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Abstract

Scientific Information Extraction (ScilE) has
become essential for organizing and under-
standing scientific literature, powering tasks
such as knowledge graph construction, method
recommendation, and automated literature re-
views.  Although prior ScilE work com-
monly annotates entities such as tasks, meth-
ods, and datasets, it systematically neglects
infrastructure-related entities like hardware and
software specifications mentioned in publica-
tions. This gap limits key applications: knowl-
edge graphs remain incomplete, and recommen-
dation systems cannot effectively filter methods
based on hardware compatibility.

To address this gap, we introduce SH-NER, the
first large-scale, manually annotated dataset fo-
cused on infrastructure-related entities in NLP
research. SH-NER comprises 1,128 full-text
papers from the ACL Anthology and annotates
five entity types: Software, Cloud-Platform,
Hardware-Device, Device-Count, and Device-
Memory. Our dataset comprises over 9k sam-
ple sentences with around 6k annotated en-
tity mentions. To assess the effectiveness
of SH-NER, we conducted comprehensive
experiments employing state-of-the-art super-
vised models alongside large language models
(LLMs) as baselines. The results show that SH-
NER improves scientific information extrac-
tion by better capturing infrastructure mentions.
You can find the manually annotated dataset at
https://github.com/coderhub84/SH-NER.

1 Introduction

Scientific Information Extraction (ScilE) (Luan
et al., 2017; Groth et al., 2018; Dagdelen et al.,
2024) has become a foundational task in enabling
machines to understand and organize scientific lit-
erature on a scale. With advancements in natural
language processing and the availability of anno-
tated corpora, ScilE systems have demonstrated
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strong performance across core tasks such as sci-
entific named entity recognition (SciNER) (Hong
et al., 2020), relation extraction (SciRE) (Zhang
et al., 2024a), and citation analysis (Ding et al.,
2014). These capabilities power numerous down-
stream applications, including the construction of
scientific knowledge graphs (Dessi et al., 2022),
model recommendation systems (Zhao et al., 2024),
automated literature review tools (Van Dinter et al.,
2021; Orel et al., 2023), scientific question answer-
ing (Taffa and Usbeck, 2023; Lehmann et al., 2024),
and summarization (Zhang et al., 2024b; Azher
etal., 2024).

Although there have been notable advancements
in scientific named entity recognition, most exist-
ing annotated datasets focus predominantly on en-
tities such as tasks, methods, datasets, evaluation
metrics, and citation contexts. For instance, the Sci-
ERC (Luan et al., 2017) annotates entities across
six scientific types: task, method, metric, material,
other-scientific-term, and generic, while SCiREX
(Jain et al., 2020) captures the contextual ground-
ing of entities by linking them to relevant spans of
text across the entire document. Furthermore, some
prior work (Te et al., 2022; Mugaanyi et al., 2024)
focuses on analyzing citation contexts, whereas
S20RC (Lo et al., 2019) provides a large-scale cor-
pus of full-text scientific papers that are largely un-
labeled, containing only minimal annotation. More-
over, none of these resources systematically anno-
tates hardware or software specifications essential
for computational reproducibility. This represents a
significant gap, as infrastructure-level entities, such
as specific software libraries, hardware accelera-
tors, or cloud configurations, are fundamental for
understanding experimental setups and ensuring
replicability.

The absence of these infrastructure entities has
tangible negative impacts: incomplete scientific
knowledge graphs and recommendation systems
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lack the capability to suggest methods compatible
with a user’s available hardware (e.g., failing to fil-
ter out models that require 80GB of GPU memory
for users who only have access to 24 GB). Crucially,
machine learning models or frameworks struggle
to automatically assess replicability without key
details, such as software library versions (e.g., Py-
Torch v1.8 vs. v2.0) or specific hardware models
(e.g., RTX 3090 vs. A100). This creates a critical
blind spot in the understanding and structuring of
computational scientific knowledge.

To address this gap, we introduce the Software
Hardware Named Entities Recognition (SH-NER)
dataset, the first manually annotated corpus tar-
geting infrastructure-related entities in scientific
texts. SH-NER comprises 1,128 full-text papers
from the ACL Anthology', selected due to NLP’s
heavy reliance on diverse computational resources
and frequent reporting of infrastructure details in
experiments. Our dataset focuses on five novel en-
tity types: software entity, cloud platform, device
count, device memory, and hardware device. The
SH-NER dataset provides granular insights into
the computational environments that underpin NLP
research.

Annotations were performed by three annota-
tors with a background in computer science, fol-
lowing developed guidelines, achieving an aver-
age inter-annotator agreement of 88.63% Fleiss’
Kappa score. SH-NER includes 5,287 entity men-
tions across 3,638 positive entity sentences, along
with 5,586 randomly selected negative sentences
for comprehensive model training and evaluation
(detailed statistics are shown in Table 2). These
annotations capture specific details, such as soft-
ware versions, hardware models, and memory con-
figurations, enabling a clearer understanding and
comparison of computational environments.

SH-NER facilitates novel infrastructure-aware
ScilE applications, such as:

1. Fine-grained Information Retrieval: Enabling
queries like “Find papers fine-tuning BERT-
Large using PyTorch and A100 GPUs with
40GB memory.”

Hardware-Informed Reproducibility Analy-
sis: Automatically flagging papers with under-
specified resources (e.g., reporting only “GPU”
without specifying model or memory).

'ACL Venues
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3. Enhanced Scientific Knowledge Graphs: Can
enrich existing scientific knowledge graphs
by integrating hardware and software nodes
alongside tasks, methods, and datasets.

. Enhanced models recommendation: Suggest-
ing models feasible for a user’s specific hard-
ware constraints.

We introduce SH-NER, the first manually anno-
tated dataset focused on infrastructure-related
entities. To evaluate the effectiveness of SH-NER,
we conducted a comprehensive set of experiments
with several state-of-the-art supervised baseline
models, including BERT-base-uncased, SciBERT,
SciDeBERTa-CS, and RoBERTa-Base. In addition
to these supervised benchmarks, we also assessed
the performance of large language models (LLMs)
in a zero-shot setting on the SH-NER dataset,
aiming to explore their generalization capabilities
in the absence of task-specific fine-tuning.

The remainder of this paper is structured as fol-
lows: Section 2 reviews related work on scien-
tific information extraction and benchmark datasets.
Section 3 describes the SH-NER dataset, including
annotation methodology and statistics. Section 4
details the experimental setup and baseline models.
Section 5 presents and analyzes the results. Section
6 concludes with key findings and future directions.

2 Related Work

In our research, we have focused on works dealing
with the task of scholarly information extraction,
particularly in the area of named entity recogni-
tion. Although we only looked up methods that
are machine learning-based and not rule-based ap-
proaches. In general overview (Saier and Férber,
2020) and (Nasar et al., 2018) provide a compre-
hensive list of information extraction from scien-
tific papers, along with that (Zhang et al., 2024b)
and (Xu et al., 2024) provide an in-depth knowl-
edge of using large language models for extracting
the information from scientific and non-scientific
documents. Multiple datasets have been developed
for NER and RE tasks with ground-truth labels; a
detailed description and comparison can be found
in Table 1.

A significant foundation for research in scien-
tific information extraction (ScilE) has been estab-
lished through benchmark datasets introduced by
the SemEval 2017 and 2018 tasks. The SemEval
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Table 1: Overview of corpora with text scope, entity types, and dataset size.

Corpus Scope Entity Types #Docs  #Tokens #Entities

FTD titles, abstracts focus, domain, technique 426 57,182 5,382
lang. resource, resource product,

ACL-RD-TEC  abstracts measurement, model, other, 300 32,758 4,391
tech & method, tool & lib.

TDMS titles, abstracts, full text  task, dataset, metric, score 332 1,115,987 1,384

NGG titles, abstracts research problem 405 47,127 908

SCGiERC abstracts evaluation metric, generic, 500 60,749 8,089
material, method, task

Heddes Sentences dataset names 6000 - 3,729
material,dataset,data Source, method,

GSAP full text ml model, model architecture, task 100 ) 54,598

SH-NER (Our)  full text hardware device, device memory, 1,128 572,289 5,950

device count, software entity, cloud platform

2017 dataset (Augenstein et al., 2017) contains
500 paragraphs from scientific papers across com-
puter science, physics, and material science, anno-
tated with three entity types: tasks, methods, and
materials. Building upon this, the SemEval 2018
dataset (Gabor et al., 2018) extends the annotation
schema to include six relation types, emphasizing
intra-sentence relation classification. Along with
that, other works have facilitated the development
of neural approaches for scientific IE (e.g., (Dagde-
len et al., 2024; Liu et al., 2021; Hu et al., 2025;
Helwe et al., 2020; Yoon et al., 2019; Gasmi et al.,
2024)).

In Information Extraction, researchers annotate
different parts of text, including abstracts, sen-
tences, and full texts, etc. (Luan et al., 2018)
worked on abstracts and addressed the task of
scientific information extraction by jointly mod-
eling entity recognition, relation extraction, and
co-reference resolution. They introduce the SCI-
ERC dataset, which contains annotations for all
three tasks across 500 scientific abstracts drawn
from 12 Al conference proceedings. To tackle the
inter-dependencies among these tasks, they propose
SCIIE. This unified multi-task framework shares
span representations to reduce cascading errors and
capture cross-sentence relations via co-reference
links. (Heddes et al., 2021) focused on sentence-
level annotation for dataset mention detection, in-
troducing a dataset comprising 6,000 manually an-
notated sentences selected from four major Al con-
ferences based on dataset-related lexical patterns.
Other datasets such as FTD (Gupta and Manning,
2011), ACL-RD-TEC (QasemiZadeh and Schu-
mann, 2016), ACL (D’Souza and Auer, 2022), and
CL-Titles (D’Souza and Auer, 2021) annotate titles
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and abstracts to identify various scientific entity
types. Further comparative details of these datasets
are available in Table 1.

In addition, beyond the sentence level (Jain
et al., 2020), SCIREX addresses the challenge of
document-level IE by introducing a dataset that
supports multiple IE tasks, including salient en-
tity recognition and document-level n-ary rela-
tion extraction from scientific articles. To con-
struct the dataset, they combine automated methods
with manual annotations, leveraging external sci-
entific knowledge bases to ensure coverage and
consistency. Similarly, (Pan et al., 2023) presented
DMDD, a large-scale corpus of 31,219 full-text
scientific articles, annotated using distant supervi-
sion techniques to capture dataset mentions. Mean-
while, (Hou et al., 2021) introduced TDMSci, a
dataset targeting task, dataset, and method recog-
nition from 2,000 sentences extracted from NLP
publications.

More recently, GSAP (Otto et al., 2023) focuses
on enhancing named entity recognition in scientific
texts by targeting fine-grained entity types related
to machine learning models and datasets. They
introduce a manually annotated corpus of 100 full-
text scientific publications with 10 entity types,
including informal and nested mentions. Their ap-
proach emphasizes comprehensive full-text annota-
tion and introduces a baseline model fine-tuned for
recognizing both formal and descriptive references
to ML-related entities.

Although considerable progress has been made
in developing methods and datasets for scientific
information extraction (ScilE), existing resources
predominantly focus on general entity types or spe-
cific aspects, such as citations, methodologies, and



experimental results. In contrast, there is a notable
scarcity of datasets explicitly dedicated to the iden-
tification and annotation of hardware and software
entities within the computational linguistics do-
main. To address this gap, our work introduces an
annotated dataset focused exclusively on hardware
and software entities, thereby providing a valuable
resource to support and advance research in this
relatively underexplored area.

3 SH-NER

This section outlines the dataset curation process,
covering data collection (3.1), annotation proce-
dures and quality control (3.2-3.3), and annotator
agreement, dataset statistics, and comparisons with
existing datasets (3.4) to highlight its unique con-
tributions.

3.1 Data Acquisition

We collected our dataset from the ACL Anthology?,
a comprehensive repository of publications in the
field of computational linguistics. Initially, we re-
trieved 2,370 publications published between 2020
and 2025. We then filtered these publications using
a set of keywords related to hardware specifica-
tions, particularly those referencing GPU and CPU
usage, resulting in a subset of 1,000 publications.
To enhance the diversity of the dataset, we ran-
domly selected an additional 128 publications. In
total, we compiled a dataset of 1,128 publications
for annotation. These publications cover a range
of topics related to machine learning and natural
language processing within the domain of compu-
tational linguistics. We employed the marker tool’
to parse the PDF files.

3.2 Annotation Tag Set

We defined a set of five annotation tags to systemat-
ically label hardware and software-related entities
within our dataset.

Hardware Device: used to identify physical com-
puting components such as GPUs (e.g., NVIDIA
V100, A100) and CPUs (e.g., Intel Xeon).

Device Memory: captures mentions of memory
size associated with hardware devices, typically
expressed in units such as GB (e.g., 32 GB GPU
memory).

Device Count: annotates numerical references in-
dicating the number of devices used (e.g., 8 GPUs

2ACL Venues; NAACL 2025 Long Papers
*Marker GitHub Repository
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or 2 CPUs).

Software Entity: refers to software frameworks,
libraries, or tools utilized in the experiments, such
as TensorFlow, PyTorch, or Scikit-learn.

Cloud Platform: marks references to cloud-based
services or infrastructures, such as AWS, Google
Cloud, or Azure.

These tags were designed to capture relevant com-
putational and infrastructural details that support
reproducibility and transparency in scientific re-
porting.

3.3 Annotation Strategy

The annotation process was carried out by a team of
three annotators, all of whom have academic back-
grounds in computer science and Al. Before com-
mencing the annotation task, each annotator under-
went dedicated training to ensure consistent and
reliable annotations for target publications. Among
the three annotators, one was a lead annotator who
ensured the quality of annotations and ensured that
the annotators followed the annotation guidelines.
We have developed an annotation guideline used by
all annotators throughout the project. This guide-
line includes instructions for edge cases and partic-
ular linguistic cases; we combine the reuse of ACL
RD-TEC Guideline*. The full annotation guideline
can be seen in the data repository link.

A total of 150 publications were randomly se-
lected for joint annotation by all three annotators to
evaluate inter-annotator agreement. The remaining
documents were evenly divided among the anno-
tators for individual annotation. All annotations
were carried out by a predefined set of tags and
a detailed annotation guideline. To address spe-
cific linguistic phenomena—including determiners,
abbreviations, adjectival modifiers, conjunctions,
prepositions, and plural forms- we adopted con-
ventions from the ACL RD-TEC Guideline. In
particular, determiners such as “a” and “the” were
excluded from annotation.

3.4 Annotator Agreement & Data statistics

To assess the reliability of our annotation process,
we computed the Fleiss’ Kappa score (Davies and
Fleiss, 1982) on a subset of 150 publications that
were jointly annotated by all annotators. After
annotation, we used majority voting to resolve
disagreements and select the final labeled sam-
ples. The overall inter-annotator agreement for

“ACL RD-TEC Annotation Guideline (ResearchGate)
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these publications was notably high, with an av-
erage Fleiss’ Kappa score of 88.63%, indicating
substantial consensus among annotators. Further-
more, agreement was evaluated separately for each
annotation category to ensure consistent labeling
across entity types. The Fleiss’ Kappa scores for
individual labels were as follows: Cloud-Platform
90.74%, Device-Count 83.40%, Hardware-device
95.29%, Software-Entity 81.35%, and Device-
Memory 92.37%. These results demonstrate strong
and consistent agreement across all entity cate-
gories, validating the clarity of the annotation
guidelines employed.

The SH-NER dataset comprises 1,128 full-text
scholarly documents, containing a total of 5,950
annotated entity mentions across five distinct entity
types. Among these, Software Entity (42%) and
Hardware Device (27%) are the most frequently oc-
curring, whereas Cloud Platform (4.5%) is the least
represented. On average, each document contains
approximately 5.64 annotated entities. The dataset
comprises 3,638 positive sentences and 5,586 neg-
ative sentences; further details can be seen in Ta-
ble 2.

Notably, the 3,638 positive sentences were not
pre-selected for annotation. Instead, annotators re-
viewed the full text of all 1,128 publications and
annotated spans of text where the target entities
occurred. Following the annotation process, all sen-
tences containing annotated entities were extracted
as positive instances, while a set of non-entity sen-
tences was randomly selected from the same corpus
to serve as negative instances.

Furthermore, the number of positive and nega-
tive sentences in our dataset is moderately imbal-
anced for two main reasons. First, this reflects
the natural class distribution in real-world full-text
scientific documents, where sentences containing
entity mentions are typically outnumbered by those
without. Second, a larger set of negative examples
helps support more robust model training and en-
hances generalization. To prevent training bias, we
maintained a moderate level of imbalance. This
design choice enables more realistic learning con-
ditions and contributes to improved performance
in practical applications.

4 Experimental Setup

4.1 Pre-Processing

The SH-NER dataset consists of 1,128 full-text
scholarly publications. We used the Marker tool
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to parse the PDF files into machine-readable text.
Before annotation, we performed several prepro-
cessing steps to clean and prepare the data. The
parsed output from the Marker tool includes the
entire full text of each publication. However, since
the majority of our target annotations do not oc-
cur within equations or tables, we removed these
elements from the parsed text, along with the refer-
ences section.

In some cases, publications included hardware
specifications and hyperparameter settings pre-
sented in tabular format. As this study focuses
solely on textual content and not on information
extraction from tables, such papers were excluded
from the corpus.

Additionally, we removed HTML code tags,
equations, markdown-style table tags, and non-
English characters. Citation spans within the text
were also normalized, as the Marker PDF parser of-
ten converts them into formats that are inconsistent
with the ACL citation style. This normalization
ensures that the dataset remains reusable for future
research, including the annotation of other entity

types.

4.2 Dataset splits & Baseline Methods

We split the dataset at the publication level to pre-
vent data leakage, ensuring no sentences from the
same publication appear in both training and test
sets. The training and test sets comprise 1,008 and
120 publications, respectively, spanning the past
five years.

The annotated dataset includes 8,019 training
and 1,205 test sentences, with approximately 39%
of each containing at least one entity. We used
10% of the training data as a validation set during
the supervised model training setup. Moreover,
the training and test sets include a total of 5,287
and 663 entities, respectively, averaging 0.66 and
0.55 entities per sentence. Entity-level distribution
details are provided in Table 2.

To evaluate the quality and utility of our
annotated dataset, we employed four baseline
transformer-based models and three large language
models (LLMs) across five predefined entity types.
The baseline models include BERT-base-uncased
(Devlin et al., 2019), SciBERT (Beltagy et al.,
2019), SciDeBERTa-CS (Jeong and Kim, 2022),
and RoBERTa-Base (Liu et al., 2019), which are
widely used for sequence labeling tasks in NLP.

In addition, we assessed the performance of three



Entity Type Train % Test %
Software-Entity 2,245 42.46 281 42.38
Hardware-device 1,478 27.95 174 26.24
Device-Count 881 16.66 118 17.79
Device-Memory 507 9.6 52 8.00
Cloud-Platform 176 3.32 38 5.73
Total 5,287 100 663 100

Table 2: Distribution of entity types across training and
test sets in the SH-NER dataset, showing both counts
and relative percentages.

LLMs: GPT-3.5-turbo, LLaMA-3.3 70B Instruct,
and DeepSeek-Chat-v3. This diverse set of model
selections enables a thorough assessment of both
domain adaptation and generalization capabilities
on our annotated data.

4.3 Implementation Details

This section outlines the experimental setup for
model training and evaluation. Annotated entity
spans were converted to token-level labels using the
BIO scheme. Four transformer-based models were
fine-tuned on our dataset using a learning rate of
2x 1077, a batch size of 8, and the Adam optimizer
with early stopping. Training was conducted for six
epochs on a single NVIDIA A100 GPU, with each
model requiring approximately 25 to 30 minutes to
complete training.

For large language models (LLMs), we evalu-
ated GPT-3.5-Turbo, LLaMA-3-70B-Instruct, and
DeepSeek-Chat using the OpenRouter API’, in
both zero- and few-shot learning settings.

Metrics: To evaluate the performance of our
model on the entity recognition task, we employ
three standard evaluation metrics: precision, recall,
and F1 score. These metrics are computed un-
der two matching criteria: exact match and partial
match, both based on BIO-tagged token sequences.
Token-level predictions and ground truth labels are
first converted into entity spans by identifying con-
tiguous sequences marked with ”B-* (begin) and
”I-* (inside) tags. An exact match is registered when
a predicted entity span matches a gold (true) entity
in both its span boundaries and entity type. In con-
trast, a partial match is counted when a predicted
and a gold entity share the same type and exhibit
any degree of span overlap, even if their bound-
aries do not align precisely. This dual evaluation
strategy enables a comprehensive assessment of the

‘https://openrouter.ai/models
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Models Recall Precision F1-score
BERT-base-uncased 81.88 87.86 84.76
SciBERT 82.61 86.66 84.59
SciDeBERTa-CS 81.23 87.28 84.14
RoBERTa-Base 80.68 86.40 83.44
GPT-3.5-turbo (ZSL) 53.50 26.50 35.40
Llama-3.3-70b-instruct (ZSL) 59.00 39.20 47.00
Deepseek-chat-v3 (ZSL) 66.50 44.10 53.10
GPT-3.5-turbo (FSL) 57.10 28.80 37.60
Llama-3.3-70b-instruct (FSL) 58.00 41.20 48.15
Deepseek-chat-v3 (FSL) 65.50 48.30 55.66

Table 3: Exact match performance of supervised mod-
els and large language models (LLMs) under zero-shot
(ZSL) and few-shot (FSL) settings on the SH-NER
dataset.

model’s ability to both identify entity boundaries
and correctly classify entity types.

5 Experiment Results

This section presents a comprehensive evaluation
of our proposed SH-NER dataset using both fine-
tuned supervised models and large language mod-
els (LLMs) under zero-shot and few-shot settings.
We report performance across exact and partial
match criteria to capture both strict boundary accu-
racy and semantic overlap.

5.1 Supervised Baselines

To evaluate the effectiveness of the SH-NER
dataset, we conducted experiments using four su-
pervised learning models under two evaluation set-
tings: exact match and partial match. The per-
formance metrics are shown in Tables 3 and 4.
The exact match evaluation, which strictly mea-
sures entity boundary correctness, shows that all
models achieved competitive results. Among
them, BERT-base-uncased attained the highest
F1-score of 84.76, closely followed by SciBERT
and SciDeBERTa-CS. These results suggest that
general-purpose pretrained models, when fine-
tuned on domain-specific data, can match or exceed
the performance of models originally pretrained
on scientific text. While SciBERT achieved the
highest recall (82.61%), BERT-base-uncased led in
precision (87.86%), indicating differing tendencies
in error profiles across models.

In the partial match evaluation 4, which tolerates
boundary mismatches and better reflects practical
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extraction scenarios, all models showed noticeable
gains, with F1-scores exceeding. SciDeBERTa-CS
achieved the highest score of 90.76%, demonstrat-
ing its strength in capturing semantically relevant
but loosely defined entity spans. This improvement
highlights the value of partial matching for scien-
tific NER tasks, where entity boundaries can be
ambiguous. The model’s robust performance can
be attributed to its contrastive pretraining on scien-
tific corpora, which likely enhances both contextual
sensitivity and generalization across varied entity
formulations.

Entity-wise performance, as summarized in Ta-
ble 5, highlights the variability in recognition diffi-
culty across entity categories. Although Software-
Entity is the most prevalent type in both training
(42.46%) and test (42.38%) sets (see Table 2), it did
not yield the highest F1-scores. Instead, Hardware-
device and Device-Count entities performed bet-
ter in terms of exact match F1, likely due to their
more distinctive lexical patterns and relatively well-
defined contextual usage, despite constituting a
smaller share of the data (approximately 28% and
17% in the training set, respectively).

In contrast, Cloud-Platform and Device-Memory
categories showed the lowest F1-scores under ex-
act match conditions, dropping to 70.58% in some
cases. These lower scores can be attributed to a
combination of factors: limited training instances,
especially for Cloud-Platform, which makes up
only 3.32% of the training data, and higher syntac-
tic and lexical variability. Notably, partial match
performance for these challenging categories ex-
hibited considerable improvement, indicating that
the model is still able to detect relevant spans even
when the exact boundaries are uncertain.

5.2 LLMs Baselines

The evaluation of large language models (LLMs)
on the SH-NER test set under zero-shot learning
(ZSL) and few-shot learning (FSL) settings, as
shown in Tables 4 and 3, reveals a consistent per-
formance gap compared to fully supervised trans-
former models. Under the strict exact match crite-
rion, Deepseek-chat-v3 leads the LLLMs, achieving
F1-scores of 53.10% (ZSL) and 55.66% (FSL),
demonstrating that instruction-tuned LLMs can
moderately approximate NER tasks without task-
specific fine-tuning. However, these exact match
scores remain substantially lower by approximately
25 to 30 points than those of supervised models,
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Models Recall Precision F1-score
BERT-base-uncased 86.71 93.05 89.77
SciBERT 88.38 92.72 90.50
SciDeBERTa-CS 87.61 94.14 90.76
RoBERTa-Base 86.44 92.57 89.40
GPT-3.5-turbo (ZSL) 72.30  36.60 47.70
Llama-3.3-70b-instruct (ZSL) 78.20 52.80 62.30
Deepseek-chat-v3 (ZSL) 82.20 54.10 65.30
GPT-3.5-turbo (FSL) 80.70  39.50 53.00
Llama-3.3-70b-instruct (FSL) 76.30 58.80 66.30
Deepseek-chat-v3 (FSL) 80.10 70.70 75.55

Table 4: Partial match performance of supervised mod-
els and large language models (LLMs) under zero-shot
(ZSL) and few-shot (FSL) settings on the SH-NER
dataset.

highlighting the difficulty LLMs face in precise en-
tity boundary detection without dedicated training.
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Figure 1: Impact of temperature tuning on LLaMA-3.3-
70B-Instruct performance in zero-shot setting.

In contrast, the more lenient partial match
evaluation shows significant improvements, with
Deepseek-chat-v3 (FSL) attaining an F1-score of
75.55%, substantially closing the gap with super-
vised approaches. This improvement suggests that
while LLMs struggle with exact span extraction,
they possess strong semantic recognition abilities
when some boundary flexibility is allowed. Over-
all, these findings indicate that LLMs are becom-
ing increasingly viable for domain-specific NER
with limited supervision, although high-precision
applications still rely on fine-tuned supervised mod-
els. Future research could explore hybrid methods
that leverage LLLM generalization and supervised



Exact-Match F1
# Entities

Partial-Match F1

SciBERT  SciDeBERTa-CS RoBERTa-Base BERT-base-uncased SciBERT SciDeBERTa-CS RoBERTa-Base BERT-base-uncased

Hardware device ~ 87.85 83.40 84.48 89.97
Software Entity 83.93 84.83 83.46 82.76
Device-Memory 74.57 79.33 71.77 77.04
Device-Count 89.83 90.98 90.29 90.98
Cloud Platform 80.00 70.88 72.72 70.58

96.66 95.95 95.91 96.50
88.48 89.16 87.61 86.72
83.05 89.25 86.32 85.24
93.22 94.42 93.67 93.56
82.22 81.00 77.92 75.29

Table 5: Exact and partial-match F1 scores for five entity types evaluated across four supervised models.

model precision, particularly for complex scien-
tific domains such as hardware and software entity
recognition.

We conducted an additional experiment, illus-
trated in Figure 1, using the LLaMA-3.3-70B-
Instruct model due to its faster response rate com-
pared to the Deepseek-chat-v3 model. The objec-
tive was to investigate how varying the temperature
parameter, which ranged from O to 1, influences
the model’s performance in zero-shot named entity
recognition. Temperature is a key hyperparame-
ter controlling the stochasticity and creativity of
outputs generated by large language models. We
evaluated the effect of different temperature set-
tings on LLaMA’s performance using both exact
and partial match criteria.

The results demonstrate consistent patterns
across temperature variations. For exact match
evaluation, recall remained relatively high, but pre-
cision was low, resulting in modest F1 scores that
peaked at 0.49 with a temperature of 0.1. This in-
dicates a tendency for the model to over-generate
entities, favoring recall at the expense of precision.
Notably, increasing the temperature beyond 0.1
did not yield further improvements, suggesting a
plateau in the tradeoff between response variability
and performance. In contrast, partial match metrics
showed substantially better performance, with F1
scores consistently above 0.61 and peaking at 0.626
for temperatures of 0.2 and 1.0. These findings
suggest that while LLaMA-3.3-70B-Instruct may
struggle with exact boundary detection, it effec-
tively captures semantically relevant spans. Over-
all, lower temperature settings in the range of 0.1
to 0.3 provide the best balance between precision
and recall for zero-shot NER using this model.

6 Conclusion

In this study, we introduce SH-NER, the first large-
scale, manually annotated dataset designed to cap-
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ture infrastructure-related entities, such as Soft-
ware libraries/frameworks/tools, Hardware devices,
and Cloud-platforms, in the scientific NLP litera-
ture. By targeting underrepresented components of
infrastructure-related entities, SH-NER fills a sub-
stantial gap left by prior SciNER datasets, which
primarily focus on tasks, methods, and datasets.
Through annotation and experimentation using
both supervised learning models and large lan-
guage models, we demonstrate the usability and
effectiveness of SH-NER as a benchmark resource
for infrastructure entity recognition. Our findings
suggest that while supervised models outperform
competitively, large language models show promis-
ing results even without fine-tuning.

However, this work also has certain limitations and
opens avenues for future exploration. Most notably,
the Cloud-Platform entity type is underrepresented
in the annotated data, which reflects its broader
omission in scientific writing; particularly within
the NLP domain. As part of future work, we plan to
expand SH-NER to encompass additional scientific
disciplines (e.g., computer vision, robotics, and
bioinformatics) in order to enhance the diversity
and coverage of entity types. Another promising
direction for future research is the development
of hybrid approaches that combine the generaliza-
tion capabilities of large language models (LLMs)
with the precision of supervised models, particu-
larly in domains such as hardware and software
entity recognition. The structured information ex-
tracted using such methods could be integrated into
open-domain knowledge graphs, thereby enriching
them with fine-grained infrastructure-related com-
putational data. This enriched information would
be invaluable for downstream applications such as
reproducibility assessment, resource-aware litera-
ture retrieval, and system-level trend analysis in
computational research.
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