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Abstract

In this article, we study the answers generated
by a selection of Large Language Models to a
set of Multiple Choice Questions in Pharmacol-
ogy, and compare them to the answers provided
by students, to understand which questions in
this clinical domain are difficult for the mod-
els when compared to humans and why. We
extract the internal logits to infer probability
distributions and analyse the main features that
determine the difficulty of questions using sta-
tistical methods. We also provide an extension
to the FrenchMedMCQA dataset, with pairs
of question-answers in pharmacology, enriched
with student response rate, answer scoring, clin-
ical topics, and annotations on question struc-
ture and semantics.

1 Introduction

Large Language Models (LLM), such as Chat-
GPT (OpenAI et al., 2024) or Llama (Meta, 2024),
have led to significant advances in language gen-
eration. These breakthroughs have had a trans-
formative effect on numerous Natural Language
Processing (NLP) tasks like question answering,
text summarisation, and machine translation.

In order to evaluate the capabilities of LLMs,
significant efforts have been dedicated to measur-
ing their performance across various benchmarks.
The evaluations have evolved from testing specific
skills (Liu et al., 2023; Zhang et al., 2024) to as-
sessing them on complex, expert-level tasks such
as medical exams (Pal et al., 2022; Labrak et al.,
2022) or law exams (Guha et al., 2023).

Performance scores resulting from benchmark-
ing, such as accuracy, remain a common method
for assessing the capabilities of LLMs. However,
they provide a rather surface-level understanding,
primarily indicating whether a model can complete
a given task like question answering without of-
fering deeper insights into the underlying causes

of failures or the subtleties of performance degra-
dation (Liang et al., 2022; Ribeiro et al., 2020).
The difficulties LLMs face in answering questions
vary depending on several factors. On one hand,
some questions are inherently more complex be-
cause they require an advanced understanding of
context, cross-references, or multi-step reasoning.
On the other, the frequency of concepts in training
datasets plays a key role: LLMs struggle more with
processing rare or highly specific answers.

In this paper, we propose to explore why these
models fail in certain situations and whether they
encounter the same obstacles as humans. We con-
sider answering these questions essential for refin-
ing LLM design and enhancing their robustness. To
evaluate our approach, we chose the FrenchMedM-
CQA dataset (Labrak et al., 2022) (multi-choice
question-answering task), that contains publicly
available question-answer pairs in pharmacology,
and for which we could obtain student answer rates
enabling us to do a comparison of systems against
humans.

The novel contributions in our work are the fol-
lowing:

• We propose an original comparative analysis
between human responses and LLM output
on pharmacology multiple-choice questions
(FrenchMedMCQA dataset).

• We enrich the FrenchMedMCQA dataset with
additional annotations including student re-
sponse rates, manually labelled tags about
syntactic features and question structure (e.g.,
negation, question mode), and clinical topics.
This new dataset is freely available online 1.

• We provide an in-depth analysis that identi-
fies the most influential features that deter-

1Dataset accessible on HuggingFace: https:
//huggingface.co/datasets/uy-rrodriguez/
FrenchMedMCQA-extended

https://huggingface.co/datasets/uy-rrodriguez/FrenchMedMCQA-extended
https://huggingface.co/datasets/uy-rrodriguez/FrenchMedMCQA-extended
https://huggingface.co/datasets/uy-rrodriguez/FrenchMedMCQA-extended
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mine question difficulty for both humans and
LLMs.

The paper is organised as follows. In Section 2,
we describe the FrenchMedMCQA dataset along
with the additional data we have incorporated. In
Section 3, we present the experimental framework
used in our study. We detail the comparative re-
sults between human and LLM performance across
different difficulty levels in Section 4. Finally, we
conclude in Section 5.

2 The FrenchMedMCQA dataset

In this section, we describe the FrenchMedMCQA
dataset and introduce the supplementary data points
that we collected to enrich its contents and support
our analysis.

2.1 Description

We propose to use the FrenchMedMCQA (Labrak
et al., 2022) dataset that contains around 3,000 mul-
tiple choice questions (MCQs) in the pharmacology
domain, taken from exams of the French Diploma
of Pharmacy Specialisation and downloaded from
the website MedShake.net 2. This corpus is simi-
lar to those found in other languages, such as the
MedMCQA (Pal et al., 2022) and SciQ (Welbl et al.,
2017) corpora.

The dataset was chosen for its high quality for
question-answering in the French language and
medical domain, and because the MedShake plat-
form also provides student answer rates, which en-
ables our comparative analysis of system behaviour
against humans.

Each sample contains five possible answers and
their associated choice letter a-e, among which one
or more choices determine the correct answer.

2.2 Data annotation

The MedShake platform enables students to prac-
tice exams online and evaluate their knowledge,
obtaining a final score based on the real scoring
scale used during the exam. The platform also
provides the correct and partially correct answers
across possible choices, the number of points allo-
cated to each combination of choices, the number
of students having answered each combination, the

2MCQ exams of the French Diploma of Pharmacy Spe-
cialisation (“Annales QCM des concours d’internat en pharma-
cie”): https://www.medshake.net/pharmacie/
concours-internat/annales/qcm/. Last accessed:
2025-03-01.

question’s clinical topic(s) 3, and the year the exam
took place.

The availability of student responses differs from
one question to another, as it depends on the spe-
cific questions that users answered. Besides, it is
impossible to pinpoint the responses of an individ-
ual. There are more than 2.4 million answers, with
an average of 664 student answers per question.

For the present work, we have enriched the
FrenchMedMCQA dataset with the student re-
sponses, clinical topics, and years. Additionally,
we manually tagged each question with a hand-
ful of characteristics based on its semantic content
and the way it is formulated. This new dataset
is made freely available online under the name
“FrenchMedMCQA-extended” 1. These features
were added to enrich the statistical analysis to fol-
low; notably, they help us identify particular char-
acteristics in our corpus that impact a question’s
difficulty. A selection of statistics from the result-
ing corpus is available in Table 1.

The manual annotations describe the following
aspects:

Negation: Indicates if a negated phrase is present
anywhere in the question.

Composition required: Indicates when the ques-
tion is a partial sentence and needs to be combined
with one of the choices to form a full correct sen-
tence. E.g.: “’Crack’ is a form of:”. Choices: (a)
heroin; (b) cocaine.

Identification of intruder: Indicates whether
the question requires the student to identify the
choice(s) that do not respect a certain condition.
E.g.: “Which proposition does not apply to nor-
floxacin?”.

Sentence mode: Categorises the “question” as
a true question, an instruction, or an affirmation.
E.g.: Instruction: “Concerning misoprostol, give
its action mechanism.”; Affirmation: “Anaemia is
generally observed under the following parasitic
infections:”.

Explicit number of choices: Indicates whether
the number of expected answers is explicitly pro-
vided (single, multiple, or undefined). E.g.: Single:

“Only one proposition is exact. Serotonin is:”;

3Clinical topics: pharmacology, physiology, bacteriology,
analytical chemistry, toxicology, haematology, clinical bio-
chemistry, immunology, public health, virology, parasitology,
biophysics, epidemiology, galenic, mycology, pharmacokinet-
ics, genetics, statistics, enzymology.

https://www.medshake.net/pharmacie/concours-internat/annales/qcm/
https://www.medshake.net/pharmacie/concours-internat/annales/qcm/
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A.

Num. Samples Avg. Answers Num. Expected Choices
1 2 3 4 5

Train 2170 740 27% 24% 33% 14% 2%
Dev 312 601 52% 14% 23% 10% 1%
Test 622 650 52% 15% 23% 9% 1%

B.
Negation Composition Intruder Sentence Mode Num. Choices
no yes no yes no yes Q I A S M U

Overall 94% 6% 69% 31% 82% 18% 72% 18% 10% 53% 30% 17%

Table 1: A) Number of samples and average of student answers per sample in the FrenchMedMCQA corpus.
Followed by distribution of samples per number of correct choices (each question expects that 1-5 choices are
selected for a correct answer). B) Distribution of manual annotations added to the corpus. Clarification of column
names: Sentence mode: Q=Question; I=Instruction; A=Affirmation. Num. choices: (Explicit number of choices)
S=Single; M=Multiple; U=Undefined.

Multiple: “Which ones of the following proposi-
tions apply to IL-2?”; Undefined: “What happens
during ventricular systole?”.

3 Experimental settings

The LLMs employed in this study, along with their
fine-tuning and inference methods, are described in
Section 3.1. In Section 3.2, we describe the metrics
used to assess these models, and in Section 3.3 we
present a method to assess question difficulty.

3.1 Model selection and training approach

In our experiments, we select a series of Large
Language Models based on their results on the
shared task TALN-DEFT 2023 (Labrak et al.,
2023), to have a reference baseline. They represent
a mix of general-purpose models: Llama-3-8B and
70B (Touvron et al., 2023), and Mistral-7B (Jiang
et al., 2023); and others specialised for the medical
domain: BioMistral-7B (Labrak et al., 2024), and
Apollo-7B (Wang et al., 2024).

The models are loaded in 4-bit precision and
then fine-tuned on the FrenchMedMCQA training
dataset for 1 epoch using Low Rank Adaptation
(LoRA) (Hu et al., 2022) to fit our infrastructure.

The response template used at this stage is the
same as the prompt for inference, based on our
previous works to obtain comparable results: a
short description of the task asking the model to
answer to a question from a pharmacology exam,
then the question and the choices, and finally a
simple format to introduce the correct answer (“Re-
sponse(s):”) immediately followed by one of two
formats of expected response, one including the full
text of the choices (e.g., “(a) text a; (b) text b”),

and the other only providing the choice letters (e.g.,
“(a) (b)”). It’s worth noting that our goal is not to
optimise the prompt and the model’s response to
the given task, but to analyse its behaviour.

Another variation evaluated was having sim-
ple and structured task descriptions. The simple
prompt uses natural language and line breaks to sep-
arate sections of the prompt, while the more struc-
tured prompt uses special handles: “### Instruc-
tion:”, “### Input:” (i.e., question and choices),
and “### Response:”.

For loss calculation, early experiments showed
that only considering the answer text after “Re-
sponse(s):” gave the best results.

Following fine-tuning, we evaluate their perfor-
mance on the FrenchMedMCQA test corpus to as-
sess both its generalisation capabilities and overall
effectiveness.

For each LLM, we run the inference 4 times and
average the scores to obtain the best per model.
These results can be seen in Table 2.

3.2 Metrics

Unlike traditional classification tasks, MCQs can
have partially correct responses. For example, if
a question requires selecting two correct options
but only one is identified, the answer is incomplete.
Two metrics initially proposed in (Labrak et al.,
2023), EMR and Hamming score, and an original,
MedShake score, have been employed to measure
the proportion of correct answers while penalising
incorrect ones.

In the formulas below, N is the number of ques-
tions, yi is the set of correct answers for the i-th
question, and ŷi is the set of predicted answers for
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Medical LLM MedShake EMR Hamming Prompt
Student responses 0.594 0.517 0.677
LLaMa-3-8B - 0.366 0.295 0.522 1
LLaMa-3-70B - 0.189 0.138 0.381 1
Mistral-7B-v0.3 - 0.391 0.318 0.539 1
BioMistral-7B 0.289 0.224 0.475 2
Apollo-7B 0.413 0.333 0.557 2
LLaMa-3-8B* - 0.453 0.373 0.575 1
LLaMa-3-70B* - 0.419 0.345 0.554 1
Mistral-7B-v0.3* - 0.491 0.418 0.626 1
BioMistral-7B* 0.404 0.326 0.551 2
Apollo-7B* 0.417 0.339 0.575 2

Table 2: Summary of the best results per model showing the average rates in all difficulty classes combined. Fine-
tuned models are marked with *. Specialised models are identified with a check mark. Prompt “1” corresponds to
the simple natural language prompt while “2” corresponds to the more structured format, as described in Section 3.1

the i-th question.

Exact Match Ratio (EMR): checks if the set
of predicted answers exactly matches the correct
answers for each question.

EMR =
1

N

N∑
i=1

[yi = ŷi]

Hamming Score: inspired by the Hamming dis-
tance, measures the overlap between predicted and
correct answers by comparing the size of their in-
tersection with their union.

Hamming =
1

N

N∑
i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

MedShake Score: is the original point-based
metric used in the exams, where scores are assigned
based on how many answers match the key, award-
ing full points for complete correctness and reduc-
ing points for errors or omissions (max=2.0, one
error=1.0, two errors=0.4, 0 otherwise).

3.3 Question classification by difficulty
A naive way of assessing question difficulty would
be to use the percentage of students who selected
the correct set of options. However, this does not
take into account partial answers and the number
of correct choices, which affect the chances of an-
swering the question correctly at random. In order
to consider these factors, we measure question dif-
ficulty with the Shannon entropy (Shannon, 1948):

H(P ) =
−
∑n

i=1 pilog(pi)

log(n)

where n is the number of possible answers and
pi is the proportion of students who chose answer
i. Thus, a value of 0 means that the question is
obvious for all students (everyone gives the same
answer), and a value of 1 means the question is
extremely hard (the response rate is equivalent to a
random selection).

Based on this approach, we choose to classify
the corpus in five categories, each with the same
number of items: Very Easy, Easy, Medium, Hard,
and Very Hard. H is computed for each sample
and the corpus is then divided into five equal-sized
buckets corresponding to our difficulty classes.

4 Results

In Section 4.1 we describe the main observations of
LLM responses. Then, in Section 4.2 we compare
the performance of the best model against humans.
Later, in Section 4.3 we introduce the strategy to
build a probability distribution out of model logits,
which we finally use for the linear regression and
feature importance analysis of Section 4.4.

4.1 LLM results and best model
Table 2 shows the results for all models. The LLMs
were evaluated according to three metrics: Med-
Shake, EMR (Exact Match Ratio), and Hamming.

We observe that fine-tuned models consis-
tently outperform their non-fine-tuned counterparts
across every model configuration. For instance,
Mistral-7B-v0.3 achieves a MedShake score of
0.391 without fine-tuning versus 0.491 after fine-
tuning. This model actually attains the highest
overall performance across all metrics (MedShake:
0.491; EMR: 0.418; Hamming: 0.626), thereby
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ModelMetric Very easy Easy Medium Hard Very hard Overall
Mistral-7BMedShake 0.780 0.599 0.453 0.289 0.336 0.492
Mistral-7BEMR 0.750 0.524 0.355 0.196 0.262 0.418
Mistral-7BHamming 0.814 0.706 0.637 0.506 0.467 0.626
HumanMedShake 0.891 +11% 0.724 +13% 0.565 +11% 0.438 +15% 0.352 +2% 0.594 +10.3%

HumanEMR 0.872 +12% 0.642 +12% 0.452 +10% 0.324 +13% 0.295 +3% 0.517 +9.9%

HumanHamming 0.903 +9% 0.775 +7% 0.667 +3% 0.579 +7% 0.460 −0.7% 0.677 +5.1%

Table 3: Comparison of performance between the fine-tuned model Mistral-7B-v0.3 and humans across all difficulty
levels and evaluation metrics. The reported scores represent the mean over 4 independent runs. Human scores
correspond to student response rates from the “test” dataset, accompanied by the performance gain over the model
as absolute percentages.

demonstrating its robustness once adapted to the
task, and making it our best candidate for the fea-
ture importance analysis in Section 4.4.

Among the models specialised in the medical do-
main, Apollo-7B yields the best results among the
non-fine-tuned models (MedShake: 0.413; EMR:
0.333; Hamming: 0.557). Nevertheless, even af-
ter fine-tuning, its performance remains inferior to
that of Mistral-7B. It is also noteworthy that, de-
spite their biomedical specialisation, the fine-tuned
domain-specific models still lag behind the fine-
tuned general-purpose models.

4.2 Human vs LLM evaluation

Table 3 provides a detailed comparison of per-
formance between the fine-tuned model Mistral-
7B-v0.3 and human respondents, across all five
levels of difficulty and the three evaluation met-
rics. Model scores represent the mean of four inde-
pendent runs, whereas human performance is de-
rived from the additional data obtained from Med-
Shake.net as described in Section 2.2.

Overall, performance declines consistently with
increasing difficulty for both humans and the model.
This trend corroborates the validity of the proposed
categorisation and confirms that the perceived diffi-
culty by students is broadly mirrored by the model.

Humans outperform Mistral-7B on every metric
and across all difficulty levels. For instance, on
the “Very Easy” questions, humans achieve a Med-
Shake score of 0.891 versus 0.780 for the model.
This gap persists as difficulty increases. For “Hard”
questions, EMR scores drop to 0.324 for humans
and 0.196 for the model, illustrating the model’s
limitations when faced with complex queries requir-
ing nuanced understanding or advanced reasoning.
Interestingly, for “Very Hard” questions the model
results improve compared to the “Hard” ones, and
the difference with humans drops to a minimum,

with students obtaining an EMR score of just 3.3%
above the model (0.295 vs 0.262). Although we
haven’t explored in detail why specific questions in
this class are less difficult for Mistral, the overall re-
sults underline their high difficulty, often requiring
multiple choices to be answered correctly.

Finally, the Hamming metric, which measures
partial overlap between expected and generated
answers, reveals a narrower gap between LLM and
human performance. This suggests that, even in
the absence of fully correct responses, the model is
often able to identify some of the relevant elements.

These findings highlight both the current capa-
bilities of LLMs in specialised tasks and indicate
that improvements are needed to meet or exceed
human performance in domain-specific challenges.

4.3 Model-based probability distribution

To compare human responses, expressed as rates,
with LLMs, we decide to derive a comparable out-
put for the model by converting its internal logits
into a probability distribution.

We derive the model’s learned probabilities by
extracting token-level probabilities (via softmax
on internal logits) from sequences formatted like
the fine-tuning prompt (including task introduc-
tion, question, and choices). For a sequence S,
the log probability log prob(S) is computed as the
sum of the logarithms of individual token probabili-
ties. We evaluated various strategies for computing
log prob (using the full sequence, just the answer
segment, and only the choice letters) to predict
which answer the model would select, and com-
pared their scores to the results of the inference.

Finally, we decided to use the probability of
the choice letters only as a good enough measure
of the relative probabilities given by the model,
and leveraged this result to construct a probability
distribution.
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Figure 1: Comparison of the variance in feature coefficients derived from linear regression models for human and
LLM scores. Only features with the highest absolute coefficients are displayed.

4.4 Feature importance

To identify the most important features that de-
termine question difficulty for both humans and
LLMs, we trained a linear regression model using
five-fold cross-validation with Ridge (L2) regular-
isation, on a merged corpus of “train” and “test”
(approx. 1,600 items).

It is worth clarifying that our goal is not to de-
velop a perfect predictor of question difficulty. This
means that semantic features like question embed-
dings, used in other works such as Yaneva et al.
(2024), are not included here, keeping all features
explicable and comparable with humans. This de-
cision likely reduces the ability of the regression
model to predict the difficulty for LLMs, which is
an acceptable limitation for our work.

For human data, we trained a linear model to
predict the correct response rate from students.
The feature set comes from the data points pre-
sented in Section 2.2 as well as several syntactic
features: question length; sum of answers length;
total length; question word count (number of words
in the question); avg. sentence word count; avg.
depth of tree; number and avg. word count of noun,
prepositional, and verb phrases. For the LLM, we
followed the same approach with a linear model
trained with the probability distribution based on
the internal model logits.

Due to the limited size of the data, we selected
features based solely on the magnitude of their
coefficients instead of relying on p-tests, which
proved unstable across runs. Figure 1 shows the
comparison of feature coefficients between humans

and Mistral-7B. Globally, we observe that most fea-
tures have a similar relationship with question dif-
ficulty, both for humans and models, even though
the coefficients differ. Notably, the annotations
tag answer single and tag answer undefined, de-
scribing whether the question explicitly indicates
the number of correct choices, have the same rela-
tionship with the difficulty perceived by humans
and the LLM. On the other hand, some topics such
as immunology and analytical chemistry are better
predictors of difficulty for humans, while syntactic
features like avg. words in verb phrases are better
predictors for LLMs. This analysis suggests that
humans and LLMs might generally assess question
difficulty in an equivalent way, since most features
relate to difficulty similarly.

5 Conclusion

This paper proposes a comparative analysis of
MCQ answering behaviour for humans and LLMs
in a medical corpus on pharmacology, which sug-
gests that the factors contributing to question dif-
ficulty are similar for both categories. Both tend
to struggle with questions which are considered to
have a high level of difficulty. The feature impor-
tance analysis highlights that most features have a
similar relationship with question difficulty.

Our experiments are conducted with a handful of
LLMs and only on the French corpus FrenchMedM-
CQA, potentially excluding other corpora and
thereby limiting the generalisability of results.
Complementary analysis should be conducted to
evaluate these results in other settings.
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