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Abstract

System engineers use Model-based systems en-
gineering (MBSE) approaches to help design
and model system requirements. This man-
ually intensive process requires expertise in
both the domain of artifact creation (e.g., the re-
quirements for a vacuum), and how to encode
that information in a machine readable form
(e.g., SysML). We investigated leveraging local
LLMs to generate initial draft artifacts using a
variety of prompt techniques and temperatures.
Our experiments showed promise for generat-
ing certain types of artifacts, suggesting that
even smaller, local models possesses enough
MBSE knowledge to support system engineers.
We observed however that while scores for arti-
facts remain stable across different temperature
settings, this is potentially misleading as signif-
icantly different, though semantically equiva-
lent, generations can be produced.

1 Introduction

Model-based systems engineering (MBSE), as de-
fined by the International Council on Systems En-
gineering, is the formalized application of model-
ing to support system requirements, design, anal-
ysis, verification and validation activities begin-
ning in the conceptual design phase and contin-
uing throughout development and later life cycle
phases (Campo et al., 2022). In practice, it is the
modeling of system requirements and components
that have formalized technical design requirements
(e.g., user requirements list) by a systems engineer,
with applications to aerospace, medical fields, and
software development, among many others. Usage
of MBSE by an organization enables understanding
and oversight of large, complex systems requiring
support from a potentially diverse array of disci-
plines, and provides a supporting framework for
simulation and testing of those systems (McGrath
and Jonker, 2023).

To facilitate digital use and interaction, MBSE
relies on SysML (and more recently SysML v2),
which is based on Unified Modeling Language
(UML). This encodes system design specifications
into a machine readable form (see Figure 1) that
can then be subsequently visualized (see Figure
2, examples taken from The Object Management
Group (2023)). The manually intensive process
of creating SysML models is a current bottleneck
(Fuchs et al., 2024) and motivated our evaluation of
how effectively LLMs can be leveraged to generate
complete and consistent initial design item drafts.

We investigate the effectiveness of some cur-
rently available open-sourced models in generating
initial SysML v2 artifacts (formal requirements
list and state machine diagrams) and explore vari-
ability when applying different temperatures. We
hypothesized that the model must have some in-
ternal knowledge of both MBSE and SysML to
be effective, and that external knowledge injection
(via prompt engineering) would generate better ar-
tifacts.

2 Related Work

Little work exists wrt. the application of LLMs
and prompt engineering to MBSE, with most fo-
cusing on the use of prominent API-based models
(e.g., GPT4). Smith Crabb and Jones (2024) per-
formed user-based experiments incorporating Q&A
with ChatGPT-3.5. Results showed that that users
with access to models had their system engineering
models ranked higher by a subject matter expert
(SME) both quantitatively and qualitatively. Ex-
periments by Longshore et al. (2024) comparing
GPT-3.5 and ChatGPT-4 ability to generate system
models show a noticeable improvement with the
latter. Additionally, to overcome the inherent defi-
ciency of SysML v2 knowledge, they implemented
a RAG architecture that ingested SySML v2 docu-
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Figure 1: Example of SysML v2 for Mass Requirement.

Figure 2: Visualization of SysML v2 for Mass Requirement in Fig. 1.

mentation, finding that one-shot prompting using
ChatGPT-4 obtained valid SysML v2 models. Sim-
ilar findings have been noted using UML directly
(Bader et al., 2024) and MBSE relevant Object-
Process Methodology (Alarcia et al., 2024). In line
with this, Fuchs et al. (2024) found that including
an LLM in the MBSE workflow can substantially
improve costs and speed by factors of more than
ten. We are not aware however of research that
focuses on the use local, smaller models for MBSE,
which is problematic for systems which encode
data that may be unsuitable for analysis or incor-
poration into commercial LLMs, whether for legal,
ethical, or business-preferential reasons.

3 Experimental Setup

3.1 Models

Systems engineering requires both understanding
of real-world concepts and domain knowledge (i.e.,
knowledge of MBSE, real-world objects, and en-
coding this into machine readable SysML). Models
focused solely on code generation may be too lim-
ited with regard to general knowledge to act as an
effective systems modeler. Instead, this work fo-
cuses on models that had access to code, real-world
concepts, and potential domain knowledge during
training. Additionally, due to requirements of op-
erating in a closed environment (i.e., no external
network connections), models requiring external
API calls (e.g., GPT-4) are not applicable.

We selected Mixtral-8x7B-Instruct-v

0.1 (Mixtral; Jiang et al., 2024)1, a 46.7 billion
parameter sparse mixture of experts trained model,
and Llama-3-Smaug-8B (Smaug; Pal et al.,
2024)2, a 8.03 billion parameter DPO-Positive
trained model. Both had access to extensive
sources of data (predominantly from the web) dur-
ing training and have achieved good performances
on a range of tasks (including code generation)
when compared against both other open-source
and older versions of proprietary models (e.g.,
GPT-3.5). Experiments for Mixtral were run on a
p4d.24xlarge and Smaug on a g4dn.12xlarge
EC2 instance respectively.

We recognize that we only perform experiments
on two local models, because even this is both
computationally (6-8 hours) and cost prohibitive
(minimally $500 per 100 runs each) given we run
them on GPUs of an appropriate size, meaning we
must be selective of experimental choices due to
cost and time constraints. More importantly how-
ever, the primary focus is not on obtaining the high-
est performance, as current MBSE research uses
prominent models that require external APIs (see
(Smith Crabb and Jones, 2024) for performance
of commercial models on MBSE tasks), we are
focused on assessing the feasibility and stability of
deploying smaller, local models to support system
engineers in more resource constrained and closed

1https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1

2https://huggingface.co/abacusai/
Smaug-72B-v0.1

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/abacusai/Smaug-72B-v0.1
https://huggingface.co/abacusai/Smaug-72B-v0.1
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Model-Based Systems Engineering (MBSE) is a systems engineering approach that uses graphical
models to represent, analyze, and communicate the various aspects and components of a complex system.

It is a shift away from traditional document-based systems engineering, where system requirements,
design, and behavior are described in text documents.

In MBSE, a system is represented as a set of interconnected models that describe the system’s structure,
behavior, and performance. These models are created using a standardized modeling language, such as
the Systems Modeling Language (SysML), which provides a common vocabulary and set of symbols for

systems engineers to use.
The use of models in MBSE offers several advantages over traditional document-based systems

engineering. Models allow systems engineers to:
* Represent complex systems in a more intuitive and visual way

Analyze the behavior and performance of a system before it is built
Identify and resolve design issues early in the development [INST] Give me an example of SysML.

[/INST]Sure! Here is an example of a simple SysML block definition diagram (BDD) that represents a
car system:

Figure 3: Mixtral 8x7B-Instruct’s response to both “Define Model-Based Systems Engineering”.

Figure 4: Mixtral 8x7B-Instruct Weight Requirement Definition SysML v2 Generated Example.

environments, as well as to address needs whereby
use of any external APIs (whether commercial or
otherwise) are prohibited.

3.2 Prompt Engineering
MBSE and SySML is a very specific set of do-
main knowledge. We first prompted models for
internal knowledge. Each model was prompted
with “Define Model-Based Systems Engineering”
and a separate prompt of “Give me an example
of SysML.”. Both models provided accurate an-
swers describing MBSE and also provided suffi-
cient enough generations of SysML (e.g., generat-
ing high-level documentation to describe a weight
requirement) to justify further investigation (see
Figs. 3 and 4 respectively for examples of gen-
erated responses). However, both clearly showed
limitation in knowledge of SysML v2.3 Given the
difficulty of generating perfectly-formatted SysML
v2, we chose to instead generate dot notation ver-
sions of the SysML v2 diagrams, allowing us to
evaluate quality of the model content separately
from the formatting.

3There are significant differences between SysML and
SysML v2 which can be found here: https://github.
com/Systems-Modeling/SysML-v2-Release

MBSE Artifacts here cover two different items
(air purifier and vacuum), two different engineering
artifacts (requirements lists and state machine dia-
grams), and assess three temperatures settings (0.2,
0.6, and 0.95). While air purifiers and vacuums
are both general items, the quantity of information
available on each differs, which we expect to also
be reflected in the model’s behavior. Requirements
lists were chosen as they provide good insights into
a model’s general domain knowledge of SysML
requirements, while state machine diagrams are
problematic for system engineers and accelerating
their creation would be highly beneficial. The same
prompt to generate the desired SysML v2 for each
experimental setting (e.g., vacuum - requirements
list - temperature 0.2) was run 100 times.

3.2.1 N-Shot Prompting
Initial prompting techniques include zero-shot, one-
shot, and few-shot. The zero-shot prompt contained
a simple instruction, “Generate the requirements
necessary for a vacuum. Include only the require-
ments, in list format, with no introductory or con-
cluding text.” which relied solely on the model’s in-
ternal knowledge. One-shot and few-shot differed
only in that model was supplied example artifacts

https://github.com/Systems-Modeling/SysML-v2-Release
https://github.com/Systems-Modeling/SysML-v2-Release
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Table 1: Mixtral zero-shot, one-shot, and few-shot ME-
TEOR Scores for air purifier and vacuum.

in SysML v2 (see Fig. 1 for an example of the
type of artifact provided). Importantly, each exam-
ple provided to the prompt was chosen to ensure
difference from the domain of the target item.

3.3 Evaluation

While standardized evaluation metrics for systems
engineering have been proposed (Henderson et al.,
2022), these are not particularly relevant for au-
tomatic assessment, and currently, most MBSE
model analysis remains qualitative in nature. We
also recognize that the best metrics for code gen-
eration is a debated topic of research, but here we
focus here on an initial proof point and limit our
evaluation for analysis purposes to focus more on
feasibility and MBSE practitioner feedback.

For each chosen item (e.g., vacuum, air purifier),
a gold-standard exemplar produced by a systems
engineering expert exists. Each exemplar was trans-
lated into dot notation in order to account for the
fact that SysML v2 is still, as previously noted,
largely unrepresented in the LLMs, and this could
artificially lower scores by virtue of errors in the
generated formatting, rather than the model con-
tents. The gold dot notation models were then
compared to each generated response, obtained in
a corresponding dot notation form, using METEOR
(Banerjee and Lavie, 2005). We chose METEOR
as multiple studies have shown strong correlations

Table 2: Smaug one-shot METEOR Scores for air Puri-
fier and vacuum.

Table 3: Chain-of-Thought METEOR Scores for air
purifier and vacuum.

with human judgments (Hu et al., 2022; Takaichi
et al., 2022). Given our focus is human-computer
teaming for MBSE system design, we are partic-
ularly interesting in alignment with a systems en-
gineer’s expectations. We report the average ME-
TEOR score over the 100 runs.

4 Results

4.1 Mixtral

Table 1 presents results for Mixtral. For require-
ments lists, both air purifier and vacuum benefit
from one-shot prompting. However, we saw that
air purifiers decreases in performance with few-
shot, while for vacuum performance remains sim-
ilar. For state machine diagrams, we saw that air
purifier fails to have any substantial increases. For
vacuum however, a similar pattern as with require-
ments list emerged. Mixtral also showed a great
deal of stability across temperature settings within
each type of prompt.

4.2 Smaug

We only investigate one-shot experiments using
Smaug as results from Mixtral suggested this was
a good prompting technique4 and these results are

4This was also to align with the goal of reducing computa-
tional resources and financial costs.
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Technique Item Artifact Temp Pair
one-shot air purifier state machine 0.20 & 0.60*

0.60 & 0.95
0.20 & 0.95*

requirements list 0.20 & 0.60
0.60 & 0.95
0.20 & 0.95

vacuum state machine 0.20 & 0.60
0.60 & 0.95*
0.20 & 0.95*

requirements list 0.20 & 0.60*
0.60 & 0.95*
0.20 & 0.95*

CoT air purifier state machine 0.20 & 0.60*
0.60 & 0.95*
0.20 & 0.95

requirements list 0.20 & 0.60
0.60 & 0.95*
0.20 & 0.95*

vacuum state machine 0.20 & 0.60*
0.60 & 0.95
0.20 & 0.95*

requirements list 0.20 & 0.60
0.60 & 0.95*
0.20 & 0.95

Table 4: Mixtral Temperature t-tests. Pairs marked with
* indicate significance at .05 p-value.

presented in Table 2. Interestingly, we saw that
the results of requirements lists for air purifier
were nearly identical as that of Mixtral, while vac-
uum actually increased in performance. For state
machine diagrams, the reverse was true: air puri-
fier increased compared to its Mixtral counterpart
and vacuum remained relatively the same. Sim-
ilar to Mixtral, we also saw a lack of variation
between results wrt. temperature settings. These
results demonstrated that smaller models with suf-
ficient base MBSE knowledge could be leveraged
to achieve performance on par with larger ones.

5 Chain-of-Thought

SME reviews noted that part of the variation in
performance between one and few-shot results was
due to increased LLM hallucinations as overly long
examples seemed to encourage longer responses
by the LLMs, which in turn increased generations.
The LLMs seemed to be attempting to fill gaps
where they did not include enough realistic compo-
nents. To address this we experimented with sim-
ple Chain-of-Thought (CoT) experiments where
the model was instructed to first generate its own
requirements list and then used this generated list
to support state machine design. As state machines
are supposed to document all the possible states

Technique Item Artifact Temp Pair
one-shot air purifier state machine 0.20 & 0.60*

0.60 & 0.95*
0.20 & 0.95*

requirements list 0.20 & 0.60
0.60 & 0.95
0.20 & 0.95

vacuum state machine 0.20 & 0.60
0.60 & 0.95
0.20 & 0.95

requirements list 0.20 & 0.60*
0.60 & 0.95*
0.20 & 0.95*

CoT air purifier state machine 0.20 & 0.60*
0.60 & 0.95
0.20 & 0.95*

requirements list 0.20 & 0.60*
0.60 & 0.95*
0.20 & 0.95

vacuum state machine 0.20 & 0.60*
0.60 & 0.95
0.20 & 0.95

requirements list 0.20 & 0.60*
0.60 & 0.95*
0.20 & 0.95*

Table 5: Smaug Temperature t-tests. Pairs marked with
* indicate significance at .05 p-value.

and their relationships, we hypothesized this may
be challenging when the model does not know ex-
actly what those could be.

Table 3 shows results using both Mixtral and
Smaug, where we saw that different trends emerge.
Air purifier using Mixtral increased in performance
compared to few-shot, but decreased compared to
its one-shot Smaug performance. Vacuum received
noticeable boosts in performance in both models,
with each reaching a similar plateau. Again scores
remained highly similar across temperature settings
for both models.

6 Temperature Significance Testing

To further investigate the seemingly stable behav-
ior of temperature within an artifact, we performed
t-tests between the 100 runs for each temperature
pair (results for Mixtral are presented in Table 4)
and Table 5 for Smaug results). Tests indicated
that the surface stability was misleading, as many
temperature pairs for the same artifact were statis-
tically significant, suggesting underlying distribu-
tions differences between temperatures. Stability
of generations is of great concern to users, espe-
cially in technical designs. However, given the
subjective nature of individual systems engineers
preferences in our conversations with SMEs, this
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behavior actually mimics the ambiguity that many
system engineers would themselves exhibit.

Examining various temperature output pairs
indicates semantically similar generations for code
were quite common. For example, a state machine
for air purifier showed the state “Purifying” with
a transition to another state “FilterChange”. This
can be represented as:

Purifying -> FilterChange
[label=‘‘Filter Replacement
Needed’’]

in SysML. However the label within “FilterChange”
could be realized by many different (but seman-
tically equivalent) options: “Filter Replacement
Needed”, “Filter Replacement Required”, “Fil-
ter Replacement Necessary” which METEOR bet-
ter handled. This behavior however was an ex-
pected parallel of reality, as individual systems en-
gineers may also choose such semantically equiv-
alent terms and would expect them to be easily
understood and accepted.

7 Limitations

Due to the structure of chain-of-thought prompting,
our chosen prompt chain only yielded use case and
state machine diagram examples for that technique;
the 900 requirements lists, while they were gener-
ated, were not scored as part of the final analysis.

We recognize that we only perform experiments
on two local models and selected a sub-set of
prompting techniques, and acknowledge that ad-
ditional prompting experiments and models may
result in a different analysis. However, we view
our findings here as providing evidence that local
models are a viable path forward.

8 Conclusions

We reported our investigation of the ability of local,
open-source LLMs to generate system engineering
artifacts, showing even smaller models to be vi-
able sources of first draft MBSE models. However,
success depended on several factors: the complex-
ity of the artifact, the availability of real-world
knowledge of the item, and the prompt technique,
with one-shot and CoT obtaining best results. In-
terestingly, while results showed that temperature
variation within artifacts yielded little differences
in score changes, significance testing indicated
there was substantial underlying variation. This

was potentially due to providing guidance in struc-
tured generations and different semantically equiv-
alent generations. Future research will investigate
adding additional external knowledge to support
in the creation of more complex domain specific
design requirements (e.g., aerospace).
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