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Abstract

The choice of vocabulary and subword (SW)
tokenization has a significant impact on both
training and fine-tuning of language and transla-
tion models. Fine-tuning is a common practice
in optimizing a model with respect to new data.
However, new data potentially introduces new
words (or tokens), which, if not considered,
may lead to suboptimal performance. In addi-
tion, the distribution of tokens in the new data
can differ from the distribution of the original
data. As such, the original SW tokenization
model could be less suitable for the new data.
With this work, we aim to gain better insights
on the impact of SW tokenization and vocab-
ulary generation on the performance of neural
machine translation (NMT) models fine-tuned
to a specific domain. To do so, we compare sev-
eral strategies for SW tokenization and vocabu-
lary generation and investigate the performance
of the resulting models.

Our findings show that the best way to fine-tune
for domain adaptation is to consistently use
both BPE and vocabulary from the in-domain
data, which helps the model pick up on impor-
tant domain-specific terms. At the same time,
it is crucial not to lose sight of the vocabulary
of the base (pre-trained) model—maintaining
coverage of this vocabulary ensures the model
keeps its general language abilities. The most
successful configurations are those that intro-
duce plenty of frequent domain terms while
still retaining a substantial portion of the base
model vocabulary, leading to noticeably better
translation quality and adaptation, as seen in
higher BLEU scores. These benefits, however,
often come with greater computational costs,
such as longer training times, since the model
must learn more new tokens. Conversely, ap-
proaches that skip important domain terms or
combine mismatched tokenization and vocabu-
lary do not perform as well, making it clear that
both domain-specific adaptation and broad vo-
cabulary coverage matter—and that these gains
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are realized when the vocabulary preserves a
good portion of the base (pre-trained) model.

While using in-domain BPE and vocabulary
yields the best domain adaptation, it substan-
tially reduces out-of-domain translation quality.
Hybrid configurations that combine base and
domain vocabularies help balance this trade-
off, maintaining broader translation capabilities
alongside improved domain performance.

1 Introduction and background

Fine-tuning is a common practice in optimizing
MT and pre-trained language models with respect
to new data. It is often in the context of DA where
an existing model is tuned to perform better on
a specific domain (different from what the model
was originally trained for) (Luong et al., 2015; Dak-
wale and Monz, 2017; Wang et al., 2019; Mahdieh
et al., 2020; Chopra et al., 2023). The positive
effect of fine-tuning has been demonstrated in var-
ious previous works. For example, Luong et al.
(2015) trained an NMT model on English-German
general-domain data and then fine-tuned it on a
conversational data in the same languages, leading
to an increase of 3.8 BLEU (Papineni et al., 2002)
points compared to the original model. Sharami
et al. (2022) show that fine-tuning is preferred (as
it leads to better results) than training from scratch,
even if the data allows the latter. To improve the
translation performance on a new domain (with-
out degrading the performance on the generic do-
main) is to ensemble the fine-tuned model with the
already trained baseline, as done by Freitag and
Al-Onaizan (2016). However, while they achieve a
substantial increase of quality (+7.2 BLEU points
), they note that because the in-domain data com-
prises of new vocabulary and linguistic features
that are different from the generic data, the per-
formance of the fine-tuned models drops for the
generic domain task, especially when it comes to
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domain-specific contexts (e.g., medical and legal
domains).

While newly introduced data brings in new in-
formation, i.e., new, unseen words, it could be
that, statistically, segmentation into SWs is sig-
nificantly different from the segmentation of the
original model (Lim et al., 2018; Yeung, 2019; Sato
et al., 2020; Hwang et al., 2024). If not properly ad-
dressed, this new information may have an adverse
effect on the system.

To address this problem, Sato et al. (2020)
proposed a method to adapt the embedding lay-
ers of the initial model to the target domain by
projecting the general word embedding obtained
from target-domain monolingual data onto source-
domain embeddings. They reported a 3.86 and
3.28 BLEU points gain in English—Japanese and
German—English translation, respectively.

In this paper, we investigate the impact of us-
ing different SWs and vocabularies on the perfor-
mance of fine-tuned NMT systems. We identify a
best-case setup and preferable setups under con-
strained fine-tuning conditions, such as limited
domain-specific data. That is, we aim to inves-
tigate which fine-tuning conditions (or settings) of
a domain-specific model lead to the best perfor-
mance. Specifically, our objectives are:

1. Identify optimal SW combination choices and
vocabulary configurations for a given MT
model and fine-tuning dataset.

2. Determine the best fine-tuning conditions un-
der data limitations.

To achieve the aforementioned objectives, we
use one large dataset (~12.7 million parallel sen-
tences) for training and a smaller in-domain dataset
(~248,000 parallel sentences) for fine-tuning mul-
tiple MT systems. This setup allows us to examine
the extent to which a model trained on a substantial
amount of general-domain data can be improved by
fine-tuning with additional domain-specific data,
which alone would be insufficient to train a robust
model from scratch.

Each fine-tuned alternative, is trained on a dif-
ferent set of options of how the SWs and the vo-
cabulary are created. We analyze these fine-tuning
strategies to find the best setup based on available
data. In our case study, for example, we have ac-
cess to the data of both models (initial and fine-
tuned). However, as already discussed in (Freitag
and Al-Onaizan, 2016; Dakwale and Monz, 2017;
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Zimelewicz et al., 2024), initial models are mostly
deployed in an application; thus data might not
be available at the production time. As such, it is
paramount to have a guideline based on the avail-
able data that determines how to best generate SWs
and vocabularies. In this work, we use Byte-Pair
Encoding (BPE) (Sennrich et al., 2016) for SW
units.!

It is noteworthy that the point of this research
is to investigate the best fine-tuning setup, rather
than identifying the best model. Typically, fine-
tuning involves tokenizing the new data using the
vocabulary originally employed in training the
model. This ensures consistency in SW segmenta-
tion and prevents discrepancies in word represen-
tations. However, it is not always evident whether
this practice yields the best translation performance,
especially when the new domain introduces a sig-
nificantly different linguistic distribution or un-
seen vocabulary. Thus, we explore alternative
approaches to SW segmentation and vocabulary
creation to determine if different configurations
could lead to better fine-tuning outcomes. Specifi-
cally, given a pre-training dataset A—whether in-
domain, out-of-domain, synthetic, e.g., generated
using methods like those in (Sharami et al., 2023),
or authentic—and a fine-tuning dataset B, we inves-
tigate which tokenization and vocabulary configu-
rations best enable the model to retain and adapt
pre-training-derived parameters in a way that im-
proves translation quality on B.

This paper is organized as follows. Section 2
presents the key decision points that frame our
study. Section 3 describes the datasets used in our
experiments. Section 4 details our experimental de-
sign and the overall training framework. Section 5
reports and analyzes the results, incorporating rel-
evant recommendations. In Section 6, we discuss
the limitations of our approach. Finally, Section 7
summarizes our findings and outlines directions for
future work.

2 Decision points

Given a model M trained on a dataset D, which
represents a specific domain d, and a fine-tuning
dataset E representative for domain e, the follow-
ing decision points need to be made:

'"Throughout this paper, we use “subword” (SW) and “BPE”
synonymously, as all experiments use BPE for subword seg-
mentation.



2.1 SW segmentation

A key decision in fine-tuning is determining how to
segment words into SW units. This choice affects
how the model processes domain-specific terminol-
ogy and generalizes across datasets. We consider
three approaches:

* Reusing the original SW model trained on
D (Dsw). This maintains consistency with
the pre-trained model.

* Training a new SW model on the fine-
tuning dataset (Fsw) to better capture
domain-specific terminology.

* Training a SW model on the combined
dataset ((D + FE)sw) to integrate both the
original and fine-tuning data.

2.2 Vocabulary creation

SW segmentation techniques arose in response to
two major challenges in NMT: (i) the lack of gener-
alizability—models often fail to process words not
seen during training, leading to out-of-vocabulary
(OOV) problems and degraded performance; and
(ii) the need to limit vocabulary size, as large vocab-
ularies increase memory consumption and compu-
tational cost, which remains a practical constraint
in current neural translation systems, particularly
when working with large models or limited GPU
resources.

Fine-tuning introduces a third, less often ad-
dressed challenge: whether the vocabulary used
during adaptation adequately captures the token dis-
tribution of the fine-tuning dataset. If not, domain-
specific content may be poorly represented, limit-
ing the effectiveness of adaptation.

We consider three strategies for vocabulary con-
struction:

* Reusing the original vocabulary — the vo-
cabulary that the pre-trained model M was
originally trained with (denoted |D|). This
strategy ensures full compatibility with the
pre-trained token embeddings and does not
require any modifications to the embedding
space.

* Expanding the vocabulary — augmenting
the original vocabulary with additional tokens
found in the fine-tuning dataset F, resulting
in a combined vocabulary |D + E|. This ap-
proach aims to better cover domain-specific

terms in £ while retaining compatibility with
M’s original vocabulary.

* Constructing a new vocabulary solely from
the fine-tuning data — generating the vocab-
ulary exclusively from E (denoted | E'|). This
strategy maximizes domain-specific represen-
tational capacity but introduces a mismatch
with the pre-trained vocabulary of M.

Handling vocabulary-embedding alignment. In
the first strategy (|D|), the embedding space re-
mains unchanged, as all tokens are already present
in the pre-trained model.

In the second and third strategies (| D + E| and
|E|), we introduce new tokens absent from the orig-
inal vocabulary. To accommodate these, we extend
the embedding matrix by appending randomly ini-
tialized vectors for the new tokens while preserving
the original embeddings.

The key distinction lies in the degree of diver-
gence from the original model. Strategy 2 retains
the original vocabulary and extends it with tokens
from F, maintaining alignment with the pre-trained
structure. In contrast, Strategy 3 derives both the
vocabulary and BPE model entirely from F, re-
sulting in a larger mismatch with the pre-trained
model and necessitating greater adaptation during
fine-tuning.

Since SW segmentation and vocabulary cre-
ation are interdependent, we explore all feasi-
ble combinations, resulting in nine configura-
tions. These include applying each SW model
(Dsw, Esw, (D + E)sw) with different vocabulary
choices (|D|, |D + E|, |E|).

Following these decision points, given a fine-
tuning dataset, we can consider three SW models.
With these models, we (i) tokenize the vocabulary
sources, and (i1) tokenize the training sets for fine-
tuning. Typically, these two processes are tied to
each other, i.e., once the SW model is learned and
applied to the training data, the vocabulary is the
set of SW units that appear in the (processed) data.
However, this is not a hard constraint.

For instance, dataset F can be processed with
Esw, but the vocabulary used for training can still
be based on D and derived from applying Dsw.
Such mismatched configurations, though theoreti-
cally possible, can lead to tokenization inconsisten-
cies and degrade model performance. Since they
are suboptimal, we exclude them from this study.
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3 Data

We used two datasets: (i) a large out-of-domain
corpus consisting of approximately 12.7 million
English-German sentence pairs drawn from the
WMT18 dataset?, and (ii) a smaller (~248K sen-
tence pairs) in-domain medical corpus extracted
from the multi-domain English-German data intro-
duced by (Koehn and Knowles, 2017).

Out-of-domain dataset The out-of-domain cor-
pus used to train our base model is a randomly
selected subset of the WMT18 English-German
dataset, which contains parallel data from various
domains. We selected approximately 12.7 million
sentence pairs to balance domain coverage with
training efficiency.

In-domain dataset For fine-tuning, we used
248,099 English-German sentence pairs from the
medical domain of the multi-domain dataset intro-
duced by (Koehn and Knowles, 2017). We used the
cleaned and re-split version provided by (Aharoni
and Goldberg, 2020), which removes duplicates
and prevents data leakage between train, dev, and
test sets.

Combined dataset (D + E) For configurations
requiring both D and E, we oversampled the in-
domain medical data to match the size of the
WMT18 subset and concatenated them. The com-
bined data was shuffled and used to train BPE mod-
els or extract vocabularies. This ensures that both
domains are equally represented, avoiding bias to-
ward the larger out-of-domain corpus.

4 Experiments

To investigate the impact of SW and vocabu-
lary generation choices on fine-tuning, we fol-
lowed the decision points outlined in Section 2
and ran experiments using the English-German
data described in Section 3. We compared the
resulting fine-tuned models using BLEU (Pap-
ineni et al., 2002), TER (Snover et al., 2006),
chrF2 (Popovi¢, 2015). Additionally, we measured
training time and estimated CO, emissions using
CodeCarbon (Courty et al., 2024).

http://statmt.org/wmt18/
translation-task.html. The original WMTI18
dataset is considerably larger; we selected a representative
subset to reduce computational costs. The selected subset and
all preprocessing scripts are released for reproducibility.
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4.1 Experimental design

Given our task—fine-tuning a model trained on
the WMT18 out-of-domain dataset (D) using in-
domain medical data (E))—a total of 9 theoretical
configurations exist, arising from three possible
vocabulary sources (D, E, or D + FE) and three
BPE models trained on the same sources. Each
configuration couples one vocabulary source with
one BPE model, which is used for both vocabulary
construction and fine-tuning data segmentation.

However, as discussed in Section 2, we im-
posed constraints to ensure segmentation consis-
tency. Specifically, we excluded configurations
where the vocabulary is derived from one source
(D or E), but the fine-tuning segmentation is per-
formed using a BPE model trained on the combined
dataset (D + FE). These mismatches introduce in-
consistencies, as the vocabulary may not align with
how the data is tokenized. Since both D and E
are available, we ensure that the same BPE model
is used for both vocabulary construction and fine-
tuning segmentation.

In total, there are 9 possible configurations (from
all combinations of BPE models and vocabulary
sources). However, we exclude 2 inconsistent con-
figurations, leaving 7 valid configurations for our
experiments (see Table 1).

Config. ‘ BPE for vocab. + FT data ‘ Vocabulary source

C1 Dgpg D
2 Depr D+E
C3 Dgpg FE
C4 FEgpg D
C5 Egpg D+ FE
C6 Egpg E
C7 (D + E)gpe D+ FE

Table 1: Valid fine-tuning configurations. Each row
represents a consistent setup where the same BPE model
is used for both segmenting the fine-tuning data and
constructing the vocabulary. D refers to the WMT18
out-of-domain dataset; E refers to the in-domain medi-
cal dataset.

4.2 Model architecture and training Setup

Framework and model architecture We used
the OpenNMT-py? framework (Klein et al., 2017)
to train and fine-tune Transformer-based NMT
models (Vaswani et al., 2017). Each model had
6 encoder and 6 decoder layers, 512-dimensional

*https://opennmt .net/OpenNMT-py/


http://statmt.org/wmt18/translation-task.html
http://statmt.org/wmt18/translation-task.html
https://opennmt.net/OpenNMT-py/

embeddings, 8 attention heads, and a feed-forward
size of 2048. We used the Noam optimizer sched-
ule with a learning rate of 2.0, 8,000 warmup steps,
and label smoothing of 0.1. Batching was done
over 10,240 tokens with gradient accumulation
over 4 steps.

Training setup All models were trained for up
to 200,000 steps, with validation and checkpoint-
ing every 1,000 steps. We applied early stopping
after 10 validations without improvement. All ex-
periments—including the base and fine-tuned mod-
els—were run on a single NVIDIA A40 GPU.

Base model The base model was trained on the
WMT18 out-of-domain dataset. We applied BPE
with 50K merge operations to both source and
target sides. The resulting vocabularies and tok-
enized data were used to train the initial Trans-
former model, which served as the starting point
for all fine-tuning experiments.

Fine-tuning Fine-tuning was done on the in-
domain medical dataset using the same model ar-
chitecture and training settings. Each configuration
(C1-C7) used a specific combination of vocabu-
lary source and BPE model (see Table 1). The
base model checkpoint was reused across all con-
figurations, and only the vocabulary and tokenized
data differed. BLEU was used to track validation
performance.

BPE settings We trained separate BPE models
for the source and target sides. The number of
merge operations depended on dataset size: 8K
merges for corpora with fewer than 100K lines,
30K for those between 100K and 1M, and 50K
for larger ones. This choice is supported by
prior work, which shows that smaller vocabular-
ies benefit Transformer models (Kudo, 2018), and
that 2K—8K merges perform best for low-resource
datasets (Adlaon and Marcos, 2024). Our BPE
models were used consistently for both vocabulary
construction and fine-tuning data segmentation.

5 Results and analysis

In this section, we present the evaluation results
and statistical comparisons of our fine-tuning se-
tups. We also explore vocabulary overlaps to un-
derstand how token and vocabulary choices impact
performance and adaptation.
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5.1 Analysis of fine-tuning results

Table 2 summarizes the performance of all fine-
tuning configurations. To better interpret these re-
sults, we performed pairwise bootstrap tests on
BLEU scores (Section 5.1.1), interpreting p-values
as a continuous measure of confidence without en-
forcing a strict threshold. TER and chrF2 metrics
supplemented the analysis to refine the ranking.

We ranked configurations using the following
criteria:

1. BLEU scores, weighted by the strength of
statistical evidence from p-values.

2. TER to resolve ties or unclear BLEU differ-
ences.

3. chrF2 as a final tiebreaker if both BLEU and
TER were inconclusive.

Accordingly, the ranking from best to worst is:
C6>~Cl>=C5>=C2>CT7(C3= (C4,

where > denotes a configuration that performs bet-
ter or more reliably than the next.

Top configuration (C6). Configuration C6 uses
both BPE and vocabulary exclusively from the in-
domain data F, resulting in the highest BLEU and
best TER and chrF2 scores. Statistical tests show
that C6 significantly outperforms all other con-
figurations, confirming the advantage of aligning
segmentation and vocabulary strictly with the fine-
tuning domain.

Strong middle tier (C'1, C'5, C'2). Configura-
tions C1, C5, and C2 achieve similar BLEU
scores, with statistical evidence showing no clear
superiority among them. C'1 (BPE and vocabu-
lary from out-of-domain D) slightly leads numeri-
cally, while C5 (in-domain BPE, combined vocab-
ulary) offers better TER than C'2 (out-of-domain
BPE, combined vocabulary), which justifies the
order. These results suggest incorporating some
in-domain vocabulary or combining datasets can
yield competitive results if full in-domain access
(for both BPE and vocabulary) is not possible.

Lower performing configurations (C'7, C'3, and
C4). Configurations C'7 and C'3 perform moder-
ately but are consistently behind the mid-tier clus-
ter. Configuration C'4 ranks last, likely because of
a mismatch between its in-domain BPE and out-
of-domain vocabulary, which impairs tokenization
and reduces fine-tuning effectiveness.



Config | BPE Model (vocab. + FT) | Vocabulary Source ‘ BLEU?T ‘ chrF21 ‘ TER| ‘ CO; (g)! | Time (h)]

Cl Dgpg D
Cc2 Dgpg D+ FE
C3 Dgpg E
C4 Eppe D
C5 Egpe D+ FE
Co6 Epe E
Cc7 (D + E)ppg D+FE

53.6 69.4 49.3 1658.69 07:45
534 69.5 49.9 1198.66 05:15
51.7 68.4 50.9 907.24 04:00
46.6 64.5 53.0 723.94 03:11
53.1 68.9 49.7 729.04 03:15
54.8 69.8 48.9 1587.41 09:30
53.2 69.1 50.1 543.84 03:08

Table 2: Evaluation scores of fine-tuned models. Each configuration pairs a specific BPE model and vocabulary
source consistently. All models were fine-tuned on the in-domain dataset ' and evaluated on the same test set. CO,
emissions and training times are recorded during fine-tuning.

Practical recommendations. For optimal fine-
tuning, use both BPE and vocabulary consistently
derived from the in-domain data, as exemplified by
configuration C'6. When full access to in-domain
data or vocabulary is limited—due to privacy, pro-
prietary constraints, or resource availability—fine-
tuning remains possible but may yield reduced
adaptation effectiveness. In such cases, configu-
rations like C1 and C2 offer robust alternatives
by leveraging available data while balancing per-
formance and practicality. It is important to avoid
mixing BPE and vocabulary from mismatched do-
mains, as this often leads to suboptimal tokeniza-
tion and degraded translation quality. Overall,
aligning tokenization and vocabulary with domain
data maximizes fine-tuning benefits, but adapting
with limited data can still provide meaningful im-
provements compared to no adaptation.

5.1.1 BLEU score statistical comparison

We conducted pairwise bootstrap tests on BLEU
scores using 1,000 iterations. Table 3 shows the p-
values for all configuration pairs. Diagonal entries
represent self-comparisons.

C1 C2 C3 C4 Cs Co Cc7

C1 - 0.545 0.000 0.000 0.200 0.852 0.102
C2 | 0.447 - 0.000 0.000 0.172 0.792 0.063
C3 | 1.000 1.000 - 0.000 0.995 1.000 0.989
C4 | 1.000 1.000 1.000 - 1.000 1.000 1.000
C5|0.774 0.813 0.006 0.000 - 0.966 0.286
C6 | 0.149 0.174 0.000 0.000 0.026 - 0.012
C7 | 0.896 0.929 0.010 0.000 0.701 0.987 -

Table 3: Pairwise bootstrap p-values for BLEU scores
(1,000 iterations). Diagonal entries represent self-
comparisons. All values are provided for reference only;
no statistical significance threshold is applied.
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5.2 Training time and CO; emissions

The training times and estimated CO, emissions in
Table 2 show the resource demands of each fine-
tuning setup. The best-performing configuration,
C6, took the longest—about 9.5 hours—and had
a higher carbon footprint, likely because it had to
learn many new domain-specific tokens.

Other configurations such as C7, C4, and C5
completed training notably faster, around three
hours, and had lower CO, emissions compared
to C6. This can be attributed to several factors.
Configurations C'7 and C5 utilize vocabularies
with higher overlap to the baseline tokens, mean-
ing fewer new domain-specific tokens need to be
learned, which reduces training complexity and
time. On the other hand, C'4 exhibits both a vo-
cabulary and BPE mismatch, which limits effective
fine-tuning and results in quicker but less effective
training. In summary, configurations with less vo-
cabulary adaptation or mismatched tokenization
require less training time and energy but tend to
yield lower translation quality.

Overall, while domain-aligned fine-tuning
boosts performance, it can require more time and
energy—something to consider in real-world appli-
cations.

5.3 Vocabulary overlap analysis

To better understand how vocabulary choice influ-
ences fine-tuning, we measured overlap between
each configuration’s vocabulary and the baseline
WMT vocabulary in terms of token frequency cov-
erage. This approach more accurately reflects
the practical impact of commonly used tokens on
model performance, as it weights tokens by how
often they occur in the data. Table 4 summarizes
the key statistics:



Config| BPE Model (Vocab+FT)| Vocab SRC‘BLEUT‘SRC Overlap % | TGT Overlap % |New Tokens SRC|New Tokens TGT

C6 | Egpe E 54.8
Cl | Dgpe D 53.6
C5 |Egpe D+E 53.1
C2 | Dgp D+E 53.4
C7 |(D+ E)gpe D+E 532
C3 | Dpps E 51.7
C4 | Egps D 46.6

82.84 77.81 13,022 13,559

100 100 0 0
83.04 77.95 14,289 14,157
83.04 77.95 11,736 11,804
97.61 95.72 14,300 15,077
83.04 77.95 11,736 11,804
90.70 90.46 0 0

Table 4: Vocabulary overlap and BLEU scores per configuration. Configurations are listed in order of their
overall performance ranking. SRC and TGT overlap percentages indicate the proportion of baseline tokens retained.
New Tokens columns count tokens unique to the configuration’s vocabulary.

* SRC/TGT Overlap (%): The percentage of
total token frequency (i.e., the sum of token
counts) in the baseline WMT vocabulary that
is also present in the configuration’s vocabu-
lary, calculated for source (English) and target
(German) separately. This reflects not just the
number of shared tokens, but their practical
frequency in baseline data.

* New Tokens: The number of tokens in the
configuration’s vocabulary that do not appear
in the baseline vocabulary (after filtering), rep-
resenting domain-specific or new tokens intro-
duced by the configuration.

The results demonstrate that configurations in-
corporating in-domain vocabulary (e.g., C6, C5,
and C7) introduce a substantial number of new
domain-specific tokens, which is associated with
their superior BLEU scores and more effective do-
main adaptation. In contrast, C'1, relying solely on
the baseline vocabulary, achieves complete overlap
but lacks critical domain-specific terms, limiting its
adaptability. The notably poor performance of C'4
corresponds with its lower vocabulary overlap and
the evident mismatch between its BPE model and
vocabulary source, underscoring the detrimental
impact of inconsistent tokenization strategies.

These findings robustly support our practical
recommendation: for optimal fine-tuning, vocabu-
lary and BPE should be consistently derived from
the same in-domain data. Such alignment ensures
richer domain-specific token representation, ulti-
mately leading to enhanced translation accuracy
and better overall model performance.

5.4 Out-of-domain performance analysis

To quantify the impact of different fine-tuning
strategies on generalization, we evaluated all con-
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figurations on the original out-of-domain (WMT18,
D) test set. Table 5 reports BLEU scores for each
configuration, alongside the absolute and relative
drop with respect to the pre-trained base model
(before fine-tuning).

Config | BPE/Vocab Source BLEU | Drop | Drop (%)
Base | Dgpg, D (pre-trained) 33.9 - -
C2 Dgpg, D + FE 15.1 | —18.8 —55.5
C7 | (D+E)gps,D+E 150 | —18.9 —55.8
C3 Dgpg, E 133 | —20.6 —60.8
Cl Dgpg, D 13.1 | —20.8 —61.4
C4 Egpg, D 10.2 | —23.7 —69.9
C6 Egpg, B 7.7 | —26.2 —77.3
C5 Egpg, D+ E 7.0 | —26.9 —79.4

Table 5: Out-of-domain BLEU scores. Performance
on the WMT 18 (D) test set for all configurations, ranked
by smallest drop relative to the pre-trained base model.

The results illustrate the trade-off introduced by
domain adaptation: as the model is adapted to the
in-domain data, out-of-domain performance drops
substantially across all configurations. This degra-
dation is most pronounced when both BPE and
vocabulary are derived solely from in-domain data
(C5, C6), indicating strong domain specialization
at the expense of generalization.

For practitioners seeking to balance domain
adaptation and general translation quality, we rec-
ommend hybrid configurations such as C'y and C',
which use either the original BPE with a combined
vocabulary or a combined BPE and vocabulary.
These setups moderate the drop in out-of-domain
BLEU, preserving more general-domain compe-
tence while still offering improved domain adapta-
tion.



6 Limitations

Despite the systematic and thorough analysis, we
acknowledge several drawbacks and limitations of
our work. Addressing these in the future would
complement this research and expand the under-
standing of the impact of data processing on model
performance.

* Focus on MT: Our evaluation focused on
NMT systems. However, neural language
models are also impacted by how the train-
ing and fine-tuning data is processed and used,
as well as the limitations placed on the vocab-
ulary. This is even more pertinent with the
progress in large language models (LLMs).
We did not analyze the performance of LLMs,
which is a more complex task, especially in
the case of multi-lingual LLMs capable of
translation.

* Fine-tuning data: Our study focused exclu-
sively on the medical domain for fine-tuning.
Future research could consider additional spe-
cialized domains to evaluate the generalizabil-
ity of the findings.

* Use of BPE only: We employed BPE only
and did not consider other methods such as
SentencePiece (Kudo and Richardson, 2018)
or LMVR (Ataman et al., 2017). This was
a deliberate choice, as it was up to us which
model and method to use during training and
fine-tuning.

* Hyperparameters: We used the model’s de-
fault hyperparameters and did not perform
hyperparameter optimization or tuning. This
was not necessary as we aimed to compare the
impact of the SW algorithms under the same
conditions. However, we acknowledge that
fine-tuning hyperparameters would impact the
performance of original and fine-tuned mod-
els, and we hypothesize a correlation with how
the vocabulary is constructed.

7 Conclusion and Future Work

In this work, we presented a systematic analysis of
vocabulary and SW tokenization settings for fine-
tuning NMT models, using a large out-of-domain
corpus (WMT18) and a specialized in-domain med-
ical dataset as a case study. By comparing seven
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realistic fine-tuning setups that varied in BPE seg-
mentation and vocabulary generation, we identified
clear practical guidelines for domain adaptation.

Our results show that the most effective fine-
tuning is achieved when both BPE and vocabu-
lary are derived from the in-domain data, allowing
the model to better capture frequent and relevant
domain-specific terms. At the same time, we find
that maintaining a substantial overlap with the vo-
cabulary of the base model (originally trained on
out-of-domain data) is essential for preserving gen-
eral language coverage and ensuring stable adap-
tation. The best-performing configurations in our
experiments balanced these two needs: they in-
troduced many new, high-frequency in-domain to-
kens while still retaining a good portion of the base
model vocabulary. However, this approach tends
to require more computational resources, such as
increased training time and higher energy consump-
tion, due to the need for the model to learn and
integrate more new tokens.

It is important to note that while maximizing do-
main adaptation can significantly boost in-domain
performance, it may lead to a substantial drop in
out-of-domain translation quality. Hybrid config-
urations that combine base and domain vocabular-
ies help balance this trade-off, preserving broader
translation capabilities while still delivering im-
proved domain performance.

If, in addition to the in-domain data, the origi-
nal out-of-domain data or its BPE/vocabulary are
also accessible, combining these resources can help
preserve general language coverage and stabilize
adaptation. In all cases, our findings highlight the
importance of aligning both BPE and vocabulary
with the domain of the adaptation data, while re-
taining overlap with the base model’s vocabulary
to ensure generalization.

For future work, we plan to extend our evalua-
tion to other domains and language pairs, and to
investigate how these findings generalize to LLMs
and multilingual systems. We are also interested
in exploring adaptive methods for selecting which
tokens to retain or introduce during fine-tuning,
with the aim of optimizing both performance and
computational efficiency.

All datasets, models, and scripts from our work
are publicly available at: https://github.com/
JoyeBright/subword-ft-guide.


https://github.com/JoyeBright/subword-ft-guide
https://github.com/JoyeBright/subword-ft-guide
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