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Abstract

This study provides a systematic evaluation of
prompt engineering strategies for Named En-
tity Recognition in Nepali, a low-resource lan-
guage with high similarity to Hindi, by lever-
aging Hindi-capable Meta’s LLaMA 3.3:70B
model. Four prompting techniques—Baseline,
Chain-of-Thought, Self-Refine, and Least-to-
Most—are assessed in both zero-shot and few-
shot settings. As a novel contribution, we pro-
pose an entity-aware sentence selection strat-
egy that prioritizes example diversity and en-
tity coverage for few-shot prompting. Experi-
mental results show that, without Nepali exam-
ples, zero-shot and one-shot prompts frequently
yield unstructured or hallucinated outputs, un-
derscoring the limitations of cross-lingual ca-
pabilities without in-context supervision. How-
ever, including even a small number of care-
fully selected Nepali examples—sometimes
as few as ten—substantially enhances model
performance, with the Least-to-Most approach
achieving the highest F1 scores. These findings
highlight the potential of prompt-based adapta-
tion and principled example curation for extend-
ing LLM capabilities to related, low-resource
languages, offering a practical alternative to
full model fine-tuning.

1 Introduction

Named Entity Recognition (NER) is a founda-
tional task in natural language processing (NLP),
focused on identifying and categorizing named enti-
ties such as persons, locations, and organizations in
unstructured text (Li et al., 2020). While traditional
machine learning and deep learning approaches
have achieved robust results for high-resource lan-
guages—benefiting from the availability of large
annotated corpora—progress in low-resource lan-
guages such as Nepali, Maithili, and Bhojpuri
remains limited by scarce labelled data and the
high annotation costs required for state-of-the-art

model training (Singh et al., 2019; Mundotiya et al.,
2020).

Recent advances in Large Language Models
(LLMs) (Brown, 2020; Smith et al., 2022) and
prompt engineering techniques (Li and Liang,
2021; Schick and Schütze, 2020) have introduced
promising avenues for addressing these challenges.
Prompt-based approaches exploit the representa-
tional power of LLMs to perform NER with min-
imal supervision, typically using carefully struc-
tured prompts and, in few-shot scenarios, a small
set of annotated examples (Liu et al., 2021; Vilar
et al., 2022). Unlike adapter-based or fine-tuning
methods, prompt engineering allows direct inter-
action with frozen LLMs, removing the need for
resource-intensive retraining—an appealing feature
for low-resource language research where both an-
notated data and computational resources are often
limited.

This study is guided by three main questions:
(1) To what extent can a Hindi-capable large lan-
guage model, without explicit Nepali pretraining,
be prompted to perform effective NER in Nepali
given their strong linguistic similarity (Beaufils,
2015–2025)? (2) How do different prompt en-
gineering strategies—Baseline (Anthropic, 2025),
Chain-of-Thought (Wei et al., 2022), Self-Refine
(Madaan et al., 2023), and Least-to-Most (Zhou
et al., 2023)—compare under zero-shot and few-
shot settings for Nepali NER? (3) Does a princi-
pled, entity-aware sentence selection strategy for
few-shot examples lead to measurable gains over
random sampling in model performance?

To our knowledge, this work presents the first
systematic evaluation of prompt engineering tech-
niques for NER in Nepali using a Hindi-capable
LLM, and introduces a novel, entity-aware sen-
tence selection strategy for optimizing few-shot
prompts. These contributions provide new empir-
ical insights into the feasibility and limitations of
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prompt-based cross-lingual NER in closely related,
low-resource languages.

2 Related Work

Named Entity Recognition (NER) for low-resource
languages continues to present substantial chal-
lenges, primarily due to the lack of annotated cor-
pora and limited language resources (Murthy et al.,
2018). Researchers have attempted to bridge this
gap by employing a range of techniques, including
transfer learning, data augmentation, multilingual
models, and cross-lingual embeddings (Kamath
and Vajjala, 2025; Farahani et al., 2021; Qin et al.,
2024; Ruder et al., 2019). For instance, Feng et al.
(2018) demonstrated that the use of bilingual lex-
icons and neural architectures can enhance name
tagging in languages such as Spanish and Dutch by
leveraging English as a source language. Compara-
ble patterns have also emerged within the context
of South Asian languages, as evidenced by recent
studies (Bhargava et al., 2023; Yadav et al., 2024).

With respect to Nepali, initial efforts were cen-
tred around traditional machine learning meth-
ods, including Support Vector Machines (SVMs),
Naïve Bayes, and bi-directional LSTM architec-
tures (Bam and Shahi, 2014; Maharjan et al., 2019;
Singh et al., 2019). The advent of transformer-
based architectures and multilingual language mod-
els has resulted in marked improvements (Thapa
et al., 2025), exemplified by the DanfeNER project
(Niraula and Chapagain, 2023), which introduced a
benchmark for Nepali NER using annotated tweet
datasets. Although recent work has advanced
Nepali NER (Subedi et al., 2024), ongoing progress
remains limited by the persistent scarcity of la-
belled data and the morphological complexity in-
herent to the language.

Owing to the strong linguistic affinity between
Hindi and Nepali, recent research has explored
cross-lingual transfer learning as a means of mit-
igating data limitations in Nepali (Yadav et al.,
2024). However, these approaches still rely on
explicitly training and fine-tuning models for the
specific target task. As LLMs continue to grow
in scale, the resources required for comprehensive
training remain accessible only to a select few with
access to significant computational and data re-
sources.

Prompt engineering has recently emerged as a
compelling alternative to model fine-tuning, en-
abling large language models to undertake down-

stream tasks by means of well-crafted instructions
and a small number of examples (Li and Liang,
2021; Ma et al., 2021; Cheng et al., 2024). This
method is particularly advantageous in few-shot
scenarios for low-resource languages, where full-
scale model training is often infeasible (Zhang
et al., 2025). Emerging evidence suggests that
the quality, structure, and diversity of prompt ex-
amples play a critical role in determining model
performance in NER tasks (Naguib et al., 2024).

The present study builds on this line of in-
quiry by examining whether a Hindi-capable
LLM—without explicit exposure to Nepali dur-
ing pretraining—can be effectively prompted to
perform NER in Nepali. We systematically com-
pare four prompt engineering strategies, evaluating
their efficacy under both zero-shot and few-shot
conditions, with particular emphasis on the role
of careful example selection. This work provides
new empirical insights at the intersection of prompt
engineering and cross-lingual NER, shedding light
on both the limitations and the potential of LLMs
for tackling low-resource language challenges.

3 Methodology

The overall methodology is depicted in Figure 1.
The process begins with dataset preparation and
splitting into few-shot examples and test sets. The
sentence selection algorithm is then applied to
identify optimal, entity-rich examples for few-
shot prompts. Depending on the experimental
setting—zero-shot or few-shot—prompts are con-
structed accordingly.

For zero-shot prompting, only the test sentence
and explicit task instructions are provided, with no
annotated examples. In the few-shot scenario, a
small set of annotated Nepali examples, selected as
described below, is included before the test instance
to guide prediction.

Following prompt construction, inputs are sub-
mitted to the LLM, which generates a response
for each test sentence. A validation step auto-
matically checks if the output adheres to the ex-
pected XML format and tag constraints. If the
response is invalid, a retry mechanism is triggered:
the same prompt is resubmitted up to three times,
as the model can produce valid outputs in sub-
sequent attempts due to its autoregressive nature.
This mechanism is particularly necessary, as the
model sometimes fails to output the strict XML
required for automated evaluation. We are not
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Figure 1: The proposed methodology for exploring prompt
engineering.

aware of prior work employing such a retry pro-
tocol for output validation in prompt-based NER.
Once responses passed validation, alignment check-
ing was performed to verify that the words in the
LLM’s response matched the words in the test sen-
tences. This step was essential because the model
would occasionally omit or modify tokens. Finally,
the model’s predictions were evaluated against the
ground truth annotations using precision, recall,
and F1-score metrics to measure performance.

3.1 Sentence Selection Strategy

Our sentence selection strategy, described in
Algorithm 1, ensures that few-shot prompts con-
tain diverse and entity-rich examples, covering all
named entity types and maximizing tag diversity.
This approach is both computationally efficient and
deterministic; there is no inherent randomness in
selection. It simply sorts and filters sentences based
on entity type coverage and tag density. By con-
struction, this strategy increases the representative-

Algorithm 1 Sentence Selection Strategy
Input: Set of sentences S, required tags T , target
number N
Output: Top N sentences prioritized by complete-
ness and diversity

1: Group sentences into two sets:

• Sall: Containing all required tags T

• Sdiv: Missing some required tags

2: Rank sentences in Sall by entity count (de-
scending)

3: For sentences in Sdiv:

• Calculate tag diversity as the unique tags
per sentence

• Rank by tag diversity and total number of
tags (descending)

4: Sselected ← Top N sentences from Sall
5: if |Sselected| < N then
6: Add top-ranked sentences from Sdiv until

|Sselected| = N
7: end if
8: return Sselected

ness of prompt examples and, as our results demon-
strate, consistently outperforms random sampling.

3.2 Prompt Engineering Techniques
To systematically investigate prompt engineering
for Nepali Named Entity Recognition (NER), we
implemented four distinct strategies: Baseline
Prompting (Anthropic, 2025), Chain-of-Thought
(CoT) prompting (Wei et al., 2022), Self-Refine
prompting (Madaan et al., 2023), and Least-to-
Most prompting (Zhou et al., 2023). Each strat-
egy was evaluated in both zero-shot and few-shot
configurations (Sivarajkumar et al., 2024).

The Baseline Prompting technique follows a
straightforward approach, providing the model
with direct task instructions and requiring output in
a strictly specified structured format. This method
serves as a reference for conventional prompt de-
sign, where the model must assign entity tags based
solely on the prompt and any prior knowledge.

Chain-of-Thought (CoT) Prompting (Wei
et al., 2022) builds on this structure by requiring
the model to generate step-by-step natural language
reasoning before producing the final output. Here,
the model explains how it detects entity boundaries,
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assigns tags, and applies BIO conventions, before
outputting its predictions in the expected structured
format.

Self-Refine Prompting (Madaan et al., 2023)
adds an iterative, self-correcting layer to the anno-
tation process. The model first generates a draft
response, then critiques its own output, and finally
produces a repaired version that addresses any de-
tected errors or inconsistencies. This approach en-
courages more robust annotation by mimicking hu-
man revision practices.

Least-to-Most Prompting (Zhou et al., 2023)
decomposes the NER task into a series of sim-
pler subproblems. The model first identifies entity
spans, then assigns entity types, and finally trans-
lates these into token-level BIO tags. This struc-
tured, hierarchical approach allows the model to
generalize from simple examples to more complex
cases and is particularly suited to compositional
reasoning.

Baseline Few-Shot Prompt Template

<context>You are an expert in identifying named entities in
Nepali text. Below are training examples, followed by a
test sentence.
</context>
<training_examples><ner_tagged_sentence>
<pair><word>{WORD1}</word><pred_tag>TAG1</pred_tag></pair>
<pair><word>{WORD2}</word><pred_tag>TAG2</pred_tag></pair>
...

</ner_tagged_sentence>
...
</training_examples>
<description>
Each word is tagged as one of: B-LOC, I-LOC, B-ORG, I-ORG,

B-PER, I-PER, or O.
- 'B-' marks the start of an entity.
- 'I-' marks the continuation of the same entity.
- Every 'I-' tag must follow a matching 'B-' tag (e.g.,

'I-ORG' after 'B-ORG').
- Correct any case where an 'I-' appears without its

preceding 'B-'.
</description>
<task>
<test_sentence>{NEPALI SENTENCE}</test_sentence>
Analyze the sentence and ensure each word is tagged
correctly. Confirm that each 'I-' tag has a preceding
'B-' tag.

</task>
<output_formatting>
The model must respond with **exactly** the XML shown

below-no extra text!
<tagged_output>
<pair><word>WORD</word><pred_tag>TAG</pred_tag></pair>
...

</tagged_output>
</output_formatting>

Figure 2: Prompt template for Few-Shot + Baseline used
in the experiment. The model is provided with annotated
examples and is required to provide only the final structured
prediction. The zero-shot version is structurally identical,
excluding training examples.

Figures 2–5 present the few-shot prompt tem-
plates for each technique. The Baseline prompt de-

Chain-of-Thought Prompt (Few-Shot Excerpt)

<task>
<test_sentence>
{NEPALI SENTENCE}
</test_sentence>
Think step by step and place your reasoning inside a

<reasoning> tag, then output
the final BIO tags inside <tagged_output>.
- Review training examples to internalize tagging patterns.
- Tag each token of the test sentence while explaining your

decisions.
- Ensure I-tag continuity.
After completing your reasoning, output the final tag list.
</task>
<output_formatting>
The model must respond with exactly two root-level XML

sections in the following
order:
1. <reasoning> - A detailed, step-by-step explanation of

how the tag for each word
was decided.
2. <tagged_output> - One <pair> per word, keeping the

original token order, using:
<pair><word>WORD</word><pred_tag>TAG</pred_tag></pair>

No text of any kind is allowed outside these two tags.
</output_formatting>

Figure 3: Prompt template for Few-Shot + Chain-of-
Thought showing only parts different from the Baseline tem-
plate. The model is required to produce stepwise reasoning
before the final structured prediction. Zero-shot is structurally
identical, minus training examples.

Least-to-Most Prompt (Few-Shot Excerpt)

<task>
<test_sentence>
{NEPALI SENTENCE}
</test_sentence>
Inside <reasoning>, solve the task in three explicit steps:
1. <step1_spans> Detect contiguous entity spans.

- Output each span as
<span>start_index-end_index</span>.

2. <step2_types> Assign entity type PER / ORG / LOC to
every span.

- Format:
<typed_span>
<span_id>k</span_id><entity_type>PER</entity_type>
</typed_span>

3. <step3_bio> Convert the span+type list into
token-level BIO tags.

After completing all three steps *inside <reasoning>*,
output only

the final BIO labels inside <tagged_output>, one <pair> per
token.

</task>
<output_formatting>
The model must respond with exactly two root-level XML

sections, in order:
1. <reasoning> any intermediate thinking / sub-steps.
2. <tagged_output> one <pair> per token:

<pair><word>WORD</word><pred_tag>TAG</pred_tag></pair>
No text of any kind is allowed outside these two tags.
</output_formatting>

Figure 4: Prompt template for Few-Shot + Least-to-Most
showing only parts different from Baseline. The model is
guided through explicit span detection, type assignment, and
token-level tagging, using annotated examples for demonstra-
tion. Zero-shot version omits the examples.

fines the fundamental structure shared by all strate-
gies, except for the reasoning section. Zero-shot
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Self-Refine Prompt (Few-Shot Excerpt)

<task>
<test_sentence>
{NEPALI SENTENCE}
</test_sentence>
Inside <reasoning>, follow a three-phase Self-Refine

protocol:
1. <phase>Draft</phase> - Create an initial BIO tag for

each token.
2. <phase>Critique</phase> - Examine the draft; point out

BIO-format errors
(e.g., an I-tag without a preceding B-tag) or wrong

entity types.
3. <phase>Repair</phase> - Produce a corrected tag list.

After finishing all three phases in <reasoning>, output
only the repaired

BIO labels inside <tagged_output>.
</task>
<output_formatting>
The model must respond with exactly two root-level XML

sections in order:
1. <reasoning> - all intermediate thinking (any structure

you like).
2. <tagged_output> - one <pair> per word:

<pair><word>WORD</word><pred_tag>TAG</pred_tag></pair>
Nothing is allowed outside these two tags.
</output_formatting>

Figure 5: Prompt template for Few-Shot + Self-Refine show-
ing only parts different from Baseline. The model executes
draft, critique, and repair steps, then outputs the final struc-
tured prediction. The zero-shot version omits annotated exam-
ples.

templates for all techniques mirror their few-shot
versions, differing only in the absence of annotated
training examples.

For the zero-shot configuration, prompts across
all strategies follow a unified framework: defin-
ing the model’s role, describing the BIO tagging
scheme, and specifying strict output formatting.
The key differences lie in how each strategy struc-
tures its reasoning—direct prediction (Baseline),
stepwise justification (Chain-of-Thought), iterative
self-correction (Self-Refine), or hierarchical de-
composition (Least-to-Most).

In the few-shot setting, annotated examples are
provided before the test sentence, but the overall
output format and reasoning protocols of each strat-
egy remain consistent with their zero-shot coun-
terparts. Thus, while the Baseline approach tags
directly from examples, the other methods expand
upon this with increasingly explicit reasoning or
multi-phase processes, leveraging observed pat-
terns for improved prediction.

4 Experimental Setup

4.1 Dataset Preparation

For the purposes of this study, the Nepali Named
Entity Recognition (NER) dataset introduced by

Singh et al. (2019) was employed. This corpus con-
sists of annotated Nepali text, with named entities
categorized into three types: Person (PER), Loca-
tion (LOC), and Organization (ORG), following
the CoNLL-2003 tagging convention. The origi-
nal dataset comprises a total of 3,289 sentences,
of which 2,796 sentences were kept as examples
for use in the few-shot configuration, while 493
sentences constituted the test set.

In this study, we selected up to 75 sentences as
few-shot examples to guide model predictions. The
distribution of entity tags within these examples, as
the number of selected sentences increases, is sum-
marized in Table 1. To further assess the impact
of example selection, we performed a side-by-side
comparison of two strategies: Random Sentence
Selection, where example sentences are drawn at
random, and our proposed Sentence Selection strat-
egy, applied to a representative subset of 25 test
sentences. The resulting tag distributions for each
approach are reported in Table 2.

Sentences B-ORG I-ORG B-PER I-PER B-LOC I-LOC

1 1 2 8 7 7 1
5 9 20 17 16 15 6
10 20 32 31 35 24 10
15 37 59 55 59 40 12
20 54 85 71 75 50 12
25 67 102 82 88 63 12
50 106 167 131 137 105 16
75 136 208 167 174 140 19

Table 1: Tag counts across few-shot example sizes.

(a) Random Sentence Selection

# Sent. B-ORG I-ORG B-PER I-PER B-LOC I-LOC O

5 4 1 3 2 1 0 79
10 9 14 6 3 4 0 267
25 17 14 26 16 14 0 477
50 55 56 43 27 30 2 1193
75 43 22 72 51 70 6 1959

(b) Sentence Selection Strategy

# Sent. B-ORG I-ORG B-PER I-PER B-LOC I-LOC O

5 9 20 17 16 15 6 250
10 20 32 31 35 24 10 391
25 67 102 82 88 63 12 864
50 106 167 131 137 105 16 1665
75 136 208 167 174 140 19 2367

Table 2: NER tag counts across different dataset sizes
using (a) random sentence selection and (b) sentence
selection strategy.

4.2 Large Language Model
All experiments were conducted using Meta’s
quantized multilingual LLaMA 3.3:70B model
(Grattafiori et al., 2024), a state-of-the-art open-
source large language model accessible through
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the Ollama platform1. The model supports This
transformer-based architecture has been pre-trained
on more than 15 trillion high-quality tokens and
supports a vocabulary of 128,000 tokens. The
model leverages Grouped Query Attention (GQA)
to improve inference efficiency. To address mem-
ory and computational limitations, the quantized
Q4_K_M variant was utilized in all experiments.
Model inference and evaluation were performed on
a computing environment equipped with NVIDIA
A100-SXM4-80GB GPUs (NVIDIA Corporation,
2025). The specific parameter settings employed
throughout the experiments are detailed in Table 3.

Parameter Model Temp. Top-p Top-k Seed

Value LLaMA3.3:70B 0.7 0.9 50 23

Table 3: Generation parameters used for prompting Meta’s
quantized LLaMA 3.3:70B (Q4_K_M) model.

4.3 Prompting configurations

Setting Example Count Strategies

Zero-shot 0 All
Few-shot 1, 5, 10, 15, 20, 25, 50, 75 All

Table 4: Prompting configurations evaluated: all four strate-
gies (Baseline, Chain-of-Thought, Self-Refine, Least-to-Most)
in zero-shot and few-shot settings with varying in-context ex-
amples.

The prompting configurations explored in this
study are summarized in Table 4. All four
prompt engineering strategies—Baseline, Chain-
of-Thought, Self-Refine, and Least-to-Most—were
systematically assessed under both zero-shot and
few-shot conditions. In the zero-shot configuration,
the model received only the prompt template with-
out any annotated examples (Example Count: 0).
For the few-shot setting, the number of in-context
annotated examples was progressively varied, with
experiments conducted using 1, 5, 10, 15, 20, 25,
50, and 75 example sentences within each prompt.
This experimental design enables a comprehensive
investigation into the effects of prompt structure
and the degree of in-context supervision on NER
performance in a low-resource language setting.

4.4 Evaluation Metrics
Model performance was evaluated using standard
metrics: precision, defined as the ratio of true posi-

1https://ollama.com/library/llama3.3:70b

tives to the sum of true positives and false positives;
recall, the ratio of true positives to the sum of true
positives and false negatives; and F1-score, com-
puted as the harmonic mean of precision and recall
(Hastie et al., 2016).

5 Results and Discussion

Figure 6: F1 scores on 25 test sentences, comparing the
sentence selection strategy and random selection for few-shot
prompting across 5, 10, 25, 50, and 75 examples.

Figure 6 highlights the comparative effective-
ness of the sentence selection strategy, which con-
sistently surpasses random selection at every eval-
uated example count. With only 5 annotated ex-
amples, sentence selection yields an F1 score of
0.71 compared to 0.66 for random selection. This
performance gap widens with additional examples,
reaching 0.83 versus 0.70 at 25 examples and peak-
ing at 0.84 compared to 0.71 at 50 examples. These
findings reinforce the critical importance of curat-
ing diverse, entity-rich examples for maximizing
few-shot performance in Nepali NER.

Table 5 shows that retries were frequently neces-
sary in zero-shot and one-shot scenarios, with many
test sentences requiring multiple attempts and those
reaching a third try not yielding valid outputs. In
contrast, few-shot configurations with five or more
annotated examples almost always produced valid
responses on the first attempt, underscoring the sta-
bilizing effect of minimal in-context supervision.
As a result, zero-shot and one-shot settings were
excluded from quantitative analysis, as they often
led to hallucinated or unstructured outputs (see Fig-
ure 7), illustrating the limitations of cross-lingual
transfer without explicit Nepali examples.

Of the prompting strategies evaluated, the Least-
to-Most approach achieves the highest perfor-
mance, attaining a peak F1 score of 0.8403 with 10
annotated examples and maintaining values above
0.79 as more examples are included (Figure 8).
Both Self-Refine and Baseline strategies offer com-
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Technique Num of Examples Attempt Test Sentences

Self-Refine Zero-shot 1 96
2 36
3 361

1 1 429
2 26
3 38

Baseline Zero-shot 1 134
2 42
3 317

1 1 482
2 0
3 11

Least-to-Most Zero-shot 1 179
2 43
3 271

1 1 484
2 4
3 5

Chain-of-Thought Zero-shot 1 134
2 42
3 317

1 1 346
2 41
3 106

Table 5: Retry attempt statistics for zero-shot and one-shot
settings across all prompting strategies. The table reports the
number of test sentences requiring each attempt to obtain an
expected response. Notably, for all sentences that reached
the third attempt, none yielded valid response, indicating that
retries beyond the second attempt were not helpful.

petitive results, each exceeding an F1 score of 0.82
with moderate supervision. In contrast, the Chain-
of-Thought approach lags behind, peaking at an
F1 of 0.7998 and declining with additional exam-
ples. These trends are mirrored in the precision and
recall plots (Figures 9 and 10) too.

Hence, both the zero-shot and one-shot config-
urations were excluded from the quantitative anal-
ysis, as they frequently resulted in hallucinated
predictions (see Figure 7) or failed to produce out-
puts in the required format. In these settings, the
Hindi-capable model, without explicit Nepali super-
vision, failed to generalize and routinely generated
incomplete or unstructured predictions, underscor-
ing the limitations of cross-lingual transfer without
in-context examples.

A closer analysis of prediction errors reveals
that most inaccuracies are concentrated in the I-
LOC and I-ORG entity types, which persistently
exhibit the lowest precision and recall. Such errors
are especially pronounced in sentences with multi-
token entities or morphologically complex phrases,
where continuation tags are frequently misassigned,
resulting in fragmented entity spans or BIO viola-
tions. By contrast, person entities (B-PER and
I-PER) are recognized with consistently high pre-
cision and recall, underscoring their robustness
across all prompting methods. Maintaining entity

Figure 7: Example of zero-shot prompt and corresponding
LLM response. The model hallucinated several tokens not
present in the input prompt. For brevity, only part of the output
is shown; ellipses (. . . ) indicate omitted lines.

span continuity and disambiguating among simi-
lar entity types in complex, entity-dense contexts
remain the principal challenges for prompt-based
Nepali NER.

While our best prompt-based performance (F1
= 0.84, Least-to-Most) demonstrates the promise
of prompt-only adaptation for low-resource NER,
it is important to note that these results fall sub-
stantially short of the F1-scores routinely reported
for fully supervised neural and transformer-based
models on the same dataset, which regularly ex-
ceed 0.97 with fine-tuning (Table 6). This gap
underscores both the progress and the inherent lim-
itations of prompt-only methods in cross-lingual,
low-resource settings.

Model F1-Score

Stanford CRF 0.752
BiLSTM 0.847
BiLSTM + POS 0.836
BiLSTM + CNN (C) 0.864
BiLSTM + CNN (G) 0.867
BiLSTM + CNN (C) + POS 0.854
BiLSTM + CNN (G) + POS 0.855

MuRIL 0.979
BERT Multilingual 0.974
DistilBERT Multilingual 0.972
RemBERT 0.973

Table 6: F1-score of various traditional and BERT-based
models on the dataset (Singh et al., 2019; Yadav et al.,
2024).
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Figure 8: F1 score plot for all 493 test sentences using 5, 10,
25, 50, and 75 examples selected by the sentence selection
strategy.

Figure 9: Precision score plot for all 493 test sentences
using 5, 10, 25, 50, and 75 examples selected by the sentence
selection strategy.

6 Conclusion

This work provides a comprehensive analysis of
prompt engineering strategies for Nepali Named
Entity Recognition (NER) using a Hindi-capable
large language model, focusing on both zero-
shot and few-shot scenarios. Through a system-
atic comparison of Baseline, Chain-of-Thought,
Self-Refine, and Least-to-Most prompting tech-
niques, we demonstrate that prompt-based adap-
tation—when supplied with as few as five well-
chosen annotated examples—can achieve compet-
itive F1 scores, peaking at 0.84 with the Least-to-
Most approach. Our results reveal three central
insights.

First, prompt-only cross-lingual transfer, in the
complete absence of Nepali supervision (i.e., zero-
shot and one-shot), fails to produce reliable or con-
forming outputs, with the model frequently halluci-
nating entities. This finding underscores the limi-
tations of relying solely on linguistic similarity for
zero-shot learning in truly low-resource settings.

Second, the introduction of minimal in-context
supervision produces substantial gains in both
output validity and overall NER performance.

Figure 10: Recall score plot for all 493 test sentences using 5,
10, 25, 50, and 75 examples selected by the sentence selection
strategy.

Among the prompting techniques evaluated, the
Least-to-Most approach consistently yielded the
highest scores, benefiting from its explicit, step-
wise decomposition of the NER task. Both Self-
Refine and Baseline strategies also proved effec-
tive, while Chain-of-Thought prompting lagged
behind—suggesting that, for morphologically rich
and structurally complex languages like Nepali,
decomposition and error correction may be more
beneficial than pure reasoning.

Third, the design and selection of prompt ex-
amples play a decisive role in few-shot settings.
Our sentence selection strategy, prioritizing entity
diversity and tag coverage, reliably outperformed
random sampling, highlighting the importance of
qualitative curation in low-resource prompt design.

While prompt-based methods offer a promis-
ing alternative to full model fine-tuning—enabling
rapid adaptation with minimal supervision—there
remains a pronounced performance gap relative to
state-of-the-art transformer models trained with ex-
tensive Nepali data. Bridging this gap will require
further innovations in prompt engineering, possibly
in combination with parameter-efficient tuning or
retrieval-augmented methods.

Future research should extend these insights to
a broader range of low-resource languages and en-
tity categories, investigate the integration of ex-
ternal linguistic resources, and explore adaptive
prompting schemes that further minimize supervi-
sion while maximizing generalization. Our find-
ings underscore both the potential and the current
boundaries of prompt-based NER in cross-lingual,
low-resource scenarios, paving the way for more
robust, accessible solutions.
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