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Abstract

This work explores the intersection of code-
mixing and disfluency in bilingual speech and
text, with a focus on understanding how large
language models (LLMs) handle code-mixed
disfluent utterances. One of the primary objec-
tives is to explore LLMs’ ability to generate
code-mixed disfluent sentences and to address
the lack of high-quality code-mixed disfluent
corpora, particularly for Indic languages. We
aim to compare the performance of LLM-based
approaches with traditional disfluency detec-
tion methods and to develop novel metrics for
quantitatively assessing disfluency phenomena.
Additionally, we investigate the relationship be-
tween code-mixing and disfluency, exploring
how factors such as switching frequency and
direction influence the occurrence of disfluen-
cies. By analyzing these intriguing dynamics,
we seek to gain a deeper understanding of the
mutual influence between code-mixing and dis-
fluency in multilingual speech.

1 Introduction

In this section, we provide essential background on
code-mixing and disfluency, setting the stage for
our contributions in this study.

1.1 Code-Mixing

Multilingual speakers may unconsciously switch
languages due to the interconnected nature of their
mental lexicons. Possible reasons include:

• Lack of Language Proficiency (Grosjean,
1982).

• Faster Retrieval (Heredia and Altarriba,
2001).

• Understandability (Heredia and Altarriba,
2001).

Code-Mixing refers to mixing elements from two
languages within a single sentence, even down to
morpheme level (the smallest units of meaning)
(Bhatia and Ritchie, 2008).
Example: Amake aajke project presentation dite
hobe, tai stress hocche. (switch within clause)
Translates to: “I have to give a project presentation today, so

I’m feeling stressed.”

Although certain scholars use the terms
code-mixing and code-switching interchangeably,
code-switching is often defined differently.
Code-switching refers to switching between two
languages across sentence or clause boundaries,
typically at the word, phrase, clause, or sentence
level, but not within a single morpheme (Bhatia
and Ritchie, 2008).
Example: I can’t come to the party tonight. Amay
kal shokale uthte hobe. (switch at sentence-
boundary)
Translates to: “I can’t come to the party tonight. I need to

wake up early tomorrow.”

Example: She was very late, tai ami wait korini.
(switch at clause-boundary)
Translates to: “She was very late, that is why I did not wait.”

Note: These are Bengali-English code-mixed
sentences where Bengali words are italicised.
The dominant language in a code-mixed sen-
tence which provides the grammatical structure
(e.g., word order, function words, morphology) is
called the matrix language. The less dominant
language, which contributes content words (e.g.,
nouns, verbs) but adapts to the grammar of the
matrix language, is called the embedded language.
These are defined by Myers-Scotton (1997).

1.2 Disfluency

Disfluencies refer to interruptions or breaks in the
smooth flow of spoken language. These are natural
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parts of speech that occur when a speaker pauses,
restarts, or struggles to articulate words, common
in spontaneous or unplanned speech. The following
are some examples of Bengali-English code-mixed
disfluent sentences:

• Interregnum: I think, ummm, pora shuru
korte hobe.

• Repetition: Ami ami jabo exam dite.

• False Start: Ami uh- tui exam dili?.

• Correction: Left- sorry Right e jete hobe.

The reparandum (words supposed to be corrected
or ignored), interregnum (optional discourse cues),
and repair are marked and Bengali words are itali-
cised.

1.3 Our Contribution

• We try to mitigate the scarcity of high-quality
code-mixed disfluent corpora, particularly for
Indic languages, by producing a Bengali-
English code-mixed disfluent corpus gener-
ated via zero-shot prompting.

• We develop novel metrics to quantitatively
assess disfluency phenomena.

• Compare different LLMs (GPT-4o, GPT 4.5-
Preview, Gemini 2.0 Flash, Gemini 2.0 Think-
ing, Gemini 2.5 Pro) with respect to the nature
of their generated code-mixed disfluent sen-
tences.

• Investigate novel LLM (GPT-4o) based meth-
ods for disfluency detection and compare per-
formance with traditional approaches for the
same.

• Explore the interplay between code-mixing
and disfluency to understand their mutual in-
fluence.

2 Literature Review

Disfluency is a characteristic of spontaneous
speech and introduces erroneous words that do
not contribute to the semantics of the utterance.
Early works surrounding disfluency detection ex-
plored a variety of neural architectures. Zayats
et al. (2016) utilized bidirectional LSTMs with

pattern match features to reduce vocabulary sen-
sitivity during training. Wang et al. (2016) pro-
posed an encoder-decoder attention model to cap-
ture long-range dependencies for disfluency detec-
tion. Jamshid Lou and Johnson (2017) adopted a
Noisy Channel Model enhanced with LSTM lan-
guage models to score candidate analyses based
on fluency. Later, Jamshid Lou et al. (2018) intro-
duced an auto-correlational CNN to capture “rough
copy” patterns often found in repair disfluencies.
More recent efforts have focused on multilingual
and syntactic enhancements. Kundu et al. (2022)
explored zero-shot disfluency detection in Indian
languages using pretrained multilingual models
fine-tuned on English. Ghosh et al. (2022) intro-
duced a span classification model that combines
contextual information from transformers and struc-
tured syntactic features via graph convolutional
networks.

The Switchboard (SWBD) corpus (Godfrey and
Holliman, 1993) contains annotated English disflu-
ent sentences from 2,400 telephone conversations
among 543 US speakers (302 male, 241 female).
Participants did not know each other, and conver-
sations were held on topics from a predetermined
list. It is a benchmark for monolingual disfluency
studies. Passali et al. (2022) proposed the LARD
(Large-scale ARtificial Disfluency), which uses lin-
guistic rules to generate synthetic disfluent text,
though its application is limited to monolingual set-
tings. Kundu et al. (2022) defined a rule-based pro-
cedure for generating disfluencies from fluent sen-
tences. Kundu et al. (2022) also mention that such
synthetic data generated by fixed rules may not
fully reflect real-world disfluencies — we find this
limitation is also applicable to LARD. Bhat et al.
(2023) introduced a large-scale, human-annotated
corpus for disfluency correction in Indo-European
languages, though it, too, is restricted to monolin-
gual utterances.

In the context of code-mixed data, several
datasets exist, albeit not specifically for disfluency
detection. Raihan et al. (2023) introduced SentMix-
3L for sentiment analysis in Bangla-English-Hindi
code-mixed text, while Raihan et al. (2024) re-
leased EmoMix-3L for emotion detection in the
same language mix. Nayak and Joshi (2022) pro-
posed HingCorpus, a Hindi-English code-mixed
dataset in Roman script. Gupta et al. (2024) ex-
plored rule-based prompting techniques for large
language models (LLMs) to generate code-mixed
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text. However, none of these datasets were de-
signed with disfluency detection in mind. The
ICON (2023) Shared Task dataset provides dis-
fluent code-mixed data specifically for disfluency
detection, but upon closer inspection, the semantic
quality of the utterances was found to be lacking in
resemblance to real-world human speech patterns.

3 Methodology

3.1 Zero-Shot Prompting for Generating
Corpus

We propose two distinct outcome-based prompt-
ing techniques for generating code-mixed disfluent
sentences:

• Translating Disfluent Sentence to Code-
Mixed Setting: In this approach, we present
an English disfluent sentence and request its
X-Y code-mixed translation or counterpart,
where X and Y are the target languages.

• Artificial Conversation Generation with
Code-Mixing and Disfluency: This tech-
nique involves zero-shot prompting for gen-
erating an artificial conversation between N
speakers who code-mix between languages X
and Y, that should resemble human disfluent
speech, with the inclusion of common types
of disfluencies such as false starts, repetitions,
and corrections.

We build our initial dataset using the first prompt-
ing technique:

• Sample 100 random sentences of length < 15,
and > 10% disfluent tokens from the SWBD
Corpus (Godfrey and Holliman, 1993). This
was done to restrict sentence length and re-
move sentences with negligible disfluencies.

• Sentence is injected into the prompt to GPT-
4o, and result (Code-Mixed Counterpart) ex-
tracted using Open-AI’s structured output
parser.

• Manually label sentences using binary labels,
0 for fluent and 1 for disfluent tokens.

The prompt uses the Self-Consistency (Wang et al.,
2023) technique to achieve it’s goal. The detailed
prompt is excluded to maintain conciseness.
The second prompting technique is used to build
the final dataset, that we name, MixFluent.

• The two family of LLMs used are GPT-4 (Ope-
nAI, 2024) (GPT-4o and GPT-4.5 Preview)
and Gemini (Gemini-Team, 2024) (Gemini
2.0 Flash, 2.0 Flash Thinking and 2.5 Pro).

• A topic X is chosen randomly from a list of
pre-specified topics (Life, Travel, Academics,
Sports, Food, Car, Movies, Books) is chosen
with decreasing probability in order of men-
tion.

• One of the conditions: telephone or face-to-
face conversation is chosen randomly.

• One of the Large Language Models is chosen
at random.

• We use OpenAI Platform, and Gemini Plat-
form to prompt the LLM as required.

• The result is parsed into individual sentences
by splitting at “.”, “?”, and “!”.

• Each such conversation is chosen at random
for manual review and editing. All the con-
versations are labelled both at token and span
level manually.

This is repeated till approximately 2000 sentences
are obtained. The detailed prompt is excluded to
maintain conciseness.
The MixFluent dataset is manually annotated with
a two-tier disfluency labeling scheme. At the token
level, we use a scheme similar to one proposed by
Shriberg (1994) using the following tags:

• R1 (reparandum): Words intended to be cor-
rected or ignored.

• I (interregnum): Optional discourse cues.

• R2 (repair): The correction or words supposed
to be retained.

In addition, each disfluent span is further catego-
rized into one of the following disfluency types
defined as:

• IR (Interregnum): A filler word or hesitation
marker used to buy time while thinking.
Example: Focus korar cheshta korchi but uh
it’s impossible.
Translates to: I’m trying to focus but uh it’s impossible.
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• RE (Repetition): Repeating a word or phrase
unintentionally, often due to planning difficul-
ties or to re-iterate a point or objective.
Example: Achha, tahole maybe um, maybe
amra ek saathe bosh e dekha korte pari, right
Translates to: Okay, then maybe, um, maybe we can sit

together and meet, right?

• FS (False Start): A prematurely started utter-
ance that is abandoned and replaced.
Example: Ami toh ami actually bhabchhilam
boi kinbo bole.
Translates to: I was- I actually was thinking of buying a

book.

• CR (Correction): Self-repair of an earlier spo-
ken segment.
Example: Hmm, motamoti bujhechi, but
weak entity, sorry, weak relationship taay
doubt ache.
Translates to: Hmm, I more or less understood, but weak

entity- sorry, I have a doubt in weak relationship.

• PP (Pet Phrase): Frequently used filler expres-
sions that do not add semantic content, often
specific to personal habits.
Example: Mane, aaj raat e amra ekta quick
revision call kore ni.
Translates to: I mean, let’s do a quick revision call

tonight.

• ST (Stutter): Repetition of sounds or syllables
due to difficulty in speech production.
Example: Tui kono no- notes baniyechis naki.
Translates to: Did you make any no- notes?

• FL (Fluent): A normally produced word with-
out any disfluency.
Example: O haan, tor kachhe indexing ar
transaction er notes ache.
Translates to: Oh yes, do you have the indexing and

transaction notes?

All above examples are sourced from the MixFlu-
ent Dataset. The reparandum (words supposed to
be corrected or ignored), interregnum (optional dis-
course cues), and repair are marked and Bengali
words are italicised.

3.2 Novel Disfluency Metrics
We formulate the two following metrics inspired
by language entropy (Gullifer and Titone, 2019):
Fluency Entropy (FE): It is an information-
theoretic measure that quantifies the distributional

uncertainty of fluency labels across all tokens in a
sequence. It evaluates how balanced or skewed the
fluency labels are, without considering the order or
grouping of tokens.

FE = −
k∑

i=1

pi · log2(pi)

where:

• k is the number of unique fluency labels (e.g.,
Fluent, Disfluent),

• pi =
number of tokens with label i

total number of tokens

Fluency Entropy (FE) quantifies how evenly flu-
ent and disfluent tokens are distributed across a
sequence. A high FE value (close to 1) indicates
a balanced presence of fluent and disfluent tokens,
suggesting more frequent disfluencies throughout
the sentence. A low FE value (close to 0) suggests
that one label (typically “fluent”) dominates the se-
quence, indicating that disfluencies are either rare
or absent.
Fluency Span Entropy (FSE): It is an information-
theoretic metric that measures the diversity of flu-
ency span types in a sequence. Each span is defined
as a contiguous segment of tokens with the same
fluency label and its length. The entropy is com-
puted over the set of unique (label, span length)
pairs.

FSE = −
n∑

i=1

pi · log2(pi)

where:

• n is the number of unique
(label, spanlength) combinations,

• pi =
count of span type i
total number of spans

Fluency Span Entropy (FSE) captures the diversity
and variability of fluency spans—that is, contigu-
ous segments of tokens sharing the same fluency
label and length. A high FSE implies that the se-
quence contains many different types of fluency
spans, both in terms of label and length (e.g., short
disfluent interruptions, long fluent stretches, and
vice versa). A low FSE, in contrast, suggests uni-
formity in the fluency structure, with fewer types
of spans—either the speech is consistently fluent
or disfluencies appear in repetitive, predictable pat-
terns. Together, FE and FSE allow us to assess not
only how much disfluency is present (via label dis-
tribution), but also how that disfluency is organized
and patterned within the sentence.
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3.3 Generation Characteristics of LLMs
Each sentence in MixFluent Dataset (generated by
an LLM) is represented as 2-D feature using one
of:

• Code-Mixing Index and Disfluency Percent-
age

• Code-Mixing Index and Fluency Entropy

• Language Entropy and Disfluency Percentage

• Language Entropy and Fluency Entropy

where, Language Entropy is defined by Gullifer
and Titone (2019), Code-Mixing Index is defined
by Gambäck (2014), Fluency Entropy is defined
by us in Section 3.2, and Disfluency Percentage is
the ratio of disfluent tokens to the total number of
tokens in an utterance.
Each sentence generated by the same model is
assigned to the same cluster. Cluster evaluation
metrics like Silhoutte Score (Rousseeuw, 1987),
Davies-Bouldin Index (Davies and Bouldin, 1979)
and Calinski-Harabasz Index (Caliński and JA,
1974) are computed to analyse quality of cluster-
ing. Additionally, we look into the mean of various
metrics computed on the data generated by each
model/family to draw further conclusions.

3.4 Few-Shot Prompting for Disfluency
Labelling

We propose a few-shot prompting approach for dis-
fluency detection, leveraging the chain-of-thought
(CoT) (Wei et al., 2023) and self-consistency
(Wang et al., 2023) prompting strategies with
GPT-4o (OpenAI, 2024) as the LLM. The de-
tailed prompt is excluded to maintain conciseness.
Evaluation is done on the ICON 2023 Shared
Task (ICON, 2023) Bengali Test Set. The class-
wise F1-Scores are compared against strong super-
vised baselines like BERT (Devlin et al., 2018),
MuRIL (Khanuja et al., 2021) and IndicBERT
(Kakwani et al., 2020) fine-tuned using Weighted
Cross-Entropy Loss to handle severe class imbal-
ance, Adam with weighted decay optimizer for 20
Epochs each.

3.5 Hypothesis Testing on the Influence of
Code-Mixing on Disfluency Patterns

We propose the following hypotheses and test them
on the MixFluent Dataset:

• H1: Proximity to a switch triggers disfluency.

• H2: Direction of the switch affects disfluency.

• H3: Increase in switching frequency triggers
a higher degree of disfluency.

• H4: The speaker is more likely to be disfluent
in the embedded language.

• H5: Disfluent tokens are more likely to be
clustered than isolated.

While H1–H4 directly explore the influence of
code-mixing on disfluency, H5 investigates the
structural distribution of disfluent tokens.
Note: In a code-mixing environment, the switch
of codes within a single sentence, even down to
morpheme level, has been referred to as a switch.
The token which differs in language from the
previous token is considered to be a switch point.

To test each hypothesis, count disfluent vs fluent
tokens

• with & without code-switch in ±2 token win-
dow.

• for each direction of code-swithcing in previ-
ous token.

• with 0, 1, 2+ switches in ±2 token window.

• for each language label.

We also count disfluent tokens that are isolated
or clustered (±1 window). We build contingency
tables, compute % disfluency per category, and test
independence using χ2 test.

4 Results and Discussion

4.1 Zero-Shot Prompting for Generating
Corpus

We make the following qualitative observations
while creating the initial dataset, by translating
disfluent English sentences sourced from SWBD
(Godfrey and Holliman, 1993) corpus, to their
Bengali-English counterpart:

• Semantic coherence of non-disfluent spans in
the SWBD corpus is relatively poor, which af-
fects the quality of code-mixed outputs as the
LLM outputs inherit these deficiencies from
the input data.

• The type of disfluency present in the input
English sentence preserved in the generated
Bengali-English code-mixed sentence.
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• The position of disfluent spans often shift in
the generated output to cater to the natural
syntactic and grammatical constraints of Ben-
gali.

• The positional shift prevents direct transfer of
disfluency labels from the input to the output,
necessitating manual annotation.

Model RE FS CR ST PP IR

GPT-4o/mini 142 8 12 11 167 480

GPT-4.5 Preview 430 27 40 0 215 577

Gemini 2.0 Flash 202 11 0 6 31 115

Gemini 2.0 Flash Thinking 134 3 3 0 0 104

Gemini 2.5 Pro 305 17 11 7 24 330

Table 1: Class-wise model-wise frequency of generated
disfluencies normalized to 1k sentences per model.

According to Table 1, we make the following
observations concerning the MixFluent dataset:

• Only GPT-4o/mini and Gemini 2.5 Pro suc-
cessfully followed the prompt to include dis-
fluencies from all classes.

• Gemini 2.0 Flash Thinking and GPT-4.5 Pre-
view produced the least and most disfluencies
per 1000 sentences respectively.

• Interregnum (IR) and Stutter (ST) were the
classes with highest and least frequency.

The following qualitative observations are made
while reviewing and labelling the MixFluent
Dataset:

• Occasionally, a third language term “yaar”
(from Hindi) introduced into the conversation,
even though there was no mention of Hindi
mixing.

• The LLMs assume that Bengali is the base lan-
guage and English is the embedded language.

• Although LLMs generated unnecessary dis-
fluenices at few occasions, the nature of pro-
duced text represent real-world disfluencies
better than data generated by previous rule-
based methods proposed by Passali et al.
(2022) and Kundu et al. (2022).

The MixFluent dataset statistics and detailed de-
scriptive metrics are provided in Table 2 and Table
3 respectively.

Statistic Value
Total Sentences 2049

LLMs Used 5

Average Sentence Length (tokens) 6.48 ± 5.00

Total Tokens 13285

Disfluent Tokens 2990

% Disfluent Tokens 22.51

Mean % Disfluent Tokens per Sentence 18.58%

Table 2: Dataset statistics for the MixFluent (Bengali-
English code-mixed disfluent) speech corpus.

Feature Mean Std. Dev. Median IQR

CMI 48.37 32.74 50.00 25.00–75.00

Language Entropy 0.60 0.42 0.81 0.00–0.95

Fluency Entropy 0.34 0.42 0.00 0.00–0.81

Fluency Span Entropy 0.59 0.74 0.00 0.00–1.00

Disfluency %age 18.58 26.59 0.00 0.00–33.33

Table 3: Descriptive statistics of key features in the
MixFluent Dataset. (IQR refers to Inter-Quartile Range)

F1 F2 SIL DBI CHI
CMI Disfl. %age -0.069 8.032 47.016

CMI FE -0.135 55.683 59.665

LE Disfl. %age -0.178 12.647 28.867

LE FE -0.138 8.240 33.768

Table 4: Clustering metrics for various feature combina-
tions, where F1 and F2 are Features 1 and 2 respectively.
CMI: Code-Mixing Index, FE: Fluency Entropy, LE:
Language Entropy, SIL: Silhouette Score, DBI: Davies-
Bouldin Index, CHI: Calinski-Harabasz Index.

4.2 Generation Characteristics of LLMs

According to Table 4, negative Silhouette Scores
indicate poor clustering approaching random
assignment. This implies that no model seems to
be biased towards certain patterns of disfluency
and degree of code-mixing at the same time.
According to Table 5, GPT-4.5 Preview generated

Model CMI LE Disfl. % FE FSE

GPT-4o 38.46 0.68 17.95 0.39 0.72

GPT-4.5 Preview 39.94 0.76 28.97 0.54 1.07

Gemini 2.0 Flash 40.20 0.55 13.10 0.24 0.41

Gemini 2.0 Flash Thinking 63.88 0.47 10.52 0.15 0.25

Gemini 2.5 Pro 57.42 0.56 25.63 0.43 0.65

Table 5: Comparison of Models on Mean CMI, Lan-
guage Entropy (LE), Disfluency Percentage, Fluency
Entropy (FE), and Fluency Span Entropy (FSE) of gen-
erated data. Above values are mean of each metric.

a significantly higher %age of disfluency than
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GPT-4o. Similarly, Gemini 2.5 Pro generated a
significantly higher %age of disfluency compared
to other Gemini models.

Model Family CMI LE Mean FE FSE Disfl. %

GPT-4 38.74 0.70 0.42 0.79 20.03

Gemini 54.42 0.53 0.29 0.46 17.67

Table 6: Mean of metrics calculated on data generated
by GPT and Gemini model families.

According to Table 6 GPT-4 models generated
higher disfluency percentage, while Gemini mod-
els generated a much higher average code-mixing
index.

4.3 Few-Shot Prompting for Disfluency
Labelling

F1 Score

Class BERT MuRIL IndicBERT GPT-4o

Alteration R 0.46 0.69 0.72 0.00

O 0.87 0.95 0.98 0.93

edit R 0.78 0.73 0.60 0.00

false R 0.15 0.30 0.26 0.00

filler R 0.79 0.96 0.92 0.08

pet R 0.65 0.79 0.86 0.09

repair R 0.26 0.45 0.66 0.00

repeat R 0.11 0.66 0.63 0.07

Weighted F1 Score 0.73 0.91 0.95 0.83

Macro Avg F1 Score 0.51 0.69 0.70 0.14

Table 7: F1 scores for various models across disfluency
classes (ICON 2023 Shared Task Bengali Test Set)

While comparing traditional methods to few-
shot prompting based disfluency labelling, the fol-
lowing observations (Refer Table 7) are made:

• The LLM (GPT-4o) struggled to produce same
number of labels as input tokens. This high-
lights its weakness in counting scenarios. The
results are padded with ’O’ label for comput-
ing metrics.

• Average F1-Score of the LLM (GPT-4o) is
significantly worse than other models.

• IndicBERT (Kakwani et al., 2020) despite
having lesser parameters performs better than
MuRIL (Khanuja et al., 2021).

• All the models relatively struggled in labelling
the class ”false R” which represents false
starts.

4.4 Hypothesis Testing on the Influence of
Code-Mixing on Disfluency Patterns

H1: Proximity to a switch triggers disfluency.

Switch Nearby No Switch Nearby
Disfluent 2144 846

Fluent 7060 3232

%age Disfluent 23.29 20.74

Table 8: Contingency table showing the relationship
between disfluency and proximity to a code-switch (con-
sidering neighborhood of 5 tokens).

From Table 8, we see that the probability of
disfluency is higher when there is a switch point
in a ±2 token window. The χ2 value is 10.378
which is greater than the critical value of 3.814 (at
p=0.05). Thus, we can reject the null hypothesis.
Proximity to a code-switch does trigger disfluency.

H2: Direction of the switch affects disfluency.

Switch into ENG Switch into BEN
Disfluent 556 515

Fluent 1737 1775

%age Disfluent 24.24 22.48

Table 9: Contingency table showing the relationship
between disfluency and switching direction in previous
token.

From Table 9, we see that there is a difference
of 1.76% in disfluency occurrence for the two
possible directions of switch in previous token.
The χ2 value is 1.882 which is much lesser than
the critical value of 3.814 (at p=0.05). Thus, we
can not reject the null hypothesis.
Different code-switching direction does not trigger
disfluency to different extent.

H3: Increase in switching frequency triggers
a higher degree of disfluency.

0 Switches 1 Switch 2+ Switches
Disfluent 846 1005 1139

Fluent 3232 3557 3503

%age Disfluent 20.74 22.03 24.54

Table 10: Contingency table showing the relationship
between disfluency and switching frequency in a neigh-
borhood of 5 tokens.

From Table 10, we see that the %age of disfluency
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increases with increase in number of switches. The
χ2 value is 18.814 which is much higher than the
critical value of 5.9915 (at p=0.05). Thus, we can
reject the null hypothesis.
Increase in code-switching frequency triggers a
higher degree of code-switching.

H4: The speaker is more likely to be disfluent
in the embedded language.

ENG BEN
Disfluent 1828 1162

Fluent 4852 5440

%age Disfluent 27.95 17.60

Table 11: Contingency table showing the relationship
between disfluency and language.

Table 11 shows 10% more disfluency occurence
across English words than Bengali. The χ2 value
is 180.929, which is much higher than the critical
value of 3.814 (at p=0.05). Thus, we can reject the
null hypothesis.
Disfluency is more likely to occur in the embedded
language, which is also the speaker’s second
language in most cases.

H5: Disfluent tokens are more likely to be
clustered than isolated.

Count
Clustered 2552

Isolated 438

%age Clustered 85.32

Table 12: Table showing the frequency of clustered and
isolated disfluent tokens.

From Table 12, we see that 85.32% of disfluent to-
kens appear close to other disfluent tokens (within
one word before or after), while only 14.68% oc-
cur on their own. This clear difference suggests
that disfluencies usually do not happen randomly.
Instead, once a speaker becomes disfluent, they
are more likely to continue making mistakes for a
short time. This could happen because the speaker
is thinking hard, struggling to find the right words,
or feeling unsure while speaking. This finding is
in line with the work of Shriberg (1994), who in-
troduced the concept of ”disfluency clusters” or
”disfluency islands.”
Disfluent tokens are more likely to occur in clusters
than isolated.

5 Conclusion

This research provides key insights into the inter-
play between disfluency and code-mixing in mul-
tilingual settings. The major conclusions drawn
from this study are as follows:

• Prompt-based generation proves to be a viable
strategy for creating disfluent code-mixed con-
versational data, although it currently requires
manual annotation for accuracy.

• Large Language Models (LLMs) underper-
form in token classification tasks compared to
traditional BERT-like architectures.

• Novel metrics, such as Fluency Span Entropy
(FSE), offer deeper insights into the structural
distribution of disfluent tokens within utter-
ances, beyond simple frequency-based analy-
sis.

• The GPT-4 family of models generated a
higher average %age of disfluencies than
Gemini models, while the latter generated sig-
nificantly higher average code-mixing index.

• Experimental evidence reaffirms that code-
mixing significantly influences the emergence
of disfluencies and may act as a trigger in con-
versational contexts.

6 Future Work

Building on the findings and limitations of this
work, several directions can be explored in future
research:

• Extend the MixFluent dataset to include other
Indic language pairs to facilitate broader cross-
linguistic analysis of code-mixed disfluencies.

• Explore how Large Language Models
(LLMs) can be better utilized for disfluency
correction and detection, especially in multi-
lingual and low-resource settings.

• Design and evaluate more innovative metrics
beyond entropy-based measures to capture the
complexity and structure of disfluency and
code-mixing.

• Test current and possibly additional hypothe-
ses on an expanded dataset to assess their va-
lidity across different language pairs and soci-
olinguistic contexts.
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