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Abstract

The Recursive Abstractive Processing for Tree-
Organized Retrieval (RAPTOR) framework de-
ploys a hierarchical tree-structured datastore
to integrate local and global context, enabling
efficient handling of long documents for lan-
guage models. This design is especially useful
when cloud-based language models are unavail-
able or undesirable. For instance, with offline
confidential patient records or stringent data-
privacy requirements. We benchmarked RAP-
TOR on the QUALITY dataset and a novel Clin-
ical Trial question-answering dataset (CTQA)
drawn from over 500 000 registry entries. Ex-
periments varied question complexity (simple
vs. complex), four language models, four em-
bedding models, and three chunking strate-
gies. Also incorporated GPT-40 as a cloud-
based baseline. Results show that, with optimal
settings, RAPTOR combined with smaller lo-
cal models outperforms GPT-40 on complex
CTQA questions, although this gain does not
extend to QuALITY. These outcomes highlight
RAPTOR’s promise as a practical, locally im-
plementable solution for long-context under-
standing.

1 Introduction

Health applications of language models cover a
wide range of clinical tasks, but a recent systematic
review (Bedi et al., 2024) found that only a small
proportion use patient data, and evaluation with
real users is limited. Some of the challenges of
broader use include data privacy (Ullah et al., 2024;
Das et al., 2024), the need to produce stable and
repeatable results (Meské and Topol, 2023), and
the cost efficiency of using cloud-based language
models as a service (Chen et al., 2023a).

The local language models could be a suitable

direction for health domain users in this scenario.

It helps them to implement applications and store
data on a local machine. However, this also means
that language models often need to be implemented

on consumer hardware, limiting the size of the mod-
els that can be used. This sentiment is echoed by
Mesko and Topol (Meské and Topol, 2023), who
explain that locally hosted models enhance both the
privacy and robustness of clinical language mod-
els. Language models such as Mistral-7B-Instruct-
v0.2 (Jiang and et al., 2023) can be deployed on
consumer hardware but are affected by the long
context problem. The long context models like
Llama-3.1-8B-Instruct (Al@Meta, 2024) can still
suffer from context length when dealing with long
bioinformatical or clinical reports.

Several approaches have been developed to
address the issues of handling longer docu-
ments in text summarisation and generation.
LongLoRA (Chen et al., 2024b) and Infini-
attention (Munkhdalai et al., 2024) modify the at-
tention mechanism and fine-tune the models to en-
hance the model capability of handling long texts
up to 500K tokens in length. However, both of
them require additional fine-tuning in the training
phase and extra memory during inference. Oth-
ers including CFIC (Qian et al., 2024a) and BGE
Landmark Embedding (Luo et al., 2024), introduce
special layers or embedding models to select partial
information without breaking down the long con-
tents. These two methods also require additional
training to run properly, and are limited to either
32k token max length or the max model context
length, respectively.

Retrieval-augmented Generation (RAG) frame-
work (Lewis et al., 2020), which works by setting
up an external datastore to keep the long contents
in chunks, and retrieving partial information from
the preprocessed datastore as a reference text when
generating a response. It is a cost-effective method
and able to deal with long content, but potential
information loss is an issue during the text retrieval
process.

Recursive Abstractive Processing for Tree-
Organized Retrieval (RAPTOR) (Sarthi et al.,
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2024) extends from RAG and is an efficient method
for language models to handle long text contents
and reduce model hallucination without any inter-
nal model modifications. Different from the naive
RAG framework (Lewis et al., 2020), it consists
of a tree-structured datastore to preprocess and re-
trieve both relevant local and overview information
from it to support model generation. It can be more
reliable when the user query requires information
from a distance. RAPTOR has been shown to out-
perform other frameworks that do not use a tree
structure for QUALITY dataset (Pang et al., 2022),
which makes it an appropriate framework to evalu-
ate for long context information sources.

Different from other tree-based RAG-based
frameworks like T-RAG (Fatehkia et al., 2024) and
RAGAR (Khaliq et al., 2024), the RAPTOR frame-
work implements the tree structure directly, and
the retrieved text can contain complete overview
information as support. In contrast, T-RAG imple-
ments the tree structure to modify the user query for
organisational-related entities, and RAGAR uses
the tree structure to generate sub-questions for the
original user query. None of them are capable of
dealing the overview information loss like RAP-
TOR does.

RAPTOR has shown to achieve state-of-the-art
performance on the QUALITY dataset (Pang et al.,
2022), which is a question-answering dataset aim-
ing for long-context scenarios. While RAPTOR
has achieved strong results, it was evaluated on the
cloud-based GPT-4 model. To our knowledge, its
ability to work with smaller language models like
Mistral-7B-Instruct-v0.2 has not been validated.

Our aim was to benchmark the RAPTOR frame-
work using language models that can be imple-
mented locally. The contributions of this study are
as follows:

* Benchmarking the response accuracy of the
RAPTOR framework using both cloud-based
and efficient locally implemented language
models.

* Showing that the RAPTOR approach can be
configured to outperform GPT-4o specifically
for complex questions, where answers synthe-
sise distant information.

* Evaluation of two efficient semantic chunking
strategies for the RAPTOR framework, which
make use of semantic relationships between
texts.

2 Background and related work

2.1 RAPTOR framework

The workflow of the RAPTOR framework com-
prises the following steps to produce a tree struc-
ture: (1) split the document text into a set of chunks;
(2) use an embedding model to create sentence em-
beddings for each chunk; (3) use the Uniform Man-
ifold Approximation and Projection for Dimension
Reduction (UMAP) (Leland et al., 2018) to reduce
the dimensionality; (4) use the Gaussian Mixture
Model (Reynolds et al., 2009) with Bayesian in-
formation criterion to cluster current chunks; (5)
concatenate the texts within each cluster and gener-
ate a detailed summary using a language model; (6)
repeat the above process until the final root node is
reached.

The model is then able to either follow the tree
structure to retrieve relevant information at any
step or collapse the tree structure to gather rele-
vant information directly. This means the RAP-
TOR framework can potentially use both overview
and local information as a reference during the in-
ference process when generating a response to a

query.
2.2 Chunking strategies in RAPTOR

In the RAPTOR framework, methods for splitting
the document into chunks can affect the perfor-
mance of the model. Chunking methods include
character chunking and semantic chunking.

2.2.1 Chunking by character

The naive RAG chunking splits text using special
characters in the text (e.g. “.” or ;) under the
preset maximum length limit. This was used in the
RAPTOR framework. It is efficient in execution
time and computational cost. However, since it
does not consider semantic meanings, it can poten-
tially over-split, which may result in information
loss or inconsistent chunks.

2.2.2 Chunking by semantic information

One approach for improving chunking is to make
use of semantic differences over the length of the
document. This unsupervised approach converts
sentences into embedding vectors, calculates the
cosine distance between adjacent sentences, and
then splits the document into chunks using a thresh-
old value for the cosine distance. This approach can
be used directly within the RAPTOR framework in
the first step.
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Related researches focus on adapting deep learn-
ing models to support text segmentation. One pro-
poses a BERT-based embedding model to convert
sentences into sentence embeddings, then using
those as inputs to a transformer model to identify
breakpoints in the sentence embedding (Lukasik
et al., 2020). Another study proposes the use
of a moving window inside the BERT model
structure (Zhang et al., 2021). A PoNet-based
model (Tan et al., 2021) was able to extend the
context length from 512 tokens to 4096 tokens.
Note that while these approaches were not designed
specifically for use within the RAG framework, the
goal is the same, and the methods can be adapted
for use with RAPTOR.

2.2.3 Chunking by language model

A recent set of approaches considers the use of
language models to support chunking. One ex-
ample proposes splitting a document into chunks
called ‘propositions’ and using prompt engineering
pipelines to group propositions together using a
node-tree structure (Chen et al., 2023b). Another
example proposes the use of language models as
decision-making machines that select different text
chunks for RAG-based tasks (Qian et al., 2024b).
While these approaches represent elegant solutions
for chunking, the current limitation is the computa-
tional and time costs, which may make them less
practical for downstream tasks and especially for
application domains where consumer-level hard-
ware is a constraint.

2.3 Embedding models in RAPTOR

Embedding models can have a major impact on
the performance of downstream tasks. RAPTOR
uses embedding models in both datastore construc-
tion and the information retrieval process. A recent
study compared the performance of several embed-
ding models for downstream tasks in the health
domain, including general embedding models and
specialised models trained using text data from
health application domains (Excoffier et al., 2024).
The results show large variations in performance
across the embedding models.

The context lengths of models can also affect
performance on downstream tasks, even when
used within an RAG framework. For example,
BioBERT (Lee et al., 2020) is a popular model
trained on the biomedical text and has a maxi-
mum context length of 512. This compares to the
more recently developed models jina-embeddings-

v2-base-en (Jina) (Giinther et al., 2023), BGE-M3
(BGE) (Chen et al., 2024a), and text-embedding-
ada-002 (Neelakantan and et al., 2022), which have
a maximum context length of 8,192. The way this
can affect performance is when shorter context
length embeddings cut off sentences that exceed the
maximum context length, leading to information
loss.

2.4 Language models in RAPTOR

Language models with between 1 billion and 10
billion parameters are considered to be ‘medium
scale’ (Minaee et al., 2024). In 2024, the most pow-
erful consumer-level GPUs available on the market
have 24GB of GPU memory. This limits the scale
of language models that can be implemented com-
fortably to these models with 10 billion parameters
or fewer. The Mistral-7B-Instruct-v(.2 model and
Llama-3.1-8B-Instruct model each have approxi-
mately 7 billion and 8 billion parameters, respec-
tively. Compared to large-scale models like GPT-4
and Gemini Pro, medium-scale models are more
practical for use in application domains where local
computing resources are required.

3 Methodology

The RAPTOR framework’s three modules - the
chunking strategy, the embedding model and the
summarization/generation model are presented in
Table 2, then implemented and evaluated for both
the CTQA and the QUALITY datasets as presented
in Figure 1. For reference, we also measured GPT-
40 model’s zero-shot accuracy on each dataset with
same prompting.

3.1 Datasets

Benchmarking was performed using two datasets.
The QUALITY dataset (Pang et al., 2022) is com-
monly used to evaluate approaches in the RAG
framework. We introduce the Clinical Trials Ques-
tion and Answer (CTQA) dataset as an example
of a large dataset from biomedical application do-
mains. Both datasets include opportunities to ask
simple and complex questions (see examples be-
low). Note that QUALITY has multiple-choice
questions and answers and CTQA has short-answer
questions and answers.

3.1.1 QuALITY dataset

QuALITY dataset (Pang et al., 2022) was used
in the original evaluation of the RAPTOR frame-
work (Sarthi et al., 2024). The dataset includes
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Type Content

QuALITY, | Which of the following most

Simple closely fits the theme of this article?

QuALITY, | What does the author likely think

Complex | will happen if democracy does not
evolve?

CTQA, In the results of this trial, how

Simple many participants had serious ad-
verse events in each study arm?

CTQA, In the design of this study, what in-

Complex | tervention was used in the control
arm?

Table 1: Examples of simple & complex questions in
the QUALITY and CTQA datasets

three main sections: the main text documents, ques-
tions and correct answers. It was used as three sub-
sets: training, development, and testing. The devel-
opment subset included 230 articles and multiple-
choice questions, where each question was labelled
as simple or complex 1. Main text documents con-
tain from 2000 tokens to 6000 tokens. In the orig-
inal Quality dataset study, the author states that
the difficulty of the questions is labelled manually,
where the question is labelled as a hard/complex
question if the human annotator cannot answer the
question within 45 seconds.

3.1.2 CTQA dataset

ClinicalTrials.gov is a registry for more than
500,000 trials and other studies, designed to pro-
vide public information about the design of studies
before the study begins (cli, 2024b,a). Each study
includes sections of text with a summary of the
study, the population, interventions or exposures,
and outcome measures. Some studies on Clini-
calTrials.gov also include tables with numerical
data describing the summary results of the study
after it is completed. With a similar structure to
the QUALITY dataset, CTQA includes main text
documents (the registry entry), and pairs of short
answer questions with their answers. We extracted
the trial registrations and converted them into the
CTQA dataset. It is a large dataset and grows over
time, has a complex structure including structured
and unstructured data, and is an application domain
representing a very large and expensive industry
domain. Downstream tasks include those related
to improving the efficiency of trial designs to avoid
redundancy and avoid termination, synthesis and
meta-analysis of trials that answer the same clini-

cal question, and checking for reporting bias when
results in published trial articles do not match what
was registered.

The simple question for the CTQA dataset was
focused on information extraction where the cor-
rect answer can be extracted at scale from the re-
sults section if the study have one; the complex
question requires both information extraction and
generating an appropriate response using contex-
tual information, which requires more steps for
answer finding (Table 1). This is similar to an
approach used in a previous study (Jeong et al.,
2024).

3.2 Chunking strategy configuration setup

The three chunking strategies included a character-
based chunking strategy, a new semantic chunking
strategy, and a chunking strategy that uses a deep
learning method.

3.2.1 Naive character chunking

The default chunking strategy used in the RAPTOR
framework is the naive character chunking strategy
(character chunking), as the RAPTOR framework
was not focused on this aspect. In this study, the de-
fault character-splitting chunking strategy will also
be tested on both CTQA and QuALITY datasets as
the reference.

3.2.2 Recursive moving percentile semantic
chunking

We introduce a modified semantic chunking strat-
egy named Recursive Moving Percentile Semantic
Chunking (RMP chunking). Rather than using a
globally fixed value for the breakpoint between
text sections, we calculate the threshold value dy-
namically with the moving percentile. The process
is divided into the following steps: (1) split the
original document into the minimum chunks using
character chunking; (2) convert chunks into embed-
dings via a preset embedding model and calculate
the distances for adjacent pieces with the context
padding; (3) calculate moving percentile values
based on the distances with the preset window size
and the preset percentile threshold value, and label
all critical indices that exceed the threshold value;
(4) repeat from step one until there are no more
indices within chunks that exceed the threshold
value.

3.2.3 Deep learning based semantic chunking

PoNet (Tan et al., 2021) is a chunking strategy that
uses a deep learning model and comes from the
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Figure 1: Overall structure diagram of the framework and evaluation process. The workflow contains 3 parts: (1)
reference pre-processing, which constructs the tree-structured datastore using the reference document; (2) RAPTOR
inference, which contains the information retrieval and the model generation process; (3) LLM-based evaluation,
which demonstrates how the raw model responses are cleaned and scored.

research area of text segmentation. While text seg-
mentation models like hierarchical BERT (Zhang
et al., 2021) and PoNet were not designed to fit
the needs of the chunking strategies in RAG-based
frameworks, their motivations and structures are
similar and can be used as chunking strategies in
RAG-based frameworks.

3.3 Embedding model configuration setup

Four embedding models were used in the experi-
ments 2. The baseline model is the text-embedding-
ada-002 (OpenAl Embedding) model from Ope-
nAl with 8192 context length which deployed in
the cloud-based server. 2 local embedding models
with long context length are introduced into the
experiment to deal with longer text: the BGE-M3
(BGE) Embedding model and the jina-embeddings-
v2-base-en (Jina) Embedding model; the BGE Em-
bedding model is utilized for the RAG implemen-
tation according to their technical report, and Jina
Embedding model has also been utilized to extend
the context length from 512 to 8192 tokens. Also,
a biomedical domain embedding model BioBERT
with a 512 context length is also introduced to the
experiment for comparison.

3.4 Language model configuration setup

Four language models were configured in the
benchmarking experiments as well. The GPT-
3.5-Turbo model is here to represent the cloud-
based very large language models. The Mistral-
7B-Instruct-v0.2 model and Llama-3.1-8B-Instruct

model represent the local medium language mod-
els before and after the era of long-context models,
respectively. The Llama-3.2-1B-Instruct is repre-
senting the local small-size language model for the
complete comparison.

To simulate a realistic low-setting environment,
the experiments all used the 4-bit QLoRA quanti-
zation setting for the local models.

3.5 LLM-based evaluation with the language
model and the rule-based method

The model responses do not always match the cor-
rect format in terms of verbosity, even though they
may still be correct (e.g., a response of “neither
study arm had any serious adverse events” vs. the
expected “Arm 1: 0; Arm 2: 07), the pattern match-
ing could be inaccurate, and the manual process
would be time-consuming.

We designed an LLM-as-Judge approach using
LLM for format extraction and rule-based pattern
matching for accuracy scoring to overcome those
issues. While our evaluation is consistent to oth-
ers (Hashemi et al., 2024), in that we use LLM to
judge the results using questionnaires and collect
scores in rule-based evaluation, our method is able
to work for both MCQs and short QAs since we
focus on if the response matches the answer. We
confirmed that the LL.M-based approach was ac-
curate with a manual assessment of 500 examples
of MCQ from the QUALITY dataset and 500 short
QA examples from the CTQA dataset, achieving a
match rate of 98.8%. The process is as follows: (1)
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Component | Name

Chunking Naive Character Chunking

Strategy Recursive Moving Percentile Se-
mantic Chunking
PoNet Semantic Chunking

Embedding | text-embedding-ada-002

Model BGE-M3
jina-embeddings-v2-base-en
BioBERT

Language GPT-3.5-Turbo

Model Mistral-7B-Instruct-v0.2
Llama-3.1-8B-Instruct
Llama-3.2-1B-Instruct

Table 2: Component Configurations

generate model responses using the prompt tem-
plates provided in ZeroSCROLLS (Shaham et al.,
2023) and the framework in Figure 1; (2) extract
the formatted answer from the raw model response
using the GPT-40 model with a 3-shot prompt tem-
plate; (3) evaluate the extracted answer with the
ground truth with rule-based pattern matching.

4 Results
4.1 Experimental results for the CTQA
dataset

The varied across chunking strategies, embedding
models, language models, and across simple and
complex questions for the CTQA dataset (Table 3
and Figure 2).

For simple questions, PoNet chunking was
best on GPT-3.5-Turbo and Llama-3.2-1B-Instruct,
beating the other strategies in 75% of trials by
8.46% and 5.84% on average; while RMP chunk-
ing led on Mistral-7B-Instruct and Llama-3.1-8B-
Instruct by 17.42% and 10.22%. For complex ques-
tions, PoNet chunking topped all four models, with
average accuracy gains of 1.42%, 9.89%, 6.87%
and 6.63%.

Among the 4 embedding models, OpenAl and
BGE models achieved the highest accuracy. Com-
pared to other two embedding models, the result
shows that OpenAl and BGE models lead ahead
in the simple question by 52.91% and 75.71% on
average respectively; and lead ahead in complex
question by 17.19% and 9.66% on average respec-
tively.

In the direct comparison between the four lan-
guage models and with the separate GPT-40 model,
the simple question results show that the GPT-40

substantially outperformed the RAPTOR frame-
work configurations. GPT-4o0 reached 93.25% ac-
curacy, compared to an average of 52.67% for the
GPT-3.5-Turbo model, 43.49% for the Mistral-7B-
Instruct-v0.2 model, 46.26% for the Llama-3.1-8B-
Instruct model and 31.89% for the Llama-3.2-1B-
Instruct model across the different configurations.
The result was different for the complex question,
where the GPT-40 mode achieved 52.26% accuracy,
compared to an average of 70.01% for the GPT-3.5-
Turbo model, 59.97% for the Mistral-7B-Instruct-
v0.2 model, 74.98% for the Llama-3.1-8B-Instruct
model and 57.77% for the Llama-3.2-1B-Instruct
model across the set of tested configurations within
the RAPTOR framework.

4.2 Experimental results for the QuALITY
dataset

In the QUALITY dataset experiments, the perfor-
mance difference between configurations are rela-
tively small.

In terms of language models, GPT-3.5-Turbo and
Mistral-7B-Instruct-v0.2 model lead ahead in both
simple and complex questions, the Llama-3.1-8B-
Instruct model falls behind in the second tier, and
leaves Llama-3.2-1B-Instruct model at last. The
result shows 67.24%, 66.87%, 60.30% and 34.32%
on average for the 4 models respectively for the
simple questions; 49.36%, 48.86%, 43.72% and
28.93% on average respectively for the complex
questions.

Performance on different chunking strategies
showed consistent trends. RMP chunking gener-
ally outperformed others in the simple and complex
questions in most of language models. Average
accuracy for the simple question using the RMP
chunking strategy was 68.27%, 68.12%, 63.88%
and 34.33% for 4 language models respectively.
Average accuracy for the complex question using
the RMP chunking strategy was 50.97%, 51.24%,
46.31% and 28.94% for 4 language models respec-
tively.

The OpenAl and BGE embedding models out-
performed Jina and BioBERT embedding models
across all but one of the configurations (Table 3).
Overall differences between OpenAl and BGE are
relatively small, suggesting that the choice of em-
bedding model between the two is less important
than the choice of language model and chunking
strategy.

The GPT-40 model outperformed RAPTOR
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Model Configuration

Simple Question (n=400/1021)

Complex Question (n=400/1065)

Language Embedding Char. RMP PoNet Char. RMP PoNet
Model Model Chunking Chunking Chunking Chunking Chunking Chunking
GPT-3.5-Turbo OpenAl 63.44/69.44  64.37/70.03  54.05/69.79 75.87/49.86  73.17/5127  77.12/51.97
BGE 56.37/67.68  64.25/68.27  78.48/67.87 70.38/50.42  77.70/52.96  74.52/50.05
Jina 36.12/68.95  50.42/68.66  54.61/68.17 48.78/50.23  69.32/50.33  72.55/47.98
BioBERT 37.00/61.51  21.59/66.11  51.34/60.33 63.41/44.79  67.82/49.30  69.48/43.19
Mistral-7B-Inst. OpenAl 55.05/68.66  64.21/69.64  29.37/69.70 68.42/48.64  74.23/52.58  74.03/47.17
BGE 39.87/67.48  58.79/67.68  72.27/66.70 52.04/50.33  54.21/52.77  69.53/49.30
Jina 39.52/66.90  50.75/69.93  35.81/68.95 45.62/49.39  52.11/51.36  59.35/48.83
BioBERT 6.00/60.72 15.79/65.23  23.96/60.82 53.41/43.47  60.53/48.26  56.12/44.23
Llama-3.1-8B-Inst. OpenAl 55.79/60.14  65.74/65.81  35.87/60.50 77.03/43.776  84.72/48.26  82.60/45.44
BGE 48.44/62.29  69.93/63.07  79.76/61.40 70.03/43.85  79.70/45.54  80.50/42.72
Jina 45.02/58.37  61.11/65.72  44.74/60.04 68.64/42.07  69.47/46.38  79.22/42.72
BioBERT 6.78/53.57 12.5/60.92 29.5/51.81 62.37/40.00  66.67/45.07  78.88/38.87
Llama-3.2-1B-Inst. OpenAl 34.44/33.14  40.89/34.57  33.03/34.24 55.94/29.73  58.99/29.20  63.46/29.91
BGE 33.27/35.75  38.11/34.77  45.63/33.20 51.57/27.79  62.96/2845  66.87/28.35
Jina 23.25/37.22  30.46/33.79  32.73/35.16 54.70/29.29  61.67/28.64  63.22/29.20
BioBERT 19.73/34.47  22.70/34.18  28.47/31.34 43.90/28.17  52.13/29.48  57.86/28.92
GPT-40 - - - 93.25/95.00 - — 52.26/83.29

Table 3: Task accuracy of the RAPTOR framework with the CTQA/QuALITY datasets. n = the number of questions
in CTQA/QuALITY; Bold = highest among 3 chunkings; Underline = highest among 4 embeddings.

in the simple and complex questions by around
30% (Table 3 & Figure 2).

5 Discussion

The results show that differences in the chunking
strategy, embedding model, and the complexity
or type of questions each appear to have an im-
pact on performance within a RAPTOR framework.
These choices will likely be especially important
in scenarios where implementation is restricted to
local machines and access to high-performance
cloud computing is restricted. The performance
difference of GPT-40 in simple and complex ques-
tions in both datasets suggests that our approach to
distinguish question complexity is correct. Also,
the lower performance of GPT-40 compared to a
smaller language model using the RAPTOR frame-
work suggests that for complex questions where
contextual and local information are important, it is
not enough to only increase the size of the language
model.

5.1 Chunking strategy

The results show that for a given model, RMP and
PoNet chunking strategies generally improve the
performance relative to standard character chunk-
ing in the CTQA dataset. These differences ap-
peared for both simple and complex questions. The
chunking strategy result may seem counterintu-
itive because the RAPTOR framework is designed
to ‘connect’ all the information together in a tree
structure. However, the main benefit of chunking
strategies in the RAPTOR framework may come
from improved summarisation in the leaf nodes,

and this improvement then flows through the local
and global information in the tree structure.

Lower performance was found for the PoNet
chunking strategy using the OpenAl embedding
model with all four models in the simple question
of the CTQA dataset. Because the PoNet chunking
does not have a hard upper limit in the maximum
chunk size, it could have larger initial chunks. This
suggests that the OpenAl embedding model may
not perform as well as the BGE embedding model
in the long context embedding task.

5.2 Language model

Although there are performance differences be-
tween the GPT-3.5-Turbo model and the other three
models, the results show that both the Mistral-
7B-Instruct-v0.2 model and Llama-3.1-8B-Instruct
model are able to reach or surpass the same level of
performance as the GPT-3.5-Turbo with the BGE
embedding model and the semantic chunking strate-
gies. It shows that the RAPTOR framework is
able to narrow the performance gaps between large-
scale models and smaller models, and demonstrates
that the RAPTOR framework can substantially miti-
gate the performance gaps due to the context length
differences between the models.

GPT-40 seems to fall behind in complex ques-
tions in the CTQA dataset. Note that when experts
answer the complex CTQA question, they typically
make use of the information from the title, brief
and detailed summary, and contextual information
about the structure and design of the trial. This
suggests that the ability to synthesise local and
global information is particularly important for the
question, and may explain performance differences
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Figure 2: Task accuracy for the CTQA (top) and QUALITY (bottom) dataset across simple and complex questions
with different configurations, showing differences in performance compared to a GPT-40 baseline.

between GPT-40 and the top-performing RAPTOR
configuration.

5.3 Embedding model

The results show that the OpenAl embedding
model and the BGE embedding model achieved
similar performance, with few exceptions. The
BGE model was designed to handle long contex-
tual tasks natively, which may explain the generally
strong performance. When choosing an embedding
model for use with the RAPTOR framework, the
BGE embedding model appears to perform at least
as well as the OpenAl embedding model and it is
feasible to fine-tune the BGE model for domain
adaptations.

5.4 Future work

The results suggest that applications of the RAP-
TOR framework and appropriate configurations
enable the small-size language model to perform
comparably to the larger models, and may still be
relevant even as larger language models are devel-
oped. A further opportunity could be to apply the
RAPTOR framework as a file management system
locally using smaller language models.

Another interesting aspect of this work was the
use of simple and complex questions. An under-
lying assumption is that the RAPTOR framework
may be better suited to questions that need to make
use of local and global information. ‘Complex’
questions in the QUALITY dataset do not always
represent this complexity. A future opportunity
might be to consider multiple approaches that work
to evaluate the complexity of the question and then

auto-configure the best configuration/structure that
will yield the best answer.

ClinicalTrials.gov is underutilised. It is a large
public dataset with a broad range of downstream
tasks (Long et al., 2023; Wang et al., 2022; Elkin
and Zhu, 2021). Many of these may benefit from
RAG-based methods to support information extrac-
tion, synthesis, and classification.

6 Conclusion

This benchmarking study showed that the RAP-
TOR framework varies in performance depending
on configuration and the types of questions it is
used to answer. The results showed that language
models with fewer than 10 billion parameters can
be used with the RAPTOR framework to overcome
the long context problem, and these configurations
are a feasible solution in scenarios where larger lan-
guage models cannot be used. Where the RAPTOR
framework can be implemented on consumer-level
hardware, it provides more privacy and configura-
tion control for users, which is likely to be impor-
tant for a range of medical-related tasks. The re-
sults also showed that the use of a semantic chunk-
ing method improved the results compared to the
standard character chunking method.
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