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Abstract

The proliferation of fake news has been am-
plified by the advent of large language mod-
els (LLMs), which can generate highly realis-
tic and scalable misinformation. While prior
studies have focused primarily on detecting
human-generated fake news, the efficacy of
current models against LLM-generated con-
tent remains underexplored. We address this
gap by compiling a novel dataset combining
public and LLM-generated fake news, redefin-
ing detection as a ternary classification task
(real, human-generated fake, LLM-generated
fake) and evaluating six diverse classification
models, including traditional machine learning,
fine-tuned transformers and few-shot prompted
LLMs. Our findings highlight the strengths
and limitations of these models in detecting
evolving LLM-generated fake news, offering
insights for future detection strategies.

1 Introduction

Fake news, broadly described as intentionally cre-
ated content that mimics real news in appearance
but not in intent (Lazer et al., 2018), has evolved
from newswire disinformation in the early 20th cen-
tury (McKernon, 1925) to a complex online threat
today. Large language models (LLMs) have wors-
ened this problem by making it easier and cheaper
to produce realistic-looking content at scale, which
could easily erode public trust and well-informed
decision-making (Walker et al., 2023; Barman et al.,
2024).

LLMs have demonstrated superior natural lan-
guage understanding and generation capabilities,
largely attributed to their extensive pre-training on
massive free text datasets. They have revolution-
ized natural language processing (NLP) by intro-
ducing powerful new abilities such as instruction
following, in-context learning and multi-step rea-
soning (Minaee et al., 2024). Unfortunately, their

ability to generate credible-looking fake content
raises concerns over potential abuse in disseminat-
ing fake news (Lin et al., 2022).

A wide range of fake news detection methods
have been proposed in past research, ranging from
traditional machine learning (ML) models to deep
neural networks (Lin et al., 2022; Uyangodage
et al., 2021b,a). However, most of these efforts
have focused on distinguishing between real and
human-generated fake news, with less attention on
LLM-generated fakes (Yuan et al., 2023; Ali et al.,
2025). Thus, the effectiveness of current fake news
detection models in identifying auto-generated con-
tent remains uncertain. Several challenges may
impact their effectiveness, including distribution
biases in training data (Yuan et al., 2023) and struc-
tural divergence in linguistic patterns used by hu-
mans and LLMs (Muñoz-Ortiz et al., 2024).

This study aims to bridge that gap by evaluating
the capabilities of state-of-the-art detection mod-
els in identifying fake news produced by LLMs.
We conduct a comparative analysis of competitive
natural language classification models, including
advanced LLMs themselves, to assess each model’s
effectiveness against evolving LLM-generated con-
tent (Cavus et al., 2024; Rai et al., 2022). Our main
contributions are as follows1:
(a) We compile a dataset incorporating publicly

available datasets and LLM-generated data for
fake news detection.

(b) We redefine fake news detection as a ternary
classification problem, targeting real, human-
generated fake and LLM-generated fake news,
addressing limitations of traditional binary ap-
proaches.

(c) We evaluate six classification models, includ-
ing traditional ML algorithms, fine-tuned pre-

1Benchmark resources are available at
https://github.com/irfanfikrisabri/
Fake-News-Detection/.

https://github.com/irfanfikrisabri/Fake-News-Detection/.
https://github.com/irfanfikrisabri/Fake-News-Detection/.
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trained language models/transformers and few-
shot prompted LLMs, to assess their abil-
ity to distinguish between human- and LLM-
generated fake news.

2 Related Work

Previous studies on fake news detection primarily
focus on binary classification of real and human-
generated fake news (Jain and Kasbe, 2018). Sev-
eral datasets have been proposed in this direction,
particularly through popular shared tasks (Patwa
et al., 2021). Several models have been trained
and evaluated on these datasets, such as traditional
models like SVM and Naı̈ve Bayes, which rely
on feature engineering but struggle with scalabil-
ity, contextual understanding and evolving patterns
(Yigezu et al., 2024). In contrast, transformer-
based models (BERT, RoBERTa) excel in detect-
ing subtle linguistic inconsistencies due to their
bidirectional context awareness, though they de-
mand high computational resources (Wang et al.,
2023; Dice and Kogan, 2021). Very recently, a
handful of datasets have been introduced to detect
AI-generated fake news, such as MiRAGeNews
(Huang et al., 2024) and VLPFN (Sun et al., 2024).
The models trained on these datasets show that
transformer-based models perform slightly better
on AI-generated fake news, while traditional mod-
els are more accurate on human-generated content
(Trandabăt, and Gifu, 2023).

A major limitation in existing research is dataset
scope, as models are often evaluated on a single
dataset like VLPFN (Sun et al., 2024), risking
overfitting and poor generalization (Ying, 2019).
This project addresses this problem by combin-
ing VLPFN with ISOT and more LLM-generated
samples for broader representation. Addition-
ally, prior work prioritises resource-intensive ap-
proaches, such as fine-tuned transformers or LoRA
fine-tuned LLMs, over simpler models like SVM,
despite their efficiency advantages. This project in-
cludes traditional models and few-shot prompting
for Mistral-7B and Llama-3.1-8B to assess cost-
effective alternatives, ensuring practical applicabil-
ity in real-world scenarios.

3 Dataset Composition

Our dataset comprises two data splits, train and test,
that were initially constructed using available on-
line datasets. To make each news category equally
proportionate to support balanced training, more

LLM-generated fake news samples were created
based on the count of fake news from each category
of the initial setting.

3.1 Fake News Datasets

To support robust fake news detection, we con-
structed a comprehensive dataset by integrating
data from multiple sources. Two primary datasets,
the VLPFN dataset (Sun et al., 2024) and the ISOT
fake news dataset (Ahmed et al., 2017), were se-
lected based on their data coverage and volume.
The VLPFN dataset included pre-partitioned train
and test sets with samples from all news categories.
In contrast, the ISOT dataset contained only real
and human-generated fake news. We incorporated
a randomly selected subset from ISOT into the
VLPFN data splits to create the initial version of
our combined dataset.

Category VLPFN ISOT Gen. Total
Train Dataset

Real 951 349 – 1,300
Human-gen. Fake 951 349 – 1,300
LLM-gen. Fake 951 – 365 1,300

Test Dataset
Real 272 115 – 387
Human-gen. Fake 94 298 – 392
LLM-gen. Fake 269 – 60 329

Table 1: Initial composition of train and test datasets

Table 1 presents the initial composition of the
train and test data splits before generating more
fake news. VLPFN and ISOT contribute varying
counts, while the values in red indicate the number
of fake news samples generated using LLMs.

3.2 Fake News Generation

To balance the fake news category distribution,
more fake news articles were generated using
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) and
Meta-Llama-3.1-8B-Instruct (Touvron et al., 2023).
These models were selected for their distinct
text generation characteristics. Mistral’s outputs
closely align with human-generated content, while
LLaMA-generated content poses unique detection
challenges due to its divergent stylistic patterns
(Muñoz-Ortiz et al., 2024).

An indirect prompting approach, illustrated in
Figure 1, was employed to ensure the generated
fake news closely reflected real-world disinforma-
tion strategies rather than producing obviously un-
realistic or artificial content. This approach also al-
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Figure 1: An example of indirect prompting method

lays ethical concerns by avoiding explicit requests
for harmful or misleading content. To ensure con-
tent diversity and practical usefulness, we focused
on five high-impact topic categories: politics, en-
vironment, technology, health, and social issues
when generating the articles. These categories
were selected due to their frequent usage in dis-
information campaigns and their potential to cause
significant societal harm.

As shown in Table 1, the training dataset in-
cludes 365 artificially generated articles (182 pro-
duced using Llama and 183 with Mistral). The
test dataset includes 60 generated articles evenly
split between the two models. Strict quality control
procedures were implemented during the genera-
tion process to ensure readability and coherence.
These included enforcing a 150-word limit per arti-
cle to balance computational efficiency with dataset
trends, as most articles in Figure 2 fall within 100-
400 words, removing missing values, duplicates
and model-specific markers as well as formatting
errors from the generated text.

3.3 Dataset Analysis and Statistics

Following data merging and generation, all datasets
underwent a pre-processing pipeline to ensure qual-
ity and consistency before model development.
This included removing missing values, eliminat-
ing duplicate entries and filtering out entries with
fewer than three words to maintain textual coher-
ence.

After preprocessing, the final dataset achieved
near-equal proportions across all categories in
the training set, with 1,273 real news, 1,175
human-generated fake news and 1,255 LLM-
generated fake news articles. A similar balance
was maintained in the test set, with 359 real news,
372 human-generated fake news and 327 LLM-
generated fake news articles.

Table 2 summarises the statistical analysis of
article sequence lengths across categories. LLM-
generated articles were the most concise, while
real news articles had the longest average length.
Human-generated fake news fell in between these

(a) Train dataset

(b) Test dataset
Figure 2: Sequence length distribution across datasets

extremes. Additionally, the distribution analysis
in Figure 2 confirms a right-skewed pattern in se-
quence lengths, with most articles across all cate-
gories having tokens within the range of 100-400.

Cat. # Mean Std. Min. 25% Med. 75% Max.
Train Dataset

Real 1,273 527.88 336.93 35 197 468 780 1,674
Human 1,175 382.15 229.13 3 228 360 517 1,060
LLM 1,255 263.50 111.38 21 173 247 336 595

Test Dataset
Real 359 477.05 254.71 97 245 415 653 1,098
Human 372 362.98 165.57 17 276 350 417 1,097
LLM 327 290.04 144.38 44 194 259 340 853

Table 2: Statistical analysis of article sequence length

4 Fake News Detection

This study selected a set of state-of-the-art (SOTA)
models representing three distinct categories: tradi-
tional machine learning models, transformer-based
models and large language models (LLMs), each
employing different characteristics. These mod-
els were evaluated based on their ability to accu-
rately classify news articles into three categories:
real news, human-generated fake news and LLM-
generated fake news. The train dataset was split
using an 80:20 stratified split, with a fixed random
seed of 42 for evaluations during training to ensure
reproducibility while preserving the original class
distribution.
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Figure 3: Architectural comparison of fake news detec-
tion models

4.1 Traditional Models

Referring to the model architecture in Figure 3,
traditional models utilized TF-IDF vectorization
features limited to the top 5,000 features to con-
vert raw text into numerical features. This method
minimizes the impact of frequent but uninforma-
tive words while capturing discriminative terms
for categorization (Shaikh and Patil, 2020). The
implementation included:

• Support Vector Machine (SVM): Imple-
mented with a linear kernel and probability
estimation enabled, effective for text clas-
sification due to its ability to handle high-
dimensional data and find optimal decision
boundaries (Cervantes et al., 2020).

• Naı̈ve Bayes (NB): A multinomial Naive
Bayes classifier operating under the condi-
tional independence assumption between fea-
tures (Xu, 2016), selected for its efficiency
with discrete data such as word counts.

The training process applied the full training
set to both models, with performance evaluation
conducted on the separate test set. Since these tra-
ditional models are the simplest to implement, they
act as the baseline benchmarks for comparative
analysis against more complex architectures.

4.2 Transformer-based Models

As summarised in Figure 3, the following trans-
former models were involved:

• BERT (Devlin et al., 2019): A bidi-
rectional encoder transfomer capable of
capturing contextual information. The
bert-base-cased model was loaded
from HuggingFace’s transformers library and
augmented with a task-specific linear layer for
sequence classification (num labels=3).

• RoBERTa (Liu et al., 2019): An optimized

version of BERT architecture by discarding
the next-sentence prediction task and adopt-
ing dynamic masking. The same sequence
classification architecture as with the BERT
model was used with the roberta-base
model loaded from HuggingFace’s transform-
ers library.

Using the proper tokenizers, text sequences were
pre-processed and truncated to a maximum of 512
tokens. Text boundaries were delimited by special
tokens, such as [CLS]. The training process used a
linear scheduler to implement warm-up over three
training epochs and the AdamW optimizer at a
learning rate of 2× 10−5.

For every 50 batches, the model was intermit-
tently validated during training and weights were
saved when validation accuracy improved. To bal-
ance memory usage and computational stability,
the tokenised datasets were organised using a batch
size of eight. The training ran for a fixed three
epochs without early stopping as validation perfor-
mance continued to improve throughout all epochs.
A final evaluation was conducted on the held-out
validation set.

4.3 LLM-based Models

As in Figure 3, the LLM-based approach utilized
two instruction-tuned models:

• Meta-Llama-3.1-8B-Instruct (Touvron et al.,
2023): An open-source LLM using rotary po-
sitional embeddings, initialized through 4-bit
quantization to optimize memory usage.

• Mistral-7B-Instruct-v0.3 (Jiang et al., 2023):
A model utilizing sliding window attention
for efficiently processing long-sequence data
through grouped-query attention (GQA).

The prompting strategy illustrated in Figure 4
employs a few-shot approach with three exemplary
examples, one from each news category, follow-
ing the preliminary experiments that demonstrated
inadequate performance with zero-shot settings
(Brown et al., 2020; Ranasinghe et al., 2025). The
prompt includes a system message defining the
ternary classification task, followed by the few-shot
examples to illustrate each category and finally, the
query article, which is the target text to be classi-
fied.

To enforce category-specific outputs, the in-
ference was set up with deterministic sam-
pling (temperature=0.0, top p=1.0) and
restricted to 15 tokens. The full article’s context
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Figure 4: Few-shot prompting with chat templates

was preserved by using the native 8k-token context
windows of the models without truncation. Using
case-insensitive keyword matching, the output pre-
dictions were matched to labels and assessed using
the same test dataset as the previous models.

5 Results and Analysis

Standard classification metrics (i.e. accuracy, pre-
cision, recall and F1-score, with macro averages
(equal class weighting)) were used to evaluate
model performance. Primarily, our analysis fo-
cused on two aspects: (1) overall model perfor-
mance in detecting fake news to identify the best-
performing model across all categories and (2) sub-
group analysis to explore the performance varia-
tions across datasets and LLM sources to highlight
potential model biases and limitations.

5.1 Models Performance Comparison in
Detecting Fake News

Type Model Acc. P R F1

Transformer
BERT 0.94 0.94 0.94 0.94
RoBERTa 0.95 0.95 0.95 0.95

LLM
Llama 0.75 0.74 0.74 0.74
Mistral 0.57 0.61 0.56 0.51

Traditional
SVM 0.91 0.92 0.91 0.91
NB 0.82 0.84 0.82 0.82

Table 3: Evaluation results (Acc.: Accuracy, P: Pre-
cision, R: Recall and F1) across different fake news
detection models. The best results are in bold.

The performance metrics results (Table 3)
present notable variations in fake news detection ca-

pabilities across model architectures. Transformer-
based models outperformed all others, with BERT
(94.05% accuracy) and RoBERTa (95.18% accu-
racy) demonstrating superior results. Traditional
machine learning models, particularly SVM, sur-
prisingly exhibited competitive results (91.30% ac-
curacy), while few-shot prompted large language
models like Llama-3.1-8B (74.57%) and Mistral-
7B (57.47%) performed considerably worse.

With dynamic masking patterns and bigger batch
sizes during pre-training, RoBERTa’s training pro-
cess is optimized over BERT, explaining its im-
proved performance (95.18% accuracy). RoBERTa
is able to detect more complex linguistic elements
essential for identifying subtle indications of fake
news. BERT continues to demonstrate remarkable
performance metrics (94.05% accuracy) despite its
earlier development.

Figure 5: Confusion matrix of Mistral-7B’s fake news
detection performance

The limitations of few-shot prompted LLMs are
evident, with both Llama and Mistral models per-
forming poorly compared to fine-tuned methods.
Mistral-7B produced extremely poor results with
only 57.47% overall accuracy. Figure 5 reveals
that Mistral-7B correctly identified only 36 LLM-
generated samples while misclassifying 254 as
human-generated fake news, demonstrating a fun-
damental inability to distinguish between different
types of fake content.

Model BERT RoBERTa Llama Mistral SVM NB
Confusion Rate 6% 5% 25% 54% 9% 15%

Table 4: Human/LLM-generated confusion rate

The confusion rates between LLM-generated
and human-generated fake news (Table 4) closely
reflect overall accuracy patterns. Few-shot LLMs
struggled notably, with Mistral-7B showing the
highest confusion rate (54%) and Llama-3.1-8B at
25%, while RoBERTa, BERT and SVM had much
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lower rates (5%, 6% and 9% respectively).

5.2 Subgroup Analysis

5.2.1 Dataset-Specific Performance

Model VLPFN ISOT Generated
BERT 0.8923 1.0000 1.0000
RoBERTa 0.9128 1.0000 1.0000
Llama-3.1-8B 0.6547 0.8983 0.5833
Mistral-7B 0.4838 0.7579 0.2000
SVM 0.8735 0.9564 1.0000
Naive Bayes 0.8120 0.8160 0.9833

Table 5: Model accuracy across different datasets

Dataset-specific performance analysis (Table 5)
provides critical insights into contextual robust-
ness. The VLPFN dataset proved to be the most
challenging one, with RoBERTa achieving only
91.28% accuracy compared to perfect performance
on other datasets. This variance highlights the need
for diverse training data in developing reliable de-
tection systems. Few-shot prompted LLMs expe-
rienced the widest performance variations across
datasets, indicating potential challenges in recog-
nising patterns needed for effective fake news de-
tection across diverse sources.

5.2.2 LLM-Source Performance

Figure 6: Model accuracy across different LLM sources

When analyzing performance across different
LLM sources (Figure 6), all models showed sub-
stantial variation in their detection2. Vicuna and
QA-generated content proved particularly challeng-
ing across all detection models. Transformer mod-
els demonstrated perfect identification accuracy for

2We adapted the first eight categories/sources from the
VLPFN dataset (Sun et al., 2024)

content produced by Mistral-7B and Meta-Llama-
3.1-8B, indicating effectiveness at recognizing pat-
terns unique to these sources. Interestingly, few-
shot LLMs performed poorly at identifying content
generated by their own architectural families, sug-
gesting potential blind spots in perceiving similar
linguistic patterns.

6 Conclusions

With the rapid advancements in LLMs, there is
an increasing need for more sophisticated ML ap-
proaches to detect fake news from diverse sources,
beyond human-generated fakes. Following this re-
quirement, this study conducted a comparative anal-
ysis of SOTA methods in identifying real, human-
generated fake and LLM-generated fake news.

Our analysis spanned across three modelling ap-
proaches: (1) traditional ML, (2) transformers and
(3) LLMs. Among them, transformer-based mod-
els (i.e. BERT and RoBERTa) were proven to be
the most effective, with balanced precision-recall
and high accuracy. These models are very reli-
able in identifying news categories as they adapt
to various datasets comprising a range of news
structures and word sequences. Traditional models
also showed quite competitive results compared
to transformers, especially considering the facts,
their resource effectiveness and their ability to learn
even from smaller datasets. Surprisingly, few-shot-
prompted LLMs (i.e. Llama and Mistral) strug-
gled to distinguish between human-generated and
LLM-generated fake news despite their abilities to
generate realistic-looking fake news.

The reason behind the low model performance
showcased by LLMs could be the lack of task-
specific fine-tuning/training, which the other mod-
els had undergone (Zampieri et al., 2023). How-
ever, given the strong performance of other, more
computationally efficient models, the necessity of
fine-tuning LLMs for this task is open to question.
Nonetheless, it is worth exploring more advanced
prompting strategies, such as chain-of-thoughts,
with both open-source and closed-source LLMs
in future work to determine whether they can out-
perform current SOTA methods. Also, it would
be valuable to examine the potential of ensemble
approaches in the future, considering the varied per-
formances that individual models have showcased
across different categories and sources.
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