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Abstract

The linking of clinical entities is a crucial part
of extracting structured information from clini-
cal texts. It is the process of assigning a code
from a medical ontology or classification to
a phrase in the text. The International Clas-
sification of Diseases - 10th revision (ICD-
10) is an international standard for classify-
ing diseases for statistical and insurance pur-
poses. Automatically assigning the correct
ICD-10 code to terms in discharge summaries
will simplify the work of healthcare profession-
als and ensure consistent coding in hospitals.
Our paper proposes an approach for linking
clinical terms to ICD-10 codes in different lan-
guages using Large Language Models (LLMs).
The approach consists of a multistage pipeline
that uses clinical dictionaries to match unam-
biguous terms in the text and then applies in-
context learning with GPT-4.1 to predict the
ICD-10 code for the terms that do not match
the dictionary. Our system shows promising
results in predicting ICD-10 codes on differ-
ent benchmark datasets in Spanish - 0.89 F1
for categories and 0.78 F1 on subcategories on
CodiEsp, and Greek - 0.85 F1 on ElCardioCC.

1 Introduction

Medical coding and entity linking to standard clas-
sifications are very important tasks in the domains
of healthcare management and research. One of
the widely used standard classifications is the Inter-
national Statistical Classification of Diseases and
Related Health Problems - 10th Revision (ICD-10)
I'_ translated into 40+ languages and used in 100+
countries.

Named Entity Recognition (NER) in clinical text
is highly complex, especially in multilingual set-
tings. The main challenges are the lack of anno-
tated datasets, domain-specific linguistic tools, and

"https://icd.who.int/browsel0/2019/en

natural language processing (NLP) models. Ad-
ditionally, clinical data is sensitive, limiting ac-
cess and use, and creating annotated corpora is
time-consuming and produces only small datasets.
These factors set some constraints in the develop-
ment of supervised NLP models for linking clinical
concepts to ICD-10 codes.

In this paper, we present a fully unsupervised
approach for entity linking of clinical texts in Span-
ish and Greek to ICD-10. The proposed solution
incorporates a dictionary-based approach, which
ensures high precision and large language mod-
els (LLMs) that provide robustness and variability
of paraphrases, concepts out of vocabulary, and
context-dependent mappings in case of ambigu-
ous mentions. For evaluation of the proposed ap-
proach, we selected two benchmark datasets El-
cardioCC?, consisting of discharge summaries in
Greek, and CodiESP? with clinical texts in Spanish.
The achieved results are very promising and show
that our system outperforms most of the supervised
models for the same benchmark datasets *.

2 Related Work

The full spectrum of supervised, unsupervised, and
hybrid approaches has been explored for multilin-
gual clinical text entity linking with ICD-10. For
Spanish clinical texts, supervised approaches em-
ploying BERT achieved mean average precision
(MAP) scores of 0.482 (Lopez-Garcia et al., 2020)
and 0.517 (Costa et al., 2020), as well as an F1
score of 0.505 using CRF (Conditional Random
Field) and BERT (fine-tuned). In Garcia-Santa
et al. (2020), a hybrid approach was proposed using
BERT-based NER, semantic linking, text augmen-
tation, and a knowledge graph, achieving an F1-
score of 0.679 for the CodiEsp dataset. In French,
https://elcardiocc.web.auth.gr/

*https://temu.bsc.es/codiesp/
*The code and prompts are available on our GitHub
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English, and Japanese scenarios, hybrid approaches
blending dictionary projection, rule-based method-
ologies, neural networks, and retrieval techniques,
achieved F1 scores ranging from 0.694 up to 0.8586
and accuracy in the range 0.75-0.86 (Seva et al.
(2017), Zweigenbaum and Lavergne (2016), Mif-
tahutdinov and Tutubalina (2018), Sheng-Wei et al.
(2014)). In Henning and C. (2020), a multilingual
ensemble method was proposed that incorporated
BioBERT, ClinicalBERT, XLNet, GEMs (General
Equivalence Mappings), and achieved MAP: 0.259
(overall), 0.306 (subset), and F1 score 0.608 for
MIMIC I Top 50.

With the emergence of LLM models, several
studies investigated their capabilities for the ICD-
10 coding task (Pathak et al., 2024). The first at-
tempts did not present promising results, but when
more mature GenAl technologies became available
and expertise in prompt engineering was gained,
the results also improved - current publications re-
port results comparable with supervised models
(Mustafa et al., 2025), achieving accuracy from
0.86 to 0.89. The authors of Li et al. (2024) re-
ported results for MIMIC-III top 50 Codes dataset
with GPT-4 (5-shot) that achieved Micro-F1 0.589.
Soroush et al. (2023) investigated the performance
of GPT-3.5 and GPT-4 for ICD-10 coding and re-
ported exact match for codes 0.13 and billable
codes 0.77. Boyle et al. (2023) presented results of
LLMs ICD-10 coding for CodiEsp Spanish dataset
comparing GPT-3.5, GPT-4 and Llama-2, achiev-
ing macro Fl-score 0.225 for GPT-4. Another
study for the CodiEsp-X task and GPT-4 (Puts et al.,
2025) reported an F1-score of 0.305. LLMs for
ICD-10 coding in Swedish were explored in Kar-
lin and Amin (2025), achieving micro F1-scores
of 0.279 and 0.126 for LlaMa-3.1 and GPT-SW3-
6.7B, respectively. In Maatouk (2025), TS5 models
for ICD-10 coding were evaluated and have shown
a micro F1-score of 0.487

3 Data

Spanish Clinical Dataset - CodiEsp CodiEsp
(Miranda-Escalada et al., 2020) is a Spanish clin-
ical dataset consisting of 1,000 patient discharge
summaries labeled by medical professionals. In
each discharge summary, the experts labeled all di-
agnoses and procedures as spans in the text and as-
signed the best ICD-10-CM or ICD-10-PCS codes,
respectively. In this paper, we use only the diag-
noses part of the CodiEsp dataset.

Greek Clinical Dataset - EICardioCC The EL-
CardioCC dataset > (Dimitriadis et al., 2025) con-
sists of 1,000 de-identified hospital discharge let-
ters in Greek written by cardiology doctors. The
dataset was labeled by medical professionals who
identified all spans in the text related to chief com-
plaint, diagnosis, prior medical history, and find-
ings. Each span was assigned an ICD-10 code
based on the term’s meaning in the context.

ICD-10 Dictionaries We compiled dictionaries
with clinical terms and their ICD-10 codes using
the following resources: ICD-10 specifications in
Spanish (CIE-10)° and Greek ’; CodeEsp train
set terms - Spanish; EICardioCC train set terms -
Greek. The Spanish dictionary contains about 88K
terms and their ICD-10 mappings (up to 4 char-
acters), and the Greek dictionary - about 11,500
terms and their 3-character ICD-10 codes.

4 Methods

We focus on the task of entity linking to ICD-10,
which consists of assigning the most appropriate
code from about 2K categories or 14K subcate-
gories. The task is an extreme multi-class classi-
fication where multiple codes can apply to a term,
but one is assigned based on the patient context.
Our system accepts patient term mentions and dis-
charge summaries and assigns ICD-10 codes to
each mention. A mention is a span in a sentence
that represents a concept from ICD-10. For exam-
ple, in the sentence “The patient presented with a
headache.”, the term ”headache” is a mention of
the concept with code R51. Our pipeline addresses
only the entity linking of the mention. Detecting
the mention is also a challenging task that should
be addressed as future work. The process consists
of several steps - first, we search in the language-
specific dictionaries of ICD-10 codes to find an ex-
act match for the mention. If we find a match which
corresponds unambiguously to a specific ICD-10
code, we return that code. Otherwise, the mention
is assigned a code at the second step. In the second
step, we use an LLM (GPT-4.1) and prompt it to
generate ICD-10 codes for all mentions in the text
as well as an explanation for each assignment. We
use in-context learning and provide one example

*https://elcardiocc.web.auth.gr/

*https://www.sanidad.gob.es/
en/estadEstudios/estadisticas/
normalizacion/clasifEnferm/home.htm

"https://medicalcodes.instdrg.gr/
search/icd/systematic
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Figure 1: The process for entity linking uses multiple stages - first, each mention in the text is matched against an
unambiguous ICD-10 dictionary in the specific language, second, an LLM is prompted to select the best ICD-10 for
all mentions in the discharge summary, and finally, the results are combined.

of a discharge summary in the same language with
labeled mentions and respective ICD-10 codes. We
generated the example using GPT-40. The process
of ICD-10 code assignment is presented in Figure
1. Finally, we process the results from both steps
and assign an ICD-10 code if the dictionary match
or LLM response returns a result for the mention.
The proposed approach can be easily adapted to
other languages using ICD-10 specification in the
specific language and taking advantage of the mul-
tilingual support of GPT-4 models. The prompts
we utilized follow the same structure for both lan-
guages, with parameters to specify the language
and language-specific examples generated by an
LLM. In our experiments, we compare 3- and 4-
character codes if they are available in the dataset.

5 Experiments and Results

As a baseline method, we used the dictionary exact
match approach. We perform experiments with
two LLMs - GPT-40 and GPT-4.1, using a private
Azure deployment in order to protect patient data.
We used a temperature of 0.5 and 6K max tokens
in order to accommodate the length of discharge
summary texts. We compare zero- and one-shot
prompts with both models, as well as combining
the dictionary approach with the LLM. We limited
our experiments to one shot, as adding more than
one example discharge summary and its mentions
increases the token count significantly.

The results of our experiments on the datasets are
shown in Table 1. On the Greek dataset, GPT-40

was not able to outperform the dictionary baseline.
However, combining both dictionary and GPT-40
zero- or one-shot improved compared to the base-
line F1 with 0.12 and 0.07, respectively. Zero-shot
outperforms one-shot, which is unusual but may be
explained by the lengthy prompt and the inability
of the model to generate codes for all mentions.
GPT-4.1 improves the result compared to the base-
line, and zero- and one-shot scores are quite close,
with one-shot performing a bit better (0.82 F1).
Combining GPT-4.1 one-shot with the dictionary
shows the best result on the Greek dataset - 0.85 F1,
followed by GPT-4.1 zero-shot and the dictionary.

For the Spanish dataset, we also compare the
performance of the model on category and subcate-
gory levels on the diagnoses part of CodiEsp, since
the dataset is labeled with more specific codes. Pre-
dicting the correct category is an easier task, so
the F1 scores are higher. Similarly to the Greek
dataset experiments, we observe that GPT-4.1 per-
forms better than GPT-40 and in some cases, the
differences are very significant. The best model
combines the dictionary approach and GPT-4.1 one-
shot and achieves 0.8906 F1 on the CodiEsp test
dataset. Again, the second-best model is the zero-
shot GPT 4.1, including dictionary predictions -
F1 score 0.8902. The only difference in subcate-
gory evaluation is that the GPT-4.1 zero-shot per-
formed slightly better than the one-shot, and com-
bined with the dictionary method, achieved 0.78
F1, while the one-shot - 0.77 F1. GPT-40 showed
consistently lower results, especially due to low
recall.
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Model Greek Spanish Cat Spanish Subcat

P R F1 P R F1 P R F1
Dict 0.657 0.657 0.657 0.546 0.546 0.546  0.528 0.528 0.528
GPT-40 0-shot 0.814 0462 0.589 0.782 0.542 0.640 0.641 0.445 0.525
Dict+GPT-40 0-shot  0.776 0.776 0.776 0.776 0.776 0.776  0.641 0.445 0.525
GPT-40 1-shot 0.823 0.324 0.465 0.810 0.113 0.199 0.674 0.094 0.166
Dict+GPT-40 1-shot 0.730 0.730 0.730 0.597 0.597 0.597 0.5966 0.597 0.597
GPT-4.1 0-shot 0.822 0.808 0.815 0.774 0.774 0.774 0.566 0.566 0.566
Dict+GPT-4.1 0-shot 0.853 0.853 0.853 0.890 0.890 0.890 0.780 0.780 0.780
GPT-4.1 1-shot 0.823 0.822 0.823 0.775 0.773 0.774 0.610 0.609 0.609
Dict+GPT-4.1 1-shot 0.856 0.856 0.856 0.891 0.891 0.891 0.776 0.776 0.776

Table 1: Results of evaluation of models on the ElCardioCC dataset in Greek on the category level and the CodiEsp
dataset (diagnoses) in Spanish on the category and subcategory levels. The highest score for each metric is shown in

bold, and the second highest is underlined.

In general, GPT-40 shows relatively good preci-
sion but very poor recall, due to the fact that it does
not generate codes for all mentions. GPT-4.1, on
the other hand, shows balanced precision and recall
and performs the best overall in both languages.
Adding the dictionary to the system improves the
overall F1 score.

5.1 Discussion

The main challenge in our LLM experiments was
to optimize the prompt so that the LLM retrieves
the codes for as many mentions as possible. This
was a particular problem with GPT-40 and is the
main factor contributing to its lower performance.
The length of the discharge summary and terms
context is also a challenge, even though the Ope-
nAl models support very long contexts. Another
challenge specific to ICD-10 coding is the classifi-
cation of symptoms pointing to a specific diagnosis
or not classified elsewhere (falling under the ROO-
R99 chapter). Since this classification requires
ruling out all other categories, LLMs struggle to
correctly identify it, unless the term is a really com-
mon symptom like "headache”.

5.2 Limitations

Our experiments were performed with two differ-
ent languages - Spanish and Greek, due to the
challenge of finding clinical datasets with ICD-10
labels. Therefore, applying the approach in dif-
ferent languages may not show the same results
as the availability of ICD-10 dictionaries, and the
performance of GPT-4.1 may vary based on lan-
guage. Furthermore, the experiments were per-

formed only with Azure OpenAl LLMs, making it
impossible to run the system on hospital premises,
which may be a limitation for adoption in some
environments. Also, the cost of these models for
inference is higher than using smaller open-source
models, which can be a limiting factor for usage.

6 Conclusion

In this paper, we presented an approach for multi-
lingual entity linking to ICD-10, which will help
automate the assignment of codes in hospitals and
offload some of the coding burden from medical
professionals. Our approach shows promising re-
sults in two very different languages - Spanish and
Greek, and does not require specific training data,
only ICD-10 term dictionaries. The system using
dictionaries and GPT-4.1 achieved a 0.85 F1 score
on the Greek dataset, and 0.89 F1 / 0.78 F1 on
the Spanish ICD-10 categories and subcategories,
respectively. This demonstrates the potential of
LLM:s to help with medical ICD-10 coding without
further fine-tuning on labeled datasets. As future
work, experimenting with fine-tuning open-source
and smaller LLMs would be beneficial, since they
can be hosted locally on hospital premises and be
more efficient and less expensive. Our experiments
focused on entity linking, specifically, however, the
process of detecting terms in the text can result
in mentions with incorrect boundaries, missing or
extra mentions, which will also increase the errors
in the linking. Therefore, it would be useful to ex-
plore the end-to-end detection and linking process
in the future and experiment with LLMs to address
this problem.
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