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Abstract
With the increasing reliance on LLMs as re-
search agents, distinguishing between LLM
and human-generated ideas has become cru-
cial for understanding the cognitive nuances of
LLMs’ research capabilities. While detecting
LLM-generated text has been extensively stud-
ied, distinguishing human vs LLM-generated
scientific ideas remains an unexplored area. In
this work, we systematically evaluate the abil-
ity of state-of-the-art (SOTA) machine learn-
ing models to differentiate between human
and LLM-generated ideas, particularly after
successive paraphrasing stages. Our findings
highlight the challenges SOTA models face in
source attribution, with detection performance
declining by an average of 25.4% after five
consecutive paraphrasing stages. Additionally,
we demonstrate that incorporating the research
problem as contextual information improves
detection performance by up to 2.97%. No-
tably, our analysis reveals that detection algo-
rithms struggle significantly when ideas are
paraphrased into a simplified, non-expert style,
contributing the most to the erosion of distin-
guishable LLM signatures.

1 Introduction

Recent advances in LLMs have demonstrated ex-
traordinary capabilities extending far beyond mun-
dane conversational tasks (Boiko et al., 2023; Zhao
et al., 2023a). Notably, these models can even en-
gage in complex cognitive activities traditionally
reserved for human intellect, such as hypothesis
generation, reasoning, and scientific inquiry (Boiko
et al., 2023; Si et al., 2024). This remarkable de-
velopment raises a fundamental question: Given
humanity’s millennia-long tradition of knowledge
creation and dissemination– and the subsequent
encoding into vast linguistic datasets: can we still
reliably discern whether novel ideas originate from
humans or are algorithmically produced by LLMs?

Si et al. showed that LLMs can generate more
novel ideas compared to human experts, though

these ideas are not always practically feasible (Si
et al., 2024). While novelty definitions carry inher-
ent subjectivity, on a broader scale, LLMs still ex-
hibit significant capability in producing innovative
research ideas. As such, distinguishing between
ideas generated by LLMs vs humans becomes in-
creasingly important, as it provides deeper insights
into LLM cognitive patterns, ensures academic in-
tegrity, and aids in maintaining transparency by
clearly attributing authorship, ultimately influenc-
ing trust in scholarly contributions and guiding re-
sponsible AI deployment in research contexts.

While prior research on detecting LLM-
generated text has focused on watermarking (Zhao
et al., 2023b), zero-shot methods (Yang et al., 2023;
Mitchell et al., 2023), and fine-tuned classifiers
(Hu et al., 2023), our study takes a fundamentally
different approach. Rather than identifying LLM-
generated text, we examine the resilience of ideas–
which persist beyond surface-level writing styles.
Unlike text, ideas are conceptually immutable; a
human-conceived idea remains human in essence,
even if heavily paraphrased by an LLM. We in-
vestigate whether these underlying origins: human
or LLM—remain detectable after successive para-
phrasing and stylistic transformations. To the best
of our knowledge, this is the first study to explore
scientific idea attribution in such a nuanced and
dynamic setting.

Ideas manifest across diverse contexts, but in
this research, we define an “idea” specifically as
a proposed solution addressing a given research
problem, using ‘scientific idea’ and ‘idea’ inter-
changeably. Scientific ideas inherently reflect nu-
anced thinking and careful planning, which distin-
guishes them from mere linguistic outputs. For-
mally, given a research problem RP , an idea can
be represented as a response r = f(RP ), where
f denotes either human or LLM generation. To
evaluate whether the essence of human or LLM-
generated ideas persists through stylistic variations,
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Figure 1: Idea Generation and Paraphrasing Workflow: The process begins with extracting the Research Problem
from papers and then generate corresponding scientific ideas using six different LLMs. Both human and LLM-
generated ideas are first summarized and subsequently paraphrased across five stages using four distinct paraphrasing
techniques (To reduce visual clutter and redundancy, we abstracted Stages 3 and 4, as they represent similar
paraphrasing strategies).

we iteratively paraphrase these ideas through mul-
tiple stages. At each paraphrasing stage n, the idea
transforms as rn = fpn(rn−1, RP ). Paraphrasing
serves two critical purposes: firstly, in real-world
scenarios, ideas are communicated through var-
ied expressions and settings—yet retain their core
meaning; secondly, without paraphrasing, classi-
fiers might easily identify the source due to stylistic
cues specific to scientific paper writing, conflating
stylistic detection with genuine idea detection.

In this research, We collect 846 papers from
five top CS conferences to extract their main re-
search problems. We then prompt LLMs to gen-
erate original ideas for each problem. Human-
generated (from papers) and LLM-generated ideas
undergo systematic summarization and multi-stage
paraphrasing using four strategies: general para-
phrase, simplified summary, brief summary, and
detailed technical paraphrase. Figure 1 illustrates
this workflow.

We employ SOTA classifiers to assess detection
performance across paraphrasing stages, revealing
an average decline of 25.4% from Stage 1 to Stage
5. This deterioration suggests that characteristic
“LLM signatures” initially present in earlier stages–
such as specific word choices, linguistic patterns, or
stylistic markers—gradually diminish through suc-
cessive paraphrasing. As these superficial markers
fade, traditional text-based classifiers increasingly
struggle to differentiate between human and LLM-

generated ideas.
Our main contributions are as follows:

• We create and release a comprehensive dataset
consisting of original and multi-stage para-
phrased scientific ideas, systematically gener-
ated using cutting-edge LLMs.

• Through extensive evaluation using vari-
ous classification algorithms, we empirically
demonstrate the inherent challenges involved
in identifying LLM-generated ideas, partic-
ularly as these ideas undergo iterative para-
phrasing and stylistic transformations.

2 Related Works

LLMLu et al. introduced AI Scientist, an end-to-
end framework designed for scientific discovery
using LLMs. This framework autonomously gener-
ates novel research ideas, implements experimen-
tal code, executes experiments, visualizes results,
composes scientific papers, and even simulates a
peer-review process to evaluate its findings (Lu
et al., 2024). Similarly, Baek et al. proposed a re-
search agent capable of automatically formulating
problems, suggesting methods, and designing ex-
periments. Their approach iteratively refines these
elements through feedback provided by collabora-
tive LLM-powered reviewing agents (Baek et al.,
2024).
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Li et al. developed specialized LLM-driven
agents, namely IdeaAgent and ExperimentAgent,
tailored for research idea generation, experimental
implementation, and execution within the machine
learning domain (Li et al., 2024). OpenAI’s Deep
Research initiative demonstrated the potential of
LLMs to gather, analyze, and synthesize extensive
online resources, producing comprehensive reports
like those of human research analysts (OpenAI,
2025b).

Si et al. conducted a comparative study on
the novelty of ideas generated by expert NLP
researchers and LLM ideation agents (Si et al.,
2024). Their results suggested that LLMs can gen-
erate ideas that surpass human-generated ideas in
terms of novelty. However, their approach involved
prompting-based idea generation across predefined
NLP topics. In contrast, our research explicitly de-
fines an idea as a response to a given research prob-
lem. This definition allows for a more unbiased
comparison between human and LLM-generated
ideas and reduces topic-related bias.

Unlike previous studies primarily focused on
enabling research potential of LLMs, and compar-
ing novelty, our work shifts attention toward the
challenge of detection. Specifically, we investi-
gate the inherent difficulty of distinguishing human-
generated ideas from those produced by LLMs, es-
pecially as these ideas undergo multiple stages of
paraphrasing.

3 Methodology

To generate research ideas, we first extract re-
search problems from scientific papers and feed
these into LLMs. Subsequently, we apply cas-
cading paraphrasing to both human-written and
LLM-generated ideas. Finally, we evaluate the dis-
tinguishability of these ideas at each paraphrasing
stage using several SOTA classifiers.

3.1 Data Collection

2017 2018 2019 2020 2021
ACL 19 15 12 35 19
EMNLP 13 27 27 43 38
ICLR 1 15 15 29 39
ICML 28 24 34 32 51
NeurIPS 37 39 56 101 97

Table 1: Conference counts by publication year.

To compile our dataset, we first sample 846 sci-

entific papers from a larger collection drawn from
five A*-rated computer science conferences—ACL,
EMNLP, ICLR, ICML, and NeurIPS—spanning
2017 to 2021 (CORE: Computing Research and
Education Association of Australasia, 2025). This
sample size was chosen primarily due to the sub-
stantial computational and financial resources re-
quired for large-scale generation and extensive cas-
cading paraphrasing using SOTA LLM APIs. Ta-
ble 1 summarizes the sampled dataset, while de-
tailed statistics are available in our repository.1 We
include only papers published up to 2021 to ensure
the integrity of our analysis, as this guarantees that
the ideas originate purely from humans, predating
the release of ChatGPT in 2022 (OpenAI, 2025a).

3.2 Extracting Research Problem

We extract the research problem from the first two
pages of each paper, selecting five different LLMs
at random for each extraction. In general, these
pages encompass the abstract and introduction,
where problem statements are typically presented
either explicitly or implicitly. To minimize the risk
of LLMs incorporating elements of the solution,
we explicitly prompt them to focus solely on the
problem itself (find the prompts in Appendix) 1.

3.3 LLM Idea Generation

The extracted research problem is used as input to
the LLM along with carefully designed instructions
to generate potential research ideas. This process
constitutes the core of LLM-driven idea generation.
We employ two distinct prompting strategies. The
first is a general prompting approach, where the
LLM is simply instructed to provide a detailed re-
search solution. The second approach, inspired by
the idea generation technique outlined in (Si et al.,
2024), involves a more structured prompt with step-
by-step guidance on explaining the methodology,
techniques employed, novelty, and contributions.
While both approaches yielded comparable results,
the latter tends to produce slightly more detailed
and descriptive responses. To incorporate both
prompting styles, we apply the general prompting
method to half of the samples and the structured
approach to the remaining half. A detailed descrip-
tion of both prompting strategies is provided in
Appendix 1.

1Check the Appendix of the full paper: https:
//github.com/sadat1971/Erosion_LLM_
Signatures/blob/main/Paper/RANLP_
_LLMErosion_cameraReady.pdf
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3.4 Idea Paraphrasing

Since we want to differentiate ideas generated by
humans from those produced by LLMs, a direct
comparison between LLM-generated ideas and re-
search papers (first two pages) is not feasible. This
is primarily due to the presence of stylistic cues
that algorithms can easily detect, as well as incon-
sistencies in formatting across these two categories.
Consequently, distinguishing ideas at this stage
would not be reliable.

Hence, we employ a multi-stage cascade of sum-
marization and paraphrasing. In the first stage
(Stage 1), we generate a three-paragraph summary
of both the first two pages of each paper and the
corresponding LLM-generated ideas. In the second
stage, we apply four distinct paraphrasing strategies
to each summary: (i) general paraphrasing, (ii)
paraphrasing for a simplified non-expert audi-
ence, (iii) brief summarization, and (iv) detailed
technical paraphrasing. This paraphrasing pro-
cess continues in a cascaded manner across a total
of five stages. To prevent excessive compression
or the introduction of additional information, we
avoid consecutive applications of the same para-
phrasing type. Appendix C.3 shows the instruction
prompts to generate these paraphrases.

Through this approach, we obtain 846 para-
phrases in Stage 1. From Stages 2 to 5, this expands
to 3,384 paraphrases for both LLM-generated and
human-written ideas. In total, our process yields
28,764 paraphrased versions of research ideas. One
of the authors also manually verified a 1% of the
samples across all paraphrasing stages to ensure
consistency.

3.5 Generative LLMs

We utilize six best-performing LLMs to generate
data for research problem extraction, idea genera-
tion, and the five stages of idea paraphrasing. To
ensure optimal performance, we conduct small-
scale experiments and manual evaluations of the
quality of generated outputs across different LLMs.
Additionally, we consider the cost of API usage as
a factor in model selection. Based on these trade-
offs, we selected three models from OpenAI (Ope-
nAI, 2025c) and three from Anthropic (Anthropic,
2025).

From OpenAI’s suite of models, we use GPT-4o,
GPT-4o-mini, and O3-mini. From Anthropic, we
employ Claude-3.5-Haiku, Claude-3.5-Sonnet,
and Claude-3-Opus. Across all stages of our study,

63% of the data was generated using OpenAI’s
models, while the remaining 37% was produced us-
ing Anthropic’s models. Table 2 presents the exact
distribution of data generation across the selected
LLMs.

To minimize topic bias, we ensured that the same
LLM was used for both summarizing the research
paper and generating the summary of the corre-
sponding LLM-generated idea. This consistency
was maintained throughout the paraphrasing pro-
cess as well.

LLM % of Data
gpt-4o-mini 41.37

gpt-4o 5.91
gpt-o3-mini 17.73

claude-3-5-haiku 23.64
claude-3-5-sonnet 7.09

claude-3-opus 4.26

Table 2: Percentage of data generated by each flagship
LLMs

3.6 Classifiers

We evaluated four fine-tuned language models and
four text embedding methods, each coupled with
downstream classification layers. First, we em-
ployed BERT (bert-base-uncased) as our baseline,
owing to its proven ability in capturing bidirec-
tional contextual information (Devlin et al., 2019).
RoBERTa (roberta-base), known for its more ex-
tensive pretraining, is included as a strong compara-
tive choice (Liu et al., 2019). Additionally, BigBird
(BigBird-RoBERTa-base) is selected due to its ef-
ficient handling of long sequences by employing
a sparse attention mechanism, thus avoiding the
quadratic complexity in traditional transformers
(Zaheer et al., 2020). Finally, we incorporate T5
(t5-base), a text-to-text transformer featuring an
encoder-decoder architecture that fundamentally
differs from BERT-style models by translating in-
put text into target text (Raffel et al., 2020).

For embedding-based representations, we use
the sentence-transformers’ all-MiniLM-L6-v2 as
our baseline, encoding text into 384-dimensional
vectors (Wang et al., 2020). Additionally, we se-
lected three advanced embedding models—GIST-
Embedding-v0 (Solatorio, 2024), gte-base-en-v1.5
(Zhang et al., 2024), and stella en 400M v5 (Zhang
et al., 2025), which consist of 109M, 137M, and
435M parameters respectively.
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These specific embedding models were chosen
based on initial exploratory experiments and by
carefully considering the trade-offs between model
size and ranking performance (Face, 2025). Each
embedding representation was subsequently cou-
pled with a downstream two-layer Feed-Forward
Neural Network (FFNN).

4 Experimental Setup

For the experiments, we prepare dataset using a
systematic train-test splitting approach to ensure
unbiased evaluation. Initially, we have 1,692 sam-
ples in Stage 1, comprising equal portions of LLM-
generated and human-generated ideas. For sub-
sequent stages (Stage 2 to Stage 5), the dataset
expanded to include 6,768 samples, incorporating
four distinct paraphrasing styles for each original
idea. To avoid data leakage, we perform splits such
that there was no overlap between the original so-
lution (and the research problem) in the training
and test sets, meaning each problem-solution was
exclusive to either the training or testing partition
across all stages. This strategy ensures that all
paraphrases derived from the same initial research
problem statement remain consistently within the
same partition, thus maintaining dataset integrity.

We conduct three random train-test splits and re-
port the averaged results across these splits. From
each training split, we further allocate 20% of the
data as a validation set, specifically used for hy-
perparameter tuning. We perform tuning for batch
size, number of epochs, dropout rate, and early
stopping criteria.

For all our experiments, we use NVIDIA TITAN
RTX (24 GB), Quadro RTX 8000 (48 GB), and
NVIDIA GeForce RTX 2080 Ti (11 GB) GPUs.
We report the macro F1-score to report the perfor-
mances.

5 Results and Discussion

We evaluate the performance of various algorithms
in idea-source detection (Table 3). Stage 1 achieves
the highest F1-score (¿90% for BigBird, Stella)
across many different models. We also find, even
a simple logistic regression model attains 77%,
suggesting strong lexical cues. Words like hybrid,
transformer, adaptive, intelligently, dynamically,
and advanced are highly correlated with LLM-
generated text.

To further analyze this, we apply Integrated Gra-
dients (IG) Visualization with RoBERTa (Figure 2)

the main idea is to develop adaptive

momentum - regularized federated

optimization (AMRFO) , a framework

designed to enhance convergence rates
and reduce communication overhead in
distributed machine learning . AMRFO
achieve this by employing a multi-stage

adaptive regularization mechanism

that includes adaptive momentum

scaling, stochastic communication
compression , and stability -aware gradient

normalization thereby balancing commu-

nication efficiency , convergence speed ,

and algorithmic stability in federated

learning environments .

Figure 2: Integrated Gradients Visualization: Green
highlights words that contribute to classifying the text
as human-written, while red highlights words that push
the classification toward LLM-generated content. The
overall text is LLM-idea-summarized

(Sundararajan et al., 2017). IG attributes model pre-
dictions by integrating gradients from a baseline
input to the actual input, quantifying feature im-
portance. We find terms like adaptive, framework,
regularized, and stability align with LLMs, likely
due to their prevalence in structured academic writ-
ing, whereas domain-specific terms like federated
and momentum are more indicative of human ideas.

We observe, BigBird consistently outperforms
all other models, leveraging its superior context-
length capability to capture both the research
problem (RP) and idea representation effectively.
Among fine-tuned models (BERT, RoBERTa, T5,
BigBird), RoBERTa slightly outperforms BERT,
while high-quality embeddings like Stella and GTE
surpass idea-only models such as BERT, RoBERTa,
and T5 in most stages, highlighting the advantage
of robust embedding spaces.

5.1 Learning Difficulties with the Progression
of Praraphrasing Stages

As training progresses across stages, a consistent
decline in performance is observed, as depicted in
Figure 3. When cross-stage train-test is performed,
Stage 1 shows a larger degradation, since it con-
tains only 25% of the data compared to the later
stages. In Stages 2 to 5, models generally achieve
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Single Stage Training Combined Stage Training
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

BERT 85.8 74.1 67.1 63.2 61.1 80.7 72.6 66.1 62.4 61.2
RoBERTa 88.1 74.4 70.3 63.8 62.7 84.1 75.2 70.8 66.7 63.9
T5 84.2 65.4 59.0 54.4 49.9 89.7 81.0 72.1 67.1 64.0
Bigbird (RP+idea) 92.3 83.4 70.9 65.1 63.2 90.5 81.4 72.2 67.2 64.9
MiniLM +FFNN (idea) 81.2 66.6 59.3 57.0 55.1 75.2 64.2 59.6 57.2 56.0
MiniLM +FFNN (RP+idea) 83.2 69.4 61.6 58.0 56.3 75.9 66.3 60.1 60.0 57.0
GIST +FFNN (idea) 83.9 71.9 64.7 60.7 53.3 78.2 70.0 64.1 61.3 58.7
GIST +FFNN (RP+idea) 86.9 73.0 65.3 61.1 59.1 78.4 70.9 64.2 61.4 59.9
Gte +FFNN (idea) 89.3 72.2 63.8 61.1 56.9 78.4 66.6 62.9 59.3 56.8
Gte +FFNN (RP+idea) 89.4 73.2 64.2 61.2 57.7 79.0 69.4 63.1 59.4 57.9
Stella +FFNN (idea) 90.0 73.9 65.3 61.3 56.7 77.8 70.5 64.5 61.1 58.5
Stella +FFNN (RP+idea) 91.8 77.6 67.4 63.6 58.5 85.4 74.0 66.3 64.0 60.7

Table 3: F1-score comparison of various classifiers across different stages (S1 to S5). Single Stage Training involves
training within a single paraphrase stage, while Combined Stage Training aggregates data from all stages for
classification.

Figure 3: F1-score evaluated across different training
and testing stages. The purple dashed line represents the
highest performance achieved at each stage, pointing
to the overall declining performance trend across the
models (clockwise from top left) BERT, BigBird , Stella
+ FFNN (RP + Idea) (c), and Stella + FFNN (Idea Only)
(d).

their highest performance within the stage they
were trained on, indicating a strong stage-specific
learning effect. Nevertheless, irrespective of cross-
stage or within-stage, overall performance declines
with the progression of stages. It also indicates
that the earlier stages may still retain the “LLM
signature”, which aids detection but gradually di-
minishes in later stages.

To further understand the issue, we investigate
the Fisher’s Discriminant Ratio (FDR) between
LLM and Human ideas acorss different stages (Li

and Wang, 2014).

FDR =
(µ1 − µ2)

2

σ2
1 + σ2

2

where µ1, µ2 are the means of the feature
(embedding representation) for Human and LLM-
generated ideas respectively, and σ2

1 , σ2
2 are the

variances of them respectively. As illustrated in
Figure 4(a), the FDR steadily declines across the
stages, irrespective of the embedding representa-
tion used. It suggests that as ideas undergo iterative
paraphrasing or transformation, their distinguish-
ing characteristics erode, making human and LLM-
generated ideas increasingly indistinguishable.

In addition, we examine Word Mover’s Dis-
tance (WMD), a metric that quantifies the effort
required to change one document’s word embed-
dings into another’s, serving as a measure for tex-
tual dissimilarity (Kusner et al., 2015). We employ
the GloVe-wiki-gigaword-50 embedding model to
compute WMD at each stage. Figure 4(b) reveals
a progressive decline in WMD, further reinforcing
the notion that the iterative modifications reduce
the distinctiveness of LLM-generated content. As
the transformation stages accumulate, the ‘LLM
signature’ becomes increasingly elusive, making
it more challenging to establish a clear boundary
between human and LLM-generated ideas.

Finally, we investigate the “learning difficulty”
through the analysis of the loss curves, focusing on
the MiniLM + FFNN architecture trained on con-
catenated (RP + idea) inputs (Figure 5). Computing
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(a) (b)

Figure 4: Visualization of discriminative features be-
tween human and LLM-generated ideas. (a) Four dif-
ferent text embedding representations illustrate the de-
creasing discriminability as we progress from Stage 1
to Stage 5. (b) Word Mover‘s Distance also shows a
declining trend, indicating reduced differentiation be-
tween human and LLM-generated ideas over stages.

Figure 5: Visualization of the training (solid line) and
validation (dashed line) loss curves for the MiniLM
+ FFNN model across the first 25 epochs, providing
insights into learning dynamics and model convergence

the average slope of the validation loss across the
initial five epochs, given by (L(t+n−1)−L(t))/n,
reveals progressively decreasing slopes of 0.029,
0.014, 0.007, 0.003, and 0.002 from stages 1 to
5. Intuitively, as the cascaded paraphrasing stages
progress, this indicates that while early stages
rapidly achieve a stable, low-loss plateau, the
higher stages quickly plateau at higher losses, fol-
lowed by an upward drift in validation loss, clearly
reflecting increased learning difficulty and poorer
generalization .

5.2 When Does Merging Data Across Stages
Help ?

We investigate whether combining training exam-
ples from different paraphrase stages can improve
detection performance, and Figure 6(a) reveals that
this strategy unexpectedly degrades performance
in earlier stages (stages 1 and 2). For stage 1 and

2, combined training declines the average perfor-
mance by 6.07 and 1.08 points respectively. How-
ever, for stage 3, 4, 5, combined training imrpoves
the performance by an average of 0.6, 1.4, and
2.4 points respectively, likely due to the increased
volume of training data improving generalization.

In stage 1, even smaller datasets suffice to
achieve high accuracy because the LLM’s distinc-
tive “signature” remains relatively intact, mak-
ing it straightforward to distinguish from human-
generated content. However, as we progress to
later stages (stages 4 and5), repeated paraphrasing
gradually erodes these features, creating a more
challenging detection task. Under these conditions,
adding data from earlier stages proves beneficial be-
cause it provides subtle patterns and cues that help
the model better learn residual LLM signatures.

(a)

(b)

Figure 6: (a) When combined stages and performed
a holistic training, the latter stages get more benfitted,
while the earlier stages decline in performance (b) When
Research problem embeddings are concatenated with
the Idea embedding, we observe a consistent perfor-
mance increase

5.3 Improving Idea Detection by Integrating
Problem Context

Through the embedding + FFNN models, we ob-
serve that RP + idea versions of training signif-
icantly outperform their idea-only counterparts
6(b), with observed performance gains of +1.64
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Figure 7: Detection performance (F1-score) consistently
deteriorates when ideas are paraphrased into simplified,
non-technical language intended for general audiences.

(p=0.00) for MiniLM, +1.34 (p=0.04) for GIST,
+0.72 (p=0.02) for GTE, and +2.97 (p=0.00) for
Stella.

These gains indicate how incorporating RP helps
models learn structured semantic dependencies be-
tween RP and their corresponding research idea
solutions, thus, leading to richer conceptual repre-
sentations and reducing ambiguity. In FFNN clas-
sifiers, this additional context strengthens decision
boundary formation by providing clearer distinc-
tions between different idea categories. However,
in the embedding models, RP and ideas are only
concatenated at the representation level. To further
enhance contextual integration, we plan to explore
a cross-attention modeling structure in future work,
which may better capture problem-idea interactions
and improve the model’s understanding of idea pat-
terns.

5.4 Simplified Paraphrasing Significantly
Reduces Detectability

Across all stages and classifiers, we observe a con-
sistent pattern: simplified paraphrasing intended
for non-expert audiences leads to the most sub-
stantial reduction in detection performance (Figure
7). The average F1-score across all algorithms and
paraphrasing stages is 64.5%, while simplified non-
expert paraphrasing underperforms this benchmark
significantly by 2.98% (p-value = 0.03).

This phenomenon likely occurs because non-
expert paraphrasing deliberately omits technical
nuances, replacing them with simpler, more general
language. Such simplification further diminishes
the research domain specific linguistic signatures
used by models to distinguish between human and
LLM-generated ideas. These findings also illus-

trate critical limitations in current detection algo-
rithms, suggesting they rely heavily on superficial
linguistic patterns and struggle to capture deeper
‘Idea Signature’ when technical complexity is re-
moved.

6 Conclusion

This paper examines the ability of SOTA textual
ML models to differentiate between human and
LLM-generated research ideas, revealing the chal-
lenges posed by iterative paraphrasing. Unlike di-
rect text-based detection, idea detection is signifi-
cantly harder as paraphrasing progressively erodes
distinctive LLM signatures, making idea attribu-
tion increasingly unreliable. By constructing a
systematic dataset from top CS conferences and
leveraging advanced LLMs for idea generation and
rephrasing, we find that even the best detection
models struggle once ideas undergo multiple para-
phrasing stages. Our results emphasize that exist-
ing classifiers rely heavily on surface-level linguis-
tic features rather than deeply understanding the
underlying idea structures, leading to substantial
performance declines as paraphrasing progresses.

In future, we aim to extend this study beyond
CS to other scientific disciplines, exploring whether
similar challenges persist across diverse knowledge
domains. A key direction for improvement involves
incorporating the reasoning trajectory of LLMs dur-
ing idea generation, as tracing the thought process
may provide a more robust signal for detection. Ad-
ditionally, integrating structured knowledge-based
embeddings could help models capture deeper con-
ceptual patterns, reducing their dependence on lin-
guistic artifacts and enhancing their ability to differ-
entiate between human and LLM-generated ideas.
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