multilingual 

datasets (Dong, 2024).  

Further research is essential to assess the 

genuine performance of LLMs on 

underrepresented languages and to determine the 

trade-offs between model size and fine-tuning in 

translation quality, thereby contributing to more 

inclusive NLP systems. 

3 Methodology 

The adopted methodology, detailed in this section 

seeks to reply to the following questions:  

1. How do pre-trained LLMs and NMT 

models perform in low-resourced language 

translation? 

2. Does fine-tuning improve translation 

accuracy? Is it comparable to parameter scaling?   

In particular, we outline the data, models and 

evaluation methods employed in this study and 

acknowledge experimental limitations. 

3.1 Research Design and Data Collection 

This study follows an empirical, quantitative 

approach to evaluate model performance. Models, 

datasets and fine-tuning tools were obtained 

through the Transformers library, which provides 

open-access NLP resources.  

Supervised Fine-tuning (SFT) requires rich 

translation examples. Although scaling laws 

suggest that the optimal dataset size should be 

proportional to the model’s parameter number. For 

example, a 1.3 billion parameter model (NLLB) 

would need around 30 million sentences (Hoffman 

et al., 2022). However, further recent research 

shows that smaller, diverse datasets can still yield 

sufficient performance (Oliver and Wang, 2024; 

Zoph et al., 2022). 

Given resource limitations and limited text 

availability, a dataset of 300,000 English-

Lithuanian sentence pairs was compiled from the 

following corpora: 

Medical Corpus – domain-specific translations 

with complex terminology. 

Parliamentary Corpus – structured sentence 

pairs from official proceedings. 

Common Crawl Corpus – public web data, 

cleaned to remove foreign tokens, short or 

ungrammatical sentences.  

Wikipedia Corpus – verified translated 

sentences from Wikipedia resources. 

3.2 Model Choice 

The selection of models was guided by open-

source or open-weights availability to avoid 

licensing constraints and facilitate further 

development. Additionally, given memory 

constraints, around 2 billion parameter models 

were selected.  

Gemma – Google’s lightweight Gemini-based 

LLM for broad NLP tasks (Team et al., 2024). 

EuroLLM – Unbabel’s LLM, optimised for 

multilingual translation tasks across European 

languages (Martins et al., 2024). 

Salamandra – BSC-LT’s LLM, focused on 

European languages (Gonzalez-Agirre et al, 2025).  

NLLB – Meta’s NMT model, covering 200 low-

resourced languages (Costa-Jussà et al., 2022). 

Helsinki – NMT model specialised in Baltic 

languages, ideal for Lithuanian translation 

(Tiedemann et al., 2024). 

Madlad – Google’s NMT model supporting 400 

languages (Kudugunta et al., 2023). 

3.3 Evaluation Metrics 

Model performance was quantitatively evaluated 

at two stages: baseline (pre-trained) and post-SFT. 

The following automatic metrics were used:  

SacreBLEU – an improved version of BLUE, 

measuring n-grams overlap but limited in semantic 

meaning and synonyms (Papineni et al., 2002).  

CHRF – based on character-level n-gram 

overlaps, effective for morphologically rich 

languages and correlating with human judgement 

(Popović, 2015; Lee et al., 2023). 

ROUGE – evaluates precision and quality by 

measuring unigrams, bigrams, and sequence 

overlap (Lin and Och, 2004). 

METEOR – enhances BLEU by considering 

synonym matching, stemming, and recall, 

accounting for a better semantic alignment 

(Banerjee and Lavie, 2005).  

3.4 Human Evaluation 

Translations were manually assessed on accuracy, 

fluency, and appropriateness, following Freitag et 

al. (2021) guidelines and scored from 1 (very poor) 

to 5 (excellent). Due to the time constraints, only a 

subset of sentences was evaluated that covered 

scientific, official, and casual contexts, with an 

emphasis placed on semantic ambiguity and 

metaphorical language. The aim of human 

evaluation was to identify the strengths and 

weaknesses of each model in producing 
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grammatically correct and contextually relevant 

translations. 

3.5 Model Evaluation  

Each model was configured to correctly handle 

source and target languages. NMT models require 

explicit language identifiers, such as appending a 

prefix to the input sentence for Helsinki. While 

LLMs are more general-purpose and use a prompt-

based format. For EuroLLM, source and target 

prefixes were needed, where Gemma used special 

tokens for the start and end of inputs and responses. 

Models translated 100 unique test sequences 

from the Flores+ dataset. The Transformers library 

was used for tokenisation and inference. Generated 

translations were decoded and compared using 

BLEU, METEOR, CHRF and ROUGE. 

To assess the impact of model size, both ~2B 

and larger models (up to 9B parameters) were 

compared, excluding NLLB and Helsinki, as larger 

versions were not available. Apart from applying 

quantisation (4-bit) for efficiency, the evaluation 

process remained consistent with the previous step. 

Aiming to determine whether increasing model 

size shows improvement in translation quality. 

3.6 Statistical and Practical Significance 

To verify whether the differences in model 

performances were meaningful, t-scores were 

calculated for each metric using the formula: 

𝑡 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑣𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
. 

Given a small sample size (6) and targeting a 

95% confidence level, a t-critical value of 2.571 

was used. Scores exceeding this threshold were 

considered to have a statistically significant 

difference (Benjamin et al., 2018). 

Furthermore, to complement statistical 

significance, Cohen's d effect was used to evaluate 

the practical significance based on the formula: 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 =  
𝑚𝑒𝑎𝑛1−𝑚𝑒𝑎𝑛2

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

Providing the magnitude of the differences. 

Effects of up to 0.5 are considered small to 

medium, while values >0.8 indicate a strong effect 

(Gignac and Szodorai, 2016). Together, these 

measures ensure a robust and comprehensive 

interpretation of model performance differences. 

3.7 Fine-Tuning Models 

Due to high resource demands, fine-tuning focused 

on ~2B parameter models, utilising memory-

efficient techniques. Models were quantised to 4-

bit and fine-tuned with LoRA, targeting attention 

and feed-forward layers to reduce overhead while 

preserving performance. 

Training used small batch sizes, combined with 

gradient accumulation, 2e-4 learning rate with 

linear scheduling, and Adam optimiser to produce 

gradual and efficient convergence. Models were 

evaluated consistently every 500 or 1,000 training 

steps with 100 test-set sentences separated from 

prior training and utilising the same metrics as in 

the baseline evaluation phase. This iterative 

process ensured steady performance monitoring 

and allowed parameter adjustments as needed. 

4 Evaluation Results, Discussion and 

Error Analysis 

4.1 Performance Comparison with 

Automatic Metrics 

The pre-trained NMT models (Madlad, NLLB, 

Helsinki) generally outperformed LLMs 

(EuroLLM, Salamandra, Gemma). 

Madlad presented the best BLEU, CHRF and 

overall scores, indicating strong alignment with 

reference translations. NLLB followed closely, 

maintaining a good balance between lexical 

accuracy and semantic variation (high METEOR). 

Helsinki performed well at the character-level 

(CHRF) despite a lower BLEU score. EuroLLM 

led amongst LLMs with relatively higher BLEU 

and METEOR scores. Gemma achieved the lowest 

overall scores with poor BLEU and ROUGE 

results, suggesting minimal overlap and improper 

sentence structure. 

These findings point to NMT models being 

better suited for machine translation than LLMs. 

 

Models  BLEU METEOR CHRF ROUGE 

Madlad 28 0.55 60 0.55 

NLLB 26 0.52 58 0.52 

Helsinki 21 0.48 55 0.48 

EuroLM 19 0.42 49 0.43 

Salaman. 17 0.41 50 0.42 

Table 1:  Pre-trained model evaluation results. 
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4.2 Statistical and Practical Significance  

T-scores showed that while Madlad consistently 

performed best and Gemma worst, neither deviated 

significantly from the mean, not exceeding the 

2.571 threshold of 95% confidence. This indicates 

no statistical performance difference among 

models.  

However, Cohen’s d revealed strong practical 

differences contradicting the t-score. The effect 

sizes between the best- and worst-performing 

models, Madlad and Gemma, were on average 2.60 

across all metrics, well above the 0.8 threshold for 

a large effect. Despite not reaching statistical 

significance, the practical performance difference 

was considerable.  

4.3 Model Size Comparison 

Larger models (~9B parameters) demonstrated 

consistent performance gain over their smaller 

variants (~2B), raising BLUE scores by 3-5 points 

while METEOR gains showed more variability, 

ranging from 0.03 to 0.12 points. The performance 

increase was more noticeable in LLMs, where 

NMT models benefited less from scaling up.  

 

 

Model bleu_2 bleu_9 meteor_2 meteor_9 

Madlad 28 31 0.55 0.58 

EuroLLM 19 24 0.42 0.54 

Salaman 17 22 0.41 0.46 

Gemma 13 17 0.35 0.41 

4.4 Pre-trained and Fine-tuned Comparison 

Supervised fine-tuning demonstrated clear 

improvements across all models. BLEU scores 

rose by 5-8 points, with Madlad gaining 5 and 

Gemma 8. METEOR improved by 0.04-0.13, with 

the largest gains observed in LLMs (EuroLLM 

+0.10, Gemma +0.13).  

While NMT models led with strong baseline 

performance, they showed moderate improvement. 

In contrast, LLMs started with lower scores but 

presented comparably larger gains, narrowing the 

performance gap. Overall, fine-tuning had the 

strongest impact on LLMs, significantly enhancing 

their translation quality.  

 

 

Models  BLEU METEOR CHRF ROUGE 

Madlad 28 0.55 60 0.55 

Madlad-lt 33 0.59 62 0.58 

NLLB 26 0.52 58 0.52 

NLLB-lt 31 0.55 60 0.55 

Helsinki 21 0.48 55 0.49 

Helsinki-lt 28 0.53 58 0.55 

EuroLM 19 0.42 49 0.43 

EuroLM-lt 26 0.52 62 0.55 

Gemma 13 0.35 43 0.39 

Gemma-lt 21 0.48 59 0.53 

4.5 Comparison of Fine-tuning and Scaling 

Fine-tuning small models (~2B) led to substantial 

gains (BLEU +5-8, METEOR +0.04-0.13). 

However, compared to larger pre-trained models 

(~9B), fine-tuned models saw smaller performance 

differences (BLEU +1-4, METEOR +0.02-0.07).  

 

 
 

Figure 3:  Pre-trained and Fine-tuned Comparison 

Figure 2: Pre-trained and Scaled Comparison. 

Table 3: Measures of Pre-trained and Fine-tuned. 

 

Table 2: Measures of Pre-trained and Scaled Models. 

Figure 1: Pre-trained model evaluation. 

Figure 4: Scaled and Fine-tuning Comparison.  
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Model bleu_9 bleu_ft meteor_9 meteor_ft 

Madlad 31 33 0.58 0.59 

EuroLLM 24 26 0.54 0.52 

Gemma 17 21 0.41 0.48 

 

4.6 Discussion on Pre-trained Model 

Evaluation 

Automatic evaluation demonstrated that NMT 

models consistently outperformed LLMs in 

translation tasks, highlighting their domain-

specific optimisation and better semantic handling. 

Madlad and NLLB taking the lead across all 

models, which could be attributed to their 

extensive multilingual capabilities, enabling 

broader linguistic variation and generalisation 

through parameter sharing (Pires et al., 2019). 

While the underlying success factor is the 

emphasis on data quality, where Madlad’s team 

prioritised manual auditing, while NLLB curated 

custom corpus (Kudugunta et al., 2023; Costa-

Jussà et al., 2022). Remarkably, NLLB achieved 

nearly identical results to Madlad despite having 

half the parameters, likely due to the use of back-

translation and knowledge distillation techniques. 

Helsinki, despite being smaller (<1B), surpassed 

all LLMs, benefiting from its specialisation in 

Baltic languages. Nevertheless, it still trailed 

behind Madlad and NLLB, possibly because it was 

developed with limited resources compared to 

other company-backed models. EuroLLM and 

Salamandra performed comparably to Helsinki, 

showing that smaller LLMs can achieve 

competitive performance when designed with a 

task-specific focus and an emphasis on a high-

quality, diverse dataset. Finally, Gemma produced 

the weakest results, despite its equivalent size and 

utilisation of distillation, likely caused by its 

English-focused training, which lacked 

multilingual depth (Team et al., 2024).  

4.7 Discussion on Statistical and Practical 

Significance 

The lack of statistical significance in the t-score 

could be attributed to the small sample size, which 

increased the probability of type II error (Huang, 

2017). In comparison, Cohen's d practical value 

revealed a large effect (2.5) between best and worst 

models and a small effect between close 

performers (e.g., EuroLLM – Salamandra at 0.12), 

aligning with automatic evaluations. Though 

threshold values are estimated and may not be 

universal (Corell et al., 2020), when used alongside 

other evaluation methods, they reinforce the 

reliability of the study’s findings. 

4.8 Error Analysis with Human Evaluation 

Models varied in accuracy with most common 

mistakes including literal translations of idioms 

e.g. "field" was translated as "physical location" 

instead of "area of research or "shine a light" lost 

its metaphorical meaning. Mistranslations of 

uncommon terms such as "rabid dog" was 

interpreted by Gemma as "red dog", while Helsinki 

presented “rabid” as “rabin”. Hallucinations were 

observed from LLMs, particularly from EuroLLM, 

which regularly appended incorrect dates.  

Fluency issues were widespread, with grammar 

being the most common error, with models using 

incorrect suffixes, verb tenses and pronouns. 

Notably, Gemma occasionally repeated words or 

used basic synonyms, showing limited vocabulary.  

Appropriateness, which considers contextual 

and cultural relevance, proved that most models 

lacked official, scientific or field-specific 

terminologies and often reused English phrases. 

Madlad: Strong domain-specific terms, though 

making minor grammatical errors. NLLB: 

Promising results but prone to ungrammatical and 

inaccurate terminology. Helsinki: Performed 

poorly with often mistranslations and Anglicisms. 

EuroLLM: Preserved the intent but suffered from 

hallucinations (e.g. added dates). Salamandra: 

Better than Gemma but had a limited vocabulary 

and common mistranslations. Gemma: Weakest 

among all models with frequent grammatical and 

terminology errors or untranslated phrases. 

 

Models  Accur. Flue. Appr. Total  

Madlad 4 4 5 4 

NLLB 3 4 4 4 

EuroLLM 3 4 4 4 

Helsinki 3 3 3 3 

Salaman. 3 3 3 3 

Gemma 2 2 2 2 

 

4.9 Discussion on Error Analysis 

Human evaluation largely reinforced the automatic 

metrics rankings, while identifying overlooked 

word-level mismatches and error patterns. Where 

Madlad and NLLB correlated to automatic 

Table 4: Measures of Scaling and Fine-tuning.  

Figure 5: Measures of Human Evaluation.   
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evaluation, while Helsinki and EuroLLM diverged. 

EuroLLM exhibited frequent hallucinations, 

whereas Helsinki was more accurate but struggled 

with domain-specific terms. Gemma performed the 

worst with weak grammatical comprehension and 

word repetitions. These insights highlight the need 

for improved grammatical accuracy, contextual 

awareness, and vocabulary breadth in Lithuanian. 

4.10 Overall Discussion of Results 

Performance collectively improved with model 

size, while NMT models, due to specialised design 

and insufficient datasets, face a plateau in scaling 

effect (Kaplan et al., 2020; Ghorbani et al., 2021). 

In contrast, LLMs showed distinct improvement, 

accentuating better generalisation with increased 

parameters (Wei et al., 2024). However, scaling is 

a resource-intensive choice, making it impractical 

for low-funded research (Whittaker, 2021).  

Fine-tuning offers a cost-effective alternative, 

significantly increasing smaller models’ 

performance, especially LLMs, by enhancing the 

output’s structure and coherence. Regardless of 

these benefits, this process has undesirable 

drawbacks, like concept forgetting, dependency on 

data quality and overfitting after a certain point 

(Mukhoti et al., 2023; Dodge et al., 2020). These 

issues are especially concerning in low-resource 

languages with limited diversity and quality data. 

Moreover, smaller models (<2B) often lack 

sufficient multilingual representations (Conneau et 

al., 2020). While parameter-efficient methods such 

as LoRA can help, they cannot fully compensate 

for the advantages offered by large-scale models 

(Pfeiffer et al., 2020). Therefore, fine-tuning 

improves performance but does not overcome the 

inherent limitations of smaller models.  

5 Conclusion  

5.1 Research Limitations 

This study was constrained by 12GB VRAM GPU 

(UcrelHex, 2024), which restricted the ability to 

fine-tune or evaluate larger models. Access to more 

powerful hardware may have yielded different 

results. Additionally, the focus on open-

source/open-weight models ensured transparency 

and accessibility but excluded closed-source 

alternatives, possibly limiting performance range. 

5.2 Future Work 

Future research should prioritise expanding 

resources for low-resource language communities, 

as emphasised by the NLLB project, which 

focused on dataset collection before model design. 

With the use of distillation, to ensure efficiency, 

however, this process is limited by its knowledge 

retention and alternatives such as the Mixture of 

Experts (MoE) framework show promise by 

activating only the relevant networks, supporting 

scalability without increasing computational costs 

(Koishekenov et al., 2022).  

Furthermore, advocating for open-source 

models is essential in supporting ethical, inclusive 

and transparent NLP research, especially in 

underrepresented languages. However, many high-

performing models remain closed-source, limiting 

accessibility and collaboration (Worth et al., 2024). 

As model architectures evolve, a clearer 

classification standard is needed as inconsistencies 

between model labelling complicate comparisons. 

Less ambiguous categorisation would enhance 

transparency and rationalise future research.  

5.3 Overall Conclusion 

This research evaluated LLMs and NMT models' 

performance in translating into Lithuanian, a low-

resourced language, and revealed consistent 

outperformance of small NMT models compared 

to similarly sized LLMs. However, after scaling 

models (~7-9B parameters), higher performance 

gains were observed with LLMs, suggesting their 

better generalisation abilities while NMT models 

remain more efficient for translation tasks within 

resourced-constrained settings. Additionally, fine-

tuning significantly enhances translation quality, 

introducing trade-offs as potential knowledge loss. 

Ultimately, the key barriers to expanding 

translation capabilities for underrepresented 

languages remain computational constraints and 

data availability. Addressing these challenges 

requires continued investment in multilingual 

datasets and efficient training methods for building 

inclusive and reliable translation systems. 
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Abstract
Multi-hop question answering (MHQA) re-
quires systems to retrieve and connect informa-
tion across multiple documents, a task where
large language models often struggle. We in-
troduce Knowledge Graph-Enhanced Iterative
Reasoning (KGEIR), a framework that dynam-
ically constructs and refines knowledge graphs
during question answering to enhance multi-
hop reasoning. KGEIR identifies key entities
from questions, builds an initial graph from re-
trieved paragraphs, reasons over this structure,
identifies information gaps, and iteratively re-
trieves additional context to refine the graph
until sufficient information is gathered. Evalu-
ations on HotpotQA, 2WikiMultiHopQA, and
MuSiQue benchmarks show competitive or su-
perior performance to state-of-the-art methods.
Ablation studies confirm that structured knowl-
edge representations significantly outperform
traditional prompting approaches like Chain-
of-Thought and Tree-of-Thought. KGEIR’s
ability to explicitly model entity relationships
while addressing information gaps through tar-
geted retrieval offers a promising direction for
integrating symbolic and neural approaches
to complex reasoning tasks. Details of the
project and the code are published at https:

//github.com/TiandaSun/KGEIR

1 Introduction

Multi-hop question answering (MHQA) presents a
significant challenge in natural language process-
ing, requiring systems to retrieve and connect infor-
mation from multiple documents to answer com-
plex questions (Yang et al., 2018; Ho et al., 2020;
Trivedi et al., 2022). Unlike traditional question an-
swering, which typically relies on information from
a single passage, MHQA demands reasoning across
disparate pieces of information, making it a more
accurate reflection of human information-seeking
behaviour (Chen et al., 2017). Despite recent ad-
vances in large language models (LLMs) (Brown

et al., 2020; Touvron et al., 2023), their ability to
perform structured reasoning over multiple sources
remains a challenging area, particularly when ev-
idence must be gathered from diverse documents
without explicit connections (Qi et al., 2019).

Existing approaches to MHQA typically follow
a retrieve-then-read paradigm (Lewis et al., 2020;
Karpukhin et al., 2020), where relevant documents
are first retrieved based on the question, followed
by a reading comprehension step to extract the an-
swer. However, this sequential process often strug-
gles with complex questions requiring multi-step
reasoning, as the initial retrieval may fail to cap-
ture all necessary documents when relationships
between different pieces of evidence are not explic-
itly considered [11]. Furthermore, most systems
lack an effective mechanism to identify and ad-
dress information gaps through iterative refinement
(Trivedi et al., 2023). The increasing availability
of powerful LLMs has opened new possibilities for
MHQA, as these models demonstrate impressive
reasoning capabilities (Wei et al., 2023; Wang et al.,
2023). However, their application in multi-hop set-
tings is often limited by several factors: (1) the
inability to understand relationships between enti-
ties across different passages (Han et al., 2025), (2)
the lack of structured representation of knowledge
(Sun et al., 2024; Edge et al., 2025), and (3) the
absence of systematic processes to identify and fill
information gaps (He et al., 2024).

To address these limitations, we propose a novel
Knowledge Graph-Enhanced Iterative Reasoning
(KGEIR) framework for multi-hop question an-
swering. Our approach combines the reasoning
capabilities of LLMs with the structured representa-
tion of knowledge graphs, enabling more effective
multi-hop reasoning through explicit modelling of
entity relationships across documents. The key
insight of our approach is that dynamically con-
structing and refining a knowledge graph during
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Figure 1: A common workflow on the MHQA task with an example from HotpotQA dataset. A regular MHQA
question cannot get the answer from one single document but needs to retrieval multiply paragraphs from different
documents. In here, the model firstly needs to retrieve the relevant paragraph across 2 different documents and
identify that ’James Henry Miller’ and ’Ewan MacColl’ is one and the same person. Then it can make the connection
between the fact that Peggy Seeger is his wife and the knowledge about her nationality (American).

the question-answering process provides an effec-
tive scaffold for reasoning, while also identifying
information gaps that can guide targeted retrieval
of additional context.

Our KGEIR framework operates through an it-
erative process: (1) initial retrieval of relevant
paragraphs based on entities extracted from the
question, (2) dynamic construction of a knowledge
graph from retrieved paragraphs, (3) reasoning over
the knowledge graph to attempt answering the ques-
tion, (4) identification of information gaps in the
knowledge graph, (5) targeted retrieval of addi-
tional paragraphs to fill these gaps, and (6) refine-
ment of the knowledge graph and reasoning pro-
cess. This iterative approach continues until suffi-
cient information is gathered to answer the question
confidently or a maximum number of iterations is
reached.

We evaluate our approach on multiple multi-
hop QA datasets, including HotpotQA (Yang et al.,
2018), 2WikiMultiHopQA (Ho et al., 2020), and
MuSiQue (Trivedi et al., 2022), demonstrating that
KGEIR achieves significant improvements over
strong baselines. Our analysis shows that the
knowledge graph structure effectively guides the

reasoning process of LLMs, while the iterative re-
finement process substantially improves answer
accuracy by addressing information gaps identified
during reasoning. The contributions of this paper
are threefold:

1. A novel framework that leverages knowledge
graphs to enhance multi-hop reasoning capa-
bilities of large language models.

2. An iterative information-seeking approach
that identifies and addresses knowledge gaps
through targeted retrieval.

3. A comprehensive evaluation demonstrating
the effectiveness of our approach on challeng-
ing multi-hop QA benchmarks.

Our results suggest that structuring informa-
tion as explicit entity-relation graphs significantly
enhances the multi-hop reasoning capabilities of
LLMs, potentially opening new avenues for com-
bining symbolic and neural approaches to complex
question answering.
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2 Related Works

This section examines recent advances in multi-
hop question answering (MHQA), organised into
complementary research directions that inform our
KGEIR framework. By analysing the strengths and
limitations of existing approaches, we demonstrate
the need for our integrated framework.

2.1 Retrieval and Knowledge Structure
Approaches

Recent retrieval methods for MHQA have pro-
gressed beyond simple matching to incorporate log-
ical relevance and multi-hop connections. While
dense retrievers like BGE (Xiao et al., 2024) per-
form well on single-hop tasks, they often strug-
gle with capturing bridging information needed for
complex reasoning. HopRAG (Liu et al., 2025)
represents a significant advancement by introduc-
ing a logic-aware retrieval mechanism that con-
nects passages through pseudo-queries and em-
ploys a retrieve-reason-prune paradigm. Their
work demonstrated that indirectly relevant passages
can serve as stepping stones to reach relevant ones,
achieving notable results across multiple datasets.
The approach, however, focuses primarily on en-
hancing retrieval rather than constructing explicit
knowledge representations for reasoning.

Astute RAG (Wang et al., 2024) addresses im-
perfect retrieval by developing mechanisms to over-
come knowledge conflicts and reasoning failures.
They revealed that approximately 70% of retrieved
passages do not directly contain true answers, high-
lighting the limitations of pure similarity-based
retrieval. Similarly, BRIGHT (Su et al., 2025)
demonstrates through their benchmark that even
state-of-the-art retrievers struggle with multi-step
reasoning tasks.

Knowledge structure approaches have emerged
to provide explicit representations of entity re-
lationships. G-Retriever (He et al., 2024) intro-
duced a retrieval-augmented generation framework
that enhances retrieval quality by leveraging graph
structures to identify relevant information through
entity-relation patterns. GraphRAG (Edge et al.,
2025) builds hierarchical graph indices with knowl-
edge graph construction and recursive summarisa-
tion, demonstrating the value of graph structures
for organising complex information. Extract, De-
fine, Canonicalise (Gutiérrez et al., 2025) presents
an LLM-based framework for knowledge graph
construction that systematically extracts entities

and relations from text without extensive training
or predefined schemata.

A key limitation across these approaches is their
reliance on static construction processes and lack
of explicit mechanisms to identify information
gaps and iteratively refine knowledge representa-
tions, which our KGEIR framework specifically
addresses.

2.2 Reasoning and LLM-Based Approaches

Recent reasoning approaches have increasingly
leveraged structured representations to guide LLMs
through complex multi-hop questions. Graph-
based reasoning methods have shown particular
promise in organising the reasoning process. Graph
Elicitation (Park et al., 2024) decomposes multi-
hop questions into sub-questions to form a graph
and guides LLMs to answer based on the chrono-
logical order of the graph. Structure-Guided
Prompting (Cheng et al., 2024) instructs LLMs
in multi-step reasoning by exploring graph struc-
tures extracted from text. While effective, these
approaches typically construct graphs as static scaf-
folds rather than dynamic structures that evolve
through iterative refinement.

Graph Chain-of-Thought (Jin et al., 2024) aug-
ments LLMs by incorporating reasoning on graphs
into the generation process, demonstrating that
graph structures can significantly enhance LLMs’
reasoning capabilities on tasks requiring structured
knowledge. Reasoning with Graphs (Han et al.,
2025) most closely aligns with our approach by
structuring implicit knowledge into explicit graphs
through multiple rounds of verification. Their re-
sults show significant improvements across logical
reasoning and multi-hop question answering tasks,
though their approach does not incorporate an iter-
ative retrieval mechanism to address information
gaps identified during reasoning.

The reasoning capabilities of LLMs have been
extensively studied, revealing both strengths and
limitations. Yang et al. (Yang et al., 2024) found
that while models can connect information across
sources, they benefit significantly from explicit
guidance in complex scenarios, particularly as rea-
soning hops increase. Huang et al. (Huang et al.,
2024) demonstrated that even advanced LLMs
struggle to identify and correct errors in their rea-
soning without external guidance, underscoring the
importance of providing explicit structures to guide
the reasoning process.
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Various approaches have been proposed to en-
hance LLMs’ reasoning. Self-RAG (Asai et al.,
2023) introduced a framework for retrieval, gen-
eration, and critique through self-reflection, while
REFEED (Yu et al., 2023) employs a multi-round
retrieval-generation framework using feedback to
refine retrieval steps. SAFE-RAG (Liang et al.,
2025) highlighted the importance of reliable rea-
soning over retrieved information, showing that
without proper verification mechanisms, LLMs can
produce inconsistent responses. However, these
approaches typically lack explicit mechanisms to
identify specific information gaps or leverage struc-
tured representations for reasoning.

2.3 Iterative Refinement Approaches

Iterative approaches to information retrieval and
reasoning have gained significant traction, ad-
dressing multi-hop question answering challenges
through progressive refinement. When compared
with tree-structured RAG approaches like RAP-
TOR (Sarthi et al., 2024) and SiReRAG (Zhang
et al., 2025), graph-structured approaches, such
as HopRAG (Liu et al., 2025) demonstrate supe-
rior performance by enabling flexible logical mod-
elling, cross-document organisation, and efficient
construction.

The HippoRAG framework (Yang et al., 2024)
introduces a neurobiologically inspired approach to
long-term memory for LLMs, implementing a sys-
tem that prioritises relevance signals and iteratively
refines its understanding. However, their approach
does not explicitly model the graph evolution pro-
cess or use graph structures to identify information
gaps. ActiveRetrieval (Jiang et al., 2023) actively
queries a corpus during the generation process, us-
ing intermediate reasoning states to guide retrieval.
This approach demonstrates the value of dynami-
cally adjusting retrieval based on the current rea-
soning state, a principle that our KGEIR framework
incorporates through gap-aware retrieval.

While these existing approaches have made sig-
nificant strides in different aspects of the MHQA
challenge, they typically address only part of the
problem. KGEIR uniquely integrates dynamic
knowledge graph construction, gap identification,
and iterative refinement into a unified framework
that addresses the full spectrum of challenges in
multi-hop question answering, differentiating it
from existing approaches that typically address
only part of the problem.

3 Methods

We introduce KGEIR (Knowledge Graph-
Enhanced Iterative Reasoning), a novel framework
for multi-hop question answering that combines
the reasoning capabilities of large language models
with the structural advantages of knowledge
graphs. This section describes our approach, which
dynamically constructs and refines knowledge
graphs to support iterative reasoning over multiple
documents.

3.1 Problem Analysis
Multi-hop question answering requires integrating
information across multiple sources to derive an-
swers that cannot be found in any individual source.
We formalize this task as follows: Given a question
q and a corpus of documents D = {d1, d2, ..., dN},
MHQA aims to produce an answer a by reason-
ing over a subset of supporting documents S ⊂ D
where:

• No single document di ∈ S contains sufficient
information to answer q.

• The answer a requires establishing relation-
ships between information in different docu-
ments.

• The reasoning process can be represented as a
sequence of hops between documents, form-
ing a path:

di1 → di2 → ... → dik → a

Traditional approaches follow a retrieve-then-
read paradigm that can be formalised as:

a = R(T (q,D), q)

Where T is a retrieval function that selects relevant
documents, andR is a reading function that extracts
the answer. This approach faces challenges with
multi-hop questions as the initial retrieval often
fails to capture all necessary information.

Our KGEIR framework reformulates this prob-
lem by introducing an iterative graph-based ap-
proach:

a = R(Gk, q)

Where Gk is a knowledge graph constructed and
refined through k iterations of retrieval and rea-
soning. Each iteration identifies information gaps
and retrieves additional context to fill these gaps,
progressively enriching the graph until sufficient
information is gathered to answer the question.
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Figure 2: KGEIR framework workflow for multi-hop QA, illustrated with the example "What nationality was James
Henry Miller’s wife?" The process begins with extracting incomplete triples from the question (left), followed by
multi-faceted retrieval extracting paragraphs relevant to the main entity and relations. The initial knowledge graph
is constructed from retrieved paragraphs (centre), enabling structured reasoning by the LLM. If the current graph
lacks sufficient information, the system identifies missing entities and relations to guide targeted retrieval (right),
iteratively refining the knowledge graph until a confident answer can be produced. This dynamic enhancement
process addresses the limitations of static retrieval approaches by adaptively exploring the information space based
on reasoning requirements.

3.2 Initial Knowledge Graph Construction

The first component of KGEIR is constructing an
initial knowledge graph from the question and cor-
pus. As shown in Figure 1, this process involves
question analysis, initial retrieval, and graph for-
mation. Given a question, we first identify key
entities and potential relationships required to an-
swer it. For the question "What nationality was
James Henry Miller’s wife?" (Figure 1), we extract
incomplete triples: (James Henry Miller, ?, ?), (?,
HasWife, ?), and (?, HasNationality, ?). These in-
complete triples capture both explicit entities men-
tioned in the question and implicit relations nec-
essary to answer it. We only crop the corpus if
it reaches the limitation of LLM’s context length.
Then, combining the text corpus with these ex-
tracted entities and relations, we design a prompt
for the LLM to retrieve the relevant paragraphs
from the corpus. This multi-faceted retrieval ap-
proach targets documents containing information
about the entities ("James Henry Miller"), relations
("HasWife"), and properties ("HasNationality") in
the query. This strategy ensures a broader cover-
age than traditional retrieval methods that focus on

entities only. All our prompts used throughout the
paper are available upon request.

From the retrieved paragraphs, we extract enti-
ties and relationships to construct the initial knowl-
edge graph. This process creates a structured rep-
resentation of the information contained in the re-
trieved documents, converting unstructured text
into an explicit entity-relation graph. While valu-
able, this initial graph often lacks crucial connec-
tions needed to answer complex multi-hop ques-
tions, necessitating our dynamic enhancement ap-
proach.

3.3 Dynamic Knowledge Graph Enhancement

The core innovation of KGEIR is its dynamic ap-
proach to enhancing the knowledge graph through
targeted retrieval and iterative refinement, as shown
in the right portion of Figure 1. After construct-
ing the initial graph, an LLM reasoner attempts
to answer the question using the available knowl-
edge structure. Upon determining that the current
graph does not contain sufficient information for a
confident answer to the question, the system initi-
ates an enhancement cycle that operates through a
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systematic information-seeking paradigm.
The enhancement process begins with a gap anal-

ysis mechanism that examines the knowledge graph
structure to identify missing entities and relations.
This mechanism employs specialised prompting
techniques to direct the LLM’s attention to specific
structural deficiencies in the current graph. As illus-
trated in Figure 1, the system identifies entities that
would be most informative for answering the query,
modelling information necessity rather than merely
information relevance. Following gap identifica-
tion, the system employs relation-aware retrieval to
efficiently locate documents containing the missing
information. This targeted retrieval strategy dif-
fers significantly from traditional similarity-based
approaches by formulating queries specifically de-
signed to bridge identified knowledge gaps. The re-
trieval component employs both entity-centric and
relation-centric query formulation to ensure com-
prehensive coverage of the missing information.
The retrieved information undergoes structured ex-
traction and integration into the existing knowledge
graph through our graph extension mechanism (la-
belled "Extend KG" in Figure 1). This integration
process preserves existing graph structure while
incorporating new entities and relations, creating a
progressively more comprehensive knowledge rep-
resentation with each iteration. The enhancement
cycle continues iteratively, with each cycle refin-
ing the knowledge graph until it contains sufficient
information for confident reasoning or reaches a
predetermined iteration limit. This dynamic re-
finement process enables KGEIR to overcome the
limitations of static retrieval approaches, adaptively
exploring the information space as directed by rea-
soning requirements rather than surface-level query
similarity.

3.4 Knowledge-Guided Reasoning and
Assessment

The final component of KGEIR leverages the dy-
namically enhanced knowledge graph to perform
multi-hop reasoning and answer the question. Un-
like approaches that reason directly over retrieved
text, KGEIR reasons over the structured entity-
relation graph, allowing for more precise naviga-
tion through complex information. The reasoning
process leverages both the graph structure and the
original retrieved passages, combining the advan-
tages of structured knowledge representation with
the contextual richness of the original text. As il-

lustrated in Figure 1, the LLM reasoner identifies
relevant paths through the knowledge graph that
connect question entities to potential answers. For
our example question, the reasoner would identify
paths connecting "James Henry Miller" through the
"HasWife" relation to his spouse, and then through
the "HasNationality" relation to the target answer.
By traversing these explicit relationship paths, the
system effectively performs multi-hop reasoning
while maintaining clarity about the evidence sup-
porting each hop.

The reasoning process includes a simple verifica-
tion step (the decision node in Figure 1) where the
LLM determines if the current graph provides di-
rect supporting information to answer the question.
If more information is needed, the system triggers
another enhancement cycle; otherwise, it proceeds
to generate the final answer.

4 Experiment

4.1 Setup

Dataset and Retrieval Parameter For comprehen-
sive evaluation of KGEIR, we conducted experi-
ments on three established multi-hop QA bench-
marks: HotpotQA (Yang et al., 2018), 2WikiMulti-
HopQA (Ho et al., 2020), and MuSiQue (Trivedi
et al., 2023). These datasets represent varying de-
grees of reasoning complexity, including 2-hop, 3-
hop, and 4-hop inference chains. Following estab-
lished evaluation practices in this domain (Zhang
et al., 2025), we selected a sample of 1,000 ques-
tions from each dataset’s validation set. For the
hyperparameter setting, we set the number of re-
trieved paragraphs to five for each iteration of the
enhancement cycle, for a maximum of three itera-
tions. If the model still cannot find the answer at
this point, the question is marked as failed.

Baselines We evaluated KGEIR against repre-
sentative methods spanning different approaches to
multi-hop reasoning. We included both sparse re-
trieval with BM25 (Robertson and Zaragoza, 2009)
and dense retrieval with BGE (Xiao et al., 2024) to
establish performance baselines for non-structured
approaches. We compared against the published re-
sults in Liu et al. (2025) on leading tree-structured
systems, including RAPTOR (Sarthi et al., 2024)
and SiReRAG (Zhang et al., 2025), as well as
graph-based approaches namely GraphRAG (Edge
et al., 2025) and HippoRAG (Gutiérrez et al., 2025).
For all structured systems, GPT-4o has been used
to maintain consistency between implementations.
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Evaluation Metric We assessed performance us-
ing exact match (EM) and F1 scores as same as the
setting in HopRAG model (Liu et al., 2025), which
measures the precision of answer generation at dif-
ferent granularities. The EM metric requires exact
correspondence with reference answers, while F1
combines precision and recall at the token level
to provide a more nuanced measure of partial cor-
rectness. We focused exclusively on answer quality
metrics rather than retrieval metrics, as several base-
line systems generate synthetic content (such as
summaries) that would make direct retrieval com-
parison inequitable.

4.2 Result Analysis

Table 1 presents a comprehensive evaluation of our
proposed KGEIR framework against established
baselines across three multi-hop QA datasets. Thus,
KGEIR achieves competitive results with state-of-
the-art methods, our novel mechanisms of dynamic
knowledge graph construction and iterative reason-
ing.

On MuSiQue, KGEIR achieves 44.50% EM (ex-
act matches) and 53.12% F1, showing modest im-
provements over HopRAG (42.20% EM, 54.90%
F1). For HotpotQA, we observe performance
of 63.15% EM and 76.77% F1, slightly higher
than HopRAG’s 62.00% EM and 76.06% F1. On
2WikiMultiHopQA, our approach achieves 59.13%
EM and 69.55% F1, which is competitive though
slightly lower than HopRAG’s 61.10% EM and
68.26% F1. These results demonstrate that KGEIR
achieves comparable performance to the current
state-of-the-art while introducing a fundamentally
different approach to multi-hop reasoning. The pri-
mary contribution of KGEIR is not a significant
leap in raw performance metrics, but rather the
introduction of a novel framework that enhances
the reasoning process through explicit knowledge
modelling and iterative refinement.

In terms of approach, KGEIR differs from Ho-
pRAG in several key aspects. While HopRAG
prioritises logical connectivity between passages
through pseudo-queries and multi-hop traversal,
KGEIR focuses on dynamically constructing and
refining explicit knowledge representations. Un-
like HopRAG, which integrates similarity with log-
ical relations when constructing edges, KGEIR ex-
plicitly models information gaps and uses these
to guide targeted retrieval. The performance
comparisons with traditional retrievers (BM25:

31.77% avg. EM, BGE: 36.17% avg. EM) high-
light the significant advantages of structured ap-
proaches. Meanwhile, GraphRAG’s lower per-
formance (22.10% avg. EM) suggests that static
knowledge graph construction alone is insufficient
without iterative refinement mechanisms. Simi-
lar to how HopRAG positioned itself against SiR-
eRAG by emphasising its streamlined graph struc-
ture without additional summary nodes, KGEIR
introduces a novel dynamic knowledge graph con-
struction process that evolves throughout reason-
ing. Our approach does not require pre-constructed
knowledge graphs or complex graph preprocessing,
instead, it builds and refines graph representations
as reasoning progresses.

4.3 Ablation Experiment and Discussion

To evaluate the effectiveness of KG-based reason-
ing in our framework, we performed an ablation
study comparing different reasoning methods fol-
lowing the retrieval phase. We examined four
distinct approaches: (1) Vanilla (direct LLM rea-
soning without prompting), (2) Chain-of-Thought
(CoT) (Wei et al., 2023), (3) Tree-of-Thought (ToT)
(Yao et al., 2023), and (4) our complete KGEIR
approach with knowledge graph reasoning. For all
experiments, we used Gemma3-27B as the base
model and maintained consistent dataset settings
with our main evaluation. Performance was mea-
sured based on semantic correctness relative to
ground truth answers.

As shown in Table 2, KGEIR consistently out-
performs all baseline reasoning methods across
all datasets, achieving an average improvement
of 2.26% over ToT. The performance improve-
ment is particularly pronounced on the HotpotQA
dataset, where KGEIR achieves 62.20% accuracy
compared to 57.70% for ToT—a 4.50% absolute
improvement. All results suggest that our knowl-
edge graph approach is very effective for complex
bridging questions that require connecting informa-
tion across multiple documents.

Table 2 shows a clear progressive improve-
ment pattern (Vanilla → CoT → ToT → KGEIR),
demonstrating the value of increasingly structured
reasoning approaches. While CoT provides modest
gains over vanilla reasoning (48.11% vs. 48.47%
on average), ToT’s tree-structured exploration
offers more substantial improvements (53.85%).
However, KGEIR’s explicit modelling of entity
relationships through dynamic knowledge graphs
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Table 1: Comparison of RAG methods across datasets with baseline results from the cited literature.

Method MuSiQue 2WikiQA HotpotQA Average

EM [%] F1 [%] EM [%] F1 [%] EM [%] F1 [%] EM [%] F1 [%]
BM25 13.80 21.50 40.30 44.83 41.20 53.23 31.77 39.85
BGE 20.80 30.10 40.10 44.96 47.60 60.36 36.17 45.14
GraphRAG 12.10 20.22 22.50 27.49 31.70 42.74 22.10 30.15
RAPTOR 36.40 49.09 53.80 61.45 58.00 73.08 49.40 61.21
SiReRAG 40.50 53.08 59.60 67.94 61.70 76.48 53.93 65.83
HopRAG 42.20 54.90 61.10 68.26 62.00 76.06 55.10 66.40
KGEIR 44.50 53.12 59.13 69.55 63.15 73.77 55.59 65.48

Table 2: Comparison of ablation study between different reasoning methods across datasets.

Method MuSiQue 2WikiQA HotpotQA Average
Vanilla (LLM ‘as is’) 42.60 62.21 40.62 48.47
CoT (LLM with CoT prompt) 44.50 57.25 42.57 48.11
ToT (LLM with ToT prompt) 45.65 58.21 57.70 53.85
KGEIR 46.45 59.69 62.20 56.11

provides the most effective reasoning framework
(56.11%).

Interestingly, on 2WikiQA, the performance gap
between reasoning methods is less pronounced,
with vanilla LLM reasoning achieving a surpris-
ingly high 62.21%. This suggests that for certain
types of questions, the base reasoning capabilities
of modern LLMs may be sufficient when retriev-
ing appropriate context. Nevertheless, KGEIR still
provides the most consistent performance across
all datasets, demonstrating the robustness of our
approach to different question types and reasoning
complexities.

These results validate our hypothesis that struc-
turing multi-hop reasoning through explicit knowl-
edge graphs enhances LLMs’ ability to connect in-
formation across documents, particularly for com-
plex questions requiring multiple reasoning steps.
The dynamic construction and refinement of knowl-
edge representations provide a more interpretable
and effective reasoning process compared to tradi-
tional prompting methods.

5 Conclusion

In this paper, we presented KGEIR, a novel frame-
work that enhances multi-hop question answering
through dynamic knowledge graph construction
and iterative refinement. Unlike traditional retrieve-
then-read paradigms, KGEIR explicitly models en-
tity relationships across documents and systemati-
cally identifies information gaps to guide targeted

retrieval. This iterative knowledge refinement pro-
cess provides both a structured scaffold for LLM
reasoning and an effective mechanism to address
the inherent limitations of similarity-based retrieval
for complex questions.

Our comprehensive evaluation across three
multi-hop QA benchmarks demonstrates KGEIR’s
effectiveness, achieving competitive or superior
performance compared to state-of-the-art methods.
The most significant improvements appear on com-
plex bridging questions, confirming our approach’s
strength in scenarios requiring cross-document rea-
soning. Ablation experiments reveal that structured
knowledge graph reasoning consistently outper-
forms traditional prompting methods, with our full
KGEIR model providing absolute improvements
of up to 4.50% over Tree-of-Thought prompting.

The integration of dynamic knowledge graph
construction with iterative reasoning represents a
promising direction for addressing complex infor-
mation needs in NLP systems. By bridging sym-
bolic and neural approaches, KGEIR offers a prin-
cipled solution to the challenges of information
fragmentation and implicit relationships that char-
acterise multi-hop reasoning tasks. We may extend
this framework to incorporate uncertainty handling
and conflicting information resolution, potentially
expanding its applicability to a broader range of
knowledge-intensive applications beyond question-
answering.
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Abstract

This study compares a traditional machine
learning feature-engineering approach to a
large language models (LLMs) fine-tuning
method for Native Language Identification
(NLI). We explored the COREFL corpus,
which consists of L2 English narratives pro-
duced by Spanish and German L1 speak-
ers with lower-advanced English proficiency
(C1) (Lozano et al., 2020). For the feature-
engineering approach, we extracted language
productivity, linguistic diversity, and n-gram
features for Support Vector Machine (SVM)
classification. We also looked at sentence
embeddings with SVM and logistic regres-
sion. For the LLM approach, we evaluated
BERT-like models and GPT-4. The feature-
engineering approach, particularly n-grams,
outperformed the LLMs. Sentence-BERT
embeddings with SVM achieved the second-
highest accuracy (93%), while GPT-4 reached
an average accuracy of 90.4% across three runs
when prompted with labels. These findings
suggest that feature engineering remains a ro-
bust method for NLI, especially for smaller
datasets with subtle linguistic differences be-
tween classes. This study contributes to the
comparative analysis of traditional machine
learning and transformer-based LLMs, high-
lighting current LLM limitations in handling
domain-specific data and their need for larger
training resources.

1 Introduction

The role of a learner’s native language (L1) in sec-
ond language (L2) acquisition has been widely ad-
dressed in second language acquisition (SLA) lit-
erature (Lado, 1957; Corder, 1975). SLA research
has shown that the spelling, grammar, and lexicon
used in L2 writing are often influenced by patterns
and rules from a learner’s L1. However, the extent
of L1 impact on L2 performance remains difficult
to determine precisely.

With the emergence of learner corpora, it has be-
come possible to empirically test SLA hypotheses
and explore how different L1s manifest in L2 writ-
ing. One application of this is the Native Language
Identification (NLI) task, which uses automated
methods to predict a learner’s L1 based on their L2
writing. Prior studies have demonstrated high per-
formance for feature-engineered machine learning
(ML) approaches to NLI. However, research ex-
amining the applicability of large language models
(LLMs) to NLI remains limited. Moreover, there
is a lack of studies directly comparing LLMs with
traditional feature-engineered pipelines within the
same experimental paradigm.

The current study addresses this gap by compar-
ing a traditional feature-engineering ML approach
to transformer-based LLMs for the NLI task. As
a secondary goal, we explore both methods us-
ing a relatively small but unique learner corpus
composed of video-based written narratives. This
corpus offers more structured and homogeneous
data than the topic-based essays commonly used
in prior NLI studies. We report the results of both
NLI approaches and discuss their implications for
SLA research.

This paper is structured as follows: Section 2
introduces previous research. Section 3 outlines
the methodology, including a description of the
COREFL corpus and training/testing techniques.
Section 4 presents the results of both approaches.
Section 5 discusses the findings and implications
for SLA and NLI. Section 6 provides the conclu-
sion and suggests future research directions.

2 Related Work

In NLI research, findings are often interpreted
through the lens of Second Language Acquisition
(SLA) and linguistic transfer. Several theoretical
approaches from SLA have served as a founda-
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tion for this task. One of the most influential is
the Contrastive Analysis Hypothesis (CAH; Lado,
1957), which posits that difficulties in second lan-
guage learning arise from differences between the
learner’s first language (L1) and the target language
(L2). Language typology plays a key role in this
process: the more similar two languages are, the
more likely learners are to experience positive trans-
fer that facilitates acquisition; conversely, typologi-
cally distant languages tend to result in more nega-
tive transfer and errors.

Linguistic transfer refers to the application of
phonological, morphological, syntactic, or lexical
rules from one language to another (Odlin, 1989).
For instance, a native speaker of a pro-drop lan-
guage, such as Spanish, may incorrectly omit sub-
jects when constructing sentences in a non-pro-
drop language like German. The likelihood and
nature of transfer errors depend not only on struc-
tural differences between the languages but also on
the learner’s level of proficiency (Montrul, 2014).
As learners become more proficient in the L2, they
tend to make fewer transfer-based errors.

In the context of NLI, the underlying assumption
is that classification algorithms can detect subtle
linguistic patterns in learners’ L2 that reflect L1
influence, such as deviations in syntactic structure,
part-of-speech usage, or inconsistencies in lexicon
and use these cues to identify the writer’s native lan-
guage. These linguistic traces provide support for
theoretical approaches in SLA and help explore the
phenomenon of cross-linguistic influence or trans-
fer (Jarvis and Crossley, 2012; Tsur and Rappoport,
2007).

Prior studies have consistently demonstrated the
effectiveness of n-gram-based features for NLI. For
instance, several studies have found character n-
grams to be among the most discriminative fea-
tures (Koppel et al., 2005; Markov et al., 2022),
while others have reported high classification per-
formance using lexical and part-of-speech (POS)
n-grams. Jarvis et al. (2013), for example, achieved
an accuracy of 83.6% using word n-grams, and
Markov et al. (2022) reported accuracies ranging
from 80% to 90% using character n-grams with
high values of n (up to n=9). Furthermore, com-
binations of POS n-grams and error features have
yielded precision and recall scores exceeding 80%
(Aharodnik et al., 2013; Kochmar, 2011). For ex-
ample, Kochmar (2011) reported 84% accuracy
using a combined feature set of character n-grams,

POS n-grams, and corpus-derived error rates for
classifying Romance and Germanic languages. In
contrast, fewer NLI studies have examined features
that reflected language productivity and lexical di-
versity, such as function word and content word
ratios, mean length of utterance in words, and type-
token ratio. However, these features may also be
informative, as learners may exhibit L1-influenced
lexical and syntactic patterns in their writing. For
example, some studies emphasized that function
words have contributed to high-performing models
when combined with n-grams and error features
(Koppel et al., 2005; Wong and Dras, 2009).

Studies exploring NLI with LLMs have yielded
mixed results. For example, Lotfi et al. (2020)
reported an accuracy of 89% on the test set for
TOEFL11 and 94.2% on 5-fold cross validation
for ICLE Corpus using GPT-2. These results in-
dicated that the open source GPT model (GPT-2)
was higher than the traditional machine learning
approaches, with the best performing model achiev-
ing 88.2% accuracy with the SVM (Malmasi et al.,
2017). However, studies have shown lower perfor-
mance for BERT-like LLMs compared to a GPT-
2 model. For example, 80.8% accuracy was at-
tained using BERT-base-uncased when tested on
the TOEFL11 corpus test set (Lotfi et al., 2020).
Importantly, few studies have directly compared
traditional machine learning and LLM-based ap-
proaches within the same experimental framework.

Moreover, LLM performance appears to be sen-
sitive to dataset size. For instance, Steinbakken and
Gambäck (2020) found that BERT-based models
reached 85.3% accuracy on the TOEFL11 dataset,
but accuracy improved to 90.2% when using the
larger Reddit-L2 dataset. These findings suggest
that LLMs require larger and more diverse data to
perform optimally, highlighting the need for fur-
ther research that examines LLM effectiveness on
datasets of varying sizes and content types.

The nature of the data itself also plays a critical
role in classification performance. Most NLI stud-
ies have relied on the TOEFL11 corpus, which con-
tains argumentative essays on various topics (Mal-
masi and Dras, 2015). While high performance has
consistently been reported for this dataset (Kop-
pel et al., 2005; Malmasi and Cahill, 2015), its
topic-based structure introduces the risk of con-
tent bias, particularly when using content-sensitive
features such as word and character n-grams. Stud-
ies on cross-corpora evaluation have found that
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Features Description
Narrative Microstructure
MLU(w) Mean Length of Utterance in Words: ratio of total word tokens to

total number of sentences per text
FCR Function-to-Content Word Ratio.

Function words: auxilliaries, pronouns, determiners, prepositions,
conjunctions, particles.
Content words: nouns, verbs, adjectives, adverbs.

TTR Type-Token Ratio: ratio of unique words to total words.
POS fc Part-of-speech frequency counts (e.g., the number of NOUNs,

VERBs, ADJs, etc. per text).
N-gram Features
POS n-grams Sequences of POS tags (e.g., ”DET NOUN”, ”NOUN VERB

ADV”).
Word n-grams Sequences of words (e.g., ”he walked”, ”the baby ate”)
Character n-grams Sequences of characters (e.g., ”ing”, ”ys”, ”ies”)

Table 1: Overview of linguistic productivity, language diversity, and n-gram features included in the study.

genre-diverse corpora produce a higher accuracy
when tested on a genre-specific corpus than the
reverse. However, overall accuracy remains rel-
atively low, as many features useful for NLI are
genre-dependent (Malmasi and Dras, 2015). More
structured datasets, such as those based on picture-
or video-based narratives, can be used as an alterna-
tive for a more consistent feature extraction across
participants.

The current study addresses these gaps by com-
paring a traditional feature-engineering approach
with supervised machine learning classifiers and
the fine-tuning of LLMs within a single experimen-
tal setup. We examine both previously validated
feature sets, such as n-grams, and a complemen-
tary set of language productivity and diversity mea-
sures. This approach aims to assess whether these
additional linguistic features enhance classification
performance and provide deeper insights into L1-
specific patterns in learner writing. To minimize
topic-related bias in L1 identification, we apply
both methods to a more homogeneous dataset.

3 Methods

3.1 Dataset
We used the COREFL corpus (Lozano et al., 2020).
The corpus contained English L2 learner data of
Spanish and German L1 backgrounds. Only learn-
ers with a lower advanced level of English profi-
ciency (C1) were included in the study. The writ-
ers’ age ranged from 18 to 60 years old. The data
consisted of 84 German and 79 Spanish files with

Language Total Files VS BDS
German 84 13 7
Spanish 79 17 7
Total 163 30 14

Table 2: Total number of files and the number of files
used for validation and blind test sets for both language
groups. VS = Validation Set. BDS = Blind Dataset.

one file per participant. The participants watched
a 4-minute video clip about Charlie Chaplin and
summarized the story in a written essay.

3.2 Feature-Engineering Approach
The feature-engineering step focused on selecting
and automatically extracting specific features that
best characterized the data. The features for this
study included two sets described in detail in Table
1.

The pre-processing step involved data cleaning
and feature extraction. Data cleaning consisted of
basic steps: removing special characters, removing
punctuation, lowercasing, tokenization, and POS
tagging. All features were extracted from narratives
using bash scripts. The POS tagging was imple-
mented using en core web trf with Spacy Python
package. All bash scripts and Python code is avail-
able on GitHub1:

The extracted features were used as input for
supervised machine learning binary classification.
We implemented the Support Vector Machine clas-

1https://github.com/AliyahVanterpool/ml features vs llm.git
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Testing Set Feature Accuracy F1
VS All 0.70 0.70
BDS All 0.79 0.78
VS MTF 0.67 0.64
BDS MTF 0.64 0.64
VS POS fc 0.63 0.63
BDS POS fc 0.71 0.71
VS MLU(w) 0.67 0.62
BDS MLU(w) 0.50 0.48
VS TTR 0.60 0.57
BDS TTR 0.50 0.33
VS FCR 0.60 0.55
BDS FCR 0.79 0.78

Table 3: Highest accuracy and F1 for language produc-
tivity and diversity features. VS = Validation Set. BDS
= Blind Dataset. All = MLU(w), TTR, FCR, POS fc.
MTF = MLU(w), TTR, FCR.

sifier (SVM; Cortes and Vapnik, 1995) with linear
and rbf kernels, Logistic Regression (Cox, 1958;
Hosmer Jr et al., 2013), and K-Nearest Neighbors
(KNNs) classifier (Cover and Hart, 1967). We com-
pared the performance across feature sets and clas-
sifiers. Table 2 shows the total number of files
and those allocated to the validation and blind test
sets for both language groups. The following mod-
els were included in the analysis: 1) all features
(ALL = MLU(w) + TTR + FCR + POS fc); 2) each
feature from ALL models individually; 3) MTF fea-
ture set (MLU(w) + TTR + FCR); 4) word n-grams
(bigrams, trigrams); 5) POS n-grams (bigrams, tri-
grams); and 6) character n-grams (four-grams to
nine-grams).

The training dataset was created using 90% of
the entire dataset, while 10% was held out for the
blind test set. 80% of the training data was used
for training and 20% for validation. The classifier
training and parameter tuning was implemented
using scikit-learn package in Python (Pedregosa
et al., 2011). The kernels and c-parameter were
explored to evaluate which models performed the
best.

We also looked at Sentence-BERT embeddings
(Reimers and Gurevych, 2019). We implemented
all-MiniLM-L6-v2, a distilled BERT-based model
from the Sentence Transformers. These embed-
dings were used as feature vectors for downstream
binary ML classification with SVM and Logistic
Regression. We evaluated the performance of both
classifiers and reported the accuracy for the blind
test set.

3.3 LLM Approach

For the LLM approach, we explored BERT-like
models (Devlin et al., 2019). These models
were ALBERT (Lan et al., 2019), BERT-base-
multilingual-cased, BERT-base-uncased, Distil-
RoBERTa-base, DistilBERT-base-uncased, and
XLM-RoBERTa-base. We fine-tuned these pre-
trained models for sequence classification using the
learner corpus. The fine-tuning process involved
training each model on 80% of the entire dataset,
with 20% validation for a maximum of 3 epochs
with a learning rate of 1e-5 and a batch size of 8.
We experimented with frozen layers, however the
models with all layers demonstrated better results
and thus were reported in our study.

Additionally, we evaluated GPT-4 performance
across three runs in two ways - 1) when tested on
the blind dataset with class labels provided; and
2) no labels given. When GPT-4 was provided
with labeled data, the prompt was: The following
English text is written by either a native German
speaker or native Spanish speaker. What is the
native language of the writer of this text: German
or Spanish? Explain your choice in 1-2 sentences.
The prompt for unlabeled data was: The follow-
ing English text is written by a non-native speaker.
What is the native language of the writer of this
text? Explain your choice in 1-2 sentences.

3.4 Testing and Evaluation Metrics

For the feature-engineering approach, we used
three testing techniques: validation set, blind
dataset, and k-fold cross validation (CV). The vali-
dation split was 20% of the training dataset. The
blind dataset consisted of 10% of the entire dataset
held out for testing and not included in the training.
The blind dataset included 7 random files for each
label (14 files in total). For K-fold CV, k ranged
from 5-10 and the best k (k = 7) was reported. We
reported the results for the SVM classifier since it
demonstrated the best performance. We evaluated
the best accuracy for linear and rbf kernels, and for
C-parameter value. We also calculated feature im-
portance scores with Random Forest Classifier for
word bigrams and trigrams from the blind test set to
identify those n-grams that impacted the classifier’s
decisions.

For the LLMs approach, we looked at both the
validation and blind dataset results and reported the
blind test results. Cross-validation techniques was
computationally expensive for the BERT-like mod-
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els, hence those were not reported for this study.

4 Results

4.1 Feature Engineering Approach

For the feature engineering approach, the best per-
forming model was the model with all productivity
and diversity features combined (ALL; 79% accu-
racy and 78% F1-score). K-fold CV for all fea-
ture models produced the highest mean accuracy
of 72.5%. The productivity and diversity measures
are described in Table 3. Models with individual
features showed the highest accuracy (79%) and
F1-score (78%) for function-to-content ratios with
k-fold CV at 57.7%.

Among n-gram features, word bigrams and tri-
grams as well as character four- and five-grams at-
tained the highest accuracy and F1 for both the val-
idation and blind datasets. These results are shown
in Table 4. The highest accuracy of 100% (95%
CI [0.78, 1.00], Wilson interval) was achieved by
word bigrams when tested on the blind dataset. The
k-fold CV accuracy with k = 7 was 90.6% for word
bigrams. The best models for the validation set
were word bigrams and trigrams, as they acquired
an accuracy of 93% (95% CI [0.79, 0.98], Wilson
interval). The k-fold CV accuracy for trigrams
was 91.3%. POS bigrams had the highest accuracy
when tested on the validation set (87%; 95% CI
[0.70, 0.95], Wilson interval) and POS trigrams ac-
quired the highest accuracy of 79% (95% CI [0.52,
0.92], Wilson interval) when tested on the blind
dataset. The K-fold CV accuracy was 81.2% for
POS bigrams and 82.5% for POS trigrams. Over-
all, the results for n-gram features demonstrated
the highest accuracy and stable results across dif-
ferent testing techniques (validation, blind test, and
K-fold CV).

The highest accuracy for sentence embeddings
with SVM was 93% and 78% with logistic regres-
sion when tested on the blind dataset. Additionally,
the SVM embedding results performed better than
the language productivity and diversity measures.
However, sentence embeddings results were lower
than the word bigram results. The best perform-
ing models for the feature-engineering approach,
including sentence embeddings, are displayed in
Figure 1.

4.2 LLM Approach

The LLM approach was separated into two parts:
(1) BERT-like models with a classification layer,

Figure 1: Best performing models for feature-
engineering approach. ALL, FCR, word bigrams, SE
w/ SVM, and SE w/ LogReg when tested on the blind
dataset. Character four-grams and five-grams when
tested on the validation set. SE w/ SVM = Sentence-
embeddings with SVM. SE w/ LogReg = Sentence-
embeddings with Logistic Regression.

and (2) GPT-4 results. For the first part, we reported
the performance of the blind test set. For the second
part, we provided the average GPT-4 results across
three runs for prompting with and without labels.

For BERT-like models, the highest accuracy of
all six models is displayed in Figure 2. This in-
cluded only models with all layers, as models with
frozen layers demonstrated lower accuracy. The
results show that two small BERT-like models and
one large model performed with the highest accu-
racy: ALBERT (83%), DistilBERT-base-uncased
(81%), and BERT-base-uncased (73%). As AL-
BERT and DistilBERT-base-uncased are lighter
models, these results demonstrate that lighter mod-
els perform better than larger models for this stud-
ies data. Additionally, compared to previous BERT
results, the BERT results in this study outperformed
previously reported results 83% vs 80.8% (Lotfi
et al., 2020), but lower than cross-corpora com-
parison accuracy of 85.3% when using SVM and
FFNN base classifiers (Steinbakken and Gambäck,
2020).

For GPT-4, we performed 3 runs for with-label
and no-label options with temperature set to 0.2.
The accuracy when labels were provided was
92.9% for the first two runs – with only one file
being mislabeled, and 85.7% for the third run. The
average accuracy of the three runs was 90.48%.
When no labels were given, GPT-4 attained an ac-
curacy of 50% for all three runs. German was
misclassified as Turkish and Russian, and Spanish
was mislabeled as Italian, French, and Turkish.
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Testing Set N-gram Type N-gram Accuracy F1-score
VS Word Bi 0.93 0.93
BDS Word Bi 1.00 1.00
VS POS Bi 0.87 0.86
BDS POS Bi 0.71 0.71
VS Word Tri 0.93 0.93
BDS Word Tri 0.86 0.85
VS POS Tri 0.80 0.80
BDS POS Tri 0.79 0.78
VS Character Four 0.93 0.93
BDS Character Four 0.79 0.78
VS Character Five 0.93 0.93
BDS Character Five 0.86 0.86

Table 4: Accuracy and F1 for n-gram models. The best models are in bold. VS = Validation Set. BDS = Blind
Dataset.

Figure 2: The results for BERT-like models. Dis = Distil.
UC = Uncased. MC = Multilingual-cased.

5 Discussion

The contribution of the current study is two-fold.
First, we compared two approaches - feature engi-
neering and fine-tuning BERT-like LLMs - within
the same study. The results showed that the
feature-engineering approach outperformed the
LLM-based approach, highlighting the effective-
ness of feature-engineering pipelines for the NLI
task, particularly in scenarios with relatively small
datasets. Second, we explored a type of data that
differs from that used in most previous studies.
Specifically, our dataset consisted of narratives
written by participants in response to the same
video-based stimulus, providing more consistency
across texts than the corpora of topic-based argu-
mentative essays commonly used in NLI research.

Word bigrams were the most effective features
extracted from the data. This finding suggested
that word bigrams can effectively distinguish be-

tween learners with Spanish L1 and German L1
backgrounds based on their English writing. These
n-grams likely captured differences in vocabulary
use, word choices reflecting possible morphosyn-
tactic errors, and distinctive lexical-syntactic pat-
terns (the combinations of word tokens) between
the two groups, which could be evidence of lan-
guage transfer from learners’ native languages to
their L2 English. For example, German L1 influ-
ences were seen in lexical choices such as ’small hu-
man being’ instead of ’baby’ (possibly influenced
by ’kleines menschliches Wesen’ in German) and
’perceives it’ instead of ’notices it’ (possibly from
’wahrnehmen’ meaning both ’perceive’ and ’notice’
in German).

Spanish L1 transfer was also evident from mor-
phosyntactic patterns, such as noun-pronoun gen-
der disagreement (e.g., ’the baby. . . she’). The
preposition use was another source of transfer for
Spanish L1 writers. For instance, ’yells him’ (from
Spanish ’le grita’) reflected the incorrect omission
of a preposition possibly due to the Spanish verb
allowing a direct object.

An analysis of function words (Figure 3) re-
vealed no major quantitative differences in the fre-
quency of POS categories between the two groups,
except for prepositions: German L1 writers tended
to use more prepositions in their narratives com-
pared to the Spanish L1 group. Qualitative differ-
ences in preposition use were seen, for instance,
in ’walking on the street’ phrase, where Spanish
L1 writers overused the preposition ’on’ instead of
’in’. The above examples indicated instances of lin-
guistic transfer which are in line with the previous
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research on interlingual errors in Spanish-English
bilinguals (Alonso Alonso, 1997). These patterns
influenced the classifiers’ decisions in disambiguat-
ing the two classes in the current study.

The Random Forest classifier also highlighted
the bigrams that contributed to classification. For
example, ’next to’ was predominantly used by
German L1 writers, while ’he is’ and ’to leave’
appeared more frequently in Spanish L1 texts.
These features further illustrated the distinct lexico-
syntactic choices between the two L1 groups. Over-
all, our results suggested that even when the dif-
ferences between learner groups were subtle, tra-
ditional ML classifiers were capable of detecting
them based on word n-grams and related surface-
level patterns.

Importantly, our findings aligned with previous
research that has identified word n-grams as ef-
fective features for NLI (e.g., Koppel et al., 2005;
Jarvis et al., 2013) and demonstrated comparable or
higher accuracy. For example, Jarvis et al. (2013)
found that word and POS n-grams acquired an accu-
racy of 83.6% when using 10-fold cross validation
and 90.1% when used on an ensemble classifier.
However, our results cannot be directly compared
because the number of classes and the nature of the
data were different in the current study. In addition,
word-based n-grams successfully captured class-
specific differences from the dataset that consisted
of written narratives based on the same video stim-
ulus, thus reducing the risk of content bias from
topic-related vocabulary.

Other n-gram types, including character n-grams
and POS n-grams, also performed well. For char-
acter n-grams, we explored a range from four char-
acters to nine characters. The best results were
achieved with four- and five-grams. These likely
captured class differences in short function words,
such as prepositions, which are often markers of L1
influence (Jarvis and Odlin, 2000). The high perfor-
mance of POS n-grams may be attributed to distinc-
tive patterns in part-of-speech use and distribution
across the two groups. For example, the qualitative
analysis of the data suggested that German L1 writ-
ers relied more on subordinate clauses, a pattern
consistent with transfer from German’s preference
for embedded structures (Swan and Smith, 2001).

Among lexical diversity and productivity fea-
tures, the model combining all measures (function-
to-content word ratio, MLU(w), TTR, and POS fre-
quency counts) achieved the highest accuracy and

Figure 3: Percentage of function words per category and
language group. AUX = Auxillaries. PRON = Pronouns.
DET = Determiners. ADP = Adposition (Preposition).
CONJ = Coordinating and Subordinating Conjunctions.
PART = Particles.

F1 score (see Table 3). However, these results were
still lower compared to the n-gram-based models.
Notably, the function-to-content word ratio (FCR)
emerged as the strongest individual predictor in
this group, showing the highest performance on
the blind test set. These patterns suggest that both
n-gram features and FCR effectively captured dif-
ferences in language productivity and distributional
tendencies across German and Spanish L1 groups.
Lexical diversity features, such as TTR, did not
show high accuracy (50%) for the blind dataset. Ex-
ploring other TTR metrics (e.g., Moving-Average
Type-Token Ratio (MATTR)) might provide a dif-
ferent result given the length-sensitive nature of the
feature.

The sentence embeddings approach also out-
performed the fine-tuning of BERT-like classifi-
cation models with 93% accuracy. By encoding
contextual relationships and sentence-level seman-
tics, these embeddings were able to capture subtle
differences in linguistic patterns between the two
L1 groups in their English L2. These findings are
in line with the previous research that indicated the
utility of the embeddings approach for the NLI task
and demonstrated that word embeddings together
with string kernels were effective for L1 classifica-
tion (Franco-Salvador et al., 2017).

Taken together, the results of the feature-
engineering approach highlighted the robustness of
both sparse vector surface-level features, such as
n-grams, and dense sentence embeddings approach.
Both methods were effective for distinguishing ad-
vanced learners’ L1 backgrounds in written narra-
tives.

The classification with BERT-like LLMs did not
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Figure 4: Percentage of content words per category and
language group. ADJ = Adjective. ADV = Adverb.

perform on par with the feature-engineering ap-
proach. The highest accuracy within this group
was achieved by the ALBERT model (83% accu-
racy, Figure 2), suggesting that lighter and more
parameter-efficient architectures may be better
suited for this task.

One possible explanation for the lower perfor-
mance of BERT-like models is their sensitivity to
dataset size and domain mismatch. Effective fine-
tuning of these models typically requires large, di-
verse datasets to generalize better. In contrast, the
relatively small and domain-specific nature of our
dataset may have limited their ability to adapt. Ad-
ditionally, while BERT models are designed for
deep contextual understanding, this level of com-
plexity may not be necessary for the current NLI
task. Surface-level patterns, such as n-gram distri-
butions and POS frequencies in our study, appear
sufficient for distinguishing between L1 groups.

Furthermore, the results for the closed-source
GPT-4 model revealed an average accuracy of
90.48%, which is similar to the sentence embed-
dings and word n-gram models. This performance
was achieved using prompts that included labels,
resembling a supervised approach. These find-
ings align with previous studies investigating GPT
models. For example, Zhang and Salle (2023) re-
ported that GPT-4 achieved an accuracy of 91.7%
on the TOEFL11 dataset. Similarly, Ng and
Markov (2024) found that closed-source LLMs
such as GPT-4 consistently outperformed open-
source LLMs, regardless of fine-tuning. However,
without labels, the closed-source GPT-4 performed
poorly in our study.

Although both open- and closed-source models
have demonstrated promising results for NLI, an
important limitation of closed-source LLMs lies
in the lack of transparency regarding their training

data which raises concerns about reproducibility
and potential biases in their outputs.

Overall, our results highlighted that traditional
supervised machine learning techniques (e.g., SVM
classifier) remain highly robust for low-resource
NLI tasks. These models not only outperformed
BERT-like LLMs but also achieved performance
on par with the GPT-4 model. The lower results
for BERT-like LLMs underscore their limitations
in settings with domain-specific and scarce training
data, including issues of limited interpretability and
a higher risk of overfitting during fine-tuning.

6 Conclusion & Future Directions

In this paper, we compared two approaches for
the NLI binary classification task: the tradi-
tional ML feature-engineering method and fine-
tuning of BERT-like LLMs with a classification
head. Our findings suggested that studies working
with smaller, domain-specific datasets may bene-
fit more from feature-engineering pipelines than
from fine-tuning BERT-like LLMs. Frequency-
based surface-level features were more sensitive
to subtle differences in written narratives of sim-
ilar content. While BERT-like models were less
robust, lighter variants performed noticeably bet-
ter than their larger counterparts on the small NLI
dataset. Nonetheless, including other fine-tuning
methods (e.g., DAPT, LoRA) could produce differ-
ent results. The GPT-4 model also showed promis-
ing results when provided with labels; however,
since the sources of its training data are not trans-
parent, it is difficult to assess the generalizability
and reliability of its performance. By evaluating
both feature-engineering and BERT-like LLM ap-
proaches within the same study, we offered a direct
comparison of their effectiveness for NLI.

Future studies could focus on datasets with
structurally and topically consistent content across
classes, which may reveal more subtle linguis-
tic cues relevant for classification. It would also
be valuable for future work to explore robust
cross-validation techniques for LLMs, particularly
when sufficient computational resources are avail-
able. Future research should continue to explore
both traditional feature-engineering and LLM ap-
proaches, including closed-source LLM models
without given labels, within the same experimental
framework to better understand their comparative
advantages across diverse domain-specific datasets.
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Cristóbal Lozano, Ana Dı́az-Negrillo, and Marcus Cal-
lies. 2020. Designing and compiling a learner corpus
of written and spoken narratives: Corefl. What’s in a
Narrative, pages 21–46.

Shervin Malmasi and Aoife Cahill. 2015. Measuring
feature diversity in native language identification. In
Proceedings of the tenth workshop on innovative use
of NLP for building educational applications, pages
49–55.

Shervin Malmasi and Mark Dras. 2015. Large-scale
native language identification with cross-corpus eval-
uation. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1403–1409.

Shervin Malmasi, Keelan Evanini, Aoife Cahill, Joel
Tetreault, Robert Pugh, Christopher Hamill, Diane
Napolitano, and Yao Qian. 2017. A report on the
2017 native language identification shared task. In
Proceedings of the 12th Workshop on Innovative Use
of NLP for Building Educational Applications, pages
62–75.

Ilia Markov, Vivi Nastase, and Carlo Strapparava. 2022.
Exploiting native language interference for native lan-
guage identification. Natural Language Engineering,
28(2):167–197.

Silvina Montrul. 2014. Interlanguage, transfer and fos-
silization: Beyond second language acquisition. In
Interlanguage, pages 75–104. John Benjamins Pub-
lishing Company.

Yee Man Ng and Ilia Markov. 2024. Leveraging open-
source large language models for native language
identification. arXiv preprint arXiv:2409.09659.

Terence Odlin. 1989. Language transfer, volume 27.
Cambridge University Press Cambridge.

152
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Abstract

Artificial intelligence models have increas-
ingly supplanted traditional rule-based sys-
tems for extracting knowledge from structured
data; however, the integration of both ap-
proaches remains underexplored. While large
language models offer greater flexibility than
rigid rule systems, the structured knowledge
from rule-based analytics can significantly en-
hance LLM performance and efficiency. This
paper presents a novel multi-agent system
that automatically generates graph database
schemas from tabular data by strategically com-
bining rule-based analytics with large language
models. Our system utilises a lightweight rule
framework that selects the most suitable analyt-
ical methods based on column data types, pro-
viding targeted insights to inform the schema
generation process. The system’s modular ar-
chitecture enables comprehensive ablation stud-
ies examining both the effectiveness of rule-
based analytics and their optimal presentation
formats. Through systematic evaluation, we
demonstrate that structured rule formats re-
duce result variability (lower standard devi-
ation) while contextualised formats achieve
superior performance despite higher variance.
Our analysis identifies which pipeline stages
benefit most from analytical guidance, provid-
ing insights for optimising hybrid AI systems.
This work contributes a practical framework for
integrating rule-based knowledge with modern
language models, demonstrating measurable
improvements in both consistency and perfor-
mance for structured data processing tasks.

1 Introduction

The evolution of natural language processing has in-
volved different rule-based (Miller et al., 1996), sta-
tistical (Weikum, 2002), and machine learning sys-
tems (Galanis et al., 2021), culminating in the cur-
rent dominance of Large Language Models (LLMs)
(Feng et al., 2025). However, recent approaches

suggest that there is room for improvement with
techniques traditionally used in rule-based sys-
tems when combined with LLMs (Laqrichi, 2024).
While LLMs have revolutionised most NLP tasks
with their exceptional reasoning capabilities, they
still face challenges with complex linguistic phe-
nomena, scalability, and domain-specific accuracy
requirements (Gururaja et al., 2023). These limi-
tations have revived interest in knowledge-based
and rule-based approaches, which offer superior
explainability and remain competitive in niche do-
mains (Chen et al., 2025).

Rule-based analytics have been the cornerstone
of classical information extraction from structured
data (Atzmüller et al., 2008), involving the extrac-
tion of entities, properties, and relationships via
discovered data types. However, these analytical
methods, while interpretable and precise, lack the
semantic interpretability necessary to accurately
handle multi-column relationships and implied pat-
terns.

Contemporary causal language models demon-
strate a remarkable capacity to understand struc-
tured data formats such as CSV, JSON, and Mark-
down (Oh et al., 2025), enabling them to reason
over tabular data when provided with appropri-
ate context. For automatic generation of graph
database schemas from relational ones, such a
combination is particularly valuable. Relational
databases represent entities as tables with primary
keys and associated columns, and relationships as
foreign keys. Although this structure guarantees
coherence and integrity, it is not suitable for tasks
involving the detection of implicit relationships,
hierarchical understanding, or semantic flexibil-
ity—the essential ingredients for graph-based rep-
resentations.

Our approach demonstrates how rule-based ana-
lytics can be integrated systematically with LLMs
to address these challenges. We employ a rule-
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based system that infers data types for every col-
umn and calls specialised analytical routines based
on these type determinations. These analytics are
then exposed as structured or contextualised con-
text to LLMs in a multi-agent system, allowing
us to contrast the relative performance impact of
rule-based preprocessing on LLM-based schema
generation.

The multi-agent system architecture enables sys-
tematic ablation studies by selectively masking ana-
lytical components, allowing us to quantify the con-
tribution of rule-based analytics to overall system
performance. Each agent specialises in different
aspects: individual table analysis leveraging type-
specific rules, cross-table relationship detection,
and schema standardisation and integration.

2 Related Work

The automatic generation of graph database
schemas from relational data represents a conver-
gence of several fundamental research areas. Our
work builds upon three interconnected domains:
semantic interpretation techniques for extracting
meaning from relational data, methodologies for
converting relational schemas to graph representa-
tions, and the integration of large language models
with tabular data processing.

2.1 Semantic Interpretation in Relational
Data

The interpretation of semantics in tabular data has
evolved significantly from early rule-based sys-
tems and heuristics (Cremaschi et al., 2024) to
machine learning approaches (Chen et al., 2019).
Traditional approaches relied primarily on unsuper-
vised clustering techniques and supervised learning
methods for column type classification and entity
disambiguation. The introduction of dense vec-
tor representations marked a paradigm shift (Gor-
ishniy et al., 2023), with specialised embedding
techniques designed for tabular data enabling ef-
fective representation of column semantics, entity
relationships, and cross-table linkages.

The emergence of large language models has
fundamentally transformed semantic interpretation
by enabling contextualised understanding of ta-
ble content and structure (Cremaschi et al., 2025).
Encoder-only models, such as BERT, have demon-
strated effectiveness for header classification and
column similarity assessment (Trabelsi et al., 2022).
In contrast, decoder-only models such as Llama

(Jiang et al., 2024) excel at entity linking, relation-
ship extraction, and cross-table reasoning through
in-context learning.

2.2 From Relational to Graph Databases

The conversion from relational to graph database
schemas represents a critical challenge in modern
data management (Bhandari and Chitrakar, 2024).
While relational databases ensure data integrity
through rigid schemas with primary keys, foreign
keys, and predefined relationships, their structural
constraints limit adaptability for downstream tasks
requiring flexible semantic modelling.

Graph databases address these limitations by
representing entities as nodes and relationships as
edges, enabling more flexible modelling of seman-
tic relationships. The conversion process involves
identifying entities (potentially distributed across
multiple tables), detecting implicit semantic rela-
tionships, and standardising properties and types.
This transformation requires careful consideration
of graph type selection (property graphs vs. RDF),
structural properties (directionality, multigraphs),
and higher-level semantic rules (Putrama and Mar-
tinek, 2022).

The complexity of this conversion process has
motivated researchers to explore automated ap-
proaches leveraging advanced reasoning capabili-
ties, leading to increased interest in utilising large
language models for schema conversion (Sui et al.,
2024a).

2.3 LLMs Integration with Tabular Data

Large Language Models have demonstrated re-
markable capabilities in processing structured data
through advanced prompt engineering techniques
such as Chain-of-Thought reasoning (Wang et al.,
2024) and in-context learning (Wen et al., 2025).
However, several critical limitations constrain their
effectiveness:

Format Sensitivity: LLMs exhibit pronounced
sensitivity to tabular serialisation methods, with
performance degradation of approximately 50%
when tables are transposed (Liu et al., 2023).
HTML and XML formats demonstrate superior
performance with GPT models (Sui et al., 2024a).

Context Window Limitations: Context con-
straints pose significant challenges when process-
ing larger tables, leading to performance degrada-
tion and the "lost-in-the-middle" phenomenon (Sui
et al., 2024b).
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Reliability Concerns: LLM outputs remain
prone to hallucinations (Su et al., 2024), partic-
ularly in sensitive applications, with severity in-
creasing as output length extends (Harrington et al.,
2024). Mitigation strategies include audit mod-
ules and self-correction mechanisms (Karbasi et al.,
2025).

External Tool Integration: The integration of
external tools has significantly enhanced LLM util-
ity for tabular data tasks, enabling code generation
for database interaction (Zhang et al., 2023) and
automated data processing workflows (Fan et al.,
2024).

Despite these advances, current approaches pri-
marily rely on commercial LLMs (Chen et al.,
2025), limiting reproducibility and raising privacy
concerns. Furthermore, existing methods lack a
systematic evaluation of how rule-based analytics
can enhance LLM performance in schema gener-
ation tasks, representing a significant gap that our
work addresses.

3 MultiAgent System

To systematically evaluate the impact of rule-based
analytics on graph schema generation from tabular
data, we developed a multi-agent system that inte-
grates data analytics with causal language models.
Our primary objective is to generate valid graph
database schemas from relational tabular data while
enabling controlled experimentation to assess the
contribution of rule-based preprocessing to overall
system performance.

3.1 System Architecture and Design
Principles

We implemented our system using LangGraph
(Wang and Duan, 2024), a framework that enables
the definition of distinct state graphs for different
processing pipelines. This architectural choice pro-
vides crucial flexibility for our experimental design,
allowing us to conduct ablation studies by selec-
tively turning on or off specific nodes and analytics-
driven prompts within the language model work-
flows. This modular approach facilitates systematic
comparison between schema generation with and
without rule-based analytical enhancement.

Our system architecture mirrors the decision-
making process employed by expert graph database
modellers when converting relational databases to
graph representations (De Virgilio et al., 2013).
The design incorporates domain expertise through

a structured two-stage approach that addresses the
inherent complexity of semantic interpretation and
schema transformation. A comprehensive diagram
illustrating the state graph used in our experiments,
with and without analytics integration, is presented
in Figure 1.

3.2 Processing Pipeline Architecture
The schema generation process operates through
two complementary stages designed to capture both
intra-table and cross-table semantic relationships:

1. Table-Based Processing Pipeline: This stage
executes individual state graphs for each table
in the source dataset, focusing on entity iden-
tification, relationship discovery, and property
mapping within the context of each isolated
table.

2. Cross-Table Processing Pipeline: This stage
utilises a unified state graph to standardise re-
dundant entities and relationships across ta-
bles, while identifying cross-table relation-
ships, including primary and foreign key asso-
ciations.

This dual-stage approach enables a systematic
evaluation of how rule-based analytics influence
various aspects of the schema generation process,
ranging from local entity recognition to global
schema coherence.

3.3 Table-Based Processing Pipeline
The table-level state graph implements three se-
quential processing nodes, each designed to lever-
age rule-based analytics for enhanced semantic un-
derstanding:

1. Entity Identification: Our system infers one
or multiple entities within individual tables or
recognises tables that lack sufficient informa-
tion for entity extraction. When no entities are
identified by the language model for a specific
table, the table is excluded from the current
pipeline stage.

2. Intra-Table Relationship Discovery: When
multiple entities are detected within the same
table, the language model infers relationships
between those entities.

3. Property Mapping: For each column in a
table, the system calls the language model to
associate the column with identified entities or
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Merge Entities

Merge Relations

Merge PropertiesLoad Column Analytics

Detect Table Entities

Infer Relations 

Column Mapping

Loop For
each Table

Once In the
Entire Pipeline

Table-Based Processing Pipeline Cross-Table Processing Pipeline

Figure 1: Entire Architecture for the system. Each table is processed individually before merging entities, relations
and properties.

relationships. This process can be enhanced
by providing the analytics related to that spe-
cific column.

The underlying strategy leverages the language
model’s ability to identify entities and relationships
based on primary and foreign key analysis, en-
riched by rule-based analytics that provide deeper
insights into column semantics and value distribu-
tions.

3.4 Cross-Table Processing Pipeline

The cross-table state graph operates on aggregated
context from all processed tables to ensure schema
consistency and completeness:

1. Entity Standardisation: The language model
examines all previously identified entities,
considering their names and associated proper-
ties through the initial columns and determine
which semantically equivalent entities should
be merged.

2. Relationship Standardisation: This process
is activated when merged entities possess rela-
tionships with different names but equivalent
semantic meanings. The model assigns the
most appropriate name to these semantically
equivalent relationships, ensuring schema co-
herence and reducing redundancy.

3. Property Standardisation: After entity and
relationship standardisation, the system vali-
dates that all properties from merged compo-
nents are correctly preserved and consolidated.
The module identifies potential property con-
flicts arising from merging (such as duplicate
properties with different data types) and ap-
plies resolution strategies to maintain schema
integrity. This validation step is crucial for
preserving the semantic richness captured dur-
ing the table-based processing phase.

This systematic approach enables a precise eval-
uation of how rule-based analytics contribute to
various aspects of schema generation, ranging from
local semantic interpretation to global schema stan-
dardisation and consistency. The code for using the
agent, as well as reproducing the entire experiment,
can be found on GitHub1.

4 Experimental Settings

Building upon the multi-agent system architecture
described in the previous section, we designed a
comprehensive experimental framework to system-
atically evaluate the impact of rule-based analytics
on graph schema generation performance. Our
experimental design enables controlled ablation
studies that isolate the contribution of different an-
alytical approaches to the overall effectiveness of
the system.

4.1 Rule-Based Analytics Integration

The core hypothesis of our work centres on the
premise that rule-based analytics can significantly
enhance LLM performance in semantic interpreta-
tion tasks. To test this hypothesis, we implemented
a type-specific analytical system that applies tai-
lored analytics based on automatically inferred col-
umn data types. Our rule-based system categorises
columns into four fundamental data types: cate-
gorical (including Boolean), string, numerical (in-
cluding integer and float values) and date. The
selection of specific analytics for each data type
is grounded in established data science practices
that optimise information extraction based on the
inherent characteristics of each data type.

A detailed specification of the analytics per-
formed for each data type is presented in Figure
2. These analytics range from basic statistical mea-
sures (mean, variance, distribution characteristics)
to samples and automatically generated descrip-

1Repository for the Agentic Framework
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Figure 2: Analytics performed according to each data
type detected. The intersections in the Venn Diagram
represent the analytics that are shared among different
data types.

tions of the entire columns, providing rich informa-
tion for LLM decision-making.

4.2 Experimental Configurations

To systematically evaluate the contribution of rule-
based analytics, we designed three distinct experi-
mental configurations that represent different levels
of analytical integration:

1. Version 1 “No Analytics Baseline” (V1):
This configuration serves as our baseline, pro-
viding only representative data examples for
each column without any analytical context.
This experiment enables direct measurement
of the analytical contribution by comparing
performance against pure LLM reasoning ca-
pabilities.

2. Version 2 “Structured Analytic” (V2): This
configuration provides comprehensive analyti-
cal results in a structured JSON format, ex-
actly as computed and stored by our rule-
based system. This approach tests the capa-
bility of the language model for understand-
ing structural information while maintaining
a clear organisational structure that facilitates
systematic processing.

3. Version 3 “Contextualised Analytic” (V3):
This configuration applies analytical contextu-
alisation methodologies inspired by success-
ful approaches such as DeepJoin (Dong et al.,

Purchases
userId eventDate orderNumber itemId

“table_name: “purchases”,
column_name: “userId,
“sampled_values”: [...]

“table_name: “purchases”,
column_name: “userId,

“sampled_values”: [...],
“uniqueness_ratio”:0.24,

“cardinality”:4425,
“data_type”:integer,

“contextual_description”: ...

V1

V2

V3

"userId: 26926.0, 8168.0, 17732.0, 64915.0, 57017.0. This medium cardinality
integer sequence has 4425 distinct combinations from 18025 total entries.

Token value range: 3 to 249036, average value: 78974. Sequence length
statistics: average 1.0, range 1-1 tokens. Distribution uniformity: 99.1%,

uniqueness ratio: 24.55%. Most frequent token: 10591.0. Table: purchases.
Context: The userId column likely represents a unique identifier for each
customer, though a significant portion (62.8%) of entries are missing. The
customer IDs range from 3 to 249036, with a wide distribution and a clear

mode at 10591, suggesting potential biases or groupings within the
customer base. The average userId is around 78974, but the substantial
difference between quartiles indicates considerable variability in these

identifiers."

Figure 3: Analytics context formats supplied to the
LLM-based agent for inferring the graph (property-
graph) schema from the tabular dataset. V2 encodes
the analytics as structured JSON, while V3 (“contex-
tualised analytics”) expresses the same information as
narrative text generated deterministically from V2 via a
Python function to mimic typical LLM prompts. The
figure contrasts these formats to assess how structured
versus free-text context affects schema generation.

2023), which demonstrated significant im-
provements in semantic table interpretation
through effective context integration. In this
version, raw analytical results are transformed
into natural language descriptions that provide
semantic context about column characteristics,
distributions, and relationships.

Importantly, all experimental variations utilise
identical pipeline logic and differ only in the initial
prompts provided to the language models. This
design ensures that observed performance differ-
ences can be explicitly attributed to the presence
or absence of rule-based analytics rather than ar-
chitectural variations. A sample of each version is
shown in Figure 3.
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4.3 Implementation and Reproducibility
Measures

To ensure experimental reproducibility and address
the limitations of commercial LLM dependency
identified in related work (Chen et al., 2025), we
implemented our entire system using locally exe-
cuted models. We selected Gemma 3 12B (Team
et al., 2025) quantised to 4 bits, specifically the ver-
sion hosted by Ollama2, which provides an optimal
balance between model capability and computa-
tional accessibility on standard user GPUs.

Our experimental configuration employs several
measures to ensure reproducible results:

• Fixed Random Seed: All experiments use
identical random seeds to ensure a consistent
model behaviour across runs.

• Zero Temperature: Model temperature is set
to zero to minimise stochastic variations in
output generation.

• Model Consistency: The same model instance
is used across all pipeline stages within each
experimental run.

• Local Execution: All models are loaded and
executed locally, eliminating external depen-
dencies and ensuring data privacy.

Even with temperature = 0 and a fixed seed,
LLM inference is not strictly deterministic: GPU-
level numerical effects (e.g., parallel reductions,
fused kernels, library autotuning) and decoder tie-
breaking near probability ties can flip early to-
kens or the stopping point across runs (Atil et al.,
2025), (Song et al., 2024). In our multi-agent
pipeline, such micro-differences are amplified be-
cause each agent conditions on previous gener-
ations. We hypothesise that variability in an-
swer length at early stages is the dominant driver:
slightly longer/shorter completions change what
downstream agents read, steering different trajec-
tories and yielding different schema proposals. To
address this, we ran 10 independent trials and re-
port the mean and variance across runs.

4.4 Prompt Engineering Strategy

Our prompt design incorporates established tech-
niques that have demonstrated effectiveness in
structured data reasoning tasks. Specifically, we

2Gemma 3 12B quantised model on Ollama

employ in-context learning examples that illus-
trate the desired schema generation behaviour,
combined with Chain-of-Thought (CoT) reason-
ing prompts that guide the model through system-
atic analysis steps. This approach has proven par-
ticularly effective in interpreting tabular data, as
demonstrated in recent literature (Liu et al., 2025).
The complete prompt specifications for each experi-
mental configuration are detailed in the experiment
repository3, enabling full reproducibility of our ex-
perimental setup. Each prompt variant maintains
an identical logical structure while varying only
in the analytical context provided to the language
model.

4.5 Statistical Validation

To ensure the statistical significance of our results,
each experimental configuration is executed ten
times under identical conditions. We calculate both
mean performance metrics and variance measures
for each version of the experiment and for each
dataset, enabling robust statistical analysis of the
analytical contribution. This approach addresses
the inherent variability in LLM outputs while pro-
viding sufficient statistical power to detect meaning-
ful performance differences between analytical and
baseline configurations. This experimental design
directly addresses the research gap identified in our
literature review regarding the systematic evalua-
tion of rule-based analytics in LLM-driven schema
generation tasks, providing a rigorous framework
for assessing the effectiveness of our integrated
approach.

4.6 Dataset

For our experimentation, we employ the Diginetica
dataset, a large-scale benchmark released initially
for the CIKM Cup 20164. This dataset has become
a cornerstone in session-based recommender sys-
tem research due to its comprehensive coverage of
real-world e-commerce interactions. Crucially for
our purposes, the Diginetica dataset is organised
into multiple interrelated tables, making it espe-
cially suitable for exploring the transition from a
tabular to a graph-based data model:

• Items: Each product is uniquely identified
and annotated with descriptive features such
as price and textual tokens.

3Prompt Templates used in the experiments
4Original challenge where Diginetica Dataset was released

159



• Categories: Products are mapped to one or
more categories, introducing a hierarchical
structure that enriches the context for each
item.

• Views: Every user interaction with a product
page is captured, including session identifiers,
temporal ordering, and user context.

• Purchases: Purchase events are linked to ses-
sions and users, with references to related
Items and Views, effectively connecting user
actions across the dataset.

• Queries: This table logs user search activities
with timestamps and contextual information,
referencing entities from the other tables and
enabling the reconstruction of full user search
journeys.

The high degree of correlation and reference
among these tables naturally aligns with the princi-
ples of graph data modelling, where entities (e.g.,
users, items, categories) become nodes and their
relationships (such as views, purchases, and cate-
gory memberships) are represented as edges. Such
a structure facilitates the explicit modelling of com-
plex interdependencies and interaction patterns that
may be cumbersome to express or query efficiently
in a purely tabular schema.

Therefore, Diginetica’s rich, interconnected tab-
ular design provides an ideal foundation for our
task of translating traditional relational data into
a graph database schema, enabling more expres-
sive analysis and supporting advanced graph-based
recommendation and user modelling techniques.

5 Results and Discussion

5.1 Evalutation Method
From the tabular dataset, we derived a lossless, ag-
nostic property graph schema using Grok-4 (xAI,
2025). A graph data expert then reviewed and re-
fined the naming, cardinalities, and data types to
establish the expert-validated golden schema. We
evaluated each experimental variant against this
reference by measuring completeness (recall) over
nodes, relationships, and properties; node/edge
matching was synonym- and alias-aware to han-
dle LLM naming variance, while property names
were matched precisely to the original columns.

The completeness assessment methodology var-
ied according to the schema component being eval-
uated:

• Node completeness: Measured by comparing
the types of nodes present in the generated
schema against those defined in the golden
schema

• Property completeness: Assessed by deter-
mining whether nodes and relationships con-
tain the properties they should possess based
on the original relational database columns

• Relationship completeness: Evaluated based
on whether relationships between existing
node types match those in the golden schema,
regardless of relationship names or direction-
ality

The relationship evaluation methodology was
deliberately simplified due to practical constraints.
Language models frequently infer relationships
with inverse orientations, incorrect directionality,
or overly generic names. This complexity made
the automatic evaluation of relationship complete-
ness challenging and hindered the assessment of
improvements in relationship detection across ex-
perimental versions.

5.2 Discussion of Results
The experimental results, presented in Table 1,
show average outcomes and standard deviations
across 10 independent tests per experimental ver-
sion, along with the best-performing results for
each version. Based on these findings, we can
conclude the impact of column analytics usage and
format on schema generation performance. The dis-
cussion is organised into specific component-level
results and overall schema prediction performance.

5.2.1 Specific Results
Node Detection Performance: Node complete-
ness showed minimal sensitivity to the use of ana-
lytics. When analytics were applied, unstructured
sentence-format analytics proved counterproduc-
tive, with some contextualised analytics experi-
ments degrading node type detection performance
compared to baseline conditions.

Property Detection Performance: Property
completeness, which depends solely on mapping
columns to predefined entities, demonstrated a
clear improvement with the use of analytics. Con-
textualised analytics format achieved the high-
est success rates in this component, suggesting
that rich contextual information aids in accurate
property-entity mapping.
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Table 1: Completeness Percentage for Node, properties and relations, comparing the schema generated with the
golden schema for Diginetica Dataset.

Completeness No Analytics (V1) Structured Analytics (V2) Contextualised Analytics (V3)

Node 85.70± 0.00 85.70± 0.00 82.84± 5.72
Property 70.87± 1.86 73.88± 3.74 74.26± 5.68
Relation 68.75± 13.98 63.75± 3.75 75.00± 11.18

Overall 75.11± 4.91 74.44± 1.11 77.39± 7.24

Relationship Detection Performance: Rela-
tionship completeness yielded mixed results across
experimental conditions. Experiments without col-
umn analysis outperformed those using structured
analytics, but underperformed compared to con-
textualised analytics approaches. This suggests a
non-linear relationship between analytics complex-
ity and the accuracy of relationship detection.

5.2.2 Overall Results
Overall, the best predictions were obtained using
contextualised analysis (V3), while the worst results
were obtained using structured analytics. From the
point of view of variability in results, the most
uniform results are achieved between experiments
using this set of structured analytics (V2). In con-
trast, the most unpredictable results are obtained
when the analytics are contextualised.

6 Discussion and Conclusion

The results indicate that while basic data analyt-
ics (providing representative column subsets along
with column and table names) do not enhance node
detection in inferred graph databases, they signif-
icantly improve property and relationship detec-
tion. Contextualised analytics demonstrated im-
provements of up to 9% in these components, with
the format of contextual data proving critical for
optimal relationship detection.

When evaluating overall schema generation ef-
fectiveness, contextualised analytics maximised
model performance, while structured analytics
yielded the poorest results. This suggests that
rich, contextual information enables more accu-
rate schema inference than rigid, structured data
formats.

From a consistency perspective, structured an-
alytics dramatically reduced result variability, as
evidenced by lower standard deviations. This find-
ing suggests that structured analytics should be pre-
ferred when result stability is prioritised over peak
performance. Conversely, contextualised analytics
produced the highest variability—exceeding even

baseline conditions without analytics—making
them the least stable approach across all experi-
mental versions.

These findings present a clear trade-off between
performance and stability in graph schema genera-
tion. Users prioritising maximum accuracy should
employ contextualised analytics, despite increased
result variability, while those requiring consistent,
predictable outcomes may benefit from structured
analytics approaches, albeit with reduced peak per-
formance.

7 Limitations and Future Work

The experiments conducted present several limita-
tions that we intend to address in future work, such
as the use of open-source models of different sizes
to verify the degradation/improvement based on
model size.

Likewise, it would be of great interest to make a
comparison with large commercial models, accord-
ing to similar methodologies applied by previous
works (Chen et al., 2025), which would give us an
idea of what percentage of success can be expected
with a multi-agent system like this compared to
frontier models, being able to measure at this point
also the computational cost associated with numer-
ous calls of medium-sized models compared to the
use of these commercial models.

On the other hand, the rule system used is ex-
tremely simple, with considerable room for im-
provement that can affect the final accuracy of
the schema when determining the entities, relation-
ships, and properties of the graph database.

Finally, truly understanding the limitations and
capabilities of this system requires the use of more
tabular data in various domains and with diverse
characteristics, such as a large number of columns
per table or tabular data that does not conform to
the nomenclature of a relational database. In this
sense, other structured formats provided for the
analytics might be impactful on the final results,
which needs further investigation.
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Abstract
Knowledge-augmented methods leverage exter-
nal resources such as commonsense knowledge
graphs (CSKGs) to improve downstream rea-
soning tasks. Recent work has explored con-
trastive learning over relation-aware sequence
pairs derived from CSKG triples to inject com-
monsense knowledge into pre-trained language
models (PLMs). However, existing approaches
suffer from two key limitations: they rely solely
on randomly sampled in-batch negatives, over-
looking more informative hard negatives, and
they ignore additional plausible positives that
could strengthen training. Both factors limit the
effectiveness of contrastive knowledge learn-
ing. In this paper, we propose an enhanced
contrastive learning framework for CSKGs that
integrates hard negative sampling and pos-
itive set expansion. Hard negatives are dy-
namically selected based on semantic similar-
ity to ensure the model learns from challenging
distinctions, while positive set expansion ex-
ploits the property that similar head entities
often share overlapping tail entities, allowing
the recovery of missing positives. We evalu-
ate our method on unsupervised commonsense
question answering and inductive CSKG com-
pletion using ConceptNet and ATOMIC. Exper-
imental results demonstrate consistent improve-
ments over strong baselines, confirming that
our approach yields richer commonsense-aware
representations and more effective knowledge
injection into PLMs.

1 Introduction

Commonsense reasoning is fundamental for en-
abling machines to form assumptions about ev-
eryday situations and draw conclusions aligned
with human understanding of commonly known
facts (Davis and Marcus, 2015; Sap et al., 2020).
Despite significant progress in natural language
processing (NLP), endowing models with robust
commonsense reasoning abilities remains an open
challenge. This challenge has received growing at-
tention in recent years with the release of versatile

PersonX mops 
the floor

To clean the 
floorxIntent

To keep the 
floor clean

xWantPersonX spills 
PersonX’s coffee

To clean up 
the mess

xW
an

t

To get it clean

xWant

Social Commonsense and Emo/onal Intelligence

Alex spilled the food she just prepared all over
        the floor and it made a huge mess.

What will Alex want to do next?

(a) taste the food ✔

❓
(b) mop up (c) run around in the mess

(Alex spilled … As a result, Alex wanted to,  mop up)      

(PersonX spills …, as a result, PersonX wants,  To get it clean)      

The sequence pair (𝑥, 𝑦) of the question input and the choice: 

A sequence pair (𝑞, 𝑎) from the knowledge graph: 

Figure 1: An example from a SocialIQA task focusing
on reasoning about actions and social implications (top)
(Sap et al., 2019b), with the relevant social common-
sense knowledge triplets from ATOMIC (middle) (Sap
et al., 2019a). The bottom shows a (input, choice) se-
quence pair of the example and a (premise, alternative)
sequence pair of a knowledge graph triplet.

benchmark datasets targeting different aspects of
commonsense reasoning. For example, Figure 1 il-
lustrates a sample from the SocialIQA dataset (Sap
et al., 2019b), which focuses on reasoning about
human actions and their social implications. In
parallel, the development of large-scale common-
sense knowledge graphs (CSKGs), such as Con-
ceptNet (Speer et al., 2017) and ATOMIC (Sap
et al., 2019a), has motivated tasks like inductive
CSKG completion to further test models’ ability
to generalize over unseen entities (Malaviya et al.,
2020; Wang et al., 2021).

With the advent of large pre-trained language
models (PLMs) (Devlin et al., 2018; Liu et al.,
2019; Radford et al., 2019), fine-tuning PLMs
on task-specific commonsense question answer-
ing (CSQA) datasets has led to strong results, in
some cases approaching or surpassing human per-
formance (He et al., 2020). However, reliance on
large-scale human-annotated training data poses
challenges, as such annotations are expensive and
difficult to scale (Shwartz et al., 2020; Banerjee
and Baral, 2020; Bosselut et al., 2021; Sun et al.,
2022). Moreover, evidence shows that PLMs often
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exploit spurious correlations or shortcuts in data
(Branco et al., 2021), rather than performing gen-
uine commonsense reasoning or effectively lever-
aging external knowledge sources (Banerjee et al.,
2021).

To mitigate these limitations, several unsuper-
vised approaches based on CSKGs have been pro-
posed. For instance, Ma et al. (2021); Kim et al.
(2022) generate synthetic QA pairs from CSKG
triples by treating the head entity with its relation
as a query and the tail entity as the gold answer.
Yet, the coverage of such methods is constrained
by the incompleteness of CSKGs (Ju et al., 2022).
More recently, Su et al. (2022) introduced a con-
trastive learning framework that pre-trains PLMs
on (premise, alternative) pairs synthesized from
CSKGs. While effective, this approach has two ma-
jor shortcomings: (i) it relies on randomly sampled
in-batch negatives, overlooking the importance of
hard negatives, and (ii) it ignores potentially valu-
able positive examples inherent in CSKG struc-
tures. Both factors may limit the efficacy of the
contrastive learning paradigm.

In this work, we propose an enhanced con-
trastive learning framework to better utilize CSKGs
for commonsense knowledge representation. Our
method incorporates two key components: (i) hard
negative sampling, which dynamically selects in-
formative negatives that are neither trivial nor in-
distinguishably similar, and (ii) positive set ex-
pansion, which leverages the property that similar
head entities in CSKGs often share overlapping tail
entities, thereby recovering missing positives. By
integrating these mechanisms into the contrastive
objective, we more effectively exploit the structure
of CSKGs to improve knowledge injection into
PLMs.

We evaluate our framework on two widely used
CSKGs, ConceptNet and ATOMIC, across unsuper-
vised CSQA benchmarks, including COPA (Roem-
mele et al., 2011), SIQA (Sap et al., 2019b) and
CSQA (Talmor et al., 2019) and inductive CSKG
completion tasks. Experimental results demon-
strate consistent improvements over strong base-
lines, confirming that our framework generates su-
perior commonsense-aware knowledge representa-
tions.

2 Preliminaries and Preprocessing

In this section, we first introduce some preliminar-
ies used in this work. Then we will present the

preprocessing details.

2.1 Task Definition
Our task is the following: given a common-sense
knowledge graph G and a pre-trained language
model M, we construct a synthesized corpus of
sequence pairs D = {(p1, a1), ..., (pi, ai)} from G,
where p is the head sequence and a is the natural
language description of the tail entity. Then we fur-
ther train M on the corpus D so M performs better
on a given downstream commonsense-related task
represented as T = {(x1, y1), ..., (xm, ym)} by en-
couraging M to generate superior commonsense-
aware knowledge representation embeddings for
the sequence pair (xm, ym). The corpus D is con-
structed from G using the method described in §2.3.

2.2 Notation
We define our commonsense knowledege graph G
as a 4-tuple G = (E ,R, T ,P), where the vertices
are entities E and R are the set of relation types. T
is the set of all edges, where each edge is a triple
(h, r, t). h ∈ E , r ∈ R, and t ∈ E are the head
entity, relation, and tail entity, respectively. P is
the collection of all relations expressed in natural
language, as shown in Appendix A.2. Additionally,
following previous work (Ouyang et al., 2021; Su
et al., 2022) we augment G with inverse edges: for
each edge triple (h, r, t) ∈ T we add its reverse
triple (h, r−1, t) into G.

2.3 Knowledge Graph Triple to Natural
Language

In CSKGs, the entities h and t in E are in a free-
form text format, and the relation r is a specific
word or short phrase based on the corresponding
CSKG. For example, (h, r, t) in ConceptNet could
be (Bottle, MadeOf, Plastic) or (PersonX spills Per-
sonX’s coffee, xWant, To get it clean) in ATOMIC.
. We use a set of templates for the relation r and
its reverse relation r−1 in ATOMIC and Concept-
Net. Following previous work (Hwang et al., 2021;
Huang et al., 2021; Su et al., 2022), we first con-
vert each edge triple (h, r, t) into a sequence pair
(p, a) in natural language, consisting of a head se-
quence and its tail sequence. The original relation
r is converted to the pre-defined natural language
template and then connect it with the head entity h
to form the head sequence p, while a is the natural
language description of the tail entity t.

For example, in Figure 1, for the head node "Per-
sonX spills PersonX’s coffee", we concatenate it
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PersonX spills PersonX's coffee, 
as a result, PersonX wants

To clean up 
the mess

To get it clean

. . .

tail sequence

posi.ve set

. . .
. . .

. . .
PersonX mops the floor

To clean up 
the floor

The floor to 
be clean

. . .

tail sequence

negative set

𝑠𝑖𝑚
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𝑠𝑖𝑚
(𝑖,1)

PersonX loves cats, as 
a result, PersonX feels

head sequence 𝒑

happy

friendly

content
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result, PersonX feels

head sequence 𝒑′
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ℎ 𝑡!
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hard positive

hard negatives

Hard Nega)ve Sampling Positive Set Expansion Contras)ve Pre-Training

(A) (B) (C)

Figure 2: The steps in our contrastive learning framework. (A) Hard Negative Sampling: We dynamically
sample hard negatives by the similarity of premise pairs. (B) Positive Set Expansion: We deliberately utilize the
characteristic within the CSKGs that similar head entities are likely to share the same set of positive tail entities and
expand the possible positive set mutually. (C) Contrastive Training: We integrate the updated sequence pairs into
the existing multi-view contrastive learning framework to perform knowledge injection.

with the relation template of "xWant", resulting in
the head sequence "PersonX spills PersonX’s cof-
fee, as a result, PersonX wants." Similarly, for the
reverse relation r−1, we can also derive a sequence
pair. Since for a head entity h, given a relation r, it
may have n tail entities {t1, t2, ..., tn}. Therefore,
for a head sequence p, it may have a set of tail
sequences {a1, a2, ..., an}.

2.4 Embedding Representation

After obtaining the sequence pair (p, a), we use a
pre-trained language model (PLM) to get an initial
embedding representation for the sequence pair.
Specifically, for a sequence pair (p, a), where both
p and a consist of sequence of tokens {x0, ..., xm}
and {y0, ..., yn}, respectively, We apply a PLM
encoder to obtain the last hidden states of p and a,
then use the hidden state of the first token, ep and
ea as the embedding representation for p and a.

For a positive sequence pair (p, a), their repre-
sentations in embedding space ep and ea should be
close. We adopt the cosine similarity function to
measure the distance of p and a:

sim(p, a) = cos(ep, ea)

3 Methodology

Our commonsense-aware knowledge representa-
tion learning framework, as shown in Figure 2, is
divided into three steps: hard negative set sampling,
positive set expansion, and contrastive knowledge
fine-tuning. The input consists of a CSKG (e.g.,
ATOMIC) and a PLM (e.g., RoBERTa-Large).

Given the synthesized CSKG sequence pairs ob-
tained from §2.4, the goal is to inject the common-
sense knowledge into the PLM by further training
on the synthesized sequence pairs with enhanced
contrastive learning.

We propose to enhance the existing contrastive
learning framework for learning commonsense
knowledge representation (Su et al., 2022). We
propose two mechanisms to mitigate two issues
that may impede the learning efficacy of the con-
trastive learning framework. First, we propose hard
negative sampling to pay more attention to the hard
ones instead of merely relying on random in-batch
negatives (§3.1). Second, we propose to expand
the positive set so that the missing positives could
be recovered (§3.2). Finally, the PLM is trained
with the adapted contrastive objective (§3.3).

3.1 Hard Negative Sampling

In this paper, we propose adapting the idea of
hard negative sampling to the existing contrastive
learning framework for the common sense-aware
knowledge representation task. The learning frame-
work learns commonsense knowledge representa-
tion with the contrastive information of the natural
language sequence pairs. In particular, the exist-
ing method utilizes samples within the same mini-
batch as negatives (Su et al., 2022), although such
a strategy can significantly enhance training effi-
ciency by repeatedly using the representations of
in-batch negatives. However, this method ignores
the difference of easy and hard negatives. Some lit-
eratures have theoretically and empirically proved
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that easy samples contribute less to the final learned
representation (Bucher et al., 2016; Wu et al., 2017;
Robinson et al., 2020; Zhang and Stratos, 2021).
Recently, several adaptations in knowledge graph
representation learning for knowledge graph com-
pletion and commonsense question answering also
verify the importance of sampling hard negatives
(Wang et al., 2022; Peng et al., 2022; Zhang and Li,
2022). The success of the contrastive representa-
tion benefits more from the hard ones, which means
that the negatives that are difficult to distinguish are
preferred instead of relying on randomly selected
in-batch negatives.

To illustrate the proposed idea more precisely,
consider the corpus D consisting of all triples con-
verted from the CSKG G by the aforementioned
steps and a given (p, a) from D. The goal is to
find hard samples (p′, a′) so that the model has dif-
ficulty differentiating the pair (p, a′) in the latent
embedding space. We propose to select hard neg-
atives by the similarity between p and p′ to form
a hard negative set. For a sample (p′) from D, we
first calculate the similarity sim(p, p′) between p
and p′. If α < sim(p, p′) < β, where α and β
are hyperparameters, then p′ will be added into the
set I−. We don’t want to select negative exam-
ples too close to the positive example, so we have
sim(p, p′) < β, and we don’t want examples that
are too easy, so we have α < sim(p, p′). Based on
manual observations, we set α = 0.3 and β = 0.7.
We use the cosine similarity function to measure
the similarity of p and p′.

An illustration of how we construct the negative
samples is shown on the left in Figure 2. Let A(p)
be the collection of all tail entities {aj , aj , ..., aj}
from D such that each tail sequence has the same
head p. For each pj ∈ I− we obtain the head
sequence and tail sequence pairs (pj , aj,o), where
aj,o ∈ A(pj) is the collection of all tail entities
{aj,1, aj,2, ..., aj,n} from D such that each tail se-
quence has the same head pj . The union of these
sets forms our hard negative set.

3.2 Positive Set Expansion

We propose to expand the positive set by utilizing
the unique property of CSKGs to incorporate some
potential while valuable positives.

Specifically, given a sequence pair of head and
tail set (p, ai), ai ∈ A(p), we measure the similari-
ties of p with other head sequences p′. The p′ with
the highest similarity sim(p, p′) will be selected.

Then, given the similar head sequence p′, A(p) and
A(p′) may share some tail sequences. For example,
in Figure 2, for the head sequences "PersonX loves
cats, as a result, PersonX feels" and "PersonX likes
cats, as a result, PersonX feels", both have same tail
sequences while contain their own exclusive ones.
Hence, we propose heuristically expanding the pos-
itive set A by inserting the missing tail sequences
obtained from the tail sequence set A(p′).

3.3 Training Objective

For the sample (pi, ai), we use the InfoNCE loss
with additive margin (Chen et al., 2020; Gao et al.,
2021):

Li = − log
e(ϕ(pi,ah)−γ)/τ

e(ϕ(pi,ah)−γ)/τ +
|I−|∑
j=1

k∑
o=1

eϕ(pi,aj,o)/τ

,

where the scoring function for a candidate sequence
pair ϕ(pi,ah) = sim(pi,ah). We use cosine sim-
ilarity for our similarity function. For the hard
positive, we select the one positive alternative ah
from the expanded set A which has the lowest sim-
ilarity to p. The positive additive margin γ incen-
tivizes the model to boost the score of the positive
sequence pairs. By adjusting the temperature τ ,
the relative significance of negatives can be modi-
fied. A smaller value of τ increases the emphasis
on challenging negatives, yet it also poses a risk of
over-fitting to label noise.

3.4 Fine-Tuning Details

In practice, we fine-tune RoBERTa-Large (Liu
et al., 2019) on the synthesized CSKG sequence
pairs. The contrastive fine-tuning process directly
equips the PLM with relation-aware commonsense
knowledge, which can then be evaluated in zero-
shot settings for commonsense QA and CSKG com-
pletion.

4 Experiments

In this section, we first introduce the CSKGs that
we used in this study. Then we will present three
evaluation tasks, unsupervised CSQA, inductive
CSKG completion and claim verification, by in-
truding related benchmark datasets, baselines and
main results. We conduct all experiments in a zero-
shot setting, which means we do not have access to
the official training data.
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4.1 Commonsense Knowledge Graphs

Our experiments rely on two representative CSKGs,
ConceptNet (Speer et al., 2017) and ATOMIC (Sap
et al., 2019a). Each KG has different knowledge
types. Following previous work(Wang et al., 2021;
Su et al., 2022), we use CN-82K and ATOMIC in
our experiments. The statistics are shown in Table
7. Details of the CSKGs are listed in Appendix
A.1.

4.2 Unsupervised CSQA

In this section, we evaluate our framework on com-
monsense question answering datasets in an unsu-
pervised way, which can be formalized as follows:
given a question q and a set of answer candidates A,
the model could choose the most likely candidate â
by â = argmaxa∈A sim(q,a), where q and a are
representations obtained from the model.
Benchmarks: We conduct experiments on
three different commonsense question answering
datasets , COPA (Roemmele et al., 2011), SIQA
(Sap et al., 2019b) and CSQA (Talmor et al., 2019)
to verify the effectiveness of the proposed frame-
work. Details of the datasets are listed in Appendix
A.3.
Baselines: We compare the proposed framework
with four different groups of baselines: (1) Vanilla
PLMs (RoBERTa-Large (Liu et al., 2019), GPT2-
L/M (Radford et al., 2019)); (2) Methods without
relying on external CSKGs, instead by using PLMs
to generate intermediate outputs (SEQA (Niu et al.,
2021), self-talk (Shwartz et al., 2020), Dou (Dou
and Peng, 2022)); (3) Prompting the large LMs to
generate relevant knowledge given few-shot human
annotations, including GKP (Liu et al., 2022) and
TSGP (Sun et al., 2022); and (4) Models using
CSKGs, including KTL (Banerjee and Baral, 2020),
DynaGen (Bosselut et al., 2021), NLI-LM (Huang
et al., 2021) and MICO (Su et al., 2022), a multi-
view contrastive learning based baseline. For the
details of each baseline method, please refer to their
original papers. We are aware that there exist some
other methods or method variants achieving better
performance compared to the baselines listed here.
However, they are either using larger backbone
models (Sun et al., 2022) or trained with the larger
even multiple knowledge bases (Ma et al., 2021;
Kim et al., 2022). Both factors can improve the
performance. Thus, we compare to methods with a
similar model size as ours and the same knowledge
bases. We also consider the issue of model size in

§5.

Main Results: Table 1 shows the zero-shot eval-
uation results on benchmark datasets. Our model
achieves the best performance across all baseline
models on all datasets.

First, we compare our model with the vanilla
PLMs, RoBERTa-Large (Liu et al., 2019), GPT2-
L/M (Radford et al., 2019). It is not surprising
that the LMs show significant and systematic per-
formance gains on all datasets compared to the
random baselines. Since it has been verified that
the LMs already store implicitly vast amount of var-
ious types of knowledge in their parameters, such
as relational and commonsense knowledge, which
are universally indispensable for downstream tasks
(Petroni et al., 2019).

Second, we compare our model with the meth-
ods generating intermediate outputs in the infer-
ence stage, such as SEQA (Niu et al., 2021) and
self-talk (Shwartz et al., 2020). SEQA first gener-
ates a set of plausible answers and then compute
the semantic similarity between each plausible an-
swer and answer candidate. While self-talk itera-
tively queries the LMs with a set of information-
seeking questions to disclose the potential back-
ground knowledge. However, this kind of methods
cannot maintain their effectiveness systematically,
even their performance is lower than the LM base-
lines. For example, as shown in Table 1, on CSQA
dataset, self-talk is 8% lower than GPT2-Large,
suggesting that self-talk may generate some spu-
rious or misleading background knowledge. This
shows that the explicit commonsense knowledge
may be necessary to mitigate the hallucinations of
LMs’ generated knowledge. In light of this, our
model injects explicit commonsense knowledge
by self-supervising LMs on CSKGs. As shown
in the results, our model can generate better com-
monsense knowledge representation advancing the
unsupervised CSQA tasks.

Our method can achieve consistent improve-
ment just by using relatively small backbone model.
Compared with methods suzch as GKP (Liu et al.,
2022) and TSGP (Sun et al., 2022), our best model
outperforms them on SIQA and CSQA tasks with-
out relying on large language models (LLMs). Sim-
ilar as chain-of-thought (Wei et al., 2022), both
GKP and TSGP first prompt the LLMs (GPT-3
and GPT2-XL, respectively) with few-shot hu-
man annotations to generate relevant background
knowledge. However, knowledge snippets in nat-
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Methods Models Knowledge Source COPA SIQA CSQA
dev test dev dev

Random - - 50.0 50.0 33.3 25.0
RoBERTa-L RoBERTa-L - 54.8 58.4 39.8 31.3
GPT2-L GPT2-L - 62.4 63.6 42.8 40.4

SEQA GPT2-L GPT2-L - - 46.6 34.6
self-talk GPT2-[Distil/XL/L] GPT2-[Distil/L/M] 66.0 - 46.2 32.4
Dou ALBERT-XXL-v2 ALBERT-XXL-v2 - - 44.1 50.9

GKP T5-11b few-shot exemplars + GPT-3 - - - 47.3
TSGP GPT2-XL few-shot exemplars + GPT2-XL - - 51.5 49.1

KTL RoBERTa-L ATOMIC - - 46.6 36.8
DynaGen GPT2-M COMET - - 50.1 -
NLI-LM RoBERTa-L ATOMIC+QNLI - - - 52.1
MICO-CN RoBERTa-L ConceptNet 73.2 75.2 44.6 51.0
MICO-ATOMIC RoBERTa-L ATOMIC 79.4 77.4 56.0 44.2

Ours RoBERTa-L ConceptNet 73.8 77.2 46.2 53.2
Ours RoBERTa-L ATOMIC 82.0 79.4 56.7 47.8

Table 1: Accuracy (%) of unsupervised CSQA task on three public benchmarks. Our best scores are highlighted in
bold.

ural language may not be sufficient to answer a
commonsense-related question, since even LLMs
still suffer from hallucination (Wei et al., 2022).

Our method can fine-tune LMs on CSKGs in
a more effective and efficient way. Compared
with methods using external CSKGs, such as KTL
(Banerjee and Baral, 2020), DynaGen (Bosselut
et al., 2021), NLI-LM (Huang et al., 2021) and
MICO (Su et al., 2022), our method can achieve bet-
ter performance even trained with the same CSKG.
For a knowledge triplet, given knowledge repre-
sentations of any two, KTL learns to generate the
third one. While our method focuses on generating
relation-aware contextualized representation given
two sequence pairs. DynaGen dynamically gen-
erates contextually-relevant commonsense knowl-
edge graphs by using a generative neural common-
sense knowledge model, COMET (Bosselut et al.,
2019). While the generated commonsense infer-
ences are more context-relevant, it requires itera-
tive generation that may impact the inference effi-
ciency. Our method is more efficient by just gen-
erating contextually-relevant commonsense repre-
sentations and selecting the most probable based
on the largest similarity. NLI-LM utilizes extra
NLI resources while unnecessary for our method.
Our method outperform NLI-LM slightly by 1.1%
on CSQA dataset. MICO is the most relevant to
our method. It also utilizes contrastive multi-view
training on CSKGs, while our method can bring
consitent performance gains on all datasets com-
pared with it. It shows the effectiveness of the two
proposed modules, positive set expansion and hard

Model ConceptNet ATOMIC
MRR Hits@10 MRR Hits@10

ConvE 0.21 0.40 0.08 0.09
RotatE 0.32 0.50 0.10 0.12
Malaviya 12.29 19.36 0.02 0.07
InductivE 18.15 29.37 2.51 5.45
MICO 10.92 22.07 8.13 15.69

Ours 9.65 19.97 8.29 15.93

Table 2: Results on inductive CSKG completion. The
best scores are highlighted in bold.

KG Method COPA SIQA CSQA
dev test dev dev

Concept
Net

Ours 73.8 77.2 46.2 53.2
-w/o HNS 72.2 76.8 43.6 52.0
-w/o PSE 74.0 77.4 43.9 52.7

ATOMIC
Ours 82.0 79.4 56.7 47.8
-w/o HNS 79.0 80.4 56.0 44.4
-w/o PSE 80.4 78.4 56.5 45.9

Table 3: Ablation study. The best scores are highlighted
in bold.

negative sampling.

4.3 Inductive CSKG Completion
Knowledge graphs, especially CSKGs, are often
incomplete with missing entities and relations. In-
ductive CSKG completion evaluates the inductive
capability of a model to predict relations triples for
new, unseen entities (Wang et al., 2021). Given a
knowledge triplet (h, r, t), the model needs to pre-
dict the unseen tail entity t by (h, r, ?) or the unseen
head entity by (?, r−1, t). Same as the previous
work (Wang et al., 2021), we adopt the link predic-
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Backbone KG COPA SIQA CSQA
dev test dev dev

BERT
Base

- 45.4 46.4 37.1 21.5
ConceptNet 63.8 66.4 38.9 43.2
ATOMIC 69.8 74.0 48.2 42.7

BERT
Large

- 47.4 46.8 37.2 20.4
ConceptNet 64.4 73.2 41.7 47.8
ATOMIC 73.2 74.2 51.6 43.9

RoBERTa
Base

- 52.0 55.2 38.4 29.2
ConceptNet 62.4 69.6 40.1 45.4
ATOMIC 72.4 73.4 52.1 41.0

RoBERTa
Large

- 55.0 58.6 39.8 31.3
ConceptNet 73.8 77.2 46.2 53.2
ATOMIC 82.0 79.4 56.7 47.8

Table 4: Performance with different backbone LMs on
unsupervised commonsense QA task.

tion task with standard evaluation metrics including
MRR (Mean Reciprocal Rank) and Hits@10 to eva-
lute the inductive CSKG completion models.
Benchmarks: In our experiments, following Wang
et al. (2021), we use the inductive split of CN-82K
and ATOMIC, where at least one of the entities in
knowledge triplets of the testing sets is not present
in the training set.
Baselines: We compare with ConvE (Dettmers
et al., 2018), RotatE (Sun et al., 2019), Malaviya
(Malaviya et al., 2020), InductivE (Wang et al.,
2021) and MICO (Su et al., 2022).

Main Results: By training LMs with hard neg-
ative triplets and expanding the knowledge triplet
with the potential missing alternatives on CSKGs,
our method is able to generate superior common-
sense knowledge representation, leading to the im-
proved generalizability to unseen entities.

Table 2 shows the results of the inductive CSKG
completion. Our method performs better on
ATOMIC while remains comparable on Concept-
Net. Previous entity embedding based methods by
utilizing the existing entity links, such as ConvE
(Dettmers et al., 2018) and RotatE (Sun et al.,
2019), perform worse when it comes to the dis-
connected entities. For the graph neural network
(GNN) based methods, such as Malaviya (Malaviya
et al., 2020) and InductivE (Wang et al., 2021),
by utilizing PLMs to initialize the entity embed-
ding, the proposed GNNs trained on sampled sub-
graphs can significantly improve the generalizabil-
ity on ConceptNet. However, the CSKGs are highly
sparse and can be disconnected, the GNN-based
methods could be failed when such a subgraph

structure is not available (Franceschi et al., 2019).
In contrast, our method focuses on learning a

relation-aware commonsense representation for
each entity without relying on the graph struc-
ture. Same as MICO (Su et al., 2022), our method
achieves better performance on ATOMIC while
otherwise on ConceptNet compared with Induc-
tivE, one of the possible reasons could be the aver-
age length of the entity description in ATOMIC
(6.12 words) is longer than that in ConceptNet
(3.93 words). Longer sequences could enhance
the PLMs to learn more accurate contextual repre-
sentation for entity nodes. Compared with MICO,
our method performs slightly worse on Concept-
Net, one possible explanation is that more false
negatives are introduced due to the hard negative
sampling and positive set expansion.

5 Analysis

Ablation Study To further investigate what fac-
tors contribute to the performance gains, we con-
duct an ablation study by removing the step of
hard negative sampling (HNS) and positive set ex-
pansion (PSE). Table 3 shows the results of abla-
tion study on unsupervised CSQA task. Overall,
when HNS or PSE is removed, the performance de-
creases on SIQA and CSQA whenever the model is
trained with either ConceptNet or ATOMIC. Specif-
ically, compared to the base model, training with-
out HNS significantly hurts the performance by
2.6% and 0.7% on SIQA, which proves that hard
negatives are effective in the existing contrastive
learning instead of using in-batch negatives only.
Meanwhile, removing PSE also degrades the per-
formance most time, which shows that recovering
the potential links between the head entity and the
tail entity candidate by PSE contributes to learning
superior commonsense-aware knowledge represen-
tation. However, removing PSE does not affect the
accuracy much even can improve the performance
slightly, which may be because that introducing
PSE also incurs more false negatives in training.

Power of Scale We empirically test the influence
of increasing the backbone LM size affecting the
performance of the proposed model. Table 4 shows
the results of different backbone LMs on unsuper-
vised commonsense QA task. Overall, our method
broadly benefits from backbone LM size increase.
In addition, it conveys the same pattern as Table 1.
ATOMIC benefits more for both COPA and SIQA,
while ConceptNet is more helpful for CSQA.
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6 Related Work

Contrastive Learning for NLP Contrastive
learning has been applied into many NLP tasks.
Such as, contrastive self-supervised objectives for
text classification task (Fang et al., 2020; Kachuee
et al., 2020); multi-view contrastive learning for
dense encoder in open domain question answering
(Karpukhin et al., 2020); sentence representation
transfer with efficient contrastive framework (Yan
et al., 2021; Gao et al., 2021). Among the works
applying contrastive learning for NLP, Zhang and
Stratos (2021) considered the importance of the
hard negatives and proposed to combine hard nega-
tives with appropriate score functions to improve
the performance of zero-shot entity linking task. In
this work, we propose to enhance contrastive learn-
ing with hard negative sampling for commonsense-
aware knowledge representation task.

Unsupervised Commonsense Question Answer-
ing For the task of unsupervised CSQA, the
vanilla PLMs can achieve moderate performance
on most tasks. Furthermore, there are several meth-
ods generating intermediate outputs first by PLMs
without relying on external CSKGs, such as SEQA
(Niu et al., 2021), self-talk (Shwartz et al., 2020)
and Dou (Dou and Peng, 2022). Some models in-
corporate CSKGs, including KTL (Banerjee and
Baral, 2020), DynaGen (Bosselut et al., 2021), NLI-
LM (Huang et al., 2021) and MICO (Su et al.,
2022). Recently, a few methods prompt the large
LMs to generate relevant knowledge given few-
shot human annotations, including GKP (Liu et al.,
2022) and TSGP (Sun et al., 2022). In this paper,
we improve the commonsense knowledge represen-
tation by the sequence pairs synthesized CSKGs.

Commonsense Knowledge Graph Completion
Existing KG completion methods can be adapted
for CSKG completion, such as, ConvE (Dettmers
et al., 2018) and RotatE (Sun et al., 2019) learn
entity embeddings by the relation links between en-
tity nodes. However, many entity nodes in CSKGs
referring to the same concept are stored as distinct
ones due to their free-form texts, resulting in larger
and sparser graphs. To mitigate this issue, methods
such as Malaviya (Malaviya et al., 2020) and Induc-
tivE (Wang et al., 2021), propose various graph neu-
ral network modules with the embeddings initial-
ized from PLMs and focus on learn latent subgraph
structures. Without leveraging graph structure, we
also focus on the relation-aware knowledge repre-

sentation with the free-form sequence pairs from
CSKGS (Su et al., 2022).

7 Conclusion

In this paper, we propose to enhance the contrastive
learning framework to fine-tune PLMs over CSKGs
more effectively. Specifically, our method is di-
vided into three steps: hard negative set sampling,
positive set expansion and contrastive knowledge
fine-tuning. We conduct extensive experiments on
several unsupervised CSQA tasks and inductive
CSKG completion with two widely used CSKGs,
ConceptNet and ATOMIC. The performance gains
demonstrate its effectiveness.

Limitations

First, in this paper, we focus on the commonsense
knowledge representation learned on the synthe-
sized sequence pairs from a given CSKG. How-
ever, the synthesized sequence pairs are missing
contexts which may be indispensable for decision-
making for some circumstances. Second, we pro-
pose to sample hard negatives during training in-
stead of merely utilizing the in-batch negatives,
which increases the memory footprint and com-
putational costs. Third, we only focus on learn-
ing a relation-aware commonsense knowledge rep-
resentation from the synthesized sequence pairs,
while the subgraph structure of each entity node is
also important for more fine-grained representation
learning.

References
Pratyay Banerjee and Chitta Baral. 2020. Self-

supervised knowledge triplet learning for zero-shot
question answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 151–162, Online. Asso-
ciation for Computational Linguistics.

Pratyay Banerjee, Swaroop Mishra, Kuntal Kumar Pal,
Arindam Mitra, and Chitta Baral. 2021. Common-
sense reasoning with implicit knowledge in natural
language. In 3rd Conference on Automated Knowl-
edge Base Construction.

Antoine Bosselut, Ronan Le Bras, and Yejin Choi. 2021.
Dynamic neuro-symbolic knowledge graph construc-
tion for zero-shot commonsense question answering.
In Proceedings of the 35th AAAI Conference on Arti-
ficial Intelligence (AAAI).

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.

172



2019. COMET: Commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4762–4779, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ruben Branco, António Branco, Joao Rodrigues, and
Joao Silva. 2021. Shortcutted commonsense: Data
spuriousness in deep learning of commonsense rea-
soning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 1504–1521.

Maxime Bucher, Stéphane Herbin, and Frédéric Jurie.
2016. Hard negative mining for metric learning based
zero-shot classification. In Computer Vision–ECCV
2016 Workshops: Amsterdam, The Netherlands, Oc-
tober 8-10 and 15-16, 2016, Proceedings, Part III 14,
pages 524–531. Springer.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Ernest Davis and Gary Marcus. 2015. Commonsense
reasoning and commonsense knowledge in artificial
intelligence. Communications of the ACM, 58(9):92–
103.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In Proceedings of the AAAI
conference on artificial intelligence, volume 32.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Zi-Yi Dou and Nanyun Peng. 2022. Zero-shot com-
monsense question answering with cloze translation
and consistency optimization. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 10572–10580.

Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan
Ding, and Pengtao Xie. 2020. Cert: Contrastive
self-supervised learning for language understanding.
arXiv preprint arXiv:2005.12766.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil,
and Xiao He. 2019. Learning discrete structures for
graph neural networks. In International conference
on machine learning, pages 1972–1982. PMLR.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Canming Huang, Weinan He, and Yongmei Liu. 2021.
Improving unsupervised commonsense reasoning us-
ing knowledge-enabled natural language inference.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4875–4885, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. (comet-) atomic 2020: On sym-
bolic and neural commonsense knowledge graphs.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 6384–6392.

Jinhao Ju, Deqing Yang, and Jingping Liu. 2022. Com-
monsense knowledge base completion with relational
graph attention network and pre-trained language
model. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Manage-
ment, pages 4104–4108.

Mohammad Kachuee, Hao Yuan, Young-Bum Kim, and
Sungjin Lee. 2020. Self-supervised contrastive learn-
ing for efficient user satisfaction prediction in conver-
sational agents. arXiv preprint arXiv:2010.11230.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
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A Details of CSKGs

A.1 CSKGs

Our experiments rely on two representative CSKGs,
ConceptNet (Speer et al., 2017) and ATOMIC (Sap
et al., 2019a).

ConceptNet. ConceptNet focuses on taxonomic,
lexical and physical commonsense knowledge, de-
scribing the relation between a conceptual entity
with another entity. Li et al. (2016) first introduced
CN-100K which contains Open Mind Common
Sense entries in the ConceptNet5 knowledge base
(Speer and Havasi, 2013) to separate true and false
triplets. However, the data split ratio of CN-100K
is biased. In view of this issue, we use the new data
split CN-82K proposed in (Wang et al., 2021) that
is uniformly sampled.

ATOMIC. ATOMIC is an event-centric knowl-
edge base, which contains everyday commonsense
knowledge organized as nine typed if-then rela-
tions, e.g. xIntent, xWant. It focuses on different
aspects of an event, such as social effect, mental
states and causes. Following previous work, we use
CN-82K and ATOMIC in our experiments (Wang
et al., 2021; Su et al., 2022). The statistics are
shown in Table 7.

A.2 Templates for Relation

Table 5 and Table 6 show the template for relation
used for ATOMIC and ConceptNet, we adopted the
version from InductivE 1.

A.3 Evaluation Benchmarks for Unsupervised
CSQA

We evaluate our framework on commonsense ques-
tion answering datasets, COPA (Roemmele et al.,
2011), SIQA (Sap et al., 2019b) and CSQA (Tal-
mor et al., 2019). We evaluate on both the dev
and test splits unless the test split is hidden. The
label information is only used for the final accuracy
calculation.

COPA (Roemmele et al., 2011) COPA is a two-
alternative commonsense causal reasoning dataset,
where one alternative is more plausible than the
other. We replace the term cause with The cause
for it was that and effect with As a result, as in
previous work (Su et al., 2022).2

1https://github.com/BinWang28/InductivE
2Please refer to Su et al. (2022) for more details.

Relation rel template

xAttr PersonX is seen as
xEffect as a result, PersonX will
xWant as a result, PersonX wants
xNeed but before, PersonX needed
xReact as a result, PersonX feels
xIntent because PersonX wanted
oEffect as a result, PersonY or others will
oReact as a result, PersonY or others feel
oWant as a result, PersonY or others want

xAttr rev "PersonX is seen as", "because PersonX"
xEffect rev "PersonX will", "because PersonX"
xWant rev "PersonX wants", "because PersonX"
xNeed rev "PersonX needs", "as a result PersonX"
xReact rev "PersonX feels", "because PersonX"
xIntent rev "PersonX wanted", "as a result PersonX"
oEffect rev "PersonY or others will", "because PersonX"
oReact rev "PersonY or others feel", "because PersonX"
oWant rev "PersonY or others want", "because PersonX"

Table 5: Relation types and relation substitute templates
from ATOMIC. rev mean reverse relation.

SIQA (Sap et al., 2019b) SIQA is three-choice
dataset for testing social commonsense knowledge.
Questions are built upon ATOMIC, focusing on
social interactions about people’s actions and their
social implications.

CSQA (Talmor et al., 2019) CSQA is collected
based on ConceptNet. Each question explores the
potential taxonomic or physical commonsense re-
lationships between entities and has five crowd-
sourced candidate answers.

B Experimental Settings

We mainly run our experiments with RoBERTa-
Large (Liu et al., 2019), which consists of 355M
parameters. Our experiments are conducted with a
A100 GPU. The running time of each experiment
is about 5 10 hours. The results are averaged by
three experiments.

176



Relation relation templates

AtLocation located or found at or in or on
CapableOf is or are capable of
NotCapableOf is not or are not capable of
Causes causes
CausesDesire makes someone want
CreatedBy is created by
DefinedAs is defined as
DesireOf desires
Desires desires
NotDesires do not desire
HasA has, possesses, or contains
HasFirstSubevent begins with the event or action
HasLastSubevent ends with the event or action
HasPrerequisite to do this, one requires
HasProperty can be characterized by being or having
InstanceOf is an example or instance of
IsA is a
MadeOf is made of
MotivatedByGoal is a step towards accomplishing the goal
PartOf is a part of
ReceivesAction can receive or be affected by the action
SymbolOf is a symbol of
UsedFor used for
LocatedNear is located near
RelatedTo is related to
InheritsFrom inherits from
LocationOfAction is acted at the location of
HasPainIntensity causes pain intensity of

AtLocation rev is the position of
CapableOf rev is a skill of
NotCapableOf rev is not a skill of
Causes rev because
CausesDesire rev because
CreatedBy rev create
DefinedAs rev is known as
DesireOf rev is desired by
Desires rev is desired by
NotDesires rev is not desired by
HasA rev is possessed by
HasFirstSubevent rev is the beginning of
HasLastSubevent rev is the end of
HasPrerequisite rev is the prerequisite of
HasProperty rev is the property of
InstanceOf rev include
IsA inversed includes
MadeOf rev make up of
MotivatedByGoal rev motivate
PartOf rev include
ReceivesAction rev affect
SymbolOf rev can be represented by
UsedFor rev could make use of
LocatedNear rev is located near
RelatedTo inversed is related to
InheritsFrom rev hands down to
LocationOfAction rev is the location for acting
HasPainIntensity rev is the pain intensity caused by

Table 6: Relation types and relation substitute templates
from ConceptNet. rev mean reverse relation.
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Dataset Entities Relations Train Edges Valid Edges Test Edges Avg. In-Degree

ConceptNet 78,334 34 81,920 9,795 9,796 1.31
ATOMIC 304,388 9 610,536 24,355 24,486 2.58

Table 7: Distribution of train, valid, and test edges from CN-82K and ATOMIC. Avg. In-Degree is the average
number of tail entity connected to head entity.
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