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Abstract

In this paper, we investigate the effectiveness of
large language models (LLMs) for Chinese de-
pendency parsing through fine-tuning. We ex-
plore how different dependency representations
impact parsing performance when fine-tuning
the Chinese Llama-3 model.

Our results demonstrate that while the Stanford
typed dependency tuple representation yields
the highest number of valid dependency trees,
converting dependency structure into a lexical
centered tree produces parses of significantly
higher quality despite generating fewer valid
structures. The results further show that fine-
tuning enhances LLMs’ capability to handle
longer dependencies to some extent, though
challenges remain. Additionally, we evaluate
the effectiveness of DeepSeek in correcting
LLM-generated dependency structures, finding
that it is effective for fixing index errors and
cyclicity issues but still suffers from tokeniza-
tion mismatches.

Our analysis across dependency distances and
relations reveals that fine-tuned LLMs outper-
form traditional parsers in specific syntactic
structures while struggling with others. These
findings contribute to the research on leverag-
ing LLMs for syntactic analysis tasks.

1 Introduction

Natural language processing (NLP) has been pro-
foundly transformed with the advent of large lan-
guage models (LLMs), which enable a wide range
of NLP downstream tasks, such as question answer-
ing and machine translation, to achieve remark-
able performance. Despite the advancements of
LLMs, fundamental NLP tasks—such as morpho-
logical, syntactic and semantic analysis—remain
crucial for understanding the structure and meaning
of languages. However, LLMs have significantly
transformed how these tasks are conducted.
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Syntactic parsing is challenging to LLMs (Tian
et al., 2024). In NLP, syntactic analysis has two
widely used formalisms in constituency grammar
and dependency grammar, respectively. Prelimi-
nary exploration of using LLMs for syntactic pars-
ing demonstrated that LLMs possess limited ca-
pability in generating full parses of good quality
(Bai et al., 2023; Lin et al., 2023). On the other
hand, the potential of LLMs in parsing still remains
largely unexplored.

The conventional approach to syntactic pars-
ing involves training statistical parsing models
on treebank data containing a large number of
well-annotated trees, which are subsequently de-
ployed to predict the hierarchical syntactic struc-
tures of newly input sentences. In contrast, prompt-
ing LLMs for parsing shifts the paradigm from
sentence-to-structure prediction to sequence-to-
sequence generation.

In this paper, we aim to investigate the capability
of LLMs in Chinese dependency parsing. Our pre-
liminary experiments, which implement zero-shot
and five-shot prompting LLM for dependency pars-
ing, yielded limited performance. Although LLMs
are trained on vast amounts of data, they are not
explicitly exposed to syntactic trees or structured
knowledge of syntactic rules and annotation con-
ventions. Consequently, simply prompting LLMs
to perform syntactic parsing may yield subpar re-
sults, as LLMs are prone to hallucinating syntactic
structures.

Therefore, we start with fine-tuning LLM on tree-
bank data, hypothesizing that fine-tuning will im-
prove LLMs’ capabilities to generate dependency
structures that adhere to the annotation conventions.
A dependency tree is a hierarchical structure where
each word, except the root, is connected to one
head word, forming a tree-like structure. Guiding
LLMs for parsing via prompting involves instruct-
ing the LLM to generate a sequence that repre-
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sents the syntactic structure of an input sentence.
However, the encoding methods of a dependency
structure into a text sequence and the relationship
between tree representations and LLLMs’ parsing
capabilities remain unclear. Additionally, as long
dependencies have been challenging for statistical
syntactic parsers (Candito and Seddah, 2012), we
are also interested in whether large language mod-
els can effectively handle long dependencies. It is
also conceivable that LLMs may generate depen-
dency structures that are not well-formatted. To
address this issue, we leverage LLMs to correct
the problematic formats based on specific instruc-
tions. Moreover, we also compare parses of LLMs
and traditional neural dependency parsers in terms
of dependency distance and dependency relations.
We specifically aim to investigate whether LLMs
demonstrate superior performance in handling par-
ticular syntactic structures.

This paper is organized as follows. In Sec-
tion 2, we describe the experimental settings for
fine-tuning large language models and neural de-
pendency parser training. Then, we explain conver-
sion of dependency structures into three types of
representations in Section 3. Section 4 will present
and discuss experimental results. Previous works
will be covered in Section 5, and the paper will be
concluded in Section 6.

2 Experimental Settings

2.1 Data

In this experiment, we use the Chinese GSD-
SIMP treebank' within the Universal Dependencies
project (De Marneffe et al., 2021). To evaluate the
performance of sentences with long dependencies,
assuming that longer sentences are more likely to
contain long dependencies (Gibson, 1998; Gibson
et al., 2000), we measure sentence lengths by the
number of tokens (words) in each sentence and di-
vide each set of data into four subsets, shown in
Table 1. Specifically, we set the thresholds for the
split at 20, 30 and 40 tokens.

2.2 Large Language Models

We use the LLAMA-3-CHINESE-8B-INSTRUCT?
v3 model (Cui et al., 2023) for fine-tuning. The
model is specifically optimized for the Chinese

"https://github.com/
UniversalDependencies/UD_
Chinese-GSDSimp/tree/master

https://huggingface.co/hfl/
llama—-3-chinese—-8b-instruct-v3

language by continual pre-training on large-scale
Chinese data on Meta Llama-3 (Al@Meta, 2024),
and is fine-tuned with selected instruction data to
further enhance Chinese semantic and instruction
understanding capabilities.

When correcting ill-formatted dependency
structures, we utilized the open-source model
DEEPSEEK-V3 (DeepSeek-Al, 2024). DeepSeek-
V3 is built on a Mixture-of-Experts (MoE) archi-
tecture with 671 billion parameters with 37 billion
activated for each token. It is pre-trained on diverse
and high-quality multilingual corpora containing
14.8 trillion tokens. Following pre-training, it un-
dergoes supervised fine-tuning and reinforcement
learning to fully harness its capabilities.

2.3 The Deep Biaffine Parser

We also trained a traditional dependency parser us-
ing the implementation of the deep biaffine parser
(Dozat and Manning, 2017) by Zhang et al. (2020)3,
which is a neural graph-based dependency parser.
The parser uses a biaffine classifier and replaces
MLP-based attention with biaffine attention, which
allows for more relevant information to be retained
before being used in the biaffine classifier.

The parser is trained using the default hyper-
parameters of the original base parser (refer to the
Github repository*). We use the Chinese RoOBERTa
model CHINESE-ROBERTA-WWM-EXT (Cui et al.,
2020) to encode each input word. A scaler mixture
of the last four layers is passed through a linear
layer to produce the embeddings.

2.4 Evaluation

When guiding LLMs to generate dependency struc-
tures for input sentences via prompt-based ap-
proaches, the generated outputs may occasionally
violate the formal constraints of well-formed depen-
dency trees, such as single-rootedness and acyclic-
ity. We thus implement a validation step prior to
accuracy computation based on the properties of
valid dependency structures (see Section 3.1.2),
and report the number of valid dependency trees as
one of the metrics.

For the evaluation of the valid dependency trees,
we utilize the CoONLL 2018 Shared Task Scorer (Ze-
man et al., 2018)°. Our evaluation is based on main

*https://github.com/yzhangcs/parser

‘https://github.com/hzhl-cl/chinese_
dep_parsing_ft_1llm

Shttps://universaldependencies.org/
conlll8/evaluation.html
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1,801
Dev 500 201
Test 500 232

Sent # by token number ()

1,192 585 419
162 86 32
150 77 41

Table 1: Statistics of the Chinese GSDSIMP treebank

dependency types as the subtypes are removed prior
to parser training and LLM fine-tuning. For exam-
ple, the subtype p0ss within the possessive nomi-
nal modifier Nnmod:poss is removed, leaving only
the main type nmod. We report the unlabeled at-
tachment score (UAS) and labeled attachment score
(LAS). UAS is the percentage of words that get
assigned to the correct head, and LAS is the per-
centage of words that that get assigned to both the
correct head and dependency label. Both scores are
macro-averaged. We additionally analyze accura-
cies based on dependency labels.

3 Experiments

3.1 Fine-tuning CHINESE LLAMA-3

We adapt Chinese Llama-3 for dependency parsing
through supervised instruction fine-tuning using the
Parameter-Efficient Fine-Tuning (Mangrulkar et al.,
2022, PEFT) approach. This approach integrates
lightweight adapters into specific layers of the pre-
trained base model, targeting transformer blocks
where task-specific adjustments yield the most ben-
efits. During fine-tuning, only the adapters are up-
dated, while the majority of the model’s parameters
remain frozen to preserve general linguistic knowl-
edge. The fine-tuning used a single GPU card. The
hyper-parameters for fine-tuning are listed on the
Github repository °.

3.1.1 Data: Dependencies Conversion

The data used for fine-tuning consists of an instruc-
tion, tokenized sentences as inputs and their cor-
responding dependency structures as outputs, as
shown in Table 2. The <input> field puts a tok-
enized sentence, and the tokenization follows the
gold standard, as this ensures that the generated
dependency structures could be properly evaluated
against the gold standard’.

*https://github.com/hzhl-cl/chinese_
dep_parsing_ft_llm/blob/main/appendix.
pdf

"In our preliminary experiments with raw sentences, we
observed that, in most cases, the tokenization by LLMs did
not align with the gold standard.

“instruction”: You are a dependency parser
for Chinese. Given a tokenized Chinese sen-
tence, for each word, identify its head and
the dependency relation between them. Do
not modify the tokenization of the input sen-
tence. Please parse the sentence with the
given words.

“input”: <sentence>
“output”: <parse>

Table 2: Instruction template for fine-tuning

Dependency structures are conventionally rep-
resented as CoNLL-U format. In a CoNLL-U
formatted sentence, each token is represented on
one line, consisting of 10 fields: token ID, Form,
Lemma, universal Part-Of-Speech, extended Part-
Of-Speech, Morphological features, Head of the
current word, universal dependency relation to the
head, enhanced dependencies and other needed in-
formation. To evaluate how dependency representa-
tions impact LLMs’ performance, we propose three
formats for linearizing syntactic dependencies in
the fine-tuning dataset. The linearized parse is put
in the <parse> field. This tests the assumption that
Chinese Llama-3 will exhibit varying performance
depending on how dependency relationships are
encoded. We demonstrate the conversion of the
three formats using an example sentence shown in
Figure 1.

The first type of representation is a simplified
CoNLL-U format (hereinafter referred to as CON-
LLU), which linearizes dependency trees. For each
token in a sentence, we extract the token’s index
and word form, along with the index and word form
of its head token, as well as the dependency rela-
tion between them. The five pieces of information
for a tab-separated entry, and all the entries within
a sentence dependency structure are separated by
line breaks, as exemplified in Table 3.

We also utilize the Stanford typed dependencies
representation (De Marneffe and Manning, 2008,
hereinafter referred to as SD). The Stanford typed
dependencies representation was designed to pro-
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nsubj

cop

[ [

nmod

(nmodb——
nmod
st
X IER *H Tl R & Z PR
this  exactlyis  inthe past  Tuen Mun coast line GEN  landmark

Figure 1: Dependency tree for “iX1E/&1F H #5[ 1HG R ZF573 - "(This was exactly the landmark of the Tuen
Mun coastline in the past.) GEN denotes the genitive case.

1 X 8 #R&E  nsubj

2 IEZ 8 Fr&E  cop

3 fFH 6 % nmod

4 HT 6 % nmod

5 WE 6 % compound
6 % 8 Fr&  nmod

7 Z 6 % case

8 #r&E 0 ROOT root

9 - 8 Fr&  punct

Table 3: Simplified CoNLL-U representation of the
example sentence Fig.1.

vide a simple description of the grammatical re-
lationships in a sentence that can easily be under-
stood and effectively used. It represents all sen-
tence relationships uniformly as typed dependency
relations, that is, as triples of a relation between
pairs of words. Table 4 presents the example sen-
tence of Fig. 1 in the Stanford typed dependencies
format. For instance, nsubj(}1&-8, iX-1) denotes
“the nominal subject of iX (index 1) is Fr& (in-
dex 8)”. We assume that this representation can be
easily understood by LLMs as well.

nsubj(Fr&-8, iX-1)
cop(brE-8, IEZ&-2)
nmod(#%-6, 1+ H-3)
nmod(%%-6, [ ]-4)
compound(%¢-6, i £-5)
nmod(}5 -8, £%-6)
case(%:-6, Z-7)
root(ROOT-0, F7ii-8)
punct(¥r&-8, - -9)

Table 4: Stanford typed dependency representation of
the example sentence Figure 1

For the third representation, we convert the de-
pendency structure of a sentence into a lexical cen-
tered tree structure (Croce et al., 2011; Hromei
et al., 2024, hereinafter referred to as LCT). In a
tree, the nodes correspond to words, and edges ex-
press syntactic relationships, each labeled with a
specific dependency type. Figure 2 portrays the

syntactic parse tree structure of the same example
sentence from Figure 1. In this tree, non-terminal
nodes are words with the root positioning at the
top, while terminal nodes are dependency relations.
The plain bracket representation of the dependency
tree in Figure 2 correspond to Table 5. We hy-
pothesize that the tree structure representation can
more effectively preserve hierarchical information,
although it may pose challenges to LLMs.

[FR&-8 BX-1 [nsubj]] [IESE-2 [cop]] [£:-6
[f£ H-3 [nmod]] [H[]-4 [nmod]] [{& -5
[compound]] [nmod] [Z-7 [case]]] [root]
[ -9 [punct]]]

Table 5: Bracket representation of Figure 2

3.1.2 OQOutput Validation

After LLMs generate a parse, we validate the out-
put by ensuring adherence to three formal proper-
ties required for a well-formed dependency tree.
First, each token in the sentence must be assigned
a unique and consecutive numerical index in the
parse structure, ensuring linear ordering of all
words. Second, except for the ROOT token, no
token may have a head index identical to its own in-
dex, which prevents self-referential dependencies.
Third, the structure must satisfy acyclicity, that is,
no pair of tokens in the sentence can form a mu-
tual dependency cycle. If a parse conforms to the
three criteria, it is considered as a valid dependency
structure.

However, to guarantee that the generated parse
can be directly compared with the gold standard an-
notation, a fourth criterion becomes essential: the
alignment of tokenization between the LLMs’ out-
put and the gold standard data. This alignment en-
sures that token boundaries match precisely, avoid-
ing evaluation failures caused by tokenization dis-
crepancies. Consequently, in our experiments, the
number of valid trees is equivalent to the number
of LLMs’ parses that meet all four criteria.
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FRE&-8

#.~.#-i:::::::::::::::=”———ﬂ:T__‘=====::::::::::::-~_*

X-1 IER&-2 % 6 root . -9
\ \ T |
nsubj COP  f:H-3 fE[]4 RS nmod 2.7 punct

nmod

nmod compound

case

Figure 2: Lexical centered tree structure for the example sentence of Figure 1

3.2 Correct Parsing Errors with DeepSeek-V3

For the parses that do not pass validation, we lever-
age DeepSeek-V3 with prompting to correct the
ill-formed dependency structures and tokenization
misalignments (the prompt can be found in the
Github repository®). Subsequently, the revised
parses undergo a validation process as described in
Section 3.1.2.

4 Results and Discussion

4.1 How does the fine-tuned Chinese Llama-3
perform on different syntactic dependency
representations?

Table 6 presents the parsing results of the three rep-
resentations with the fine-tuned Chinese Llama-3,
including the number of valid trees we obtained and
the attachment scores. We also compare these re-
sults against the biaffine parser. First, we observed
a pronounced sentence length effect: the fine-tuned
LLM exhibits better parsing performance on sen-
tences containing less than 30 words but struggles
parsing long sentences. In particular, when the
dependency structures are in the LCT format, the
LLM generated no valid trees containing more than
30 words. The observed pattern correlates with the
sentence length distribution of the training data
used for fine-tuning (see Table 1).

Across the three formats, the SD representation
achieved the highest yield (295 valid trees), outper-
forming LCT (194 trees) and CONLLU (153 trees).
This conforms to the assumption in Section 3.1.1,
where we posit that the simplicity of the SD repre-
sentation could enhance the LLM’s understanding.
The CONLLU format, which linearizes the syntac-
tic dependencies by concatenating word and head
information, poses challenges for the LLM. The
flattened representation obscures the hierarchical
relationships, limiting the model’s capability to in-

$https://github.com/hzhl-cl/chinese_
dep_parsing_ft_llm/blob/main/appendix.
pdf

fer tree-structured dependencies. In contrast, the
LCT format explicitly encodes the syntactic hier-
archies, better preserving structural information.
However, its increased complexity also poses sig-
nificant challenges to the model.

In comparing the UAS and LAS, the fine-tuned
Chinese Llama-3 surpasses the biaffine parser on
both CONLLU and LCT formatted dependency trees.
For the CONLLU formatted trees, the LLM achieves
1.99 points higher in UAS (81.56 vs. 79.57) and
1.68 points higher in LAS (73.61 vs. 71.93). The
performance gap widens for the LCT formatted
trees, where the LLM outperforms the biaffine
parser for 3.62 points in UAS (86.12 vs. 82.50)
and 8.03 points in LAS (82.47 vs. 74.44). These
results suggest that, while the LLM does not al-
ways produce well-formatted trees, it does possess
the capability for syntactic dependency analysis.
Although the LLLM generated the highest yield of
well-formatted trees with the SD representation, it
significantly underperformed the biaffine parser,
with a margin of 8.67 points in UAS (70.95 vs.
79.62) and 9.60 points in LAS (61.72 vs. 71.32).

4.2 Can Deepseek-V3 correct erroneous
dependency structures?

For the outputs that did not pass the validation, we
feed them into DeepSeek-V3 (DeepSeek-Al, 2024)
with prompt (which can be found at the Github
repository”), and request DeepSeek to identify the
errors and offer corrections. Table 7 presents the
evaluation results for the three types of represen-
tations. Despite not being fine-tuned for depen-
dency parsing, DeepSeek managed to correct 117
out of 306 erroneous LCT-formatted dependencies,
64 out of 205 sD-formatted trees, and 58 out of 336
CONLLU-formatted trees. We further take a closer
look at sentences that DeepSeek does not correct,
finding that the majority of those sentences have

https://github.com/hzhl-cl/chinese_
dep_parsing_ft_llm/blob/main/appendix.
pdf
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# Tokens t<20 20<t<30 30<t<40 40<t Total
# Gold Sentences 232 150 77 41 500
# valid 120 27 5 1 153
CONLLU UAS 84.75 7791 70.00 72.09 81.56
LAS 76.94 68.40 63.53 60.47 73.61
’ ;i;ﬁiir:e;o;l;ui ~UAS 8182 7837 67.65 5581 7957
LAS 74.82 69.33 58.82 48.84 71.93
#valid 203 79 13 0 295
SD UAS 79.00 61.93 56.82 - 70.95
LAS 69.30 53.04 48.86 - 61.72
o I;i;ﬁiﬁnie;di - UAS 8234 7624 76.14 - 79.62
LAS 74.52 67.04 68.64 - 71.32
# valid 155 39 0 0 194
LCT UAS 86.91 84.26 - 86.12
LAS 83.18 80.78 - - 82.47
’7;l,;ﬁzinfel;77UA§77837.773""779.756””"7-""”7"872.756’
LAS 75.48 71.99 - - 74.44

Table 6: Parsing performance comparison between dependency parses generated by the fine-tuned Chinese Llama-3
and the biaffine parser, where # valid refers to the number of valid output, and biaffine x denotes the biaffine parser’s

performance on the validated sentences in format X .

token mismatch problems. On one hand, this sug-
gests that the fine-tuned Chinese Llama-3 does not
strictly follow the instruction of not modifying the
input tokenization. On the other hand, it also shows
that DeepSeek is able to correct format errors, such
as index errors or cyclicity issues, but it cannot ef-
fectively address token mismatches, especially for
the CONLLU formatted trees.

The number of valid sentences after correction
also reveals a clear sentence length effect: shorter
sentences are less challenging for the LLM. In addi-
tion, when comparing the attachment scores of the
DeepSeek outputs to those of the biaffine parser,
the LLM achieved only subpar performance, with
substantial gaps. This is understandable, since
DeepSeek is not fine-tuned for dependency parsing,
thus it does not possess sufficient capabilities to
accurately identify correct head and dependency
relations. Despite this limitation, DeepSeek still
proves to be a very effective tool in examining,
identifying and correcting format errors.

4.3 Performance measured by dependency
distance and dependency relations

Dependency Distance We take a closer look
at the accuracies by dependency distance for the
parses obtained from the fine-tuned Chinese Llama-
3 and the revised parses obtained from DeepSeek,
as shown in Figure 3. In Figure 3a, we observe that
as the dependency distance increases, the model
faces greater challenges, leading to a decline in
accuracy. However, it is interesting to note that the

accuracy begins to improve when the dependency
distance exceeds 20. We also find a similar pattern
on DeepSeek, which is used directly for error cor-
rection without fine-tuning, as seen in Figure 3b.
Moreover, while both models struggle with long
dependency distances, we notice that DeepSeek
endures a sharp drop in accuracy when the depen-
dency distance is greater than 5. This indicates
that the LL.M is able to enhance its ability to han-
dle longer dependencies through fine-tuning. Also,
from Figure 3a, we find that fine-tuning the LLM
with the lexical centered tree representation have a
better performance in all dependency distances.

Dependency Relations We also investigate the
performance by dependency relations via compar-
ing the fine-tuned Chinese Llama-3 and the biaffine
dependency parser, and plot comparison graphs for
the three types of representation, shown in Fig-
ure 4. As discussed in Section 4.1, fine-tuning
using the CONLLU and LCT formatted dependency
trees outperforms the fine-tuning on the SD format.
Regarding dependency relations, when fine-tuned
on the CONLLU formatted dependency trees, the
LLM outperforms the biaffine parser in most of the
dependency relations, with exceptions involving
relations such as obj (‘direct object’), nummod
(‘numeral modifier’) and root, as seen in Figure 4a.

Similarly, Figure 4c demonstrates that the LLM
also outperforms the biaffine parser on LCT format-
ted trees for most relations, except for a few rela-
tions such as parataxis (‘run-on sentences’) and
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# Tokens t<20 20<t<30 30<t<40 40<t Total
# Gold Sentences 232 150 77 41 500
# error 112 121 71 32 336
CONLLU # valid 27 17 12 2 58
UAS 52.39 52.02 50.87 69.57 53.01
LAS 42.07 41.57 42.18 65.22 43.56
’ ;i;];ﬁ;e;;l;uf “UAS 7960 7720 7171 63.04 7525
LAS 71.28 67.46 63.03 60.87 66.79
# error 29 71 64 41 205
D # valid 16 27 15 6 64
UAS 66.67 56.95 60.80 53.62 58.92
LAS 62.02 47.09 48.70 46.38  49.71
o I;l,; ﬁ:i;;e; - UAS 8256 7803 7405 7174 7653
LAS 72.48 68.16 63.67 66.30 67.19
# error 77 111 77 41 306
LCT #valid 49 43 18 7 117
UAS 61.68 52.86 56.03 49.19 55.68
LAS 55.47 45.08 46.78 40.78  49.79
o I;i; ﬁ;nfe; - UAS 7993 7809 7537 7346 7154
LAS 73.72 68.52 65.79 64.08 68.96

Table 7: Parsing performance comparison between dependency parses revised by prompting DeepSeek-V3 and
the biaffine parser, where # error refers to the number of erroneous trees that need correction, # valid refers to the
number of valid output, and biaffine x denotes the biaffine parser’s performance on the validated sentences in format
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(a) Fine-tuned Chinese Llama-3
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(b) DeepSeek-V3

Figure 3: Accuracies computed by dependency distance, where ‘0 (root)’ refers to the accuracy of identifying root

of a sentence.

obj. For the SD format, the LLM performs poorly
on most relations but significantly outperforms the
biaffine parser on relations such as appos, det, dis-
course and amod. This suggests that the parsing
ability of the fine-tuned LLM is influenced by the
representation of dependency structures, and the
SD representation limits the model’s ability to learn
complex syntactic structures effectively.

Although different types of dependency structure
representations have a different impact on pars-
ing performance, we observe that the fine-tuned
LLM consistently outperforms the biaffine parser
in certain dependency relations, including nominal
phrase relations such as det (‘determiner’), appos
(‘appositional phrase’) and amod (‘adjectival mod-

ifier’), as well as clausal structures such as ccomp
(‘clausal complement’) and xcomp (‘open clausal
complement’). However, the LLM is not good at
handling specific sentence structures, such as cop
(‘copula’), which refers to the nominal predicate
sentences’, and acl (‘clausal modifier of noun’),
which specifically refers to relative clauses.

5 Related Work

Traditionally, dependency parsing is data-driven,
based on training machine learning models on a de-
pendency treebank to parse a given input sentence.
The data-driven parsing approach can be either
transition-based (Nivre, 2003; Chen and Manning,
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Figure 4: Accuracy comparison computed by dependency relations between the fine-tuned Chinese Llama-3 and the

biaffine parser in three types of tree presentation.

2014) or graph-based (Chen et al., 2012; Dozat and
Manning, 2017). When incorporating transformer-
based encoder models (such as BERT, Devlin et al.
(2019)), words are first encoded using the word
embeddings extracted from the models and then
passed as input to the parser. However, genera-
tive large language models are rarely employed for
dependency parsing due to the complexity of the
parsing task.

Lin et al. (2023) utilized ChatGPT for depen-
dency parsing. They created prompts to instruct
the LLM to parse 12 languages. The results
showed that ChatGPT underperformed traditional
parsing algorithms on all the languages involved
with a large gap. Hromei et al. (2024) introduced
U-DepPLLaMA, which shifted traditional depen-
dency parsing as a sequence-to-sequence genera-
tion task, interpreting and transform syntax into
bracketed structures. They evaluated 50 datasets
in 26 languages, showing competitive performance
with traditional parsing algorithms.

In addition to dependency parsing, previous stud-
ies also employed LLMs for constituency parsing.
Bai et al. (2023) employed three linearization strate-
gies to convert trees into symbol sequences and con-
ducted parsing experiments using a series of LLMs
with zero-shot, few-shot and full-training settings.
Results demonstrated that LLMs enhanced the per-
formance of sequence-based methods and can yield
competitive results compared to chart-based and
transition-based parsers. However, LLMs did not
achieve equally good performance on few-shot and
cross-domain scenarios. Tian et al. (2024) investi-
gated the effectiveness of directly using LLMs for
constituency parsing. They observed that LLMs
are shallow parsers, since they are effective in
chunking but ineffective in full parsing. They also

proposed to decompose parsing into three steps:
chunking, filtering and parsing with chunks, and
indicated that the three-step approach can produce
better parse trees.

6 Conclusion

In this paper, we investigated how different depen-
dency representations impact parsing performance
when fine-tuning large language models for Chi-
nese dependency parsing. Results comparing with
the traditional dependency parsers indicate that us-
ing the lexical centered tree representation helps
the fine-tuned LLLM obtain higher quality parses,
despite not producing the highest number of valid
trees. When using the Stanford dependency format,
the LLM generates the highest number of well-
formatted trees, though these trees exhibit lower
accuracy. We also utilized DeepSeek for correct-
ing erroneous parses, finding that it is able to fix
index errors or cyclicity issues, but cannot solve
tokenization mismatches. Furthermore, analyzing
from dependency distance and dependency rela-
tions, the fine-tuned LL.M enhances its capability
to handle longer dependencies, although this re-
mains challenging. Our future work will focus on
generating more valid trees and incorporate more
features into fine-tuning to investigate whether it
will further improve parsing performance.
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