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Abstract

This paper revisits the use of annotator de-
mographics as interpretable meta-information
for modeling such variation. We adapt a
lightweight attention mechanism, Annotation-
Wise Attention Network (AWAN), to condition
predictions on demographic features, enabling
per-annotator modeling. Experiments on the
EXIST sexism dataset show that AWAN im-
proves classification performance over standard
baselines, especially in cases of high annotator
disagreement.

1 Introduction

Annotation tasks for subjective NLP problems of-
ten reveal disagreement between annotators. While
traditionally viewed as noise, recent emerging re-
search recognizes annotation variation as a mean-
ingful signal and explicitly models diversity (Wan
et al., 2023; Sap et al., 2022; Fornaciari et al.,
2021).

This paper explores using demographic features
to model annotation disagreement. Demographic
features correlate with differences in annotation
behavior according to Sap et al. (2019, 2022); Gor-
don et al. (2022); Mokhberian et al. (2024). We
empirically re-evaluate the value of incorporating
annotator demographic features into model train-
ing. To do this, we adapt the Label-Wise Attention
Network (LWAN) into an Annotation-Wise Atten-
tion Network (AWAN), a simple and interpretable
architecture that allows us to isolate and assess the
impact of demographic information.

We introduce Annotation-Wise Attention Net-
work (AWAN), a method for modeling demo-
graphic variation. Inspired by label-wise attention
(Mullenbach et al., 2018), AWAN transforms to-
ken embeddings into feature-specific embeddings,
attending to all the annotations’ demographic bun-
dles. Feature-specific embeddings feed into special-
ized classifiers to similarly predict feature-specific
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labels, allowing us to explicitly model annotation
variation in subjective NLP tasks.

We hope that by incorporating annotator features
into the classification process, AWAN enhances ro-
bustness, reliability, and traceability for subjective
tasks that display high annotation diversity.

2 Related Work

Work on annotator variation either relies solely on
the labels given by each annotator! or it adds meta-
information about them, such as demographics.

2.1 Incorporating Annotations

Uma et al. (2021) review studies that use annota-
tions only. Mostafazadeh Davani et al. (2022) train
a multi-task model with a shared encoder and sepa-
rate classification heads for each label. Mokhberian
et al. (2024) combine annotation-related embed-
dings with text embeddings to learn annotation-
specific representations. Both approaches showed
that modeling annotation diversity outperforms re-
lying solely on gold-standard labels.

2.2 Incorporating Meta-information

Prior work has integrated demographic and attitu-
dinal metadata to model annotator disagreement.
Jury Learning (Gordon et al., 2022) simulates in-
dividual annotators via juries, while others use
prompting (Jiang et al., 2024) or demographic to-
kens as additional input tokens (Tahaei and Bergler,
2024). However, modeling demographic groups in-
dependently yields limited gains (Orlikowski et al.,
2023). In contrast, we show that combining demo-
graphic features in a lightweight attention model
improves sexism detection. Rather than simulat-
ing annotators, we isolate group-level demographic
signals.

'We refer to each label given by an annotator as anno-

tation in this paper. Demographic features are called meta-
information in this paper.
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2.3 LWAN: Label-Wise Attention Network

Originally developed for medical multi-label clas-
sification, LWAN assigns attention weights to in-
put tokens based on their relevance to each label
(Mullenbach et al., 2018), producing label-specific
representations. We adapt LWAN to a multi-task
setting where attention selects tokens relevant to
each demographic bundle, combining labels and de-
mographics into annotation-aware representations.

2.3.1 LWAN Method

Transformers (Vaswani et al., 2017) produce con-
textualized token embeddings H = [h1,...,hy,] €
R™*4 where n is the number of tokens and d the
embedding size.

LWAN computes label-specific attention as:

U =softmax(HW), Z=U"H (1)

Here, W € R%*! is a learnable label query ma-
trix, and U € R™*! holds attention weights per
token and label.

The resulting matrix Z € R!*? contains label-
specific embeddings for classification.

3 EXIST Task and Dataset

We use the EXIST dataset (Plaza et al., 2023),
which contains 6,920 training tweets (English and
Spanish), each annotated for sexism by six annota-
tors, totaling 41,520 annotations. Each annotator
is associated with demographic metadata. We use
three demographic features: gender (male, female),
age group (18-22, 23-45, 46+), and ethnicity (8
categories including Black or African American,
Asian, Asian Indian, Hispano or Latino, White or
Caucasian, Multiracial, Middle Eastern, and oth-
ers). These are encoded as scalar indices for input
to the attention layer..

We address the binary classification task of de-
tecting sexism, including explicit expressions and
criticism of sexism.

The overall Fleiss’  is 0.37. We also compute
individual Cohen’s x scores against the majority
vote, with a large number of annotators fall within
the 0.45-0.75 range, suggesting a moderate level
of agreement with the majority label. The pres-
ence of a long tail of lower scores highlights that
some annotators are out of sync with the consen-
sus , which is not unexpected in a task involving
subjective judgment. These discrepancies suggest
that while the majority vote may serve as a proxy
for an ’average annotator,’ it may mask underlying
disagreement within the annotator pool.

You sound mad bro. Did the empowered woman hurt your feelings?

tokqy2 }

V Token embeddings
Annotation-wise layer

( RoBERTa

cls toky ...

(0} EN| [3%] [} J

I
1
1
1
1

1] T. [ 7 Feature specific
T [2 11 embeddings

21517

Annotation-feature
matrix nn Ann Anna

Figure 1: RoBERTa encodes tweets, which are com-
bined with demographic matrix x in AWAN to produce
annotation-specific predictions.

4 AWAN: Annotation-Wise Attention
Network

Our Annotation-Wise Attention Network (AWAN)
uses a meta-information matrix x of size a x f,
where a is the number of annotations per sample
and f the number of demographic features (see
Figure 2 and Section 4.1).
AWAN refines token representations H (from
RoBERT?2) using x:
Q = WqX )

where W, and W, are linear projections, randomly
initialized.
Attention weights and contextual representations

are computed as:
U = softmax(QKT),

K=W.,H 2)

Z=UH ()

Here, U € R**" represents the weighted sum of
the input sequence for a particular annotation, and
Z € R**? holds annotation-specific representa-
tions. Each row of Z is passed to a classifier pre-
dicting the corresponding label, trained via binary
cross-entropy.

4.1 Meta-information Representation

We encode meta-information as scalar features for
matrix Yy, using two initialization strategies (Fig-
ure 2):

Full: All 2 x 3 x 8 combinations of demographic
values (2 genders, 3 age groups, and 8 eth-
nicities) define 48 rows, each a hypothetical
annotator. For each tweet, six rows are pop-
ulated. The remaining rows, corresponding
to unavailable demographic combinations, are
masked using a dummy label in the 3-class
setup.
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Figure 2: (a) Annotator labels and majority vote (b)
Subset x initialization (¢) Full x initialization (see Sec-
tion 4.1)

Subset: Contains only six rows per tweet, repre-
senting actual annotations with their demo-
graphic values.

4.2 AWAN Variants

Unaggregated-Vote Trains on individual annota-
tion labels and predicts them during training
and evaluation, capturing diverse perspectives
(Fornaciari et al., 2021; Jiang et al., 2024).

Majority-Vote Learns from annotation labels but
evaluates against the majority vote, leveraging
label variation to enhance overall performance.
(Uma et al., 2021).

4.3 Baseline Models

Single-task Standard classification predicting ma-
jority vote, no annotation meta-information
used, and tied samples excluded.

Multi-task Adapts Mostafazadeh Davani et al.
(2022) by fixing six classifiers for the six an-
notations per sample (instead of one per anno-
tator), sharing an encoder but no demographic
features. This modification reduces sparsity
and improves performance.

4.3.1 Experimental Setup

We wused the ’cardiffnlp/twitter-roberta-base-
sentiment-latest” model (Loureiro et al., 2022), a
RoBERTa variant fine-tuned for sentiment analysis
(Wolf et al., 2020). Other models (RoBERTa-XLM,
Multilingual BERT) showed minimal gains, so we
prioritized efficiency with RoOBERTa Base.
Models were trained for 10 epochs (batch size
1, learning rate 5 x 10~%) using Adam and binary
cross-entropy (BCE)?, which preserved annotator-
https://pytorch.org/docs/stable/

generated/torch.nn.BCEWithLogitsLoss.
html

level variation. Cross-entropy loss, which averages
predictions, degraded performance by ignoring dis-
agreement.

We tested two classifier setups: multiple heads
(one per annotator) and a shared head predicting
only valid demographic combinations. The shared
head performed better and is used in all results.

We report macro F1, averaged over five fixed
random seeds, with mean and variance on the test
set. Since EXIST includes train and dev sets, we re-
split the original train set into new train/dev splits
for finetuning and evaluate on the official dev set.

5 Results

Table 1 shows results for AWAN variants compared
to baselines. Incorporating annotation-specific in-
formation is impactful on the classification perfor-
mance.

Both AWAN models outperform the baseline
Single-task model on gold labels. The Subset
AWAN achieves the best performance (0.83 F1),
3% higher than the Single-task model. The Full
variant scores slightly lower (0.81 F1), likely due
to its sparse representation of meta-information.

The Full AWAN creates a 48x3 demographic
matrix, but only up to six rows are populated per
sample. This sparsity weakens signal strength. In
contrast, the Subset AWAN focuses attention on a
targeted set of features, allowing better generaliza-
tion and fewer distractions.

AWAN and the Multi-task model perform simi-
larly under Unaggregated-Vote settings, suggesting
the improvement stems from multi-label supervi-
sion rather than the demographics alone. However,
AWAN’s attention mechanism allows predictions
conditioned on demographic profiles, supporting
flexible modeling of annotator perspectives.

Our findings contrast with Orlikowski et al.
(2023), who found no significant benefit from using
demographic features independently. In contrast,
AWAN jointly encodes demographics within atten-
tion, yielding gains in a subjective task.

These results suggest that demographic signals,
when modeled jointly and contextually, can mean-
ingfully enhance predictions in subjective annota-
tion settings.

Per-Class Analysis by Agreement Rate We
grouped test samples into three agreement bands®:
High (6 annotators agree), Low (1 disagrees), and

*Tied” cases (3 vs. 3) were excluded per task guidelines.
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Majority-Vote

Unaggregated-Vote

P R F1 P R F1
Base Single-task ~ .82+01  .78+01  .80+000 — - -
Multi-task - - - T5+004  T5+004  TS5+004
Subset 83+000 .82+01  83+000 T4+os Td+oos T4+o003
AWAN Full 831002 79+002  8l+oo1  75+004  .75+004 754004

Table 1: Precision (P), Recall (R), and Macro-F1 for both Majority-Vote and Unaggregated-Vote

Mid-level (2 disagree). For each band, we ap-
plied majority vote over AWAN-Subset’s six per-
annotator predictions to produce a single binary
prediction and evaluated against the true majority
label (Table 2).

AWAN-Subset consistently outperforms the
Single-task baseline across all bands, with the
largest gains in Mid-level disagreement. It trades
a small drop in precision (2-5 pp) for notable re-
call gains (8-11 pp), improving F1. In the High-
agreement band, it sacrifices 3.3 pp precision (95%
vs. 98%) for 8.6 pp higher recall (88.3% vs. 79.8%).
In Low-disagreement, it gives up about 4 pp pre-
cision for over 8 pp recall gain. In the Mid-level
band, precision is comparable (72% vs. 74%), but
AWAN-Subset improves recall by 11 pp (60% vs.
49%), yielding the biggest F1 gain.

These results show that AWAN’s demographic
attention helps most in ambiguous cases, where
human disagreement increases—highlighting its
value for subjective classification tasks like sexism
detection.

Disagree N Prec. Recall F1

Sub ST Sub ST Sub ST

High (0-1) 366 095 098 088 0.80 0091 0.88
Low (1/6,5/6) 260 081 085 076 0.68 0.78 0.76
Mid (2-4) 308 072 074 060 049 065 0.58

Table 2: Performance by disagreement level: Sub = AWAN-Subset, ST =
Single-task.

Per-Language Analysis The dataset includes
tweets in English and Spanish, so we evaluated
performance separately by language. mBERT,
pre-trained on 100+ languages, offers strong
non-English baselines. In contrast, cardiffnlp/
twitter—-roberta-base-sentiment-latest
(“Cardiff”) is fine-tuned on English tweets,
excelling at informal English text.

As shown in Table 3, both models perform better
on English than Spanish, reflecting their pretrain-
ing. However, mBERT shows smaller performance

drops on Spanish (F1: 0.79—0.74) compared to
Cardiff (0.81—0.73), demonstrating the benefit of
multilingual pretraining.

Across both models, AWAN-Subset improves
F1 scores in both languages. On English, it
raises Cardiff’s F1 by 3 points (0.81—0.84)
and mBERT’s by 2 (0.79—0.81). On Spanish,
AWAN yields even larger gains: +5 for Cardiff
(0.73—0.78) and +6 for mBERT (0.74—0.80).
These gains reflect improved generalization from
leveraging annotator meta-information, especially
for low-resource languages.

English Spanish
Model Variant P R F1 P R F1
. Single .81 82 81 77 74 .73
Cardiff  Geet 85 84 84 79 79 8
LBERT  Single 80 80 79 74 74 74

Subset .82 .81 81 78 79 .80

Table 3: Precision (P), Recall (R), and Macro-F1 by language and model.

6 Conclusions

This paper contributes to growing efforts to ex-
plicitly model annotator disagreement in NLP. We
show that incorporating meta-information, specif-
ically demographic features, can improve perfor-
mance on subjective classification tasks. Our find-
ings highlight the importance of how such informa-
tion is represented and used during training, sug-
gesting that learning representations conditioned
on demographic profiles helps capture diverse an-
notator perspectives. While our implementation
is a proof of concept, the approach offers a path
forward for developing NLP systems that better
reflect human diversity. This has potential appli-
cations in domains such as content moderation,
education, and healthcare, where high levels of an-
notator disagreement are common and personalized
or culturally sensitive interpretations are essential.
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