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Abstract

Large Language Models excel at generating
fluent text, but real-world applications increas-
ingly demand structured outputs like JSON that
can be programmatically processed. While
prior work examines either task performance or
format compliance in isolation, we investigate
their interaction through comprehensive exper-
iments across 11 models and multiple bench-
marks. We uncover a fundamental divergence
between base and instruction-tuned models un-
der structural constraints. Base models often
benefit from constrained decoding, producing
more precise outputs, while instruction-tuned
models frequently suffer performance degrada-
tion on generation tasks despite maintaining sta-
bility on classification tasks. Our log probabil-
ity analysis reveals the underlying mechanism:
constrained decoding forces models away from
their preferred natural language patterns into
lower-confidence structured alternatives. We
demonstrate that successful constrained gener-
ation requires both adapted prompts and suf-
ficient few-shot examples, with constrained
models showing steeper performance gains
from additional demonstrations compared to
unconstrained generation. Notably, we find
that base model performance under constraints
can serve as an early indicator of post-training
structured output capabilities, offering a prac-
tical evaluation tool for model development.
These findings suggest that current instruction-
tuning practices may inadvertently reduce mod-
els’ structured output capabilities and highlight
the need for training-time integration of struc-
tural constraints in future model development.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable success across diverse linguistic do-
mains, excelling in both natural language process-
ing (Zhao et al., 2023; Touvron et al., 2023) and
formal language generation (Rozière et al., 2023;

Lozhkov et al., 2024). Beyond traditional conver-
sational applications, LLMs increasingly serve as
components in complex computational pipelines
that demand precisely structured outputs, such as
JSON or YAML, where format accuracy is criti-
cal for downstream processing. Another important
application is function calling, enabling LLMs to
interface with external tools (Schick et al., 2023;
Hao et al., 2023) and APIs (Patil et al., 2024; Qin
et al., 2024) through structured command genera-
tion.

Two primary approaches exist for obtaining
structured outputs from LLMs: prompt-based guid-
ance and constrained decoding (Deutsch et al.,
2019; Geng et al., 2023). Prompt-based methods
rely on natural language instructions to guide for-
mat compliance but remain vulnerable to gener-
ation errors, necessitating robust error handling
mechanisms. Constrained decoding, guarantees
structural validity by restricting the model’s token-
level predictions during generation. Despite the
growing adoption of constrained decoding, its im-
pact on models’ core task performance remains
poorly understood.

Drawing inspiration from Wei et al. (2023)’s find-
ings on adversarial prompting and cognitive load in
multi-task scenarios, we hypothesize that forcing
models to satisfy both task objectives and struc-
tural constraints simultaneously may impair their
problem-solving capabilities, particularly when
dealing with complex output schemas. While ex-
isting literature has examined either task-specific
model capabilities (Min et al., 2023; Hendrycks
et al., 2021; Lin et al., 2022) or structural compli-
ance (Zhou et al., 2023; Xia et al., 2024) in iso-
lation, no comprehensive study has investigated
their interaction. Our work addresses this gap by
systematically analyzing how structural output re-
quirements affect task performance across diverse
model architectures, training paradigms, and prob-
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lem complexities. As illustrated in Figure 1, un-
constrained generation often produces correct but
verbose responses, while constrained generation
may yield structurally valid but factually incorrect
output. Our contribution are as follows:

1. Systematic performance analysis: We con-
duct a comprehensive evaluation revealing
how constrained decoding affects task accu-
racy across multiple dimensions; including
model architectures, training approaches (base
vs. instruction-tuned), task types, and output
complexity levels. We identify when and why
performance degradation occurs.

2. Mechanistic insights through comparative
analysis: We uncover the underlying mech-
anisms of constrained decoding’s impact by
analyzing log probability distributions, show-
ing how structural constraints force models
away from their preferred token choices, lead-
ing to measurable confidence reduction and
performance drops.

3. Evidence-based implementation guidelines:
Based on our empirical findings, we provide
concrete recommendations for effectively de-
ploying constrained decoding, including the
critical importance of adapted prompting, the
value of few-shot examples, and strategies
for pre-assessing model suitability for pre-
training.

2 Related Work and Background

Constrained decoding guides language models to
produce outputs that satisfy specific requirements
by modifying token probabilities during generation.
Early work by Hokamp and Liu (2017) and Ander-
son et al. (2017) pioneered lexical constraints , en-
abling models to include or exclude predetermined
words and phrases. Subsequent improvements by
Hasler et al. (2018) introduced explicit alignment
mechanisms, while Post and Vilar (2018) signifi-
cantly reduced computational overhead through
algorithmic optimizations. However, these ap-
proaches addressed only lexical constraints, leaving
structural formatting unexplored.

Grammar-constrained decoding extends these
concepts to enforce syntactic validity according to
formal grammars. Deutsch et al. (2019) introduced
a general framework using finite state automata

In the 1840s and 50s, there were attempts to overcome this problem by means of 

various patent valve gears with a separate, variable cutoff expansion valve riding on the 

back of the main slide valve; the latter usually had fixed or limited cutoff. The combined 

setup gave a fair approximation of the ideal events, at the expense of increased friction 

and wear, and the mechanism tended to be complicated. The usual compromise solution 

has been to provide lap by lengthening rubbing surfaces of the valve in such a way 

as to overlap the port on the admission side, with the effect that the exhaust side 

remains open for a longer period after cut-off on the admission side has occurred. 

How is lap provided by overlapping

the admission side port?

Unconstrained Decoding Constrained Decoding

The answer is: by

lengthening rubbing

surfaces of the valve in

such a way as to overlap

the port.

{ "answer" : "with the effect that 

the exhaust side remains open for 

a longer period after cut-off on the 

admission side has occurred” }

Figure 1: Example demonstrating performance degrada-
tion under constrained decoding. While Llama3.1’s
unconstrained generation produces a correct answer em-
bedded in natural language, the same model generates
an incorrect answer when forced to comply with a struc-
tured JSON format, illustrating the trade-off between
structural compliance and task accuracy.

(FSAs) for regular grammars and pushdown au-
tomata (PDAs) for context-free grammars, enabling
precise structural control over generated outputs.
Building on this foundation, Geng et al. (2023)
demonstrated that numerous NLP tasks can be re-
formulated as formal language generation prob-
lems, though their evaluation remained limited to
relatively simple task structures.

The evaluation landscape for LLMs has evolved
along two parallel tracks. Content-focused as-
sessments dominate the field, encompassing both
closed-ended benchmarks (Hendrycks et al., 2021;
Lin et al., 2022) and open-ended generation
tasks (Rajpurkar et al., 2016; Min et al., 2023).
More recently, researchers have begun evaluating
structural compliance capabilities, examining mod-
els’ ability to generate outputs conforming to spe-
cific formats such as JSON schemas or prescribed
document structures (Zhou et al., 2023; Xia et al.,
2024). Despite these advances, the interaction be-
tween content accuracy and structural constraints
remains understudied, a gap our work addresses
through systematic evaluation across diverse tasks
and model architectures.

2.1 Constrained Decoding for Structured
Generation

We formalize constrained decoding as the process
of generating a sequence

x = [x1, x2, . . . , x|x|],
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where each token xi is constrained to follow a
predefined structure S. Let p(xi | x<i, S) rep-
resent the probability of generating the next token
xi given the preceding tokens x<i and the structure
S. The goal of constrained decoding is to ensure
that x ∈ S, i.e., that the generated sequence ad-
heres conforms to the schema or pattern defined
by S. The constrained set of tokens at each step,
Ci, is derived by filtering the model’s next-token
distribution to exclude tokens that would violate
S. Formally, we select xi from the restricted set
Ci ⊆ V (where V is the vocabulary), ensuring:

p(xi | x<i, S) = 0 for xi /∈ Ci

3 Experimental Setup

3.1 Language Models
We evaluate eleven open-source language mod-
els spanning five architectures, each with 4-
8 billion parameters. Our model selection
includes Llama (Touvron et al., 2023), Mis-
tral (Jiang et al., 2023), Phi (Abdin et al.,
2024), DeepSeek (DeepSeek-AI et al., 2024), and
OLMo (Groeneveld et al., 2024). For each ar-
chitecture, we examine both base and instruction-
tuned variants when available, enabling systematic
comparison of how training paradigms affect con-
strained generation performance.

We include OLMo specifically to eliminate po-
tential data contamination concerns, as its transpar-
ent training dataset (Soldaini et al., 2024) guaran-
tees no exposure to our evaluation benchmarks. Ad-
ditionally, we incorporate DeepSeek-Coder (Guo
et al., 2024) to investigate whether code-specific
pretraining confers advantages for structured out-
put generation.

3.2 Tasks and Metrics
We evaluate model performance across multiple
generation and classification tasks.

SQuAD (Rajpurkar et al., 2016) tests reading
comprehension through extractive question answer-
ing. We limit generation to 64 tokens to prevent
models from simply reproducing input passages.
For unanswerable questions, we allow models to
generate either predefined templates (e.g., “No An-
swer“) for unconstrained generation or null val-
ues for constrained generation.

We calculate EMIN (Exact Match In), which
measures whether the generated text contains the
correct answer span.

SQuAD Advanced extends the basic task to eval-
uate complex structurs. Models must answer mul-
tiple questions simultaneously, returning results
in a single JSON object. To maintain consistent
few-shot learning conditions, we provided similar
examples of context and questions. Given the com-
plexity of this multi-question format, we focused
our evaluation on structured data.

IFEval (Zhou et al., 2023) evaluates instruction-
following capabilities through constraints like
avoiding specific punctuation or formatting require-
ments. Following the original methodology, we
report both strict and loose adherence metrics at
prompt and instruction levels.

FActScore (Min et al., 2023) measures
factual accuracy in biographical generation.
We adapt the original implementation to use
Llama3.1-8B-Instruct for fact extraction
and verification. Our FactScore Advanced variant
additionally prompts readily verifiable biographical
details and the biographical text: birth year, birth-
place, and occupation. We use EMIN to verify the
presence of these details in natural text responses.
We incorporate these three biographical fields di-
rectly into our generation schema for constrained
generation and evaluate those fields. We further ex-
clude entities whose names are shared by multiple
notable individuals.

Classification Tasks we evaluate include
MMLU (Hendrycks et al., 2021) and Truth-
fulQA (Lin et al., 2022). We evaluate accuracy
by computing log-likelihoods across answer
candidates, simulating constrained decoding
through structured prefixing.

3.3 Hyperparameters
We use vLLM1 for inference with greedy decoding
(temperature=0.0) to ensure reproducibility (Lee,
2023). Maximum generation length is set to 2,048
tokens unless task-specific limits apply.

For in-context learning, we provide n = 9 ex-
amples for SQuAD variants, n = 5 for MMLU,
and n = 0 for TruthfulQA, FActScore, and IFEval,
following original implementations. For tasks with
training sets, we treat prompt selection as a hyper-
parameter, optimizing from a diverse prompt pool
for each model-task-decoding combination.

We enforce the structured format with
outlines (Willard and Louf, 2023):

1https://github.com/vllm-project/vllm

https://github.com/vllm-project/vllm
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• Simple schemas: Basic tasks use
{"answer": [str|null]}

• Complex schemas: Advanced variants em-
ploy structures with multiple fields

• Classification constraints: Simulated
through {"answer": " prefixing

All prompts follow best practices, providing ex-
plicit format examples and clear structural specifi-
cations. Experiments utilized a single H100 GPU,
consuming approximately 1,200 GPU hours total.

4 Results

4.1 SQuAD

In Table 1 we observe that unstructured outputs
generally yield higher scores across most models,
particularly for instruction-tuned variants. For in-
stance, Phi-3-Instruct achieves an EMIN score of
72.8% with unconstrained decoding, while the per-
formance drops to 63.2% with constrained gener-
ation. Interestingly, we observe different behav-
ior in base models, where structured outputs often
lead to better results. Llama3-8B Base, for ex-
ample, shows better performance with structured
outputs (59.6%) compared to unconstrained gen-
eration (42.5%). This suggests that balancing the
goal of adhering to format constraints with that
of providing accurate answers remains challeng-
ing for instruction-tuned models. In contrast, the
constraints appear to aid base models that lack
instruction-tuning, serving as a form of output guid-
ance. On SQuAD Advanced, the performance
drops significantly across all models. Mistral-7B-
Instruct, which performs best in both unconstrained
(81.1%) and constrained (73.7%) scenarios, drops
to 47.3% with advanced constraints. The base mod-
els show an similar degradation.

4.2 IFEval

Table 2 presents the strict and loose compliance
scores under both constrained and unconstrained
decoding for different models.

The results demonstrate that unconstrained de-
coding generally leads to higher compliance scores
in both strict and loose evaluations. For instance,
Llama3-8B-Instruct achieves a strict instruction
compliance score of 84.1% with unconstrained de-
coding, compared to 52.6% with constrained decod-
ing. This shows that models are better at following

Models Unconstrained Constrained Advanced

Llama3-8B
Base 42.5 59.6 31.0
Instruct 75.1 72.7 59.5

Deepseek
Base 75.9 53.3 23.1
Chat 68.2 56.9 23.1

Deepseek-Coder
Base 75.4 58.1 25.2
Instruct 67.6 57.2 36.9

Mistral-7B
Base 64.7 71.5 29.6
Instruct 81.1 73.7 47.3

OLMo-7B
Base 72.0 38.0 9.3
Instruct 59.4 50.6 11.8

Phi-3 Instruct 72.8 63.2 41.5

Table 1: Results for SQuAD on the EMIN metric. Num-
bers are percentages rounded to one decimal place. The
best metric per type is marked in bold.

instructions when not constrained by a specific out-
put format. As with SQuAD, most Base-models
improve performance with constrained decoding.

4.3 FActScore

Table 3 the results on the evaluation for standard
and advanced FActScore. For standard FActScore,
the differences in factual accuracy between con-
strained and unconstrained outputs are modest.
Base models such as Llama3-8B-Base achieve sim-
ilar scores under both conditions (47.3% for con-
strained versus 44.6% for unconstrained).

In the advanced FActScore evaluation, we ob-
serve larger performance gaps. Notably, OLMo-
Base exhibits a substantial difference between
constrained (26.3%) and unstructured (54.4%)
outputs. In contrast, instruction-tuned models
such as Llama3-8B-Instruct show greater stabil-
ity, with scores showing slight variation between
constrained (44.2%) and unconstrained (37.8%)
generation.

The generation of specific biographical details,
shows a big contrast between base and instruction-
tuned models. For example, Llama3-8B-Base
achievs an accuracy of 35.3% in a constrained for-
mat while completely failing (0%) in an uncon-
strained format. This further shows that structural
constraints can significantly aid base models in
following instructions. Instruction-tuned models,
however, demonstrate more consistent performance
across formats. For instance, Mistral-7B-Instruct
maintains an accuracy of around 34% in both con-
ditions.

An interesting pattern arises regarding the num-
ber of facts generated: base models consistently
produce far more facts in unconstrained settings.
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Strict Loose

Instruction Prompt Instruction Prompt

Models Constrained Unconstrained Constrained Unconstrained Constrained Unconstrained Constrained Unconstrained

Llama3.1-8B
Base 28.7 3.2 16.6 1.8 28.4 3.7 16.5 2.6
Instruct 52.6 84.1 38.6 77.4 52.6 86.7 38.6 80.6

Deepseek
Base 27.3 29.9 14.4 16.1 27.3 31.1 14.4 16.8
Chat 31.2 47.4 19.8 36.8 31.2 50.5 19.8 40.5

Deepseek-Coder
Base 30.7 16.1 18.7 11.5 30.7 16.7 18.7 11.6
Instruct 30.7 39.2 20.9 29.4 30.8 39.9 20.9 30.3

Mistral-7B
Base 26.0 27.5 12.8 17.9 26.0 28.9 12.8 18.5
Instruct 44.2 60.0 31.4 49.2 44.4 63.5 31.6 52.9

OLMo-7B
Base 27.1 33.9 14.2 20.5 27.1 34.9 14.2 21.4
Instruct 28.9 42.7 18.5 31.6 28.7 46.5 18.5 35.5

Phi-3 Instruct 40.9 60.4 28.5 49.0 41.0 64.5 28.7 53.8

Table 2: IFEval results for different models across constrained and unconstrained instruction and prompt settings,
with metrics rounded to one decimal place. The results are split between strict and loose evaluation criteria. The
best metric per type is marked in bold.

Llama3-8B-Base generates an average of 832 facts
per response in the unconstrained advanced eval-
uation, compared to just 28 facts in the structured
format. Instruction-tuned models show more re-
strained behavior in terms of fact generation. For
example, Mistral-Instruct generates around 70 facts
per response in the unconstrained advanced evalua-
tion, compared to 16 in the constrained evaluation,
a much smaller ratio than that seen in base models.

4.4 Classification Task

The results in Table 4 shows a smaller impact of
constrained decoding on classification tasks, com-
pared to open-ended generation tasks. For MMLU,
most models exhibit similar performance under
both structured and unstructured settings. For in-
stance, Mistral-7B-Instruct achieves 60% accuracy
under constrained decoding and 61% in uncon-
strained settings.

However, one exception is Phi-3, which shows
an improvement from 55% to 67% when using un-
constrained decoding on MMLU. For TruthfulQA,
we observe mixed results in performance under
constrained decoding. For example, Llama3-8B-
Instruct achieves 55% accuracy with structured out-
puts but this decreases to 52% with unstructured
outputs, while for OLMo-7B-Instruct, the accuracy
increases from 24% with structured outputs to 27%
with unstructured outputs.

Unlike in generation tasks, the performance of
classification tasks remains relatively stable under
output format constraints. We argue that this sta-
bility comes from the models merely being tasked
with selecting among predefined answers, making
it inherently a constrained decoding task.

4.5 The Effect of Base vs. Instruction-Tuned
Models

Our experiments reveal different patterns between
base and instruction-tuned models under con-
strained decoding. While instruction-tuned models
generally outperform base models in both struc-
tured and unstructured settings, they often exhibit
larger performance drops when constraints are ap-
plied. This performance reduction may stem from
a conflict between their learned objective to fol-
low diverse human instructions and the structure
imposed by constrained output formats. The mod-
els appear to struggle with balancing adherence
to specific output structures while interpreting and
executing given instructions effectively.

Base models, on the other hand, frequently ben-
efit from structured constraints. This improvement
suggests that for models without instruction-tuning,
constrained decoding provides valuable guidance
that helps focus their outputs. This finding has
important implications: evaluating base models
with constrained decoding before instruction tun-
ing could provide insights into their potential struc-
tured output capabilities post-tuning.

4.6 Does Code-Specific Pretraining Help?

We also examined the effects of code-specific pre-
training on model performance, particularly in the
context of constrained decoding. Our hypothesis
was that pretraining on source code could enhance
a model’s ability to handle structured outputs due
to the inherently structured nature of programming
languages.

However, as shown in Table 1 and Table 2, the
impact of code-specific pretraining is not straight-
forward. In the SQuAD task, the DeepSeek-
Coder-7B-Base model demonstrates higher per-
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Standard Advanced Bio Accuracy

Models Constrained Unconstrained Constrained Unconstrained Constrained Unconstrained

Llama3-8B
Base 47.3 (38.7) 44.6 (434.7) 39.3 (28.1) 52.1 (832.1) 35.3 0
Instruct 46.7 (45.3) 36.4 (102.9) 44.2 (20.5) 37.8 (12.3) 36.2 35.2

Deepseek
Base 39.1 (84.5) 39.2 (431.2) 30.6 (18.9) 33.4 (501.4) 22.1 26.4
Chat 38.5 (46.5) 34.3 (105.9) 44.2 (22.7) 41.4 (68.1) 24.3 28.3

Deepseek-Coder
Base 29.9 (50.0) 28.7 (597.0) 26.4 (22.9) 35.2 (646.2) 8.1 8.2
Instruct 30.2 (32.7) 19.5 (30.4) 31.2 (30.2) 14.0 (45.1) 12.3 0

Mistral-7B
Base 48.5 (39.6) 38.3 (448.3) 37.8 (20.1) 40.3 (521.8) 28.2 33.8
Instruct 37.2 (38.8) 33.0 (100.4) 42.4 (16.3) 39.7 (70.6) 34.7 34.3

OLMo-7B
Base 31.3 (36.7) 40.3 (548.1) 26.3 (28.6) 54.4 (465.1) 10.8 6.4
Instruct 26.3 (52.3) 28.8 (169.6) 23.8 (42.7) 34.3 (65.1) 15.2 17.8

Phi-3 Instruct 35.4 (54.9) 28.7 (163.3) 39.0 (46.1) 33.1 (110.6) 26.3 28.3

Table 3: FActScore results across basic and advanced evaluation settings, reporting factual accuracy scores along
with the average number of facts per response (in parentheses). The Bio Accuracy columns show performance on
biographical detail extraction. The best metric per type is marked in bold.

MMLU TruthQA

Models Constrained Unconstrained Constrained Unconstrained

Llama3-8B
Base 24.4 24.3 23.8 18.5
Instruct 41.0 54.4 56.1 51.8

Deepseek
Base 46.2 48.1 20.7 19.8
Chat 46.7 48.3 27.2 31.9

Deepseek-Coder
Base 47.4 48.9 21.5 22.2
Instruct 33.3 37.4 32.7 16.9

Mistral-7B
Base 52.9 48.7 23.0 31.2
Instruct 59.9 61.1 37.5 49.2

OLMo-7B
Base 27.5 27.9 24.6 22.8
Instruct 46.8 48.0 23.6 26.6

Phi-3 Instruct 55.4 67.4 56.1 62.9

Table 4: Accuracy for MMLU and TruthQA. The best
accuracy per type and task is marked in bold.

formance with unconstrained decoding (EMIN
score of 75.4%) compared to constrained decod-
ing (58.1%), unlike to other base models. The
DeepSeek-Coder-7B-Instruct model also follows
this pattern, performing better with unconstrained
decoding.

For IFEval, the DeepSeek-Coder models do
not show significant improvements over models
without code-specific pretraining. The DeepSeek-
Coder-7B-Instruct model achieves a strict instruc-
tion compliance score of 30.7 with structured out-
puts, which is similar to the non-code pretrained
models.

These findings suggest that code-specific pre-
training does not necessarily improve the model’s
performance in tasks requiring structured outputs
in natural language.

5 Further Investigations

This section presents detailed analyses examin-
ing why constrained decoding affects model per-
formance differently than unconstrained decoding.
We investigate the causes of these performance dif-
ferences and explore potential mitigation strategies,
focusing our analysis on the SQuAD dataset.

5.1 Do Models Require Adapted Prompts?

We investigate whether models can successfully
adapt to output constraints without explicit prompt-
ing. To test this, we apply constrained decoding to
models using natural prompt, keeping all other pa-
rameters constant. This approach allows us to iso-
late the effect of schema enforcement from prompt
adaptation.

Table 5 shows a accuracy degradation when
constrained decoding is applied without adapted
prompts. Most notably, Mistral-7B-Base accuracy
drops from 71.5% with to just 4.6% when using
the unstructured prompt with constrained decod-
ing. These findings demonstrate that schema en-
forcement alone is insufficient and models require
prompts explicitly designed to guide structured out-
put generation. Without such guidance, models
struggle to adapt their natural generation patterns
with the imposed structural constraints.

Models Constrained ConstrainedUnconstrained-Prompt

Llama3-8B
Base 59.6 37.7
Instruct 72.7 71.5

Deepseek
Base 53.3 4.8
Chat 56.9 53.5

Deepseek-Coder
Base 58.1 12.1
Instruct 57.2 57.3

Mistral-7B
Base 71.5 4.6
Instruct 73.7 70.9

OLMo-7B
Base 38.0 14.8
Instruct 50.6 17.4

Phi-3 Instruct 63.2 70.0

Table 5: Performance comparison of constrained decod-
ing with adapted prompts against constrained decoding
against natural prompts. The best metric per type is
marked in bold.
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Figure 2: Average EMIN scores across all models as a
function of the number of in-context examples (k). Con-
strained decoding shows steeper improvements with
additional examples compared to unconstrained decod-
ing.

5.2 How Many Examples Are Necessary?

We examined how the number of in-context exam-
ples (k-shot learning) affects model performance
under both constrained and unconstrained decod-
ing. We hypothesize that providing more examples
would improve performance by clarifying both the
task requirements and the expected output format.

We evaluate models with k ranging from 0 to 9
shots, measuring average EMIN scores across all
models for each configuration.

Figure 2 shows that constrained decoding has
substantial improvement as k increases, while un-
constrained decoding achieves only modest gains.
This disparity suggests that models not specifically
trained for structured output generation require
more demonstrative examples to effectively learn
the output format constraints.

Combined with our findings from subsection 5.1,
these results establish that effective constrained
decoding benefits from explicit structural speci-
fications in prompts and sufficient demonstrative
examples.

5.3 Does Reasoning Improve Performance?

Inspired by Kojima et al. (2022)’s findings that
explicit reasoning steps enhance language model
performance, we investigate whether incorporating
explanatory reasoning into the structured output
format improves answer quality.

We augment the output structure with a
thinking field that precedes the answer field
in SQuAD tasks. Prompts are modified to explicitly
request explanatory reasoning, using instructions
such as “Provide an explanation for your answer
before stating the final answer in the thinking field.”

Table 6 shows that this modification generally
degrades performance across models, with some
high performance drops (e.g., Phi-3 declined from

63.2% to 36.8%). These results suggest that manag-
ing both reasoning generation and structural com-
pliance simultaneously may exceed current model
capabilities, leading to degraded performance on
both aspects of the task.

Models Constrained ConstrainedThinking

Llama3-8B
Base 59.6 21.0
Instruct 72.7 70.5

Deepseek
Base 53.3 36.4
Chat 56.9 40.0

Deepseek-Coder
Base 58.1 43.1
Instruct 57.2 55.4

Mistral-7B
Base 71.5 40.4
Instruct 73.7 37.3

OLMo-7B
Base 38.0 21.0
Instruct 50.6 13.2

Phi-3 Instruct 63.2 36.8

Table 6: Performance impact of requiring explanatory
reasoning before answer generation. The best metric
per type is marked in bold.

5.4 Log Probability Analysis
To understand the mechanism underlying perfor-
mance degradation in constrained generation, we
analyze log probabilities for cases where uncon-
strained generation succeeded but constrained gen-
eration failed. For each such case, we compared:
(1) the log probability of the first answer token
under unconstrained generation, and (2) the log
probability of the first token following the answer
delimiter under constrained generation.

Figure 3 reveals significantly lower log prob-
abilities under constrained generation. This indi-
cates that grammar constraints prevent models from
generating their preferred tokens, typically natural
language constructs like explanatory phrases or
contextual statements. Instead, constrained decod-
ing enforces less confident alternatives that comply
with the structural requirements.

The substantial probability gap suggests that
models’ highest-confidence predictions often in-
volve natural language patterns incompatible with
strict structural constraints. This forces selection
from lower-probability distributions, explaining the
observed performance degradation.

Our analysis extends Wang et al. (2024)’s find-
ings on misalignment between first-token predic-
tions and final outputs by identifying the specific
mechanism: grammar constraints force models
away from their preferred natural language patterns
into less confident structured alternatives.
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unconstrained succeeded but constrained failed. Lower
probabilities under constrained generation indicate re-
duced model confidence when forced to comply with
structural constraints.

6 Conclusion

In this paper we investiaged how constrained decod-
ing affects LLMs when generating structured JSON
outputs. Our comprehensive evaluation reveals sev-
eral critical insights with significant implications
for both research and practical applications.

First, we discovered a fundamental divergence
between base and instruction-tuned models under
constrained decoding. Base models often benefit
from structural constraints, producing more precise
and concise outputs. Contrarily, instruction-tuned
models exhibit mixed results: while maintaining
performance on classification tasks, they suffer no-
table degradation on generation tasks. This finding
suggests a practical implication for model devel-
opment: researchers and practitioners could as-
sess a base model’s inherent capacity by testing
it with constrained decoding before investing re-
sources in instruction tuning. Such pre-tuning eval-
uation could serve as a indicator of the model’s
post-tuning performance, enabling more informed
decisions about which base models are best suited
for instruction-tuning.

Second, model performance show strong sensi-
tivity to structural complexity. While simple struc-
tured outputs are no challenge, performance dete-
riorates quickly as output structures become more
complex. This degradation is evident when com-
paring simple question-answering tasks with our
advanced multi-question evaluation scenarios.

Third, successful constrained decoding requires
more than just schema enforcement. It requires a
combination of carefully crafted prompts and suf-
ficient demonstrative examples. Our experiments
reveal that models cannot effectively adapt to struc-

tural constraints through prompt engineering alone;
they also require in-context examples to learn the
output format. While unconstrained generation
shows modest improvements with additional ex-
amples, constrained decoding shows steeper per-
formance gains as the number of demonstrations
increases. This finding underscores that effective
structured output generation necessitates both ex-
plicit structural guidance in prompts and adequate
few-shot examples to help models internalize the
required format.

Fourth, our log probability analysis reveals the
mechanism underlying performance degradation:
constrained decoding prevents models from gener-
ating their preferred natural language constructs,
forcing selection from lower-confidence token dis-
tributions that comply with structural requirements.
This constraint-induced confidence reduction ex-
plains much of the observed performance decline
in constrained settings.

These findings highlight promising avenues for
future research. Key directions include integrating
structured output examples directly into instruction-
tuning or incorporating constrained decoding mech-
anisms into the training process itself. By expos-
ing models to structural constraints during training
rather than only at inference time, we could poten-
tially develop models that naturally generate well-
formed structured outputs without the performance
penalties currently observed.

We release our evaluation framework and
code at https://github.com/Maxscha/

complex-constrained-decoding-eval to
facilitate further research in this area.
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