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Abstract

Effective document reranking is essential for
improving search relevance across diverse ap-
plications. While Large Language Models
(LLMs) excel at reranking due to their deep
semantic understanding and reasoning, their
high computational cost makes them imprac-
tical for many real-world deployments. Fine-
tuning smaller, task-specific models is a more
efficient alternative but typically depends on
scarce, manually labeled data. To overcome
this, we propose a novel pipeline that eliminates
the need for human-labeled query-document
pairs. Our method uses LLMs to generate syn-
thetic queries from domain-specific corpora
and employs an LLM-based classifier to la-
bel positive and hard-negative pairs. This syn-
thetic dataset is then used to fine-tune a smaller
transformer model with contrastive learning us-
ing Localized Contrastive Estimation (LCE)
loss. Experiments on the MedQuAD dataset
show that our approach significantly boosts
in-domain performance and generalizes well
to out-of-domain tasks. By using LLMs for
data generation and supervision rather than in-
ference, we reduce computational costs while
maintaining strong reranking capabilities.

1 Introduction

Rerankers are essential in modern Information
Retrieval (IR) systems, especially in Retrieval-
Augmented Generation (RAG) pipelines, where
initial retrieval often includes false positives. These
irrelevant results can harm downstream tasks.
Rerankers address this by refining search re-
sults—filtering out non-relevant documents and
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reordering based on relevance, thereby improving
precision and system effectiveness.

Reranking methods range from traditional statis-
tical models like BM25 to neural and transformer-
based models. Transformer-based rerankers, such
as those built on BERT, outperform others by
capturing complex query-document relationships.
Large Language Models (LLMs) can also be used
for reranking due to their deep contextual under-
standing, but come with challenges like high la-
tency and computational cost. In contrast, dedi-
cated reranking models strike a better balance be-
tween efficiency and accuracy for real-time use.

However, rerankers require domain-specific fine-
tuning to perform well. This typically needs la-
beled query-document pairs, which are often un-
available in specialized domains. To overcome
this, we propose a query-less fine-tuning approach
for cross-encoders using only a domain-specific
text corpus. Our method uses an LLM to generate
synthetic queries and identify relevant documents,
creating synthetically labeled data for fine-tuning.
This allows cross-encoders to approach LLM-level
reranking performance without needing manually
labeled data.

Our framework combines contrastive learning,
knowledge distillation, and fine-tuning to adapt
rerankers efficiently. By removing the need for
curated relevance labels, it enables high-quality
domain-specific reranking and improves retrieval
precision where traditional rerankers fall short.

2 Related Work

As a task, reranking involves refining the initial list
of retrieved documents by reordering them based
on a model’s relevance scores. The progress of
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deep learning has significantly advanced rerank-
ing approaches by enabling models to learn com-
plex patterns in language. Recent work has demon-
strated that transformer-based models, particularly
the Bidirectional Encoder Representations from
Transformers (BERT) model and its derivatives, of-
fer state-of-the-art performance in reranking and
other natural language processing tasks due to their
strong contextual representation capabilities (De-
vlin et al., 2018).

2.1 Transformer-Based Models

The introduction of transformer-based models has
transformed the field of reranking. Models like
BERT, RoBERTa (Zhuang et al., 2021), and T5
(Raffel et al., 2020) significantly outperform tradi-
tional IR models, especially when fine-tuned for
reranking tasks.

Nogueira and Cho (2019) first illustrate the po-
tential of BERT for reranking in the context of pas-
sage retrieval, demonstrating substantial gains over
prior methods on benchmarks like MS MARCO
(Nguyen et al., 2016).

Recent studies have also explored fine-tuning T5
for reranking, with Nogueira et al. (2020b) train-
ing it as a sequence-to-sequence model to generate
relevance labels as target words”. The logits of
these words are then interpreted as relevance prob-
abilities, enabling ranking. Moreover, Zhuang et al.
(2023b) adapt TS with ranking-specific losses to di-
rectly compute ranking scores for query-document
pairs. In particular, they explore pairwise and
listwise ranking losses, achieving significant per-
formance improvement across different datasets.
Their results show that models fine-tuned with list-
wise ranking loss performed well in zero-shot sce-
narios on out-domain data, compared to models
trained with classification losses.

2.2 Fine-Tuning Techniques

Fine-tuning techniques play a significant role in
adapting pre-trained transformers for reranking
tasks. Moreira et al. (2024) present an abla-
tion study analyzing reranking model performance
based on model size, loss functions, and self-
attention mechanisms.

The dominant approach to reranking involves
task-specific fine-tuning, typically using pointwise
ranking objectives to directly optimize relevance
scoring for tasks like search, fact-checking, and
question answering. This enhances the model’s
ability to detect subtle relevance differences. Data

augmentation—such as generating synthetic query-
document pairs—further improves model robust-
ness and generalization.

Contrastive learning in pair with knowledge dis-
tillation has the potential to make rerankers more ef-
ficient. While most such existing approaches focus
on training or fine-tuning retriever models, these
techniques can similarly be used for training or fine-
tuning a ranking model. Gao et al. (2021b) apply
contrastive learning to maximize the distinction be-
tween relevant and irrelevant documents, resulting
in more discriminative embeddings. Knowledge
distillation, as shown in Sanh et al. (2019), enables
large models to be distilled into smaller, more ef-
ficient models without significant loss in accuracy,
supporting deployment in resource-limited environ-
ments. This idea of distilling a larger and more
capable model into a smaller and more specialized
model can also be used in terms of ranking models.

2.3 Contrastive Learning

Contrastive learning has gained attention as an ef-
fective technique for training retrieval and rank-
ing models, particularly bi-encoders and cross-
encoders, by helping the model learn more dis-
criminative representations of relevant versus irrele-
vant documents. In training bi-encoders, the model
achieves this by bringing relevant query-document
pairs closer in the embedding space while distanc-
ing irrelevant ones. In training cross-encoders, the
model scores each query-document pair indepen-
dently by cross-referencing information between
them, rather than encoding them separately.

A popular contrastive learning objective for
reranking models is the InfoNCE (Information
Noise-Contrastive Estimation) loss, introduced in
van den Oord et al. (2019). InfoNCE operates by
maximizing the similarity between positive pairs
(e.g., aquery and its relevant document) while mini-
mizing similarity to a set of negative examples (e.g.,
irrelevant documents). Using a categorical cross-
entropy approach, InfoNCE identifies the correct
positive sample among unrelated noise samples by
probabilistically contrasting positives with nega-
tives, encouraging the model to capture relevance
distinctions. A key component of this process is
negative sampling, where “hard negatives” or ran-
dom negatives are used to focus the model on dis-
tinguishing relevance patterns, reducing overfitting
to positive pairs alone.

In reranking tasks, using InfoNCE helps the
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cross-encoder learn relevance by focusing on both
relevant and non-relevant document distinctions,
which improves its ranking capability on diverse
data. This approach allows reranking models
to generalize effectively, even on challenging IR
datasets, by embedding distinctions between rel-
evant and irrelevant documents directly into the
scoring function.

2.4 Knowledge Distillation

The Gecko approach demonstrates how knowledge
distillation from large language models (LLMs)
can effectively train a compact, high-performing
embedding model (Lee et al., 2024). Gecko
achieves competitive retrieval results through a two-
step distillation process: first, generating synthetic
data with an LLM, and then refining it by relabel-
ing it with hard negatives. This distillation concept
can also be applied to fine-tune ranking models,
improving their efficiency and performance.

2.5 Relevance Scoring

To assess and rank retrieved passages effectively,
various relevance scoring techniques are proposed
nowadays.

Query Likelihood (Sachan et al., 2023a) pro-
pose a ranking approach that improves passage
retrieval in open-question answering by scoring
relevance through a zero-shot question generation
model. This approach uses a pre-trained language
model to compute the likelihood of the input ques-
tion given each retrieved passage, providing cross-
attention without task-specific training and improv-
ing performance on unsupervised and supervised
retrieval models alike. Additionally, recent ad-
vancements such as the ART approach introduced
in Sachan et al. (2023b), enable effective unsu-
pervised training of dense passage retrieval mod-
els by leveraging an innovative document-retrieval
autoencoding scheme, which computes the proba-
bility of reconstructing the original question from
retrieved evidence documents. This enables robust
question and document encoding without labeled
data, contributing to state-of-the-art results across
multiple QA benchmarks.

Relevance Classification Zhuang et al. (2023a)
propose an approach that improves zero-shot LLM-
based ranking by incorporating fine-grained rele-
vance labels in prompts, which enables more accu-
rate differentiation between documents with vary-
ing levels of relevance to a query. This approach
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significantly improves ranking performance by re-
ducing noise and bias, as shown on multiple BEIR
datasets.

Cross-Attention Relevance Meanwhile, (Izac-
ard and Grave, 2022) present an approach that uses
cross-attention scores from a reader model as rele-
vance signals to train retrievers for tasks like ques-
tion answering. By aggregating these attention
scores across layers and heads, the approach gener-
ates synthetic labels for passage relevance without
requiring annotated query-document pairs, achiev-
ing state-of-the-art results.

2.6 LLMs as Rerankers

LLMs have been adapted for document ranking
using pointwise, pairwise, listwise, and setwise
approaches, each balancing effectiveness and effi-
ciency differently.

Pointwise ranking scores each passage indepen-
dently, making it computationally efficient but less
effective in capturing relative relevance. Pairwise
ranking compares passages in pairs to improve
ranking precision, but it requires multiple com-
parisons, increasing computational cost. Listwise
ranking processes multiple passages in a single
prompt, enhancing comparative relevance but con-
suming more tokens. Recent work, such as List-
wise Reranker with a Large Language Model (LRL)
(Ma et al., 2023), shows that zero-shot listwise
ranking can outperform pointwise methods by di-
rectly generating reordered document lists without
task-specific training.

Setwise ranking (Zhuang et al., 2024) presents a
set of passages in a single prompt but focuses on se-
lecting only the most relevant one, reducing LLM
inferences while maintaining ranking effectiveness.
This approach balances efficiency and effective-
ness by combining the computational advantages
of pointwise ranking with the comparative insights
of pairwise and listwise methods. It achieves strong
performance in zero-shot ranking tasks with lower
token usage, making it a promising alternative for
LLM-based document ranking.

3 Methodology

In this section, we describe the methodology for
fine-tuning a cross-encoder on synthetic data for
ranking tasks. We first explain our approach to
generating queries from a corpus of passages using
an LLM and detail the dataset preparation process.



Then, we outline the training and evaluation proce-
dures.

3.1 Training Objective

Preliminaries Since we use a cross-encoder, we
evaluate the relevance of a document d to a query
q by passing both through an encoder-only model
simultaneously and computing the relevance score
as defined in Equation 1, where the symbol ; rep-
resents concatenation, cls extracts the vector rep-
resentation of the [CLS] token and Wy € R%moser X1
is a weight matrix.

score(q, d) = cls(BERT(CLS; ¢1.,,; SEP;
dl:m))Ws

Contrastive Loss To fine-tune the cross-
encoder, we use the InfoNCE contrastive loss func-
tion, which is effective for optimizing relevance-
based comparisons between positive and negative
documents, as discussed in Section 2.3. This loss
function enables the model to process both positive
and negative documents for each query simultane-
ously, improving its ability to distinguish between
them, particularly in the presence of challenging
hard-negative examples.

The loss function encourages the model to assign
higher similarity scores to relevant documents (d™)
than to non-relevant ones (d~). Formally, treating
score(q, d) as a deep similarity metric, the loss for
a single query ¢ is defined by Equation 2, where
Gy = {df} U{d; }}2, represents the set of doc-
uments for the query, consisting of one positive
document d; and m hard-negative documents d .

(1

+
escore(q,dq )

score(q,d
ZdGGq e (g,d)

In our implementation, we use the Localized
Contrastive Estimation (LCE) approach proposed
by Gao et al. (Gao et al., 2021a) to perform batch
updates over a set of queries (). This method prior-
itizes hard negatives—documents that are both dif-
ficult and contextually relevant—over randomly se-
lected negatives. These hard negatives are typically
drawn from a pool of candidates ranked highly by
a baseline retriever or another relevance scoring
model. The batch-averaged loss is computed as
defined in Equation 3.

L, = —log (2)

score(q,d])

1 e
Lice = —; ) —log €)
|Q‘ q%é ZdGGq escore(q,d)

956

In the context of RAG systems, the retriever
module constructs the candidate pool G, which in-
cludes both relevant and hard-negative documents.
Fine-tuning the ranking model with this loss im-
proves its ability to distinguish between relevant
and non-relevant documents among the top candi-
dates retrieved in the initial stage.

3.2 Synthetic Data Generation

To effectively optimize the Localized Contrastive
Estimation (LCE) loss, the training dataset must be
structured as (g, d;, {d; },), where q is a query,
d/ is a positive document, and {d, } represents a
set of hard-negative documents.

In scenarios where labeled query-document pairs
are unavailable, such as in many RAG systems with
pre-indexed documents, we address this challenge
by generating the necessary data. Specifically, we:
(1) generate synthetic user queries ¢, and (2) mine
positive and hard-negative documents for each syn-
thetic query. We illustrate the steps involved in
creating the synthetic dataset in Figure 1.

3.2.1 Generating Synthetic Queries

For a randomly selected document from the avail-
able corpus, denoted as dgeq, and a carefully
designed prompt P tailored to the dataset’s do-
main, we generate a synthetic query as: ¢ =
LLM(P, dseeq).- Since large language models
(LLMs) perform well with few-shot prompting, we
manually create several example queries from ran-
domly selected documents in the corpus and incor-
porate them into P to improve query generation
quality.

3.2.2 Mining Positive and Negative
Documents

To construct the set of one positive and m hard-
negative documents for a synthetically generated
query, we perform a search with ¢ on the exist-
ing document corpus using a bi-encoder approach
(Humeau et al., 2019). This search produces a pre-
liminary set D, of top candidate documents for
q. We then apply a classification function to deter-
mine which of these candidates are positive (d™)
and which are negative (d™), forming the set G
required for our loss function.

Rather than relying on human annotators to
obtain ground-truth labels for positive and nega-
tive documents from D,, we use a more powerful
model as a teacher for the target ranking model.
Specifically, we leverage an LLM-based relevance



Figure 1: Synthetic Dataset Generation Workflow: (i) Generate a synthetic query ¢ from a given text corpus using a
large language model (LLM). (ii) Retrieve the most relevant documents D,, for g from the corpus using a bi-encoder
model. (iii) Evaluate each query-document pair in D, using an LLM-based relevance scoring function frc. (iv)
Classify documents as relevant (positive) or irrelevant (negative) based on a predefined relevance threshold.

classification function to rerank the documents, as-
signing ground-truth labels in an automated man-
ner.

Relevance Classification Following the work
of Nogueira et al. (2020a) and Zhuang et al.
(2023a), we use an LLM to estimate the probability
of a document d being relevant by computing the
log-likelihood of possible relevance labels given
the query. Specifically, for a given query ¢ and
document d, the LLM takes ¢ and d as input and
is prompted to respond with either ”Yes” or "No”
to indicate relevance. For each pair (g, d), where
d € D,, we compute the following score as de-
fined in Equation 4. This score corresponds to the
probability assigned to the ’Yes” token, computed
by applying a softmax over the logits for the ”Yes”
and "No” tokens. The documents are then reranked
based on this probability, with higher scores indi-
cating greater relevance to the query.

eLLM(Yes\P,q,d)

fre(g,d) = eLLM(Yes|P,q.d) 1 (LLM(No[P,q.d)
“4)

Mining Single Positive Passage When generat-
ing synthetic queries using a large language model
(LLM), it is reasonable to assume that the source
document dgeeq, from which the query ¢ is derived,
is the most relevant document to ¢g. While this as-
sumption generally holds, Lee et al. (2024) found
that in approximately 15% of cases, a different
document is actually more relevant to g than dgeeq.
This occurs because dgeeq is sampled independently
from the corpus without considering broader con-
textual relationships between documents.

To address this issue, we redefine the positive
document d; for g as in Equation 5, rather than
simply setting d; = dgeed, Which may lead to sub-
optimal training.
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df = argma fre(g,d) (5)
Mining Multiple Negative Passages Selecting
negative documents from the candidate set D, is
more complex than identifying the positive docu-
ment, as it involves selecting multiple documents
rather than just one. We define the set of nega-
tive documents as those with a relevance classifica-
tion score below a specified threshold as defined in
Equation 6.

{dy} ={d € Dy | frc(q,d) <t} (6)

The threshold ¢ must be chosen carefully, as it
can vary based on factors such as the LLM used, the
prompt P, and dataset characteristics. In this study,
we empirically determined that setting ¢ = 0.5
produced effective results.

3.2.3 Application in RAG Systems

In retrieval-augmented generation (RAG) systems,
the initial retriever accesses the knowledge base
through an indexed vector store. Synthetic queries
are generated from documents in this store, and the
retriever retrieves a candidate set ;. The LLM-
based relevance classification function then refines
these candidates by identifying hard negatives and
positives. This process enables the construction of
a dataset suitable for fine-tuning the ranking model
using a contrastive loss function.

3.3 Evaluation Metrics

To evaluate the ranking model before and after fine-
tuning, we use standard ranking metrics that assess
its ability to retrieve and rank relevant documents
effectively (Croft et al., 2010). Precision@Fk mea-
sures the proportion of relevant documents among
the top k retrieved results, indicating how well the



model filters out irrelevant documents. Mean Av-
erage Precision (M APQFk) computes the mean of
precision values at the ranks of relevant documents,
rewarding models that rank relevant documents
higher. Mean Reciprocal Rank (M RRQFk) evalu-
ates how early the first relevant document appears
in the ranked list, with higher scores indicating bet-
ter retrieval performance. Normalized Discounted
Cumulative Gain (nDCG@Qk) quantifies ranking
quality by considering both document relevance
and position, applying a logarithmic discount.

4 Experimental Setup and Evaluation

4.1 Generating Synthetic Queries

To evaluate the proposed pipeline, we construct a
synthetic dataset based on the MedQuAD dataset
(Ben Abacha and Demner-Fushman, 2019) by gen-
erating queries (q) from its passages. MedQuAD
consists of 47457 question-answer pairs extracted
from 12 reputable NIH-affiliated websites, cover-
ing 37 question types across key medical topics
such as treatments, diagnoses, side effects, diseases,
medications, and medical tests.

To simulate a RAG setting—where only an in-
dexed collection of documents is available—we
treat the answers as standalone passages. Addition-
ally, to accommodate the 512-token input limit of
our target reranker, passages exceeding this length
are excluded, and a random subset of 1000 answers
is selected for synthetic query construction.

We use few-shot learning to guide the query gen-
eration process, ensuring the queries aligned with
the domain of the passages. The few-shot examples
used in the prompt are selected from the same do-
main, enabling the model to produce contextually
relevant queries.

4.2 Mining Positive and Negative Passages

To identify positive and negative passages
for each synthetically generated query g,
we use a bi-encoder model, specifically the
intfloat/multilingual-e5-large
transformer. Both ¢ and the passages are em-
bedded using mean pooling to generate dense
vector representations. We then retrieve the top 30
candidate passages from MedQuAD for each query
using cosine similarity, forming the candidate set
D,.

We then perform relevance classification for
each query-passage pair (¢, d), where d € Dy, us-
ing a large language model, specifically a 4-bit
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GPTQ quantized version of Llama-3.1 with 70 bil-
lion parameters. Each passage is classified as posi-
tive or negative based on its relevance score, with a
threshold of 0.5 used for classification.

4.3 Dataset Preparation

After constructing the triplets (¢, {d; }, {d, }), we
divide the dataset into training and test sets, with
the test set containing 500 samples. To assess
whether the dataset size is sufficient for fine-tuning,
we conduct experiments using different subsets of
the training data. The results of these experiments
are presented in the following sections.

The synthetic dataset represents in-domain data,
aligning with the target domain where improved
reranking performance is needed. To evaluate the
model’s generalizability and mitigate potential per-
formance degradation on general knowledge tasks,
a phenomenon known as catastrophic forgetting,
we include an out-domain dataset in our evaluation.
This dataset consists of a subset of the MS MARCO
dataset, and we monitor performance metrics on
this dataset throughout the experiments.

4.4 Fine-Tuning the Model

To assess the effectiveness of our approach, we fine-
tune the BAAT /bge—reranker-v2-m3 model
on different subsets of the synthetic dataset. The
training subsets range from 100 to 1000 entries,
with each subset being a strict superset of the previ-
ous one. This setup allows for a progressive evalua-
tion of how dataset size impacts performance. The
evaluation set remains the same across all experi-
ments to ensure result comparability.

For training, we use a batch size of 2 with gradi-
ent accumulation over 2 steps, yielding an effective
batch size of 4. Each query ¢ is paired with one
positive and four negative passages during training.
In evaluation, we increase the number of positive
and negative passages to better reflect real-world
scenarios while ensuring that the total number of
passages per query do not exceed 30 to maintain
computational efficiency.

4.5 Results and Analysis

We present the results of our experiments in Figure
2 and Figure 3, showing that increasing the training
dataset size improves model performance on the
in-domain dataset. However, these improvements
tend to plateau as the dataset size grows.

The highest nDCG@10 score of 0.952 is
achieved using a dataset of 800 entries after the
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Dataset Length

g

]

g

S Metric Base 100 200 300 400 500 600 700 800 900 1000
MAP 0911 0915 0919 0933 0.938 0938 0.939 0.942 0.944 0.940 0.946

S MRR 0990 0995 0.993 0.994 0.993 0.993 0.996 0.993 0.996 0.995 0.994
NDCG 0.905 0913 0922 0945 0.949 0.945 0950 0.950 0.952 0.946 0.951

-~ MAP 0575 0579 0.582 0.577 0579 0.573 0.579 0.581 0.570 0.576 0.573

8 MRR 0.575 0.579 0.582 0.577 0.579 0.573 0579 0581 0570 0.576 0.573
NDCG 0.603 0.609 0.613 0.607 0.609 0.603 0.611 0.611 0.602 0.608 0.606

Table 1: Performance metrics (@10) across dataset lengths ranging from 100 to 1000, in increments of 100, for
in-domain (synthetic) and out-domain (subset of MS MARCO) data, evaluated after the first epoch of training.

Value

MAP@10 - In-domain

MRR@10 - In-domain

1.000
Dataset_len
—— 100
—— 200
— 300
— 400
— 500
—— 600
—— 700
800
900
1000

0.998 4

0.996 4

0.992 4

0.990 1+
o

Dataset_len
— 100
— 200
— 300
— 400
— 500
—— 600
—— 700
800
900
1000

NDCG@10 - In-domain

Dataset_len
— 100
— 200
— 300
— 400
— 500
—— 600
—— 700
800
900
1000

Figure 2: Mean Average Precision (M AP@10), Mean Reciprocal Rank (M RR@10), and Normalized Discounted
Cumulative Gain (N DC'G@Q10) for the in-domain dataset, computed per epoch up to the 10th epoch. The training
dataset sizes range from 100 to 1000 in increments of 100. These results demonstrate the effect of dataset size on
model performance throughout the fine-tuning process.

MAP@10 - Out-domain

MRR@10 - Out-domain

062
Dataset_len
— 100
— 200
— 300
—— 400
— 500
— 600
— 700
800
900
1000

Dataset_len
— 100
— 200
— 300
—— 400
— 500
— 600
— 700
800
900
1000

NDCG@10 - Out-domain

Dataset_len
— 100
— 200
— 300
—— 400
— 500
— 600
— 700
800
900
1000

Figure 3: Mean Average Precision (M AP@10), Mean Reciprocal Rank (M RR@10), and Normalized Discounted
Cumulative Gain (N DCG@10) for the out-domain dataset, evaluated per epoch up to the 10th epoch. The training
dataset sizes vary from 100 to 1000 in increments of 100, providing insights into the model’s generalization

performance during fine-tuning.

first epoch, marking a good improvement from the
initial score of 0.905. The best M AP@Q10 score
is observed with a dataset of 900 entries, while
the highest M RRQ@]10 score is achieved with 500
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entries. The performance metrics across dataset
lengths in increments of 100 elements, for both
in-domain and out-domain data evaluated after the
first epoch of training, are provided in table 1. The



Heatmap of Average Value Increase For Each Metric and Dataset Length (metrics computed @10, averaged over epochs)
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Figure 4: Impact of training dataset size on performance metrics for both in-domain and out-of-domain datasets.
The figure shows the average performance improvement (before vs. after training), computed across all epochs,

with standard deviations representing variability.

selection of the first epoch for reporting the evalu-
ation metrics was informed by knee plot analysis,
which indicated that for most dataset lengths, the
most substantial performance gains occurred early
in the training process.

Fine-tuning on the in-domain dataset does not
result in any significant degradation in the model’s
performance on the out-domain dataset. In some
cases, performance metrics on the out-domain
dataset showed slight improvements, though these
changes are not substantial (as shown in Table 1).

To provide a comprehensive overview, in Figure
4, we illustrate the changes in performance metrics
for both the in-domain and out-domain datasets
as a function of training dataset size. We present
the results averaged across all epochs, along with
the standard deviations to indicate variability. This
visualization highlights the effectiveness of fine-
tuning the model on in-domain data while maintain-
ing the same generalization to out-domain tasks.

5 Conclusion and Future Work

In this work, we propose a novel method for fine-
tuning transformer-based reranking models with-
out relying on manually labeled query-document
pairs. Instead, we generate synthetic training data
using large language models (LLMs), making the
approach especially suitable for domain-specific
applications lacking labeled data.

Our method uses contrastive learning with Local-

ized Contrastive Estimation (LCE) loss to train the
model to distinguish relevant from non-relevant
documents. LLMs generate queries and evalu-
ate relevance, automating the creation of training
triplets. We further enhance learning by incorpo-
rating hard negatives, identified via bi-encoder re-
trieval and refined using LLM-based scoring.

This pipeline produces diverse, domain-specific
data that boosts reranking performance in Retrieval-
Augmented Generation (RAG) and other IR tasks.
Experiments show significant improvements in re-
trieval quality.

Future directions include incorporating rein-
forcement learning to optimize synthetic data gen-
eration and extending the method to multilingual
settings. We also explore integrating knowledge
graphs to guide query generation, using structured
domain knowledge to produce more relevant and
less hallucinated queries.

By eliminating the need for manual labels, our
method makes domain-specific reranking more
scalable and effective, advancing ranking optimiza-
tion in modern IR systems.
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