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Abstract

We introduce a novel framework that utilizes
the internal weight activations of modern Large
Language Models (LLMs) to construct a met-
ric space of languages. Unlike traditional ap-
proaches based on hand-crafted linguistic fea-
tures, our method automatically derives high-
dimensional vector representations by comput-
ing weight importance scores via an adapted
pruning algorithm. Our approach captures in-
trinsic language characteristics that reflect lin-
guistic phenomena. We validate our approach
across diverse datasets and multilingual LLMs,
covering 106 languages. The results align well
with established linguistic families while also
revealing unexpected inter-language connec-
tions that may indicate historical contact or lan-
guage evolution. The source code, computed
language latent vectors, and visualization tool
are made publicly available at https://github.
com/mshamrai/deep-language-geometry.

1 Introduction

Languages are complex systems with rich inter-
nal structures and dynamic evolution. Traditional
linguistic classifications based on typological fea-
tures, historical migration patterns, or lexical sim-
ilarity have long served to group languages into
families such as Indo-European, Uralic, and Tur-
kic. However, these approaches typically capture
only historical or static aspects of language sim-
ilarity, potentially overlooking modern linguistic
influences driven by technology and globalization.
In an era where language use and structure are con-
tinuously reshaped, it is timely to develop methods
that automatically capture both historical and cur-
rent linguistic characteristics.

Recent advances in Natural Language Process-
ing (NLP) have been largely driven by Large Lan-
guage Models (LLMs), which have demonstrated
remarkable capabilities in language modeling and

a wide range of linguistic tasks (Devlin et al., 2018;
Radford et al., 2019). These models, trained on vast
multilingual corpora, learn representations that im-
plicitly encode a wide variety of lexical, syntactic,
and even phonological properties (Conneau et al.,
2019).

Building on prior work (Shamrai, 2024), which
empirically shows that the internal activations of
LLM weights vary with the language of the in-
put data, we hypothesize that the internal weights
of LLMs encode valuable information about inter-
language similarity and can serve as a foundation
for quantifying relationships between languages.

Therefore, in this work, we propose a novel ap-
proach for constructing a metric space of languages
by leveraging the weights of modern LLMs. Our
method extracts high-dimensional vector represen-
tations from LLM weights activations, where the
distance between any two vectors reflects the simi-
larity between the underlying linguistic structures.
Activations encode patterns of co-occurrence and
contextual relationships specific to each language’s
grammar and lexical properties.

We construct a metric space (X, dh), where X
is the set of high-dimensional language vectors
and dh is the Hamming distance between them.
We then design a distance-preserving mapping that
projects these high-dimensional vectors into a low-
dimensional space (Y, de), where distances are in-
duced from the Euclidean (L2) norm. This trans-
formation provides deeper insight into the latent
structures encoded by LLMs.

Furthermore, we calculate this latent representa-
tion for 106 languages. This revealed the opportu-
nity to visualize, cluster and analyze the relation-
ships between the languages.

Our code, computed language latent vectors, and
analysis tool are made publicly available, designed
to assist researchers and practitioners in linguistic
analysis and offering valuable resource for further

https://github.com/mshamrai/deep-language-geometry
https://github.com/mshamrai/deep-language-geometry
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linguistic investigation.
The contributions of this work are as follows:

• We introduce a novel approach that con-
structs a metric space of languages using LLM
weights and apply it to 106 languages, en-
abling automatic and data-driven measure-
ment of linguistic distances.

• We demonstrate that the derived metric space
supports meaningful clustering of languages,
reflecting both historical relationships and
modern linguistic features.

• We fully open-source our work along with a
tool for preliminary analysis.

While not claiming linguistic expertise, this
study introduces a novel toolset intended to sup-
port linguistic research. It offers a fresh view of
language similarity by exploiting the latent knowl-
edge embedded in LLMs.

2 Related Work

The quantification of language similarity has a rich
history, beginning with early lexical approaches. Pi-
oneering work (Swadesh, 1952) established meth-
ods for comparing languages using shared cognates,
a practice later refined by Holman et al. (2011),
which employs normalized Levenshtein distances
over fixed word lists. Although these lexical meth-
ods have been successfully used to construct lan-
guage family trees, they are handcrafted and re-
quire manual effort to select and curate appropriate
word lists and features.

Also, resources such as the World Atlas of Lan-
guage Structures (Dryer and Haspelmath, 2005)
offer comprehensive typological data that allow
languages to be represented as feature vectors. Dis-
tance measures computed over these vectors have
been shown to reveal groupings consistent with
established genetic relationships (O’Horan et al.,
2016; De Gregorio et al., 2024). However, these
methods are limited by the quality and coverage
of available databases, their reliance on expert-
curated features, and their inability to fully capture
language-specific variations or recent evolutionary
trends.

Phonological properties offer another valuable
dimension for language comparison. Studies uti-
lizing phoneme inventory data from resources like
PHOIBLE (Moran et al., 2014) demonstrate that
phonological distances – often measured by overlap

indices such as the Jaccard similarity – can capture
both genetic relationships and areal phenomena.
But phonological methods need reliable phoneme
lists, are affected by how sounds are written, and
often miss language structure beyond sounds.

Recent deep-learning work has popularised
embedding-based measures of language distance.
Multilingual encoders such as mBERT (Devlin
et al., 2018), XLM-R (Conneau et al., 2020) and
LASER (Artetxe and Schwenk, 2019; Heffernan
et al., 2022) produce contextual token embeddings
that implicitly encode lexical, syntactic and seman-
tic features. LASER is trained to output a sin-
gle sentence vector directly, whereas mBERT and
XLM-R require a pooling step (e.g., mean pool-
ing or the [CLS] token) to obtain a sentence-level
embedding. When sentence embeddings are aver-
aged over large, balanced corpora, the resulting
language-level representations have proved use-
ful for quantifying cross-lingual similarity (Rama
et al., 2020). However, because the underlying en-
coders operate at the token – and therefore sentence
– level, their effectiveness still depends on corpus
size and domain balance.

Overall, the literature on language distance met-
rics has evolved from classical lexicostatistical
methods and handcrafted feature extraction to so-
phisticated neural representations. Each approach
offers valuable insights into the relationships be-
tween languages, but they often suffer from labor-
intensive preprocessing, limited database coverage,
or sensitivity to input variations. This motivates our
approach: rather than relying on manually curated
features or sentence-based embeddings, we pro-
pose an automatic, data-driven method that lever-
ages the internal weights of modern LLMs to con-
struct a metric space of languages.

Moreover, to best of our knowledge, no study has
attempted to derive a language metric space from
decoder-only LLMs. The method introduced here
is therefore the first to use weight-level signals in
causal transformers for measuring cross-language
similarity.

3 Methodology

The main hypothesis in this work is that Large
Language Models are a good choice to measure
internal language structure since they are trained
to model languages. Formally, this is typically
framed as maximizing the log-likelihood of the
observed sequence of tokens. Let x1, x2, . . . , xT
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represent a sequence of tokens, where xt ∈ V and
V is the vocabulary. The objective is to maximize
the likelihood of the sequence under the model’s
parameters θ:

L(θ) =
T∑
t=1

log p(xt|x1, x2, . . . , xt−1; θ),

where p(xt|x1, x2, . . . , xt−1; θ) is the conditional
probability of the token xt given the previous to-
kens, modeled by a neural network or another prob-
abilistic model.

3.1 Weight Importance Metric
We begin by revisiting classical pruning approaches
such as Optimal Brain Damage (LeCun et al.,
1989), which motivate the rationale behind our ap-
proach.

The typical pruning objective is to minimize
the error introduced by approximating the original
weight matrix. Consider the following objective
function:

E = ∥WX− ŴX∥22 → min, (1)

where W is the original weight matrix of a layer,
Ŵ is the pruned (sparse) weight matrix, and X is
the input to that layer.

The variation of the error E for a weight row w
can be expressed as:

δE =

(
∂E

∂w

)T

δw+
1

2
δwTH δw+O(∥δw∥3),

where H ≡ ∂2E
∂w2 is the Hessian matrix.

At a local minimum of the training error, we
have

∂E

∂w
≈ 0,

and higher order terms are neglected.
Our goal is to set one of the weights, say wq, to

zero while minimizing the increase in error. This
introduces the constraint:

eTq δw + wq = 0,

where eq is the qth standard basis vector. Thus,
the optimization problem in Equation (1) can be
reformulated as:

min
δw

1

2
δwTH δw,

s.t. eTq δw + wq = 0.
(2)

This constrained problem can be solved using
Lagrange multipliers. The resulting increase in
error is given by:

Eq =
1

2
·

w2
q

e⊤q H
−1eq

. (3)

By computing Eq for every weight wq, one can
prune the weight that causes the smallest increase
in error, thereby minimally affecting the layer’s
output. Intuitively, this means we identify which
weights are most critical for the model’s perfor-
mance on a specific language. Weights with high
importance scores are those whose removal would
substantially degrade the model’s ability to predict
tokens in that language.

SparseGPT (Frantar and Alistarh, 2023) adopts
this idea within an LLM pruning algorithm. They
compute the importance metric Sij for a layer as
follows (Sun et al., 2023):

Sij =

 |W|2

diag
(
(XTX+ λI)−1

)

ij

. (4)

As in SparseGPT, we build X per linear
sub-layer by stacking the pre-activation hidden
states of a small calibration set into an N × din
matrix. For a weight matrix W the local Hessian is
H = X⊤X, and we invert

(
X⊤X+ λI

)
once per

layer. Thus, Equation (4) is simply a matrix-valued,
regularised version of the scalar error-increase cri-
terion in Equation (3).

Shamrai (2024) suggests that the SparseGPT
algorithm provides statistically stable results for
different LLMs and subsets of a data in language-
specific setting. Therefore, in our work, we adopt
the algorithm to compute weight importance vec-
tors.

3.2 Rationale Behind the Approach
By definition, Sij quantifies the importance of
weight Wij for a given input. In our approach, we
estimate the importance of the weights for a spe-
cific language by using datasets in that language.
Consequently, Sij reflects the contribution of each
weight to language modeling.

Assuming that the network is well-trained on lan-
guage modeling, higher S scores indicate greater
contribution. If two languages yield similar pat-
terns of important weights, it suggests that they are
similar in terms of language modeling characteris-
tics.
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3.3 Constructing a Metric Space

To derive a vector representation from the impor-
tance metric, we treat the importance scores as co-
ordinates in a high-dimensional space. Specifically,
we define the vector

v =
(
S0
00,S

0
01, . . . ,S

k
ij , . . . ,S

l
nm

)
∈ RN ,

where the set {Wk}lk=0 consists of weight matri-
ces Wk ∈ Rnk×mk for each layer k, and N is the
total number of parameters in the chosen LLM. In
other words, the vector v is obtained by flattening
and concatenating all the importance matrices Sk

corresponding to each layer.
There are two challenges with using the raw im-

portance matrix S to form this vector representa-
tion:

1. The importance scores are not normalized
across layers, meaning that they are only
meaningful within the context of a single
layer.

2. The resulting vector is high-dimensional, with
each dimension represented by a floating-
point number (typically 16 bits), leading to
large memory requirements.

To mitigate this, we propose a thresholding ap-
proach analogous to binary quantization. Specifi-
cally, we assign a value of 1 only to the most im-
portant weights by thresholding Sij at its median:

Ŝij = 1
(
Sij > median(S)

)
.

This binary representation requires only 1 bit per
value, reducing the storage requirement substan-
tially compared to 16-bit floating-point representa-
tions.

Let X denote the set of language vectors (one
per language) of length N . We then define a metric
space on X using the Hamming distance (i.e., the
XOR operation) as the metric.

For x,y ∈ X the Hamming distance is

dh(x,y) =

N∑
i=1

1
[
xi ̸= yi

]
,

where 1[·] is the indicator function.
The function dh is non-negative, symmetric,

equals 0 iff x = y, and satisfies the triangle in-
equality, therefore, (X, dh) is a metric space.

3.4 Isometry via Dimensionality Reduction
Even after quantization, the binary vectors remain
high-dimensional due to the large number of model
parameters, making distance computations and
other latent space applications computationally ex-
pensive. To address this, we construct an isometry
– a transformation that preserves distances between
points when mapping from one metric space to
another.

In our experiments, we employ different LLMs
and multiple datasets. We compute the language-
by-language distance matrix for each model and
dataset, and then average them to obtain a robust
distance measure:

Dlk ∈ R|X|×|X|,

Dlk = {dh(vi,vj) : vi,vj ∈ X},

D̂ = El∼pLLM
Ek∼pdata [Dlk]

≈ 1

nm

n∑
l=0

m∑
k=0

Dlk,

where Dlk is the distance matrix computed for the
lth LLM and the kth dataset, n is the number of
LLMs, m is the number of datasets, and |X| is the
number of languages.

This averaging process reduces noise and en-
sures that the final distances are not overly depen-
dent on any particular dataset or model.

We then construct an isometry

f : X → Y,

where Y is a metric space endowed with the Eu-
clidean metric de(x, y) = ∥x− y∥2.

To build f , we apply Torgerson scaling (classi-
cal multidimensional scaling) (Borg and Groenen,
2007). The result is a set of points Y ∈ R|X|×d,
where d is the minimum number of dimensions
required to preserve the distances in D̂. Notably,
d is much smaller than the original dimensionality
N of the language vectors and satisfies d ≤ |X|.

Therefore, our method leverages LLMs weights
to construct a language vector representation and
embed it in a metric space which could be used for
analysis of languages similarities.

4 Results

To analyze the metric space of languages, we vary
clustering algorithms along with dimensionality
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Dataset # Languages in Dataset # Languages Used in Work

Wikipedia 323 106
CulturaX 167 102
fineweb-2 2051 103

Table 1: Comparison of datasets: Wikipedia, CulturaX, and fineweb-2. The table reports the total number of
languages in each dataset and the number of languages used in this work.

reduction ones. In particular, for clustering HDB-
SCAN (Campello et al., 2013), k-means (Lloyd,
1982), and predefined linguistic families with its
subfamilies are used to highlight the correspon-
dence between the derived metric space and estab-
lished linguistic classifications. Throughout this
paper we adhere to the language classification pro-
vided in Hammarström et al. (2024).

For two-dimensional visualizations, we reduce
the dimensionality of the language vectors using
t-SNE (van der Maaten and Hinton, 2008), UMAP
(McInnes et al., 2018), and minimum spanning
trees (Pettie and Ramachandran, 2002).

Although all methods yield valuable insights,
we include in the main text only the minimum
spanning trees (MST) visualizations colored by
language families and subfamilies, as they most
clearly represent the inter-language relationships.
Additional plots are available via our open-source
tool1.

4.1 Datasets and Models

In our experiments, we employ three LLMs and
three datasets. The models used are Mistral 7B
(Jiang et al., 2023), Gemma 3 4B (Team et al.,
2025), and Llama 3.2 1B (Grattafiori et al., 2024).
All models are multilingual and have been trained
on more than 100 languages. Notably, although
Llama officially supports only 8 languages, our re-
sults indicate that it still produces useful represen-
tations for our purposes. As datasets, we selected
those with a high number of languages: Wikipedia
(Foundation), CulturaX (Nguyen et al., 2024), and
fineweb-2 (Penedo et al., 2024).

We start with a target inventory of 106 languages
and attempted to apply the same list across all cor-
pora. Wikipedia contains material for every lan-
guage in this set, but CulturaX omits Chinese (Tra-
ditional), Min Nan Chinese, Scots, and Crimean
Tatar, whereas fineweb-2 lacks Chinese (Tradi-

1https://huggingface.co/spaces/mshamrai/
language-metric-analysis

tional), English2, Serbo-Croatian, and Tagalog. Ta-
ble 1 lists the total number of languages present
in each dataset alongside the subset that could be
retained from our 106-language list.

To compute the language vectors, we proceed as
follows:

1. Calibration data. For every language in each
corpus (Wikipedia, CulturaX, fineweb) we
sample 219 = 524,288 tokens.

2. Weight-importance vectors. For each lan-
guage–corpus pair and for each LLM (Mistral
7B, Gemma 3 4B, Llama 3.2 1B) we com-
pute a binary weight importance vector whose
length matches the model’s parameter count,
yielding 3(106 + 102 + 103) = 933 vectors.

3. Distance matrices. Hamming distances
between language vectors produce nine
language–by–language matrices (one per
model–corpus combination).

4. Aggregation. These nine matrices are aver-
aged element-wise over the observed entries
to form a single average distance matrix.

5. Embedding. Classical MDS on the average
matrix embeds the languages space in R104,
where Euclidean distance defines the final lan-
guage metric.

4.2 Evaluation of k-means Clustering Against
Two Linguistic Categorization

After we embed the |X| = 106 language vectors
into R104 via classical MDS we evaluate the lan-
guage embeddings using k-means. The resulting
partition is compared with two reference label sets:
(i) high-level families (18 macro-families) and (ii)
primary branches (35 sub-families). The number
of clusters in k-means is equal to the number of
labels in the reference sets.

We compute the following metrics:
2For the English subset, we use the fineweb dataset.

https://huggingface.co/spaces/mshamrai/language-metric-analysis
https://huggingface.co/spaces/mshamrai/language-metric-analysis
https://huggingface.co/datasets/HuggingFaceFW/fineweb
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• Silhouette score (Rousseeuw, 1987): the
mean difference between a point’s average
distance to its own cluster and to the nearest
neighboring cluster.

• Adjusted Rand Index (ARI) (Hubert and
Arabie, 1985): agreement between two parti-
tions, corrected for chance.

• Cluster purity (Schütze et al., 2008): the
fraction of data points that share the majority
label within their cluster.

Reference Sil. ARI Purity

Macro families 0.047 0.116 0.755
Primary branches 0.056 0.434 0.811

Table 2: Clustering metrics for the k-means solution
against two standard language classification. "Sil" is the
internal silhouette score.

Table 2 shows that switching from broad fami-
lies to primary branches raises the ARI from 0.116
to 0.434 and the purity from 0.755 to 0.811. There-
fore, the metric space captures finer-grained lan-
guage groups and can estimate similarity at a micro
level. However, the internal silhouette remains low
(about 0.05), meaning many languages lie almost
as close to other clusters as to their own.

4.3 Language Trees
A minimum spanning tree (MST) connects all data
points in the dataset with the smallest possible total
edge weight, where the edge weight corresponds to
the distance between language vectors. We employ
the Kamada-Kawai layout, a force-directed algo-
rithm where edge lengths are proportional to the
distances (Kamada and Kawai, 1989). This layout
effectively visualizes the structure and connectivity
within the MST, revealing not only the clusters of
closely related languages but also links between
different language families.

Figure 1 shows the MST for all languages used
in our work. The visualization highlights well-
established clusters corresponding to known lan-
guage families as well as some unexpected con-
nections. For example, Tajik (an Indo-European
language) appears linked to a cluster of Turkic lan-
guages, which can likely be explained by geograph-
ical proximity. Similarly, the branch containing
Latvian and Lithuanian is connected to a cluster of
Uralic languages, possibly due to regional contact

with Finnish and Estonian. A less obvious connec-
tion is observed between Turkish and Hungarian,
which might be attributed to historical interactions.
Additionally, Vietnamese is found to be close to
Chinese, despite Vietnamese using the Latin alpha-
bet and Chinese employing logographic characters,
indicating that our method captures internal lan-
guage characteristics beyond mere orthographic
features.

Figure 2 focuses on Indo-European and Tur-
kic languages, with coloring based on their pri-
mary branches. This figure clearly illustrates that
Crimean Tatar, although belonging to the Kipchak
branch, is closely connected to Turkish, an Oghuz
language. The MST also links English, a Germanic
language, directly to Spanish, a Romance language,
likely reflecting their close geographic and sociolin-
guistic contact in the Americas.

One intriguing observation is that Ukrainian
does not exhibit a direct connection with Polish
in the MST, which is unexpected. However, fur-
ther analysis reveals that Polish consistently ranks
among the top five closest languages to Ukrainian
across all models and datasets, coming in third after
averaging the distances.

In summary, the minimum spanning trees reveal
logical relationships among languages and their
families. In addition, the presence of uncommon
connections suggests potential historical contacts
or convergent evolution. We leave further investi-
gation of areal influences or language borrowing
phenomena to professionals.

5 Conclusion

In this work, we introduced a novel framework
for constructing a metric space that quantifies lan-
guage similarity by leveraging the internal weight
activations of Large Language Models.

Our approach, based on computing binary vec-
tors from weight importance metrics and reducing
their dimensionality via isometric mappings, cap-
tures linguistic features, and the resulting metric
space not only aligns with established linguistic
families but also reveals intriguing inter-language
connections.

Overall, this study lays the groundwork for a
data-driven paradigm in language similarity anal-
ysis with significant implications for theoretical
linguistics.
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Figure 1: Minimum spanning tree for all languages. Colors represent language families.
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Figure 2: Minimum spanning tree for languages from the Indo-European and Turkic families. Colors represent
language primary branches.

Limitations

While our approach offers a novel perspective on
constructing a metric space for languages using
LLM weight activations, several limitations re-
main:

1. Computational Expense: Computing the bi-
nary vectors is time-consuming. For exam-
ple, on the Mistral 7B model, generating one
binary vector requires approximately 20 min-
utes on an NVIDIA RTX 3090 GPU.

2. Scalability to Larger Models: We have not
yet evaluated the method on LLMs with a sig-
nificantly higher number of parameters due to
resource constraints. It is possible that larger
models might yield more accurate or robust
representations.

3. Remaining Bias from Source Models: Av-
eraging distances across three LLMs does not
eliminate their shared weaknesses. In particu-
lar, the metric space can still reflect poor per-
formance on low resource languages, which
may introduce inconsistencies with known
language family relationships.

Additionally, we were unable to mathematically
or empirically validate that the derived distance
metric can serve as an effective guideline for fine-
tuning and transfer learning of LLMs. Although
the underlying hypothesis suggests that linguistic
similarity may enhance the language modeling ca-
pabilities through transfer learning between related
languages, our preliminary experiments – where
we fine-tuned an LLM on similar languages using
various configurations – did not yield statistically
significant improvements. Therefore, a more so-
phisticated approach may be required, and we leave
this investigation for future work.

Another promising direction for future research
is to identify which specific weights or layers con-
tribute most to the observed similarities. It is likely
that only a subset of layers significantly influences
the metric. By pinpointing these layers, we may
reduce computational complexity and accelerate
the metric computation.
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