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Abstract

Captions are crucial for understanding scien-
tific visualizations and documents. Existing
captioning methods for scientific figures
rely on figure-caption pairs extracted from
documents for training, many of which fall
short with respect to metrics like helpfulness,
explainability, and visual-descriptiveness,
leading to generated captions being misaligned
with reader preferences. To address this
issue, we introduce FigCaps-HF, a new
framework for figure-caption generation that
can incorporate domain expert feedback in
generating captions optimized for reader
preferences. Our framework comprises of
1) an automatic method for evaluating the
quality of figure-caption pairs, and 2) a novel
reinforcement learning with human feedback
(RLHF) method to optimize a generative
figure-to-caption model for reader preferences.
We demonstrate the effectiveness of our simple
learning framework by improving performance
over standard fine-tuning across different types
of models. In particular, when using BLIP
as the base model, our RLHF framework
achieves a mean gain of 35.7%, 16.9%, 9%,
and 11.4% in ROUGE, BLEU, Meteor, and
CIDEr scores, respectively. Finally, we release
a large-scale benchmark dataset with human
feedback on figure-caption pairs to enable
further evaluation and development of RLHF
techniques for this problem.

Benchmark: Benchmark Code: Codebase
Documentation: Documentation

1 Introduction

For scientific articles, figures (graphs, plots, charts)
are integral for conveying key research findings.
To understand a given figure and, by extension,
the scientific work itself, it becomes crucial that
the corresponding captions are informative, i.e., a
given caption can represent and complement the fig-

ure, situating it in the context of the article. While
the importance of figure captions is universally ac-
knowledged, writing a good caption is not trivial.
More often than not, many scholarly works contain
generic figure captions and lack descriptiveness,
thus rendering the figure unhelpful. This has moti-
vated extensive research into developing methods
that can automatically generate captions for figures
to assist researchers in writing better captions.

Existing methods treat figure-captioning as an
image-to-text task, where training data is mostly
extracted from publicly available scientific articles
(Hsu et al., 2021). Many existing datasets, par-
ticularly those sourced from platforms like arXiv,
contain low-quality captions, which are either un-
informative or lack descriptiveness. Such captions
can thus result in models with poor generalization
and lacking alignment with reader preferences.

To address this, we introduce FigCaps-HF, a
benchmark and learning framework for improving
figure-caption generation by model alignment with
reader preferences. Figure 1 describes our pro-
posed framework, designed around two key ques-
tions: (1) How can we integrate expert feedback
into model training without additional compute
overhead? (2) How can we scale feedback genera-
tion while minimizing human annotation efforts?

For (1), we employ offline Upside-Down Re-
inforcement Learning (UDRL), an offline reward-
conditioned behavioral cloning method, to align
model-generated captions with expert feedback.
Once the reward model is trained and generates
reward scores, it is no longer needed during figure-
caption model training, reducing computational
costs while maintaining performance.

For (2), we develop a caption-rating mechanism
guided by reader preference feedback to assess
the quality of figure-caption pairs. Using a small,
human-annotated dataset with ratings on key fac-
tors (e.g., helpfulness, OCR content, takeaway), we
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Figure 1: Our proposed framework for improved figure-captioning using Upside-Down RLHF. The framework
utilizes a very small set of reader-feedback annotated figure-caption pairs to learn a calibrated figure-caption scoring
model. This model is then used to fine-tune the figure-caption model conditioned on inferred feedback scores.

train an auxiliary model to predict caption quality
scores. This allows us to infer scores for a larger
training set, improving scalability.

Our experimental results demonstrate the ef-
fectiveness of our approach. Our trained reward
model generalizes well to unseen samples. Evalu-
ations across multiple baseline models show that
our reader preference alignment framework out-
performs standard supervised fine-tuning, with our
best-performing model achieving a 35.7% increase
in BLEU, 16.9% in ROUGE-L, 9% in METEOR,
and 11.4% in CIDEr scores. Ablation studies fur-
ther highlight the impact of the type and nature of
preference feedback on performance.

Summary of main contributions.

* We introduce an RLHF-based framework for
figure-caption generation that uses a small
amount of human feedback to train an oracle
model, enabling large-scale inference of feed-
back scores for unseen figure-caption pairs.

* We develop a method for leveraging limited hu-
man feedback to predict feedback scores for new
figure-caption pairs, improving model alignment
with reader preferences.

* We release a benchmark dataset to facilitate fur-
ther research in figure-caption generation with
RLHEF, fostering advancements in this domain.

2 Background

Figure Caption Generation. Initial works in
scientific figure captioning focused primarily on
model design and feature engineering for caption
generation. Works like (Siegel et al., 2016; Qian

etal., 2021, 2020; Chen et al., 2019, 2020a,b; Hsu
et al., 2021) followed a standard pipeline of utiliz-
ing a CNN-based vision-encoder to encode figure-
features, followed by an LSTM/RNN based text-
decoder to generate captions. For model training,
(Chen et al., 2019, 2020a,b) created and used syn-
thetic figure-caption pairs, while in (Siegel et al.,
2016; Hsu et al., 2021), figure-caption pairs were
extracted from publicly available scientific works.
With recent advancements in multimodal learning,
the standard pipeline has shifted to utilizing pre-
trained transformer-based vision-language models
for either zero-shot inference or supervised fine-
tuning on specific domains for image-to-text gen-
eration. Recent works like (Roberts et al., 2024)
have focused on benchmarking large multimodal
models (LMMs) for figure-caption generation un-
der zero-shot and fine-tuning settings. In contrast,
our work is focused on improving model alignment
with respect to reader preference in a simple and
scalable manner. Our proposed framework is thus
model agnostic and applicable to any LMM.

Figure Question Answering. A closely related
task is Figure Question Answering, which formu-
lates the more general problem of figure under-
standing as a visual-question answering task. There
has been a variety of works in this space towards
modeling (Siegel et al., 2016; Kahou et al., 2017;
Li et al., 2022b; Singh and Shekhar, 2020; Zou
et al., 2020; Kafle et al., 2018, 2020) as well as
creating curated datasets including DVQA (Kafle
et al.,, 2018), FigureQA (Kahou et al., 2017),
PlotQA (Methani et al., 2020), Leaf-QA (Chaudhry
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et al., 2020), and ChartQA (Masry et al., 2022). In
contrast, our work addresses caption generation
and does not focus on question answering.

Learning with Human Feedback Aligning
model predictions with human preference has been
shown to improve task performance in various ar-
eas, including tasks like language model pretrain-
ing (Korbak et al., 2023), machine translation (Bah-
danau et al., 2016; Kreutzer et al., 2018), text sum-
marization (Stiennon et al., 2020), unlearning unde-
sirable behaviors from language models (Lu et al.,
2022), text-to-image generation (Lee et al., 2023;
Zhang et al., 2023) and training RL agents (Mac-
Glashan et al., 2017; Ibarz et al., 2018; Lee et al.,
2021). In contrast to prior works, we aim at im-
proving figure caption generation by optimizing
model learning to align with domain expert feed-
back. However, unlike previous work that leverages
on-policy RL (Schulman et al., 2017) algorithms
to maximize the reward-weighted likelihood, our
framework utilizes reward-conditioned behavioral
cloning (Emmons et al., 2021), an offline variant
of the upside-down RL method (Srivastava et al.,
2019) to optimize model learning for reader pref-
erence. This provides a simpler and more control-
lable framework for human preference alignment.
Furthermore, our feedback scheme allows for incor-
porating multiple feedback at different granularities
as a reward signal during the model optimization
step, thus improving model learning.

3 Framework

In this section, we present our framework for learn-
ing with expert feedback (Figure 1). First, we de-
scribe a standard figure-captioning pipeline (Sec.
3.1), then outline the design and training of a
generalizable human-feedback prediction model
(Sec. 3.2), and conclude with our feedback-aligned
model training strategy using a simple RLHF
framework (Sec. 3.3).

3.1 Preliminaries

Given the dataset D,,, we can then define a model
fo, that takes in information corresponding to the
figure and outputs a sequence of text as output.
Model fy consists of a vision encoder mod-
ule to get image-based encoding and a language
encoder-decoder module to encode and generate
corresponding text. The weights 6 can either be
randomly initialized or initialized by large-scale
pretrained model weights. Furthermore, the model

weights corresponding to the vision encoder and
text encoder-decoder models can either be initial-
ized with separate weights or jointly trained model
weights. After initialization, the model fy can then
be trained for the task of caption generation.

Generally, for training such a model, Language
Modeling (LM) loss is used as a standard training
objective. Let {I;,T;} € D be the input to the
model fy, where I; € R is the input figure, and 7;
is the corresponding text sequence. Additionally,
T; is represented as sequence of K; tokens from
a fixed vocabulary V: T; = (T; 1, TZKJ) where
K = |T;|. Then the training objective is defined
as:

1 Kj+1
Lim = K+ jZ::O H(T; |L;, (Tip, ..., Ti j—1)),

ey
where H denotes the cross-entropy loss and
(Ti0, .., T, j—1) represents all the tokens in the cap-
tion prior to 75 ;.

3.2 Human Feedback Prediction Model

To improve figure-caption generation, we propose
to incorporate domain expert feedback into our
optimization step. To generate feedback for figure-
caption pairs, we thus propose to learn a feedback
prediction model to score individual datasamples
based on different metrics representing reader pref-
erences. Our objective is to learn a model that can
predict human feedback scores for unseen captions
accurately, given a small set of training samples.

To this end, we first label a small control set
Dy, consisting of M figure caption pairs {1y, Ty, }
with domain experts ratings. Here we assume that
M <« N, i.e., the size of the control set is sig-
nificantly less than the original noisy dataset. We
can now train a model on Dy, to predict the human
expert ratings for the original dataset D,,. Specif-
ically, given human feedback dataset D;, contain-
ing figure-caption pairs {I;, Ty} € Dy, and k hu-
man expert evaluation metrics for each datasam-
ple v; € {vo,vy1,..-yx}, we want to train £ mod-
els R(x;,0)x to predict the k scores, respectively.
Here, the output of a model R(z;,0)x(1},) is a
scalar quantity denoting a specific metric score
for the given input caption. Thus, we formulate
the scoring problem as a regression task. Specifi-
cally, we can define our human-feedback prediction
model as follows:

R(x4, 0)x(Th) = g(1(0, 74), 0,), (2)
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where, R(z;,0) : RV — R, I(z;,0;) : RV — RP
and g(u;,0;) : RP — R. In the above, (., 0))
is an embedding function that takes in input data
z; € RY and generates corresponding representa-
tion u; € R, and g(., 0;) is a regression function
to generate the scores respectively. We only train
the regression function while keeping the weights
of the embedding function fixed. For training the re-
gression function, we use mean-squared error loss,
written as: Lr = Dih Zgﬁ (9 — vi)?, where ; is
the predicted score while y; is the ground-truth eval-
uation score. After training the human-feedback
prediction models, we compute scores for all the
samples in the training dataset D,, to construct
our new set, which will be used for training the
figure-caption model.

3.3 Reinforcement Learning with Human
Feedback

We use the human-feedback prediction model as
a reward model to train an image-to-text model
for generating higher-quality captions, framing the
problem as a reinforcement learning task. Given a
dataset D,, with figure-caption pairs {1, Ty, }, we
treat figures [, as states, captions 1, as actions,
and predicted metric scores R(T),) as rewards. Our
goal is to train an image-to-text model f(6) that
maps states to actions while maximizing rewards,
ensuring that captions align with human judgment.

We adopt offline UDRL for its computational
efficiency and robustness (Emmons et al., 2021).
Here, the policy mp maps states (S¢) to actions (a;)
given rewards (), formulating learning as a super-
vised problem. We sample triplets {S;, a;, 7} to
construct a dataset and train my using:

meaxgE[lOg mo(az|Se, )] 3)
€

Following this UDRL framework, we define
our figure-to-caption model f(#) as the policy 7.
For each caption T;, we compute a reward score
and binarize it into control tokens: <|good| > if
R(I;,T;) > t, otherwise <|bad|>, where t is a
hyperparameter. Given this feedback, we fine-tune
fo using:

K]'—i-l

Ly =
Kj +1 =

“4)

where c; is the control token derived from R.

> H(Tijl|L, (ci, Tig, -, Tij1))

4 FigCaps-HF: Figure-Captioning with
Human Feedback Benchmark

We propose a new benchmark for figure-captioning
with feedback. Our benchmark consists of 106,834
figure-caption pairs (Hsu et al., 2021) with feed-
back scores. Our dataset contains feedback based
on different measures to evaluate the quality of
the author-written captions for the correspond-
ing figure. For each figure-caption pair, we
evaluate the data sample based on four quality
measures: (1) Helpfulness, (2) Takeaway, (3)
Visual-descriptiveness (visual), and (4) Image-
text (OCR) (Huang et al., 2023). Each quality
metric is selected to measure the ability of the read-
ers to comprehend and draw inferences based on
the provided figure and the corresponding caption.

We compute the feedback scores for each data
sample by first annotating a small subset with
domain-expert feedback and then predicting the
scores for the entire dataset using the human-
feedback model described in Sec. 3.2. Using this
labeled subset, we train a human-feedback predic-
tion model to generate scores for the remainder of
the dataset. Unlike the subset, we retain the scores
for the entire dataset as continuous values. This al-
lows the users of the benchmark to accordingly de-
cide their scheme for labeling each figure-caption
pair based on different thresholding criteria, thus
providing flexibility for fine-grained feedback.

Table 1 presents an overview of the statistics re-
lated to the actual and predicted human feedback
for the captioning of the scientific figures. We see
that the predicted human feedback values in our
study show a diverse range, as indicated by the
small standard deviation of 1 £ 0.2 and a consis-
tent mean value across all ratings. Additionally,
the alignment of the median predicted scores with
the actual human feedback values indicates that the
model’s performance is not skewed towards any
particular rating but provides an accurate assess-
ment across the range of ratings. This suggests
that the human-feedback prediction model used to
infer the scores is generalizable and can accurately
assess the quality of captions across various rat-
ings. Furthermore, the proposed model provides
reliable scores for captions that fall outside the typ-
ical range of scores.

We provide more details regarding the bench-
mark and the corresponding datasheet at Documen-
tation.
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# Fig-Caption Pairs Human Feedback Median Mean Std Q1 Q3

Helpfulness 3 3.01 1.19 2 3
ACTUAL 438 Takeaway 2 2.16 1.22 1 2
HUMAN FEEDBACK Visual 2 2.11 1.08 1 2
OCR 4 383 0.80 4 4
Helpfulness 2.89 2.89 1.07 217 3.61
PREDICTED 106.834 Takeaway 1.95 2.06 1.03 133 2.66
HUMAN FEEDBACK ’ Visual 1.91 2.02 1.01 131 2.63
OCR 3.88 384 0.83 332 441

Table 1: Summary of our benchmark dataset for figure-caption generative models with RLHF.

MODEL #Params ROUGE-L. BLEU-4 CIDEr METEOR
OCR-ONLY Pegasus 0.27B 0.026 4.78e-4 0.134 0.042
TrOCR 0.23B 0.025 <0.001 0.016 0.018
FIGURE-ONLY BEiT+GPT2 0.24B 0.142 0.005 0.372 0.124
ViT + RoBERTA 0.23B 0.140 0.012 0.380 0.121
ViT + GPT2 0.24B 0.142 0.018 0.427 0.126
PromptCap 0.47B 0.130 0.009 0.269 0.082
Flamingo 1.14B 0.087 0.001 0.243 0.046
FIGURE-CAPTION GIT 0.17B 0.119 0.002 0.219 0.091
BLIP 0.25B 0.130 0.014 0.438 0.132
CLIPCap 0.15B 0.103 0.012 0.284 0.131
RLHF Ours-BLIP-RLHF 0.25B 0.152 0.019 0.552 0.145
Ours-ViT+GPT2-RLHF 0.24B 0.138 0.020 0.489 0.126

Table 2: Comparison with state-of-the-art methods. For all the metrics, higher values are better (1).

FEEDBACK ROUGE-L BLEU-4 METEOR ROUGE-L BLEU-4 METEOR
Binary 0.152 0.019 0.145 BERT 0.1565 0.01927 0.1473
Multi-label 0.153 0.022  0.151 SGBERT  0.1577 0.0201 0.1509

Table 3: Results with different forms of feedback. Table 5: Results with different embedding models for

the human-feedback model.

ROUGE-L. BLEU-4 METEOR
Helpfulness 0.1520 0.0186 0.1450

ROUGE-L BLEU-4 METEOR

BLIP-RLHF (append) 0.136 0018  0.132
Takeaway 0.1676 0.0230 0.1598 VIT-GPT2-RLHF (append)  0.138 0016  0.119
Visual 0.1678 0.0230 0.1595 BLIP-RLHF (prepend) 0.152 0019  0.145
OCR 0.1654 0.0223 0.1565 ViT+GPT2-RLHF (prepend)  0.138 0020  0.126

Table 4: Results with different human feedback metrics. Table 6: Comparing RLHF prepend to append.

5 Experiments MSE
Helpfulness  0.082 +0.12

Dataset. Our benchmark dataset follows the splits Visual 0.076 4 0.20

from (Hsu et al., 2021), which contains 106,834, Takeaway 0.087+0.17
OCR 0.095£0.13

13,354, and 13,355 samples in train, val, and test
sets, respectively. Each training sample is further
augmented with feedback predictions generated
using our human-feedback prediction model.

Annotation details of Human-Feedback set. We
selected the annotators based on their expertise in ~ cessing and machine learning. Our annotator pool
the areas of computer vision/natural language pro-  consisted of 10 Ph.D. graduates and active gradu-

Table 7: Evaluation of out-of-sample generalization
with respect to different human feedback metrics
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Figure 2: Results of our Human Feedback Prediction Model. Here we show the three figure-caption pairs with
the highest (left; green) and smallest (right; red) “helpfulness” human feedback score from our trained HF model.
Notably, the figure-caption pairs rated highly by our human-feedback predictive model are better as they mention
specific takeaways, figure text, and visual details. In contrast, the figure-caption pairs with the lowest scores by our
predictive model are those that are extremely vague and uninformative.
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Figure 3: Generated captions from our RLHF framework using BLIP as the base model (in Blue) compared to BLIP
without RLHF (in Red). Fine-tuning BLIP with human-feedback predictions significantly improves the caption
quality with respect to descriptiveness while maintaining conciseness.

Training Size MSE Gain
25% (109) 0.579 91.72%
50% (219) 0.323 6.95%

100% (438) 0.311 2.98%
125% (657) 0.309 2.32%
200% (876) 0.302 0%

Table 8: Results varying the training size used for learn-
ing the human feedback prediction model (for inferring
“Helpfulness™). Note that the gain is computed with
respect to the best (lowest) MSE obtained (0.302).

ate students (no authors) with published work in
the CV, NLP, and ML conferences. We randomly
selected 438 figure-caption pairs from the dataset
to be annotated. Each annotator was provided 2
weeks to annotate the data subset. For each sam-

ple, annotators were asked to provide ratings on a
five-point Likert scale for the following attributes
[OCR, Visual, Takeaway, Helpfulness]. For each
sample, the following descriptions were provided:

* OCR: The caption includes named entities or
important words/numbers in the figure(e.g., title,
legends, labels, etc.).

* Visual-Descriptiveness: The caption includes
some visual characteristics of the figure (e.g.,
color, shape, trend, etc.).

» Takeaway: The given caption explicitly states
the high-level takeaway message or the conclu-
sion that the figure attempted to convey.

* Helpfulness: The caption helped understand the
message that the figure is attempting to convey.

Human-feedback prediction setup For our
human-feedback prediction model, we use MCSE
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(Zhang et al., 2022) as the embedding function and
a 2-layer MLP as the regression function. We train
the MLP layers until convergence on the human
feedback set. Once the model is trained, we infer
feedback scores for the train set. We select the me-
dian score from the train set as the threshold and
label each sample as "good” or ”bad”. After pre-
pending our captions with these annotations, we
effectively train our models in a UDRL framework.
Baselines. For comparative evaluation, we se-
lect the following models as our baselines based
on input: (1) OCR-only: Pegasus(Zhang et al.,
2020), (2) Figure-only: TrOCR (Li et al., 2021),
BeiT4+GPT2, ViT+GPT2 (Dosovitskiy et al.,
2021), ViT+RoBERTA (Dosovitskiy et al., 2021;
Liu et al., 2019) and (3) Figure-Caption: Prompt-
Cap (Hu et al., 2022), Flamingo (Alayrac et al.,
2022), GIT (Wang et al., 2022), BLIP (Li et al.,
2022a) and CLIPCap (Mokady et al., 2021). We
use ROUGE-L (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), BLEU-4 (Papineni et al., 2002)
and CIDEr (Vedantam et al., 2015) metrics for
model evaluation.

5.1 Results

We show our experimental results in Table 2. We
compare our framework with the standard fine-
tuning method and benchmark the performance
on the Test set of our proposed benchmark. We use
BLIP and ViT+GPT?2 to evaluate our RLHF frame-
work. From Table 2, we see that models trained
using our proposed RLHF formulation perform bet-
ter than simple fine-tuning. Specifically, for BLIP,
RLHF provides a 35.7% increase in BLEU, 16.9%
increase in ROUGE-L, 9% increase in METEOR,
and 11.4% in CIDEr score. For ViT+GPT2, RLHF
provides a 11.1% increase in BLEU and a 5.1%
increase in CIDETr score.

Overall, since the performance increase is gen-
eralized among models with different pre-training
strategies and overall model structure, the results
show the benefits of using this simple UDRL frame-
work for fine-tuning. Utilizing different scoring
mechanisms and prompts can be further developed
to take advantage of this limited supervision and
further increase performance.

5.2 Qualitative Results

Figure 2 and Figure 3 show some of the qualitative
results of the feedback prediction model and the
figure-captioning models trained with RLHF. We
provide our analysis below:

Human Feedback Prediction Model: To evalu-
ate the generalizability of our model, we first com-
puted the score predictions on all the figure-caption
pairs. Then we ordered the figure-caption pairs by
the predicted scores and selected the top-3 figure-
caption pairs with the largest score, along with the
bottom-3 figure-caption pairs with the lowest score.
Results are provided in Figure 2. We observe that
the figure-caption pairs with the largest scores are
highly helpful to the reader (shown in green on
the left in Figure 2), as they mention specific take-
aways from the figure (e.g., “as students make more
applications, the number of students who get into
their top-choice school decreases, while the num-
ber of overall acceptances increases.”), as well as
mentioning specific visual aspects that are impor-
tant to the understanding of the underlying context
(e.g., “... Vertical lines show the true p (blue) and
5 (orange)”). In contrast, the figure-caption pairs
scoring the lowest (bottom-3), which are shown in
red on the right in Figure 2, are vague, without any
takeaways, nor reference to visual elements in the
figure.

Figure-Caption Generative Model: From Fig-
ure 3 we see that, qualitatively, BLIP-RLHF pro-
duces better captions compared to fine-tuned BLIP.
In most cases, captions produced by BLIP (Fine-
tuned) are either explaining the given figure incor-
rectly (Figure 3, leftmost sub-figure), not relevant
(Figure 3, middle sub-figure) or are completely un-
informative (Figure 3, rightmost sub-figure). On
the other hand, captions produced by the BLIP-
RLHF method are more faithful to the figure, cap-
ture the semantic relation between texts to summa-
rize the phenomenon, and utilize visual attributes
in explaining the figure.

5.3 Ablation Study

We provide our findings from ablation studies for
different components of our framework below:

Effect of granularity of feedback labels: To
evaluate how quantization levels of reward signals
(Binary vs. Multi-level) impact model learning,
we conducted a comparative study by modifying
feedback while training the BLIP-RLHF model.
First, we trained the model for 10 epochs using
multi-level human feedback (Row 2), with five
feedback levels (very bad, bad, neutral, good, very
good) determined at the 20", 40™, 60™, and 80
percentiles to balance sample distribution. We also
experimented with varying label granularity (Row
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3), training with binary-label feedback for 5 epochs,
followed by multi-label feedback for another 5
epochs. Results in Table 3 indicate that both ap-
proaches using finer feedback outperform simple
binary feedback. Our framework demonstrates the
model’s ability to effectively leverage fine-grained
feedback. Additionally, the experiment validates
the quality of our human prediction model, which
provides useful labels at different levels of granular-
ity, enhancing performance for figure-captioning.

Comparison of different feedback types: To
understand the effect of different types of feed-
back, we compare the results of training the BLIP-
RLHF model using Helpfulness, Takeaway, Visual-
descriptiveness (Visual), and Image-text (OCR)
feedback scores. The results are provided in Ta-
ble 4. We observe that training BLIP-RLHF with
Takeaway, Visual, and OCR feedback outperforms
training with Helpfulness feedback. This is ex-
pected, as the Helpfulness rating is subjective,
whereas Visual and Takeaway are objective eval-
uation metrics. This finding highlights the impor-
tance of feedback type and suggests that further
improvements can be achieved by modeling differ-
ent aspects of the annotated human dataset.

Feedback prediction model architecture: We
compare different embedding models (BERT, SciB-
ERT, and BLIP) in constructing the human feed-
back prediction model. The results are provided
in Table 5. We observe that different representa-
tions outperform our default MCSE implementa-
tion, indicating that our human feedback prediction
model and downstream figure-captioning perfor-
mance are sensitive to the quality of representa-
tions used. This highlights that further performance
gains can be made by using different representa-
tions, for example, by encoding different modali-
ties (text only vs joint encoding of text and vision).

Generalizability of the human feedback pre-
diction model: To evaluate the out-of-sample
generalization of our human-feedback prediction
model, we conduct a 5-fold cross-validation ex-
periment on the original 438 annotated. We re-
peated the above experiment 5 times. We report
our results in Table 7, including mean squared er-
ror (MSE) and standard deviation. As can be seen
from Table 7, our model is able to achieve good re-
sults on the validation set. This highlights that our
human-feedback prediction model demonstrates
out-of-sample generalization and proves the statis-
tical significance of our model.

Varying training size: To evaluate the effective-
ness of our approach when varying the number of
samples used during training, we train the human
feedback prediction model using 25%, 50%, 100%,
125%, and 200% of the human-annotated data. We
used a held-out set of 300 samples for model eval-
uation of each of these models. We then trained
separate models for each training set for the task of
predicting the *Helpfulness’ measure. The results
showing mean-squared error (MSE; lower is better)
are provided in Table 8. Notably, we see the test
performance of the model saturates as the number
of training samples is increased. Even with 50%
of the original human-annotated data, the model
achieves good test results.

Effect of human feedback position: To under-
stand the sensitivity of the model to the position
of human feedback, we compare the performance
of appending and pre-pending the human feedback
labels in Table 6. Since our models generate text,
during test time, without any human feedback la-
bel prompt, they can only rely on feedback during
training. Additionally, due to the auto-regressive
generation of our models, they only observe the
label before generation, and for append, only ob-
serve the label after generation. Intuitively, pre-
pending should work best since the generation is
conditioned on the label. The results support this
and show that ViT+GPT2 and BLIP perform better
when trained with pre-pended human feedback.

6 Conclusion

In this work, we developed a new benchmark and
methodology to improve caption generation for
scientific figures. We showed that incorporating
domain expert feedback in learning a model for
figure-to-caption generation improves both model
performance and caption quality. Our proposed
framework is scalable (requires limited manual
human effort in labeling) and flexible (allows for
incorporating multiple reward signals at different
granularities). We hope that this new benchmark
dataset will allow researchers to benchmark their
own methods for incorporating human feedback in
figure-to-caption generation tasks and various other
image-to-text generation tasks. Future work will
explore techniques to incorporate multiple com-
plementary feedback as well as different ways to
quantize the reward score to leverage it as valid
feedback when training the model.
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