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Abstract

Large-scale Vision-Language Models (LVLMs)
integrate linguistic and visual information,
demonstrating advanced task-solving capabili-
ties. These models are originally derived from
Large Language Models, leading to strong ca-
pabilities for language tasks. However, the im-
pact of additional visual information on model
responses remains insufficiently understood. In
this study, we focus on the priming effect, a
psychological phenomenon, to investigate how
visual information influences language task pro-
cessing. We present additional intentionally
designed images alongside two types of lan-
guage tasks with different characteristics and
analyze changes in the model’s responses. Our
experimental results show that model responses
shift in the direction intended by the image,
suggesting that LVLMs do not simply ignore
visual information but actively incorporate it
into language processing. Furthermore, the
similarity between this behavior and priming
effects observed in human cognition suggests
that LVLMs may share certain aspects of hu-
man cognitive mechanisms.

1 Introduction

Large-scale Vision-Language Models (LVLMs)
have demonstrated advanced performance in vi-
sual information processing by integrating visual
and linguistic information. However, their out-
puts sometimes show language biases or vision
biases (Chen et al., 2024), implying a difference
in the relative importance of visual and linguis-
tic information. Yet, the extent to which visual
information influences model outputs, as well as
the nature of the interaction between visual and
linguistic modalities, remains unclear.

Some studies (Kassner and Schiitze, 2020; Misra
et al., 2020; Michaelov et al., 2023; Sharma et al.,
2024; Jumelet et al., 2024; Sakai et al., 2025) inves-
tigating the behavior of Language Models (LMs) in
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Figure 1: Priming effects in LVLMs. Textual and visual
cues modulate prediction probabilities. The likelihood
of completing “I work for ___” with “Apple” increases
when preceded by a relevant word or image(“iPhone”).

terms of cognitive science have revealed that LMs
show “priming”. Priming is a psychological phe-
nomenon where a preceding stimulus influences the
processing of a subsequent stimulus (Tulving and
Schacter, 1990). Kassner and Schiitze (2020) and
Misra et al. (2020) investigated this effect by ob-
serving changes in the outputs when placing words
at the beginning of the inputs. For example, when
the word “iPhone” is given as a primer before the
sentence “I work for __”, the model’s prediction
probability for “Apple” increases significantly, as
illustrated in Figure 1. A similar effect is expected
with a visual primer such as an image of “iPhone”.

This raises a question: Do LVLMs show prim-
ing? While visual and textual inputs are tokenized
separately via a vision encoder and tokenizer, it
remains unclear whether these tokens function sim-
ilarly within the model. If LVLM outputs vary
depending on preceding visual input, this would in-
dicate priming effects akin to those in humans. We
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Text

Guiding

Misleading Unrelated Noise

Question:
What position does Roman Turek play?
(Answer: goaltender)

Sentence:

Equals the original and in some ways even betters it.
Is this sentence negative or positive?

(Answer: positive)

Table 1: Examples of visual priming conditions applied to two tasks: Entity Questions (top) and SST-2 (bottom).
The Text column shows the prompts given to the models for each task (excluding the answer parts).

reinterpret known LVLM biases through the lens
of priming to examine how visual input shapes text
generation. In this study, we investigate how vi-
sual information facilitates the correct answer and
influences the confidence of entity-centric question-
answering tasks and sentiment classification tasks,
which do not require visual information. Our ex-
perimental results show that even in tasks solvable
with language information alone, LVLMs change
their outputs and confidence depending on the type
of additional images presented. This finding im-
plies that LVL.Ms show the priming effect, high-
lighting the similarity with human cognition.

2 Background and Related Work

LVLMs. LVLMs (Liu et al., 2024; Bai et al.,
2023; Wang et al., 2024; Ye et al., 2024; Radford
et al., 2021) are constructed by integrating a pre-
trained vision encoder with large language mod-
els (LLMs) (Touvron et al., 2023; OpenAl et al.,
2024; Chiang et al., 2023). Vision encoders are
trained by some training strategies such as con-
trastive learning, e.g., CLIP (Radford et al., 2021),
supervised pretraining on large-scale image classifi-
cation datasets, e.g., ViT (Dosovitskiy et al., 2021)
and BLIP-2 (Li et al., 2023). During LVLM train-
ing, datasets typically consist of highly correlated
pairs of visual and textual information. Conse-
quently, situations where additional visual input
is provided for tasks that can be solved using lan-
guage alone are rarely considered in the training
process. As a result, how visual information con-
tributes in scenarios where it is unnecessary or in
tasks where linguistic data play a dominant role, as
well as how visual and linguistic modalities inter-
act under such conditions, remains insufficiently
understood (Cao et al., 2022; Kawaharazuka et al.,

2024; Hayashi et al., 2024; Ozaki et al., 2025b,a;
Sakajo et al., 2025).

Priming. Priming is a phenomenon where the
presentation of a preceding stimulus (primer) fa-
cilitates the processing of a subsequent stimulus
(target) (Tulving and Schacter, 1990; Bargh and
Chartrand, 2000; Zorzi et al., 2004; Lee et al., 2023;
Sharma et al., 2024). However, under certain con-
ditions, the primer may inhibit target processing,
a phenomenon known as negative priming (Tip-
per, 1985; Milliken and Rock, 1997; Reitter and
Moore, 2007; Schoch et al., 2020). In this study,
to distinguish it from negative priming, we refer to
cases where the primer facilitates target processing
as positive priming. Here, we assume a situation
where the primer corresponds to visual information
and the target corresponds to the processing of a
language task. Both visual and text-based priming
have been shown to shorten human response times.

Priming in LMs. LMs also exhibit priming ef-
fects, similar to humans: the output probability
of a target word varies depending on the provided
text primer, as illustrated in Figure 1. For instance,
Misra et al. (2020) investigated the influence of
lexical cues on BERT (Devlin et al., 2019) and
demonstrated that BERT exhibits a priming effect
akin to that of humans. Their study measured how
the probability of predicting a target word changed
when preceded by either a semantically related or
unrelated word, using surprisal as a key metric.
The results showed that BERT’s priming effect was
particularly pronounced in contexts with low con-
straint but weakened as contextual constraints in-
creased. In addition, they introduced Facilitation as
a measure of the priming effect, defining it as the
difference in surprisal between conditions where a
related versus an unrelated word was used.
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3 Task Definition

We investigate how the behavior of the model
changes when various types of visual information,
containing different intentions, are added to tasks
that can originally be solved solely with linguistic
information (hereafter, language-only tasks). This
investigation aims to examine the priming effect in
the context of visual information by evaluating how
the addition of visual information affects the accu-
racy and confidence of models handling linguistic
tasks. In the experiment, one of the following four
types of images is provided in addition to the text.
Each image type is designed to test whether vi-
sual information facilitates, inhibits, or remains
neutral to the language understanding process:

Guiding Images. Images designed to induce a
positive priming effect, making the target word
more easily through visual information.

Misleading Images. Images designed to induce a
negative priming effect, leading the model to recall
a word different from the target word.

Unrelated Images. Images containing visual in-
formation but unrelated to the task. These test the
model’s behavior under visually irrelevant stimuli.

Noise Images. Images with randomly assigned
pixel values, containing minimal information.
These serve as a baseline to isolate biases caused
by the presence or absence of a priming effect.

4 Evaluation Metrics

To assess how visual information affects model per-
formance in language-only tasks, we employ three
complementary evaluation metrics. Each captures
a different aspect of the model’s behavior, together
providing a comprehensive view of the presence
and nature of visual priming effects in LVLMs.

4.1 Accuracy

Accuracy captures the impact of visual informa-
tion, indicating whether its presence and semantic
intent help or hinder task success in a binary sense
(correct vs. incorrect).

We use force decoding to obtain the log-
probabilities of the target word under each input
scenario. Let W = {wy, we, ..., wg } denote the
set of candidate words. For a given input x, the
log-probability of each candidate word wy, is:

log P(wy, | x).

We convert these log-probabilities into normalized
probabilities using the softmax function:

ol exp(log P(wy, | z)) )
p(wy, | ) St exp(log P(w; | z))

The model prediction is the candidate word w that
has the highest probability:

w = arg max P(w | x).

g max P(w | 7)

Accuracy is then computed as the proportion of
cases where the predicted word matches the gold
answer word:

N
1
Accuracy = N Z I(w; = w)),
i=1

where N is the total number of inputs and I is the
indicator function that returns 1 if the prediction is
correct and O otherwise.

4.2 Facilitation

Accuracy is a straightforward and intuitive met-
ric to evaluate model performance, as it quantifies
the proportion of correct predictions. However,
accuracy primarily reflects changes in correctness,
making it less sensitive to subtle shifts caused by vi-
sual information. In other words, even if a model’s
prediction is subtly influenced by a visual prime,
accuracy can only capture the effect when the pre-
dicted label itself changes. This limitation makes
it difficult to fully capture the priming effect, espe-
cially when visual information affects confidence
or probability without altering the final prediction.
As a result, the nuanced impact of visual informa-
tion often remains hidden when relying solely on
accuracy as a metric. To address this issue, we
introduce the Facilitation metric introduced by
Misra et al. (2020) with slight modifications. Fa-
cilitation directly compares the log-probabilities of
the target word under different visual conditions
for the same input. By focusing on the difference in
prediction probabilities rather than just correctness,
Facilitation provides a more nuanced measure of
how visual primes influence model outputs. This
allows us to evaluate the priming effect even when
accuracy remains unchanged.

Facilitation F is defined as the difference be-
tween the log-probability of the target word T’
when the visual prime Pr; and the linguistic con-
text C' are presented immediately before 7', and the
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log-probability of the same 7" under the identical
context C but with an alternative visual prime Prj:

F=1log P(T | C,Pr;) —log P(T | C,Pra).

The conditional log-probability of the target word
is computed as the mean log-probability over all
tokens that constitute 7' = [T, 1o, ..., T,]:

log P(T | C,Pr)
1
= Yoy log Pivim(Ty | T<i, C, Pr).

where Py denotes the conditional probability
distribution defined by the LVLM. A positive value
(F > 0) indicates a positive priming effect, where
Pr; facilitates the prediction of 7" more than Pro;
conversely, a negative value (' < 0) indicates a
negative priming effect.

To isolate the semantic contribution of the visual
cue, rather than the mere presence or absence of a
stimulus, we consistently use a noise image as the
baseline. This ensures that the difference measured
captures only the semantic alignment of the visual
prime. We define three variants of Facilitation ac-
cording to image type used (guiding, misleading,
and unrelated), as summarized in Table 2. This de-
sign enables a more controlled comparison of the
priming effect under different semantic conditions,
without confounding modality effects.

4.3 Expected Calibration Error (ECE)

The confidence of the prediction is then defined as
the probability assigned to the predicted word:

Confidence = P(w | z).

However, having high confidence does not always
imply correctness. There are cases where a model
exhibits high confidence but produces incorrect pre-
dictions (overconfidence), as well as cases where
it shows low confidence despite being correct (un-
derconfidence). To quantify this discrepancy be-
tween the model’s confidence and its actual accu-
racy, we introduce the Expected Calibration Error
(ECE) (Pakdaman Naeini et al., 2015; Guo et al.,
2017). We first divide the confidence range [0, 1]
into M equal-width bins B,,. In this study, we set
M = 10. The definition of each bin is as follows:

m—1 m
Bm:{x| % <p(w]x)§M}.

For each bin, we compute the accuracy and average
confidence as follows:

acc(Bp,) = % Z I(w =w"),

Pl‘l PI‘2
Fouiding Guiding Image Noise Image
misleading Misleading Image Noise Image
Funrelated Unrelated Image Noise Image

Table 2: Definition of three Facilitation variants based
on the type of visual prime (Pr).

Models HuggingFace ID
Qwen2.5-VL-7B-Instruct Qwen/Qwen2.5-VL-7B-Instruct
Llama-3.2-11B-Vision-Instruct meta-1lama/Llama-3.2-11B-Vision-Instruct

mPLUG-Owl13-7B mPLUG/mPLUG-OwI3-7B-240728
Phi-3.5-vision-instruct microsoft/Phi-3.5-vision-instruct

Qwen/Qwen2-7B-Instruct
Qwen/Qwen?2.5-7B-Instruct

Qwen2-7B-Instruct
Qwen2.5-7B-Instruct

Table 3: Correspondence between the model used and
the model name in HuggingFace (Wolf et al., 2020).

1 N
conf(B,,) B xeszm P(w | z).
The ECE is then defined as the weighted average
of the absolute differences between accuracy and
confidence over all bins:

M
B,
ECE = Z ’N‘ lacc(B,,) — conf(By,)],

m=1

where | B,,| is the number of samples in bin B,,.
This metric quantifies the degree of mismatch be-
tween predicted confidence and observed accuracy,
thus providing insight into whether the model’s
confidence is well-calibrated. ECE allows us to
evaluate, in a principled way, not only how visual
information shifts output probabilities, but also how
it affects the reliability of those probabilities. By
comparing ECE across different visual-prime sce-
narios, we can capture qualitative differences in the
resulting priming effects.

5 Experimental Settings

Entity Questions (EQ). FEQ (Sciavolino et al.,
2021) is a question-answering task that derives an-
swers related to specific entities. As shown in the
upper section of Table 1, the questions are con-
structed by inserting entities into predefined ques-
tion patterns. In our experiments, we use 13,307
test samples to investigate how visual information
influences the outputs.

SST-2. SST-2 (Socher et al., 2013) is a sentiment
classification task in which given sentences are
classified as positive or negative (lower section of
Table 1). We use 1,821 test samples to examine
how image information affects sentiment judgment.
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task model guiding misleading unrelated noise text only LLM
Qwen2.5-VL 0.577 0.433 0.449 0.500 0.491 0.518
EQ mPLUG-OwI3 0.569 0.467 0.474 0.506 0.505 0.581
Llama-3.2 0.726 0.579 0.597 0.632 0.652 -
Phi-3.5 0.618 0.461 0.494 0.520 0.530 -
Qwen2.5-VL 0.930 0.808 0.885 0.881 0.872 0.924
SST-2 mPLUG-OwI3 0.940 0.831 0912 0.920 0.861 0910
Llama-3.2 0.950 0.796 0.890 0.836 0.921 -
Phi-3.5 0.998 0.164 0.907 0.912 0.909 -

Table 4: Results of Accuracy for Each Model in EQ and SST-2: blue values indicate the highest metric among

the LVLMSs, while red values indicate the lowest metric, both excluding LLM.

task Facilitaion Qwen2.5-VL mPLUG-Ow13 Llama-3.2 Phi-3.5
Fouiding -0.046 0.118 0.489 0.918

EQ IE?misleading -0.556 -0.399 -0.735 -0.756
Funrelated -0.478 -0.350 -0.570 -0.360
Fouiding 0.202 -0.196 -0.831 0.199

SST-2 Fmisteading 0.127 -0.571 -1.299 -2.685
Funrelated 0.068 -0.446 -0.483 -0.215

Table 5: Facilitation scores across different types of visual priming for EQ (top) and SST-2 (bottom) using
four LVLMs. Positive [ values indicate a positive priming, while negative values indicate an negative priming.

5.1 Image Collection Method

Entity Questions. For EQ, the guiding images
were obtained by searching for the entity men-
tioned in the question on Wikipedia and selecting
an image from the corresponding article. The mis-
leading images were preselected, with two images
assigned for each question pattern. Unrelated im-
ages were chosen randomly from the set of guiding
images for other questions, ensuring no direct rela-
tion to the current question.

SST-2. In SST-2, one emoji image that appears vi-
sually positive, negative, and neutral, respectively,
was selected from a Kaggle dataset!. Prior to the
main experiments, we confirmed that all LVLMs
used in this study were able to correctly classify the
emotion represented by each emoji. For each sam-
ple, the guiding image is an emoji that corresponds
to the correct emotion label. In contrast, the mis-
leading image represents the opposite emotion of
the correct label. In addition, the unrelated image
is an emoji that appears to be emotionally neutral.

5.2 Models

We utilize four LVLMs in our experiments to
investigate potential differences in how each
model processes visual cues: Qwen2.5-VL-7B-
Instruct (Bai et al., 2025), Llama-3.2-11B-Vision-

'https://www.kaggle.com/datasets/
subinium/emojiimage—-dataset

Instruct (Grattafiori et al., 2024), Phi-3.5-vision-
instruct (Abdin et al., 2024), and mPLUG-OwI3-
7B (Ye et al., 2025). Additionally, to compare the
LVLMs with their corresponding base LL.Ms, we
also use Qwen2.5-7B (Qwen et al., 2025) as the
counterpart of Qwen2.5-VL and Qwen2-7B (Yang
et al., 2024), as the counterpart of mPLUG-OwI3.
This comparison provides insight into how the pres-
ence or absence of a vision encoder may affect
model performance. Although it may not allow
for definitive conclusions, it offers a useful indica-
tion of the potential impact of incorporating visual
processing. Detailed information on the models is
provided in Table 3.

6 Experimental Results

Accuracy. From Table 4, guiding images tended
to improve accuracy compared to the text-only set-
ting in all tasks and models. On the other hand, mis-
leading images consistently decreased accuracy in
all tasks and models compared to the text-only set-
ting, without exception. Notably, in the SST-2 task,
the extent of change caused by misleading images
varied significantly between models. Specifically,
Qwen2.5-VL and mPLUG-OwI3 showed relatively
small changes in accuracy (0.03 and 0.06 points),
while Llama-3.2 and Phi-3.5 exhibited much larger
variations (0.15 and 0.75 points). Regarding unre-
lated and noise images, no substantial changes in

1389


https://www.kaggle.com/datasets/subinium/emojiimage-dataset
https://www.kaggle.com/datasets/subinium/emojiimage-dataset

Task Model Text-Only Guiding Misleading Unrelated Noise
Qwen2.5-VL  0.082 + 0.008 | 0.026 £ 0.007"  0.134 £ 0.009T  0.118 £ 0.008" = 0.073 £ 0.008f

EQ mPLUG-OwI3  0.120 £ 0.008 = 0.089 & 0.008T  0.168 = 0.0087  0.163 & 0.008"  0.177 &+ 0.008
Llama3.2-VI  0.163 £ 0.007 = 0.076 & 0.007t  0.175 £ 0.008"  0.162 +0.008 | 0.125 = 0.007"
Phi3.5-VI 0.218 £ 0.008 = 0.187 & 0.008T  0.317 = 0.008"  0.284 + 0.008"  0.264 + 0.008"
Qwen2.5-VL 0231 £0.014 0.309 +0.011T  0.227 £0.018  0.272 +£0.014"7  0.232 +£0.014

sgo  MPLUG-OWI3  0.016 £0.010  0.097 & 0.010T  0.047 £ 0.015T  0.076 £ 0.011T  0.099 £ 0.012f
Llama3.2-VI ~ 0.084 +0.011 0.117 £ 0.009" = 0.053 £ 0.016f  0.088 & 0.013 | 0.066 =+ 0.015"
Phi3.5-VI 0.024 +£0.009 0.017 +£0.002  0.664 £ 0.0207  0.039 + 0.011T  0.042 + 0.011f

Table 6: Comparison of ECE (|) between LVLM with Text-Only and LVLM with Images under Four

Conditions. This table shows ECE (] ) for each model in EQ and SST-2. The table compares the Text-Only scenario
with various visual priming scenarios. The ECE values are presented with 95% confidence intervals. A bootstrap
significance test with 10,000 iterations was performed. T indicates a p-value less than 0.05. Value indicates cases
where ECE improved compared to the Text-Only scenario, while Value indicates cases where ECE worsened
compared to the Text-Only scenario.
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Figure 2: Confidence Calibration Curves in EQ (Left) and SST-2 (Right). This figure visualizes the Confidence
Calibration for different models with various visual priming conditions in EQ and SST-2. The x-axis represents
the predicted confidence, while the y-axis shows the accuracy. The dashed line indicates the perfect calibration
line, where the closer the curve is to this line, the more aligned the predicted confidence is with the actual accuracy.
The blue background indicates underconfidence, while the red background indicates overconfidence. Results for
Qwen2.5-VL are shown here as a representative example, as similar trends were observed across other models.

accuracy or confidence were observed compared
to guiding and misleading images. Specifically,
guiding images yielded an average change of 0.071
points and misleading images yielded an average
change of 0.151 points; by comparison, unrelated
images and noise images produced much smaller
average changes of only 0.025 and 0.005 points.

Facilitation. From Table 5, in EQ, when guiding
images were given, three out of the four models
showed positive [F values, indicating a tendency to-
ward positive priming. Only Qwen2.5-VL showed
a slightly negative value (-0.05). On the other hand,
when misleading or unrelated images were given,
all models exhibited negative F values, confirm-
ing a tendency toward negative priming. Notably,
Llama-3.2 and Phi-3.5 showed larger absolute F
values compared to Qwen2.5-VL and mPLUG-
Owl3, indicating that even within the same task,

the sensitivity to images varied between models.
In SST-2, no consistent trend was observed among
the models. In Qwen2.5-VL, the F value remained
positive regardless of the image type, whereas
mPLUG-OwI3 and Llama-3.2 consistently showed
negative values regardless of the image type. Phi-
3.5 showed a positive value for guiding images,
while negative values were observed for mislead-
ing and unrelated images. The absolute I values in
SST-2 tended to be larger compared to EQ.

ECE. From EQ in Table 6, the ECE when provid-
ing guiding images was significantly smaller com-
pared to the text-only setting in all models, confirm-
ing that calibration was improved. Furthermore, as
shown in Figure 2, the presentation of guiding im-
ages alleviated the state of overconfidence. On the
other hand, when misleading or unrelated images
were given, the ECE in all models was significantly
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Task Model LLM Guiding Misleading Unrelated Noise
?Qvif:éss\;lg) 0.305 £0.008 0.026 +£0.007"  0.134 £0.008" 0.118 +0.008" 0.073 + 0.008'
O PG 0210 oo 0089 £0008' 0168 0008 0.163 £000s' 0117 008"
o oegy 0.042£0010 0309 £00111 0227 £0018" 0273 £00141 0.231 +0.014'
PR RPUGONS 019 Lo 0.097 2001 0.047 200160 0.076 £00121 0099 0012

Table 7: Comparison of ECE (|) between LLM (Baseline) and LVLM with Images under Four Conditions.
The ECE values are presented with 95% confidence intervals. A bootstrap significance test with 10,000 iterations
was performed. T indicates a p-value less than 0.05. Value indicates cases where ECE decreased compared to the
LLM scenario, while Value indicates cases where ECE increased compared to the LLM scenario.

larger compared to the text-only setting, indicating
that calibration deteriorated. Moreover, as shown
in Figure 2, the presentation of misleading images
further worsened the state of overconfidence. More-
over, when comparing the misleading and unrelated
scenarios, the ECE values in the misleading con-
dition were consistently higher across all models.
Regarding noise images, no consistent trend was
observed across models. However, in Qwen2.5-VL
and Llama-3.2, the ECE when providing noise im-
ages was significantly improved compared to the
text-only setting. In SST-2, noise images showed
a similar trend to EQ, but guiding images showed
a decrease in ECE in almost all models. In addi-
tion, in Llama-3.2, the ECE decreased even when
misleading images were presented. While EQ ex-
hibited a tendency toward overconfidence, SST-2
generally showed a tendency toward underconfi-
dence. Furthermore, Table 7 shows the comparison
between the LVLM and its base LLM when vari-
ous images are given. From EQ in Figure 2, the
LLM exhibits the strongest tendency toward over-
confidence, and in all image conditions, the ECE
of the LVLM was significantly lower than that of
the LLM. On the other hand, in SST-2, the ECE
of the LVLM was significantly higher than that
of the LLM in all image conditions, indicating a
deterioration in calibration.

7 Discussion

7.1 Accuracy

Influence of Visual Information. As shown in
Table 4, guiding images improved accuracy, while
misleading images decreased it. This suggests that
visual information can affect LVLMSs’ outputs, even
in language tasks. In contrast, unrelated and noise

images had little impact, indicating that models
may partially ignore irrelevant or non-informative
visual cues. Interestingly, this aligns with human
cognition, where relevant cues aid decision-making,
while misleading or unrelated cues can hinder it.

Differences between Models. As shown in Ta-
ble 4, compared to guiding images, misleading im-
ages showed greater variation in accuracy changes
across models. Notably, Llama-3.2 and Phi-3.5
exhibited a significant decrease in accuracy when
presented with misleading images, indicating that
these models actively incorporate visual informa-
tion even when it is incorrect. In contrast, Qwen2.5-
VL and mPLUG-OwI3 did not appear to make
much use of visual information.

7.2 Facilitation Effects

EQ. Asshown in Table 5, in EQ tasks, positive
priming by guiding images was observed in all
models except for Qwen2.5-VL. On the other hand,
negative priming by misleading images was ob-
served in all models. Furthermore, since the abso-
lute F-values of Llama-3.2 and Phi-3.5 were larger
than those of the other two models, it suggests that
these models actively utilize visual information.

SST-2. As shown in Table 5, SST-2 did not
demonstrate a consistent priming effect comparable
to that observed in EQ. Specifically, when guiding
images were presented, positive priming was ob-
served in Qwen2.5-VL and Phi-3.5, while the F
values for mPLUG-OwI3 and Llama-3.2 were neg-
ative, indicating priming was not observed in these
models. Moreover, in the case of misleading im-
ages, only Qwen2.5-VL showed a positive [F value,
suggesting negative priming was not observed.
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Image Qwen2.5- mPLUG- Llama- Phi-3.5
VL Owl3 32

Guiding -6.01 -483  -12.08  -2.26

Misleading -6.01 -5.38 -12.59  -4.88

Unrelated -6.08 -524  -11.86  -2.75

Noise -6.15 479  -1138  -2.54

Table 8: Log-probability with various images in SST-
2 for LVLMs. For many models, the highest values
occur with a noise image lacking semantic content.

7.3 Calibration Effects (ECE Analysis)

EQ. As shown in Table 6, in EQ tasks, present-
ing guiding images to models significantly lowered
the ECE compared to text-only conditions for all
models. This result indicates that guiding images
acted as beneficial visual information, enhancing
not only the model’s performance but also its relia-
bility. However, when misleading images were pre-
sented, the ECE significantly increased compared
to the text-only conditions for all models, suggest-
ing that misleading images introduced confusion,
thus degrading both performance and reliability.

SST-2. Asshownin Table 6, in SST-2, even when
guiding images were presented, almost all models
showed a significant deterioration in ECE com-
pared to the text-only condition. This can be at-
tributed to the fact that most models already exhib-
ited ECE values close to zero with text-only input,
and in such situations, adding images introduced
redundant information that confused the models,
leading to a worsening of ECE even when guiding
images were presented. Interestingly, in the case of
Llama-3.2, the presence of misleading images re-
sulted in a decrease in ECE. This can be explained
by the simultaneous decline in both performance
and confidence, which reduced the gap between
accuracy and confidence.

Effect of Noise Images. As shown in Table 6,
for noise images, some models showed an improve-
ment in ECE. This phenomenon can be attributed
to the reduction of overconfidence when presented
with meaningless noise images, leading the model
to choose more cautiously compared to text-only
input, thereby alleviating excessive confidence.

Comparison with LLM. As shown in Table 7,
compared to LLM, all image types in EQ tasks
demonstrated improved ECE, while SST-2 showed
a deterioration in ECE regardless of image type.

This can be interpreted as follows: In EQ tasks, de-
riving correct answers using only text is relatively
challenging, leading to a tendency for LLM to ex-
hibit overconfidence. The addition of visual infor-
mation likely encouraged more cautious responses.
In contrast, since the ECE values of LLMs in SST-
2 are close to zero, this task is relatively easy to
solve using text alone. Adding visual information
likely introduced redundant cues, which confused
the models.

7.4 Do LVLMs show priming?

In EQ tasks, positive and negative priming were
observed in all models except when guiding im-
ages were presented to Qwen2.5-VL. In contrast,
SST-2 did not exhibit a consistent priming effect.
This can be attributed to the fact that SST-2 already
shows high accuracy with text-only conditions, in-
dicating that it is a relatively easy task where the
correct answer can be derived using only linguistic
information. In such a situation, adding images
may confuse the model, resulting in a lack of con-
sistent positive [F values when guiding images are
presented and a deterioration of ECE. As shown
in Table 8, when noise images, which do not con-
tain meaningful content were presented, the log-
probability was the lowest among all image types
in SST-2. This result suggests that in SST-2, adding
meaningful images as supplementary information
may introduce redundancy and potentially confuse
the model. Therefore, although the visual priming
effect is observed in LVLMs, the priming effect
does not appear depending on the task.

8 Conclusion

In this study, we investigate whether LVLMs ex-
hibit visual priming effects on language-only tasks.
We conducted experiments by presenting four types
of images (guiding, misleading, unrelated, and
noise) alongside two language-only tasks, and eval-
uated the model’s performance using Accuracy, Fa-
cilitation, and ECE. Our results revealed guiding
images improved accuracy and calibration, whereas
misleading images decreased both metrics. Addi-
tionally, the influence of visual information varied
across tasks and models, indicating that LVLMs
can be both positively and negatively affected by
visual cues. These findings suggest that LVLMs do
not ignore visual information, but actively integrate
it, demonstrating visual priming effects similar to
those observed in human cognition.

1392



References

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed
Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav
Chaudhary, Dong Chen, Dongdong Chen, and 110
others. 2024. Phi-3 technical report: A highly capa-
ble language model locally on your phone. Preprint,
arXiv:2404.14219.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond. Preprint, arXiv:2308.12966.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shi-
jie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu,
Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei
Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 oth-
ers. 2025. Qwen?2.5-vl technical report. Preprint,
arXiv:2502.13923.

John A. Bargh and Tanya L. Chartrand. 2000. The
mind in the middle: A practical guide to priming
and automaticity research. In Heinrich T. Reis and
Chris M. Judd, editors, Handbook of research meth-
ods in social and personality psychology, pages 253—
285. New York: Cambridge.

Feiqi Cao, Soyeon Caren Han, Siqu Long, Changwei
Xu, and Josiah Poon. 2022. Understanding Attention
for Vision-and-Language Tasks. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 3438-3453, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Meiqi Chen, Yixin Cao, Yan Zhang, and Chaochao
Lu. 2024. Quantifying and mitigating unimodal bi-
ases in multimodal large language models: A causal
perspective. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 16449—
16469, Miami, Florida, USA. Association for Com-
putational Linguistics.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 1321—
1330. PMLR.

Kazuki Hayashi, Yusuke Sakai, Hidetaka Kamigaito,
Katsuhiko Hayashi, and Taro Watanabe. 2024. To-
wards artwork explanation in large-scale vision lan-
guage models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 705-729,
Bangkok, Thailand. Association for Computational
Linguistics.

Jaap Jumelet, Willem Zuidema, and Arabella Sinclair.
2024. Do language models exhibit human-like struc-
tural priming effects? In Findings of the Association
for Computational Linguistics: ACL 2024, pages
14727-14742, Bangkok, Thailand. Association for
Computational Linguistics.

Nora Kassner and Hinrich Schiitze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7811-7818, Online. Asso-
ciation for Computational Linguistics.

Kento Kawaharazuka, Tatsuya Matsushima, Andrew
Gambardella, Jiaxian Guo, Chris Paxton, and Andy
Zeng. 2024. Real-World Robot Applications of
Foundation Models: A Review. Advanced Robotics,
38(18):1232-1254.

Kyungjun Lee, Abhinav Shrivastava, and Hernisa Ka-
corri. 2023. Leveraging hand-object interactions in
assistive egocentric vision. IEEE Trans. Pattern Anal.
Mach. Intell., 45(6):6820-6831.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. BLIP-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages
19730-19742. PMLR.

1393


https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2502.13923
https://doi.org/10.18653/v1/2024.findings-emnlp.960
https://doi.org/10.18653/v1/2024.findings-emnlp.960
https://doi.org/10.18653/v1/2024.findings-emnlp.960
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
https://doi.org/10.18653/v1/2024.acl-short.65
https://doi.org/10.18653/v1/2024.acl-short.65
https://doi.org/10.18653/v1/2024.acl-short.65
https://doi.org/10.18653/v1/2024.findings-acl.877
https://doi.org/10.18653/v1/2024.findings-acl.877
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.1080/01691864.2024.2408593
https://doi.org/10.1080/01691864.2024.2408593
https://doi.org/10.1109/TPAMI.2021.3123303
https://doi.org/10.1109/TPAMI.2021.3123303
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava-
next: Improved reasoning, ocr, and world knowledge.

James Michaelov, Catherine Arnett, Tyler Chang, and
Ben Bergen. 2023. Structural priming demonstrates
abstract grammatical representations in multilingual
language models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3703-3720, Singapore. Associa-
tion for Computational Linguistics.

Bruce Milliken and Adrienne Rock. 1997. Neg-
ative priming, attention, and discriminating the
present from the past. Consciousness and Cognition,
6(2):308-327.

Kanishka Misra, Allyson Ettinger, and Julia Rayz. 2020.
Exploring BERT’s sensitivity to lexical cues using
tests from semantic priming. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 4625-4635, Online. Association for Computa-
tional Linguistics.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Shintaro Ozaki, Kazuki Hayashi, Miyu Oba, Yusuke
Sakai, Hidetaka Kamigaito, and Taro Watanabe.
2025a. BQA: Body language question answering
dataset for video large language models. In Proceed-
ings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 110—123, Vienna, Austria. Association
for Computational Linguistics.

Shintaro Ozaki, Kazuki Hayashi, Yusuke Sakai, Hide-
taka Kamigaito, Katsuhiko Hayashi, and Taro Watan-
abe. 2025b. Towards cross-lingual explanation of art-
work in large-scale vision language models. In Find-
ings of the Association for Computational Linguistics:
NAACL 2025, pages 3773-3809, Albuquerque, New
Mexico. Association for Computational Linguistics.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. 2015. Obtaining well calibrated proba-
bilities using bayesian binning. Proceedings of the
AAAI Conference on Artificial Intelligence, 29(1).

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth-
ers. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages
8748-8763. PMLR.

David Reitter and Johanna D. Moore. 2007. Predict-
ing success in dialogue. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 808-815, Prague, Czech Republic.
Association for Computational Linguistics.

Yusuke Sakai, Hidetaka Kamigaito, and Taro Watan-
abe. 2025. Revisiting compositional generalization
capability of large language models considering in-
struction following ability. In Proceedings of the
63rd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
31219-31238, Vienna, Austria. Association for Com-
putational Linguistics.

Haruki Sakajo, Yusuke Sakai, Hidetaka Kamigaito, and
Taro Watanabe. 2025. Tonguescape: Exploring lan-
guage models understanding of vowel articulation.
In Proceedings of the 2025 Conference of the Na-
tions of the Americas Chapter of the Association
for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages 12605—
12619, Albuquerque, New Mexico. Association for
Computational Linguistics.

Stephanie Schoch, Diyi Yang, and Yangfeng Ji. 2020.
“this is a problem, don‘t you agree?” framing and bias
in human evaluation for natural language generation.
In Proceedings of the 1st Workshop on Evaluating
NLG Evaluation, pages 10—16, Online (Dublin, Ire-
land). Association for Computational Linguistics.

Christopher Sciavolino, Zexuan Zhong, Jinhyuk Lee,
and Dangqi Chen. 2021. Simple entity-centric ques-
tions challenge dense retrievers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6138—6148, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Mandar Sharma, Rutuja Taware, Pravesh Koirala, Nikhil
Muralidhar, and Naren Ramakrishnan. 2024. Laying
anchors: Semantically priming numerals in language
modeling. In Findings of the Association for Compu-
tational Linguistics: NAACL 2024, pages 2653-2660,
Mexico City, Mexico. Association for Computational
Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

1394


https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://doi.org/10.18653/v1/2023.emnlp-main.227
https://doi.org/10.18653/v1/2023.emnlp-main.227
https://doi.org/10.18653/v1/2023.emnlp-main.227
https://doi.org/10.1006/ccog.1997.0306
https://doi.org/10.1006/ccog.1997.0306
https://doi.org/10.1006/ccog.1997.0306
https://doi.org/10.18653/v1/2020.findings-emnlp.415
https://doi.org/10.18653/v1/2020.findings-emnlp.415
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2025.acl-short.10
https://doi.org/10.18653/v1/2025.acl-short.10
https://doi.org/10.18653/v1/2025.findings-naacl.209
https://doi.org/10.18653/v1/2025.findings-naacl.209
https://doi.org/10.1609/aaai.v29i1.9602
https://doi.org/10.1609/aaai.v29i1.9602
https://arxiv.org/abs/2412.15115
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://www.aclweb.org/anthology/P07-1102
https://www.aclweb.org/anthology/P07-1102
https://doi.org/10.18653/v1/2025.acl-long.1508
https://doi.org/10.18653/v1/2025.acl-long.1508
https://doi.org/10.18653/v1/2025.acl-long.1508
https://doi.org/10.18653/v1/2025.naacl-long.627
https://doi.org/10.18653/v1/2025.naacl-long.627
https://aclanthology.org/2020.evalnlgeval-1.2/
https://aclanthology.org/2020.evalnlgeval-1.2/
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2024.findings-naacl.169
https://doi.org/10.18653/v1/2024.findings-naacl.169
https://doi.org/10.18653/v1/2024.findings-naacl.169
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170

Steven P. Tipper. 1985. The negative priming effect:
Inhibitory priming by ignored objects. The Quar-
terly Journal of Experimental Psychology A: Human
Experimental Psychology, 37TA(4):571-590.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Endel Tulving and Daniel L. Schacter. 1990. Prim-
ing and human memory systems. Science,
247(4940):301-306.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu,
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024.
Qwen2-vl: Enhancing vision-language model’s per-
ception of the world at any resolution. Preprint,
arXiv:2409.12191.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, and
43 others. 2024. Qwen?2 technical report. Preprint,
arXiv:2407.10671.

Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming
Yan, Qi Qian, Ji Zhang, Fei Huang, and Jingren Zhou.
2025. mPLUG-owl3: Towards long image-sequence
understanding in multi-modal large language mod-
els. In The Thirteenth International Conference on
Learning Representations.

Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen
Hu, Haowei Liu, Qi Qian, Ji Zhang, and Fei Huang.
2024. mplug-owl2: Revolutionizing multi-modal
large language model with modality collaboration. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
13040-13051.

Marco Zorzi, Ivilin Peev Stoianov, and Carlo Umilta.
2004. Computational modeling of numerical cogni-
tion. The Handbook of Mathematical Cognition.

1395


https://doi.org/10.1080/14640748508400920
https://doi.org/10.1080/14640748508400920
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1126/science.2296719
https://doi.org/10.1126/science.2296719
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2407.10671
https://openreview.net/forum?id=pr37sbuhVa
https://openreview.net/forum?id=pr37sbuhVa
https://openreview.net/forum?id=pr37sbuhVa
https://openaccess.thecvf.com/content/CVPR2024/html/Ye_mPLUG-Owl2_Revolutionizing_Multi-modal_Large_Language_Model_with_Modality_Collaboration_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Ye_mPLUG-Owl2_Revolutionizing_Multi-modal_Large_Language_Model_with_Modality_Collaboration_CVPR_2024_paper.html

