MLDataForge: Accelerating Large-Scale Dataset Preprocessing and Access
for Multimodal Foundation Model Training

Andrea Blasi Nufiez, Lukas Paul Achatius Galke, Peter Schneider-Kamp
University of Southern Denmark
{abln, galke,petersk}@imada.sdu.dk

Abstract

Preprocessing large and possibly multimodal
datasets remains a key bottleneck in many ma-
chine learning workflows, particularly when
random access to samples is needed for global
shuffling and sorting. Existing approaches, in-
cluding widely used formats like JSONL and
frameworks such as Huggingface Datasets and
MosaicML Streaming, typically incur substan-
tial computational, memory, and storage over-
head in such settings. Here, we introduce
MLDataForge, a Python-based open-source
framework designed for scalable dataset pre-
processing and access. Our key contribu-
tions are: (1) optimized readers for Mosaic
Data Shards (MDS) that substantially improve
throughput, reduce peak storage usage, and
support sample-level compression; (2) JINX
(JSON Indexed 'N’ eXtended), a novel, index-
augmented JSONL-compatible format support-
ing structured footers and binary sidecar files;
and (3) a lazy loading mechanism that defers
data loading, decompression, and decoding
JINX files until sample fields are accessed.
We empirically evaluate MLDataForge and
our contributions on a representative 200 GB
supervised fine-tuning dataset for vision lan-
guage models. Our best configuration — zstd-
compressed JINX with binary sidecar and lazy
loading — yields at least a decimal order-of-
magnitude throughput increase compared to
the best baselines for iteration, global shuffling,
and sorting. These advances enable substantial
gains in data preprocessing performance, fa-
cilitating more scalable and resource-efficient
model training pipelines.

1 Introduction

Handling large-scale datasets is essential for train-
ing multi-modal foundation models, especially
with the growing importance of multimodal data
that combines text, images, audio, and more. How-
ever, working with such datasets introduces major

175

performance challenges (Ji et al., 2025). Common
operations like shuffling, sorting, or even just iter-
ating through large datasets can become very slow
and memory-intensive when using standard tools
and formats (Knuth, 1998). This presents a crucial
bottleneck in pre-processing and training pipelines
and makes reproducibility and scalability harder to
achieve.

JSON Lines (JSONL) is likely the most com-
monly used format for large-scale text datasets
due to its simplicity, flexibility, and human read-
ability (Gogula, 2025). However, JSONL is not
well-geared for multi-modal content as it requires
application-specific encoding of binary content.
Further, JSONL inherently lacks support for high-
performance random access and, consequently,
global shuffling and sorting operations.

Mosaic Data Shards (MDS) was introduced as
a solution to these limitations (MosaicML Team,
2022). It offers a binary, shard-based format that
is notably faster for streaming, supports efficient
shuffling, and is optimized for distributed train-
ing. However, while Mosaic’s MDS format and
streaming library represent a major step forward
in handling large-scale datasets, they still fall short
of the speed required for the most demanding pre-
processing and training scenarios.

Therefore, we introduce MLDataForge, an open-
source Python package that provides a framework
and a command-line interface featuring improved
readers and writers for extant data formats and a
novel data format that enables order-of-magnitude
throughput increases for operations like iteration,
global shuffling, and sorting (see Figure 1). These
innovations are described in detail in Section 3.

To quantify this performance improvement, we
conducted a series of experiments comparing data
handling using the HuggingFace Datasets and Mo-
saicML Streaming frameworks with our approach.
To that end, we benchmarked key operations inclu-

Proceedings of Recent Advances in Natural Language Processing,pages 175183
Varna, Sep 8-10, 2025

https://doi.org/10.26615/978-954-452-098-4-021

Bm Benchmark - 5o0rt
Benchmark - Shuffle
Benchmark - Iterate

Bm MLDataForge - Sort
MLDataForge - Shuffle
MLDataForge - Iterate

B . Datasets zatd {°
arquet MLDatalorge | zsid B
msgpack zstd
none
Datasets zatd
JSONL None
MLDataForge zstd
nong
1 zstd
) 7Y | none
single i
zs
TINX SAEET | nome
lazy zstd
bilmry none

zatd
eager | oo

7std

Streaming |sample
none
zstd
sample
none
zstd
sample
none

L IF ™

MDS bulk

ram

2000 4000

6000
Th

8000 10000 12000 16000

roughput {samples/second)

14000

Figure 1: Throughput (samples per second, higher is better) for each operation (sort, shuffle, iterate) per file type,
data reader, and compression method. Orange bars represent the benchmark performance (our baseline), while blue
bars show the performance achieved using MLDataForge. Within each color, shades indicate the type of operation:
dark for sorting, medium for shuffling, and light for iterating. For example, dark orange corresponds to benchmark
performance during sorting, while dark blue represents MLDataForge performance during the same operation. Our
MLDataForge framework, along with our proposed JINX format, binary sidecar, and zstd compression, yields the
highest throughput, by an order of magnitude, in all operations.

diong iteration, global shuffling, and sorting given
an arbitrary key function. The evaluation was con-
ducted across five data formats: MDS, JSONL, Par-
quet, MSGPACK, and our custom format, JSON
Index N Extended (JINX; see Section 3). While
MLDataForge supports many compression types
for each of the data formats, for our experiments we
restricted ourselves to at most three compression
types, if applicable: no compression, Zstandard
(zstd) file-level compression, and zstd sample-level
compression (see also Section 3).

The immense performance gains came with
lower computational costs and resource usage, mak-
ing it more feasible to work with large-scale multi-
modal datasets. Ultimately, these advances help ac-
celerate the development and deployment of state-
of-the-art machine learning models.

2 Related Work

Some of the best-known frameworks for handling
large-scale ML datasets are MDS, Parquet, and
HuggingFace Datasets.

MDS is a dataset format developed by Mo-
saicML (now a part of Databricks) specifically de-
signed for handling large-scale multimodal datasets

176

(MosaicML Team, 2022). The format stores data
in binary sharded files with a header index. It uses
an accompanying JSON file to manage metadata
and access. Its strongest features is its streaming-
oriented design, which enables efficient iteration
even when data is distributed or stored remotely.
However, global shuffling, requires either larger
buffers or reading the entire dataset, which can
increase memory and I/O costs. Sorting is not
natively supported and would generally involve
loading metadata, such as labels or timestamps,
into memory first, which makes sorting slower and
more memory-intensive compared to other tools.

Apache Parquet (Vohra, 2016), is a columnar
storage format that is widely used in the big data
ecosystem. It is designed to store structured tabular
data, and therefore it is not ideal for storing images
or nested structures. On top of that, shuffling is
not part of the format and must be implemented
by loading data into memory first. When it comes
to compression, Parquet compresses data at the
column chunk level, which means that when shuf-
fling or sorting rows, you generally need to decom-
press and load the entire dataset or large chunks
of it, making it rather slow and memory intensive

(Ivanov and Pergolesi, 2019).

The Hugging Face Datasets library is a powerful
tool for accessing and managing machine learn-
ing datasets, particularly for natural language pro-
cessing (Lhoest et al., 2021). Under the hood, the
library uses Apache Arrow to enable fast access,
lazy loading, and memory-efficient processing. It-
eration is lazy and memory-efficient: only the ac-
cessed slices are loaded into memory. Shuffling
is implemented using an index-level permutation
mechanism, which avoids shuffling the actual data
and instead reorders access (Hugging Face Team,
2025b). This design makes it fast and scalable,
even for large datasets. Sorting is also supported
through the API and involves sorting the relevant
Arrow column and reindexing the dataset accord-
ingly. However, while the library excels with text
data and has growing support for general ML use
cases, it is still primarily text-focused and may
not offer the best performance or flexibility for
large-scale multimodal data. Additionally, it lacks
disk-based shuffling and sorting, meaning these op-
erations must fit entirely in memory (Hugging Face
Team, 2025a) — which becomes a bottleneck for
very large datasets. Although using its streaming
mode avoids loading the full dataset into memory,
it does not support global shuffling or sorting, lim-
iting flexibility for large-scale pre-processing and
training workflows.

3 Innovations underlying MLDataForge

We now present the key innovations that enable the
results of MLDataForge. We can divide these be-
tween new readers and writers for MDS files, a new
file format, Jsonl Indexed N’ eXtended (JINX),
and its corresponding readers and writers. In ad-
dition to these innovations, MLDataForge features
conversion, transformation, joining, and splitting
operations, as well as support for other dataformats
such as Parquet, JSONL, and MSGPACK.

3.1 MDS Compression and Efficient Reading

MDS sample compression. MDS supports both
random access via its header index and transparent
file-level compression. Unfortunately, combining
these requires decompressing the file, increasing
peak storage requirements and time consumption
considerably. We implemented sample-level com-
pression for MDS files. Unlike existing approaches
that compress entire shards, sample compression
operates at the individual sample level. This means

177

only the actual data is compressed, while the in-
dex remains uncompressed. As a result, random
access and operations such as iteration, global shuf-
fling, or sorting can be performed without decom-
pressing the shard files. Indices remain directly
accessible, enabling faster and more efficient data
handling and voiding the need to decompress the
files before access. MLDataForge provides both a
writer for producing sample compressed MDS and
a drop-in replacmenet reader that can be used with
MosaicML Streaming .

MDS bulk reader. The bulk reader is a new im-
plementation optimized for fast, sequential read-
ing of MDS files. Unlike traditional readers that
may repeatedly open files and seek to specific posi-
tions for each sample and its index, the bulk reader
loads the entire index into memory once and keeps
the file open throughout the reading process. This
means that when a sample is requested, the reader
can quickly locate its length using the in-memory
index and read it directly, without the need to re-
construct file paths or perform additional seek op-
erations. By maintaining an open file handle and
tracking the current position, the bulk reader en-
ables faster access when reading samples in order.
Its limitation is that it does not support random ac-
cess, and thus neither global shuffling nor sorting.

MDS RAM reader. The RAM reader enables
efficient random access across large MDS datasets,
even when spread over thousands of shards. To
locate a specific sample, it first uses bi-section of
the cumulative sample counts to determine which
shard the target index belongs to. It then consults
per-shard indexes to find the exact byte offset of
the sample within the file. Since the access pattern
is random and we do not know in advance which
shard will be needed, all shard files are memory-
mapped. This allows the system to open and access
many files simultaneously through virtual memory,
without loading them into RAM unless required.
Thus, datasets of virtually unlimited size can be
accessed quickly and flexibly. Although the bulk
reader offers faster performance for purely sequen-
tial reading, the RAM reader is optimized for high-
speed random access at scale and still systemati-
cally outperforms the original MDS shard reader.

'Just add the following three lines:
from streaming.base.format import _readers
from mldataforge.mds import MDSSampleReader
_readers["mds"] = MDSSampleReader

jinx | lazy | binary | zstd

jinx | lazy | binary | none

=

o
S
n

jinx | eager | binary | nane
MDS | bulk | none
msgpack | MLDataForge | none
’ MDS | streaming | none

MDS | bulk | zstd msgpack | MLDataForge | zstd

—

o
W
L

Jinx |eager| binary | zstd
MDS | streaming | sample
MDS | butk | sample

MDS | streaming | zstd

=

o
G
L

Throughput (samples/second) in log scale

MDS | RAM | none

MDS | RAM | sample

»——jinx-| eager] single | zstd

jinx |-eager | single | none

MLDataForge
Benchmark

jinx | lazy-| single | zstd
jinx | lazy | single | none
MDS | RAM | zstd

parquet | datasets | zstd
—parquet | MLDataForge | zstd

json | datasets | none

Json | MLDataFoerge | none
T T

50 100

150 200

RAM (GB)

250 300

Figure 2: Throughput (samples per second) for the iteration operation per file type, data reader, and compression
method plotted against RAM. Orange dots represent benchmark performance (our baseline), while blue dots show
the results achieved with MLDataForge. Throughput is displayed on a logarithmic scale to enhance visualization
clarity. The best combination (top-left) is our proposed JINX format with lazy loading, binary sidecar, and zstd

compression.

JINX file

BINX file

R (:) | 1son

Lazy dict

footer

7
/
/

|
/ .0

/
O dstaarimeses ’

Figure 3: Workflow illustrating the steps involved when
accessing a sample of the dataset, in this case sample
42. This example is for a JINX file with binary sidecar
and zst compression, where ds is the dataset. 1- Access
the image in sample 42 of the dataset, 2- In the JINX
footer, the index specifies where to locate the offset for
sample 42, 3- JSON decode sample 42, 4- Wrap JSON
in lazy-loading dictionary, 5- Access the image stored in
the BINX file, 6- Decompress the image data, 7- Return
the image

3.2 JSONL Indexed N’ eXtended (JINX)

JINX is a new file format similar to JSONL, but
with two additional JSON lines to support faster
access. At the end of the file, it includes first a
JSON object as a footer, which contains meta data

and an index pointing to the start of each sample.

The final line of the file is a JSON integer indicating
the byte offset of the footer. As all lines are valid
JSON, JINX files are technically special cases of
JSONL and share human readability properties.

JINX has built-in support for handling binary
content by encoding it using base64 (Josefs-
son, 2006). To indicate additional information
about a value—such as whether it has been com-
pressed—JINX uses special suffixes (referred to as
“extensions”) in the key names. For example, if a
key originally named text holds a string that has
been compressed using gzip and then encoded in
base64, it would be renamed to text . gz.

In this way, the key name itself communicates
the transformation applied to the data. Tools like
MLDataForge can take advantage of this system
by automatically compressing large values and re-
naming the keys accordingly, based on user-defined
size thresholds.

Sidecar offload. Sidecar offloading is a mech-
anism designed for JINX files that contain large-
scale data such as images or long texts. Given a
value that exceeds the binary threshold, if set, it is
stored in binary format in a separate binary “BINX”
file. Instead of embedding the data directly through
base64 encoding, the JINX file still includes crit-
ical metadata such as offset and size of the value,
allowing efficient access without bloating the main
file and without decreasing its human readability.
Therefore, when using only the JINX file, we re-
fer to it as a JINX “single” file. In contrast, when
binary data is offloaded to a sidecar file, we refer
to it as JINX “binary”. In figure 3, we can see
the workflow between JINX and BINX files, when
accessing a sample of the dataset.

178

jinx [Tazy [binary [zstd

—
o
=

¥~ jinx | lazy | binary | none

jinx | eager | binary | none
MDS | streaming | none
___Jinx | eager | binary | zstd

=

o
T
L

MDS|-streaming | sample

MDS | streaming | zstd

Throughput (samples/second) in log scale
=
o

jinx

MDS |-RAM | sample
jinx | lazy-| single | none

jinx | eager| single | zstd

MLDataForge
Benchmark

| lazy | single | zstd
MDS | RAM | none

MDS | RAM | zstd
Jinx | eager | single | none

parquet | MLDataFurée | zstd
parquet | datasets | zstd

json | datasets | none

50 100

150 200 250 300

RAM (GB)

Figure 4: Throughput (samples per second) for the shuffling operation per file type, data reader, and compression
method plotted against RAM usage. Orange dots represent benchmark performance (our baseline), while blue
dots show the results achieved with MLDataForge. Throughput is displayed on a logarithmic scale to enhance
visualization clarity. The best combination (top-left) is our proposed JINX format with lazy loading, binary sidecar,

and zstd compression.

Lazy loading. With lazy loading for JINX and
BINX files, samples are returned as lazy dictionar-
ies whose values are only decompressed and de-
coded, when the corresponding key is accessed. If
a binary sidecar is used, the entire load is deferred
until the value is to be accessed. For instance, if an
image is compressed, it will not be decompressed
unless explicitly required. This approach enables
operations like sorting by metadata fields without
the overhead of loading large and complex data, for
more efficient, on-demand access.

4 Experimental Setup

4.1 Multimodal Dataset

We conducted our experiments using the dataset
llava—-instruct-mix-vsft, a multimodal
dataset available on the HuggingFace hub? cov-
ering text and image data. We chose this version
because it adopts a modern messages structure. The
dataset consists of individual entries, each contain-
ing a set of messages (a chat) and a corresponding
image in JPEG format. It is organized into two
subsets: a larger one with 259,155 entries called
train, and a smaller one with 13,640 entries called
test. When decoded and uncompressed, the train
and test subsets occupy 198 GB and 10.2 GB disk
space, respectively.

https://huggingface.co/datasets/
HuggingFaceH4/llava-instruct-mix-vsft

179

4.2 File Formats

The data formats used for our experimental eval-
uation are: MDS, JSONL, Parquet, MSGPACK,
and JINX. We evaluate JINX both as single files
and with binary sidecar files. The single JINX files
encode binary data in base64 format rather than
base85 for optimal throughput performance at a
slight storage cost. These formats were obtained by
converting the original files from the original multi-
modal dataset using MLDataForge’s conversion
and transformation operations. The same transfor-
mation function was applied for all formats except
for JSONL, which required an encoding of the bi-
nary image data.

The MDS files where processed directly with
our drop-in streaming reader that supports sample
compression but otherwise is a straight copy of the
original implementation, with our bulk reader, and
our RAM reader. The JINX files were loaded using
both the lazy and eager methods described in Sec-
tion 3.2. Parquet and JSONL files were also loaded
using MLDataForge, which internally relies on the
HuggingFace datasets library for these two formats.
Finally, we applied three compression types, when
supported: no compression, Zstandard (zstd) file-
level compression, and zstd sample compression
(also detailed in Section 3).

4.3 Experimental Procedure

We ran two sets of experiment: one using the
smaller test subset with repeated measurements,

https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft
https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft

104 Jinx [Tazy [binary [none

jinx Hazy | binary | zstd

jinx | eager | binary | none
103
MDS | streaming | none

jinx | eager | binary | zstd
MDS | streaming | sample

MDS | streaming | zstd

102 4

Throughput (samples/second) in log scale

MDS | RAM | sample

MLDataForge
Benchmark

jinx | lazy | single | zstd MDS | RAM | none

jinx | lazy | single | none

MDS [RAM | zstd

parquet|-MLDataForge | zstd

jinx | eager{ single | zstd jinx | eager | single | none

parquet | datasets | zstd

json-}datasets | none
T

50 100

RAM

150 200 250

(GB)

Figure 5: Throughput (samples/second) for the sorting operation per file type, data reader, and compression
method plotted against RAM usage. Yellow bars indicate the benchmark performance, while blue bars represent the
performance achieved using MLDataForge. The best combination (top-left) is our proposed JINX format with lazy

loading, binary sidecar, and zstd compression.

and one set of experiments using the larger train
subset of the data to demonstrate the scalability of
our implementations in MLDataForge. We com-
pared the performance of our algorithm against
MosaicML Streaming and Huggingface Datasets,
evaluating the time and storage requirements for
iteration, global shuffling, and sorting operations.
These three operations are common in data pre-
processing, with the first being straightforward
enough to work on all formats and the two oth-
ers more challenging as global shuffling affects the
order of the data access and sort likewise requires
a global perspective. For each operation, we mea-
sure CPU time, system time, peak RAM usage, and
peak storage usage. For the experiments on the
smaller test subset, each experiment was repeated
five times per file type, reader variant, and opera-
tion. For each configuration, we report the median
value of these runs, as well as the interquantile
range [IQR] (Frery, 2023) , as a measure of devi-
ation. The IQR is calculated as the the difference
between the 75th percentile and the 25th percentile.

We used a Linux machine with 64 CPU Cores
and 384 GB of memory. These are part of a shared
high-performance computing facility, and it is for
this reason that we decided to repeat the experi-
ments 5 times during the initial test and report the
median to account for potential variability in per-
formance and eliminate outliers.

180

4.4 Operations

Iteration. For the iteration operation, a simple
in-order iteration over all samples of the dataset
was carried out.

Global shuffling. For the global shuffle opera-
tion, we shuffle the indices of a dataset in a repro-
ducible way (using a fixed seed). We then iterate
over the dataset in that shuffled order.

Sorting. For the sorting operation, we sort the
dataset based on a custom sorting key function
applied to each sample in the dataset. We then
iterate over the dataset in the resulting sorted order.

5 Results

We have collected results for all three operations (it-
eration, shuffling, and sorting) on both the train and
the test split. From these raw results, we made two
types of visualizations: a bar plot illustrating the
throughput of each method (samples processed per
second), and a scatter plot showing the relationship
between throughput and memory usage.

In the bar plot, longer bars indicate better per-
formance. In the scatter plot, points closer to
the upper-left corner are better at balancing high
throughput with low memory consumption. In both
cases, the throughput has been calculated using the
wall time, which corresponds to the addition of
CPU time and System time. Note that the bar plot
(1) displays all operations in a single figure, while
the scatter plots (Figures 2, 4, and 5) are separated
by operation.

We provide the full results for the iteration op-
eration in Table 1, reporting all considered perfor-
mance metrics (CPU time, system time, memory
usage, and storage usage) for both the training and
test splits across all evaluated file formats, read-
ers, and compression types (see Section 4.2). For
brevity, the results for sorting and shuffling are only
presented in the bar and scatter plots.

5.1 Iteration

Table 1 and Figures 1 and 2 present the results
of the iteration operation. While Figure 1 offers
an intuitive visualization of the superiority of our
approach in terms of speed, showing that the JINX
binary file with lazy loading outperforms all other
formats, Figure 2 presents the advantage also in
terms of memory usage, both for compressed and
uncompressed files.

When comparing MDS files from the benchmark
(streaming reader) to our readers, our approach
demonstrates a better performance. In terms of
balance between throughput and memory, MDS
sample compressed with Bulk reader outperforms
MDS Streaming with any type of compression. In
fact, our sample compression method achieves bet-
ter results than zstd compression in all cases, using
less system time and storage. It is also evident that
HuggingFace Datasets exhibits considerably lower
performance compared to the other methods.

The JSONL format was the slowest overall,
with processing times exceeding 24 hours for zstd-
compressed test files. The reason for this lies in
the far-from-optimal encoding of the binary image
data and the resulting storage pressure, which is
aggravated by the HuggingFace Datasets libary’s
creation of multipel cached versions.

5.2 Shuffling

Figures 1 and 4 show results consistent with those
observed for the iteration task. Again, the JINX
binary format with lazy loading leads by a substan-
tial margin, followed by the MDS format. While
the MDS RAM variant outperforms MosaicML
Streaming in terms of speed, it comes at the cost
of higher RAM memory usage. Notably, both Par-
quet and JSON files use HuggingFace Datasets and
perform rather poorly.

5.3 Sorting

Figures 1 and 5 show results consistent with the pre-
vious two operations. While sorting is the slowest
operation overall, the relative performance across

181

formats remains similar. The JINX binary format
with lazy loading once again leads, with the eager
loading variant of JINX binary coming in second.

6 Discussion and Conclusion

Our results across three common data access oper-
ations — iteration, shuffling, and sorting — demon-
strate a clear and consistent improvement of the
JINX binary format, particularly with lazy load-
ing. This format delivers the highest throughput
across all tasks but also shows substantial gains in
resource efficiency, with compressed files requiring
up to three times less RAM and storage compared
to the MosaicML Streaming format. This is insofar
expected, as the MDS format requires us to de-
compress full files to access the compressed index.
Likewise, binary lazy loading with compression
has better results than its non-compression mode,
including a higher throughput. This is because lazy
loading, as opposed to eager loading, does not re-
quire decompressing the binary sidecar, thus the
amount of data it needs to read is determined solely
by the size of the main JINX file.

Notably, the memory (RAM) usage is lower
when eager loading is used compared to lazy load-
ing. While eager loading loads all data once in
a single structure, lazy loading creates new wrap-
per objects at all layers of the structure and each
time data is accessed. Without memory pressure
on the test machine forcing garbage collection, the
reported RAM usage is higher for lazy loading.

For random access, our MDS RAM variant of-
fers faster speeds than MosaicML Streaming but
does so at the cost of a higher reported memory
consumption. This is an artifact of the memory
mapping used by the RAM reader and the memory
availability on the experiment machines.

Our MDS bulk reader being faster and using less
memory than the existing MosaicML Streaming
reader when reading sequentially. In contrast, for-
mats relying on HuggingFace Datasets such as Par-
quet and JSONL consistently underperform across
all metrics, indicating that those are not ideal for
high-throughput or resource-constrained environ-
ments. This is due to the fact that despite Hug-
gingFace Datasets being able to do partial sorting
quickly, they need to load full columns into mem-
ory. Hence, the library is neither designed nor
particularly suited to sorting and globally shuffling
full datasets.

When it comes to compression, our sample-

test measures

train measures

File Reader Compression ,) , ,
CPU time System time RAM Storage CPU time System time RAM Storage
(seconds) (seconds) (MB) (GB) (seconds) (seconds) (MB) (GB)
none 2.17 [0.06] 5.99 [0.11] 756 [1.68] 9.74 [0.00] 37.73 119.24 898 188.77
Streaming zstd 15.91 [0.22] 23.9310.81] 2,278 [1.56] 14.67 [0.00] 337.54 521.11 2,263 282.19
sample 15.05 [0.36] 3.36 [0.16] 756 [11.70] 4.94 10.00] 282.34 65.09 807 93.67
none 1.36 [0.08] 5.49 [0.48] 754 [5.74] 9.74 [0.00] 23.70 74.46 871 188.77
MDS Bulk zstd 11.83[0.07] 3.03 [0.12] 751 [7.54] 4.92 [0.00] 224.78 42.45 877 188.77
sample 13.42 [0.4] 2.85[0.27] 760 [7.54] 4.94 10.00] 255.27 45.34 889 93.67
none 3,02 [0.36] 3,07 [0.02] 10,459 [10.13] 9.74[0.00] 51.29 63.91 114,310.50 188.77
RAM zstd 14.31 [0.52] 9.150.2] 10,454 [7.03] 14.67 [0.00] 285.20 309.99 189,453 282.19
sample 13.76 [0.3] 1.94[0.13] 5,645 [6.00] 4.94 10.00] 267.52 38.23 87,863 93.67
Eacer none 30.57 [0.24] 4.21[0.03] 13,760 [0.52] 12.99 [0.00] 608.32 21145 65,270 251.58
s zstd 28.12[0.06] 2.30[0.02] 7,818 [2.96] 7.08 [0.00] 553.10 62.82 75,453 134.41
JINX
single
L none 10.01 [0.04] 4.67 [0.24] 13,739 [1.45] 12.99 [0.00] 201.49 96.80 173,633 251.58
azy zstd 5.16[0.17] 255[021] 7.834[693] 7.08[000] 99.67 54.01 127,579 134.41
Eacer none 0.40 [0.01] 4.11[0.22] 729 [0.29] 9.74 [0.00] 10.38 77.87 920 188.77
age zstd 122710631 2.36[0.14] 74106211 53100000 245.15 46.17 1,029 100.88
JINX
binary
Laz none 0.4210.07] 1.16 [0.12] 695 [8.55] 9.74 10.00] 12.24 13.07 935 188.77
y zstd 0.39 [0.00] 0.64 [0.04] 713 [4.89] 5.31[0.00] 7.60 8.26 979 100.88
MLDF zstd 19.57 [0.15] 28.98 [0.65] 17,468 [4.94] 15.07 [0.00] 381.97 667.15 189,748 289.81
Parquet
Datasets zstd 20.50 [0.34] 31.45[0.03] 17,474 [8.52] 15.07 [0.00] 375.92 618.53 189,807 289.81
MLDF none 267.60 [1.2] 75.64 [0.27] 16,899 [37.19] 58.40[0.00] 5,097.13 3,536.10 300,357 1,140.12
zstd 5938.92(85.30] 46.24 [7.21] 17,102 [307.08] 22.27 [0.00] oo %) - -
JSON
Datasets none 262.42 [0.50] 71.64 [3.49] 16,937 [160.36] 58.40[0.00] 4,940.72 1,667.29 300,413 1,140.12
o zstd 5162.43(70.98] 5430 [3.44] 16,913 [85.98] 22.27 [0.00] oo %) - -
none 2.68 [0.12] 4.46 [0.05] 749 [6.45] 9.74 [0.00] 54.48 75.35 894 188.71
MSGPACK ~ MLDF zstd 133710191 235[235] 742[2670] 4.98[000] 234.08 39.65 872 94.41

Table 1: Iteration performance under various compression settings using test and train data. The best value in
each column is in bold and red colour. co was assigned to time values that exceeded 24 hours. MLDF stands for
MLDataForge. For the test subset, we report the median and IQR (in square brackets) of the 5 repetitions.

level compression approach consistently outper-
forms file-level compression, further emphasiz-
ing the advantage of format-aware optimization
strategies. Notably, JSONL in particular exhib-
ited prohibitively long processing times when zstd-
compressed, exceeding 24 hours even for our size-
limited test files.

Overall, the JINX format with binary sidecar
file and lazy loading stands out as the most robust
and scalable solution for dataset storage and access,
balancing memory and storage usage while provid-
ing an order-of-magnitude improvement in sample
throughput. These results strongly support its use
in pre-processing and training scenarios where per-
formance and resource optimization are critical.

182

Acknowledgments

This research was supported in parts by the Danish
Foundation Models (DFM) project.

References

Alejandro C. Frery. 2023. Interquartile Range, pages
664-666. Springer International Publishing, Cham.

Bhanu Phanindra Babu Gogula. 2025. Enhancing con-
tent indexing and customer support with jsonl and
ai integration. International Journal on Science and
Technology (1JSAT), 16:1-10.

Hugging Face Team. 2025a. Datasetinfo. Accessed:
2025-05-19.

https://doi.org/10.1007/978-3-030-85040-1_165
https://huggingface.co/docs/datasets/v2.14.5/en/package_reference/main_classes#datasets.Dataset.shuffle

Hugging Face Team. 2025b. What is arrow? Accessed:
2025-05-24.

T. Ivanov and M. Pergolesi. 2019. The impact of
columnar file formats on sql-on-hadoop engine per-
formance: a study on orc and parquet. Concurrency
and Computation: Practice and Experience, 32.

Lixia Ji, Shijie Xiao, Jingmei Feng, Wenzhao Gao, and
Han Zhang. 2025. Multimodal large model pretrain-
ing, adaptation and efficiency optimization. Neuro-
computing, 619:129138.

Simon Josefsson. 2006. The base16, base32, and base64
data encodings. Technical report.

Donald E. Knuth. 1998. The art of computer program-
ming, volume 3: (2nd ed.) sorting and searching. Ad-
dison Wesley Longman Publishing Co., Inc., USA.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien
Plu, Lewis Tunstall, Joe Davison, Mario Sasko,
Gunjan Chhablani, Bhavitvya Malik, Simon Bran-
deis, Teven Le Scao, Victor Sanh, Canwen Xu,
Nicolas Patry, Angelina McMillan-Major, Philipp
Schmid, Sylvain Gugger, Clément Delangue, Théo
Matussiere, Lysandre Debut, Stas Bekman, Pierric
Cistac, Thibault Goehringer, Victor Mustar, Francois
Lagunas, Alexander M. Rush, and Thomas Wolf.
2021. Datasets: A community library for natural
language processing.

MosaicML Team. 2022. Streaming datasets for efficient
machine learning. Accessed: 2025-05-23.

Deepak Vohra. 2016. Apache Parquet. In Prac-
tical Hadoop Ecosystem: A Definitive Guide to
Hadoop-Related Frameworks and Tools, pages 325—
335. Apress, Berkeley, CA.

183

https://huggingface.co/docs/datasets/about_arrow
https://doi.org/10.1002/cpe.5523
https://doi.org/10.1002/cpe.5523
https://doi.org/10.1002/cpe.5523
https://doi.org/https://doi.org/10.1016/j.neucom.2024.129138
https://doi.org/https://doi.org/10.1016/j.neucom.2024.129138
http://arxiv.org/abs/2109.02846
http://arxiv.org/abs/2109.02846
https://www.mosaicml.com/blog/streaming-datasets
https://www.mosaicml.com/blog/streaming-datasets

