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Abstract

This research explores the impact of Named En-
tity Recognition (NER) on transformer-based
models for multi-label recipe classification by
dietary preference. To support this task, we
introduce the NutriCuisine Index: a collec-
tion of 23,932 recipes annotated across six di-
etary categories (Healthy, Vegan, Gluten-Free,
Low-Carb, High-Protein, Low-Sugar). Us-
ing BERT-base-uncased, RoBERTa-base, and
DistilBERT-base-uncased, we evaluate how
NER-based preprocessing affects the perfor-
mance (F1-score, Precision, Recall, and Ham-
ming Loss) of Transformer-based multi-label
classification models. RoBERTa-base shows
significant improvements with NER in F1-
score (∆F1 = +0.0147, p < 0.001), Precision,
and Recall, while BERT and DistilBERT show
no such gains. NER also leads to a slight but
statistically significant increase in Hamming
Loss across all models. These findings high-
light the model dependent impact of NER on
classification performance.

1 Introduction

The growth of obesity, diabetes and diet related
diseases has significantly intensified the focus on
healthy lifestyles (Kupper, 2005) and the necessity
for specific nutritional guidelines (James and Gill,
2022; Voigt et al., 2014; Reece et al., 2009; Kessler
and Michalsen, 2018; Ley et al., 2014; Moore et al.,
2004; Vijan et al., 2005). According to the World
Health Organization (WHO), cardiovascular dis-
eases are the leading cause of death from non com-
municable diseases (NCDs), resulting in approxi-
mately 17.9 million deaths each year. This is fol-
lowed by cancers, which cause about 9.3 million
deaths annually. Chronic respiratory diseases ac-
count for 4.1 million deaths and diabetes, including
deaths from kidney diseases caused by diabetes,

accounts for 2.0 million deaths each year 1.
The increasing global focus on healthier eating

habits, customized to meet individual health condi-
tions, is manifest in the move towards more health
conscious diets (Curtain and Grafenauer, 2019).
Studies from various countries find out a consid-
erable demand for personalized nutrition, empha-
sizing a desire for recipes that satisfy both health
and individual dietary preferences (Ge et al., 2015).
This trend highlights the need food preparation and
recipe development, designed to accommodate the
varied dietary needs and health objectives of indi-
viduals globally (Curtain and Grafenauer, 2019; Ge
et al., 2015). As a result, diets such as Gluten-Free,
Vegan, Nut-Free, Low-Sugar are gaining popularity.
Studies indicate that these diets tend to be adhered
to more consistently compared to other restrictive
diets (Cruwys et al., 2020).

However growing interest in health conscious di-
ets, we still face challenges in fully understanding
and categorizing the nutritional content and suit-
ability of recipes. Many existing recipe databases
lack comprehensive nutritional information or diet
types, limiting their utility for individuals with spe-
cific dietary needs. To address this gap, we de-
veloped the NutriCuisine Index, a database that
provides recipe instructions, detailed nutritional
content, and classifications into various dietary cat-
egories, then conducted various experiments for
multi-label classification using this database we
developed.

Our work makes three primary contributions: (1)
We introduce the NutriCuisine Index, a compre-
hensive recipe database comprising 23,932 recipes
categorized across 22 recipe categories and we
provide expert dietitian annotations for six key di-
etary labels (Healthy, Vegan, Low-Carb, Gluten-

1https://www.who.int/news-room/fact-sheets/
detail/noncommunicable-diseases accessed July 26,
2025

https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
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Free, High-Protein, and Low-Sugar) within this
dataset. (2) We perform an investigation into the
impact of Named Entity Recognition (NER) on the
performance of three transformer-based language
models (BERT-base-uncased, RoBERTa-base and
DistilBERT-base-uncased) for multi-label dietary
classification from recipe ingredients, focusing on
the six expert-annotated dietary labels. (3) We de-
liver detailed performance analyses, revealing that
incorporating NER yields statistically significant
F1-score improvements (∆F1 = +0.0147, p <
0.001), precision, and recall for RoBERTa-base
on this task. In contrast, BERT-base-uncased and
DistilBERT-base-uncased do not realize similar
gains, with all models showing a slight increase
in Hamming Loss.

In this paper, we first explore related research in
Section 2 to contextualize our work. Section 3 de-
tails our structured methodology for evaluating the
influence of NER preprocessing on transformer-
based models for multi-label classification. We
then introduce the NutriCuisine Index, our novel
dataset, in Section 4, discussing its creation, con-
tent and significance. Section 5 presents our ex-
perimental findings, followed by a discussion of
these results. Finally, Section 6 summarizes our
contributions, key findings, and potential directions
for future research. Through this work, we aim to
contribute to a more comprehensive understand-
ing of recipe nutrition and dietary suitability, po-
tentially improving recipe recommendations and
dietary planning tools.

2 Related Work

This section reviews literature related to our re-
search, focusing on two primary domains: compu-
tational methods for classifying recipes and ingre-
dients with an emphasis on dietary characteristics,
and the application of NER in understanding food-
related textual data.

Early research into recipe and ingredient analy-
sis often focused on tasks like identifying cuisines
based on ingredient combinations. For instance,
Guria et al. (2023) investigated the relationship be-
tween cuisines and ingredients, demonstrating that
techniques like TF-IDF of ingredient lists coupled
with traditional machine learning classifiers (e.g.,
Naive Bayes) could distinguish between major cui-
sine types.

Similarly, in the domain of ingredient identifica-
tion, DeepFood (Pan et al., 2017) showcased the

utility of Convolutional Neural Networks (CNNs)
for classifying ingredients from images, often com-
bining deep learning extracted features with classi-
fiers like Support Vector Machines (SVMs). While
these studies are foundational for food informatics,
their primary aim was often ingredient recognition
or general cuisine classification, rather than multi-
label dietary attribute classification (e.g., ’Vegan’,
’Low-Carb’, ’Gluten-Free’) that forms the core of
our investigation. Our work extends these efforts
by employing modern Transformer-based architec-
tures for this specific dietary categorization task.

Research has also leveraged computational meth-
ods to link food to health outcomes and standardize
food data.

Campese and Pozza (2021) utilized Natural Lan-
guage Processing (NLP) techniques, comparing
shallow learning models (e.g., SVMs with lexical
features) against deep learning approaches (e.g.,
Recurrent Neural Networks) to classify foods based
on their potential association with inflammation.

While their goal of identifying health-related
food properties shares conceptual similarities with
our objective, their focus was on a specific health
marker (inflammation) rather than comprehensive
multi-label dietary preferences. Furthermore, their
NLP methodologies differ from our approach,
which specifically examines the impact of NER
as a preprocessing step for Transformer models.

Concurrently, other efforts have concentrated
on classifying foods by processing levels, such as
the system proposed by Monteiro et al. (2010) for
Brazilian diets and more recently by Dickie et al.
(2023) for the Australian food supply.

These frameworks are valuable for public health
policy but address a different facet of food char-
acterization processing level rather than the recipe
level ingredient-based dietary classification we tar-
get.

In parallel, significant advancements have oc-
curred in food data standardization. The FoodEx2
framework, along with systems like StandFood that
implement it (Eftimov et al., 2017; European Food
Safety Authority, 2011), aims to establish a com-
prehensive and hierarchical system for describing
food items across diverse food safety and consump-
tion survey domains. While such standardization
is critical for data interoperability and large-scale
epidemiological studies, these frameworks do not
typically provide the granular, expert-annotated di-
etary labels (e.g., ’Healthy,’ ’High-Protein,’ ’Low-
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Sugar’) for individual recipes that our NutriCuisine
Index specifically offers. This distinction is key for
facilitating research in personalized nutrition and
developing tools for dietary guidance.

NER has also emerged as a valuable tool for ex-
tracting structured information from unstructured
recipe text. Several datasets have been developed to
train and evaluate NER models in this domain. The
TASTEset dataset (Wróblewska et al., 2022), for
example, comprises 700 recipes with over 13,000
annotated entities. As detailed in Table 1, TASTE-
set targets a wide array of culinary concepts, includ-
ing ’Food,’ ’Quantity,’ ’Unit,’ ’Process,’ ’Physical
Quality,’ ’Color,’ and ’Taste.’

Entity Description

Physical Quality Texture, state (e.g., liquid, solid)
Food Specific food items or ingredients
Quantity Amount of each food item used
Unit Measurement units (e.g., cups, grams)
Color Color of food items
Taste Flavor profile (e.g., sweet, bitter)
Part Specific part of ingredient (e.g., chicken

breast)
Process Preparation methods (e.g., ground,

chopped)

Table 1: TASTEset Entity Types

Another notable resource is the Food Ingredi-
ent Named Entity Recognition (FINER) dataset,
introduced by Komariah et al. (2023) through their
Semi-Supervised Multi-Model Prediction Tech-
nique (SMPT).

FINER focuses predominantly on food ingredi-
ent entities, labeled from a substantial corpus of on-
line recipes. While both TASTEset and FINER are
pivotal for advancing general culinary NER, their
annotated entity sets are not explicitly tailored for,
nor have they been extensively benchmarked on,
the task of multi-label dietary preference classifica-
tion. For instance, identifying ’Food’ entities (e.g.,
"flour," "sugar," "chicken") is a fundamental first
step provided by these NER systems. However, de-
termining if a recipe qualifies as ’Gluten-Free,’ ’Ve-
gan,’ or ’Low-Sugar’ often requires more nuanced
interpretation, consideration of implicit knowledge
(e.g., that ’butter’ is not vegan, or that ’soy sauce’
often contains gluten unless specified), or the aggre-
gation of information across multiple ingredients.
Our research investigates whether general-purpose
NER, by explicitly highlighting ingredient entities
and potentially other tags like quantities or units,
can augment the ability of Transformer-based lan-

guage models to perform such dietary classifica-
tions when trained on a dataset like our NutriCui-
sine Index, which contains explicit expert-provided
dietary labels.

Finally, large-scale recipe datasets have signif-
icantly fueled research in culinary NLP, enabling
tasks from recipe generation to food image analysis.
Key examples include:

• YouCook2 (Zhou et al., 2018): This dataset,
with 2000 long, untrimmed videos from 89
cooking recipes, is instrumental for research
in instructional video understanding.

• Recipe1M/Recipe1M+ (Salvador et al.,
2019): Comprising over one million recipes
paired with approximately 13 million food im-
ages, this collection is a cornerstone for multi-
modal food research, particularly in image-to-
recipe retrieval and generation.

• RecipeNLG (Bień et al., 2020): An exten-
sion of Recipe1M, RecipeNLG offers over
two million unique recipes and incorporates
NER tags for food names, facilitating more
targeted ingredient-level analyses and innova-
tions in recipe generation.

Despite their scale (e.g., YouCook2 (Zhou et al.,
2018), Recipe1M/1M+ (Salvador et al., 2019),
RecipeNLG (Bień et al., 2020)), existing large
recipe datasets often lack comprehensive, expert-
verified annotations for specific dietary attributes
(e.g., ’Vegan’, ’Low-Carb’) or detailed nutritional
information. This limits their utility for dietary
categorization and personalized recommendation.
Our NutriCuisine Index fills this gap by providing
23,932 recipes annotated by expert dietitians with
six key dietary labels (Healthy, Vegan, Low-Carb,
Gluten-Free, High-Protein and Low-Sugar; see Sec-
tion 4). This resource supports a investigation of
multi-label dietary classification based on recipe
text, including the specific impact of incorporating
NER explored in this study.

3 Proposed Methodology

The methodology proposed herein is designed to
evaluate the impact of NER on the efficacy of Lan-
guage Models (LMs) in multi-label classification
of recipes according to dietary categories. This
process integrates the development of a dietary
database, the training of a NER model tailored
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to culinary contexts, and the application of trans-
former based LMs for classification, with a com-
parative analysis of performance with and without
NER preprocessing. The approach comprises three
principal stages, detailed as follows.

i. Database Development: The initial phase
entails the construction of the NutriCuisine In-
dex, a structured repository of dietary-specific
recipes. Utilizing the Scrapy framework2, we
collected 23,932 recipes from reputable online
sources, including BBC Good Food, Heart
UK, and Delish. These data were stored in
Elasticsearch3, selected for its NoSQL archi-
tecture and proficiency in text processing. To
ensure reliability, two expert dietitians anno-
tated and validated the dietary labels. For the
classification experiments, recipes were cate-
gorized into six primary classes based on the
Healthy, Vegan, Low-Carb, Gluten-Free,
High-Protein and Low-Sugar. This step es-
tablishes a quality dataset, important for clas-
sification tasks.

ii. Named Entity Recognition Model Train-
ing and Application: A bert-base-cased
model was fine-tuned for NER on the TASTE-
set database, which was annotated using the
IOB2 tagging scheme (Ramshaw and Marcus,
1999; Tjong Kim Sang and Buchholz, 2000).
In IOB2 format, each token is labeled as either
the Beginning (B-) or Inside (I-) of a named
entity, or Outside (O) if it does not belong to
any entity. This scheme allows precise identifi-
cation of entity spans such as B-FOOD, I-FOOD,
B-QUANTITY, etc.

We employed 5-fold cross-validation, training
each fold for 7 epochs using a learning rate
of 2× 10−5, batch size 16 (train/eval), weight
decay 0.01, and a maximum sequence length
of 128 tokens. Sub-word tokens produced by
the tokenizer were assigned a label of -100 to
exclude them from loss computation. For each
fold, the model checkpoint with the lowest
evaluation loss was selected and designated
as the NERPredictor.

For the multi-label classification task, this
NERPredictor processed ingredient texts
from our NutriCuisine Index. Identified

2https://scrapy.org/
3https://www.elastic.co/elasticsearch

entities (e.g., FOOD, QUANTITY) were
used to reformat ingredient strings by in-
serting special tokens (e.g., [B-QUANTITY]1
[B-UNIT]tablespoon [B-FOOD]oil
[ING_END]). The set of special tokens, includ-
ing [B-COLOR], [B-FOOD], [B-QUANTITY],
[B-UNIT], [I-FOOD], [I-QUANTITY], [O],
and our custom delimiter [ING_END], were
added to the vocabulary of the subsequent
transformer-based classification models.

iii. Multi-Label Classification: The final stage
employs three transformer-based models:
BERT-base-uncased, RoBERTa-base and
DistilBERT-base-uncased to classify recipes
into multiple dietary categories. For each
model, the tokenizer was augmented with
the special NER related tokens (detailed in
Stage ii.), and the model’s token embeddings
were resized accordingly to accommodate
these new tokens. Ingredient lists from the
NutriCuisine Index were processed in two con-
figurations: (i) with NER tags incorporated
and (ii) without NER preprocessing (using
outputs from the processed_ingredients
field, which result from applying the custom
text preprocessing pipeline). Data preparation
included appropriate tokenization for each
model and a label binarization process, where
each of the six dietary categories was rep-
resented as an independent binary label for
multi-label classification. The dataset was
split into training (70%), validation (15%),
and test (15%) sets. Models were trained for
up to 6 epochs with a batch size of 16, em-
ploying the AdamW optimizer (lr=2× 10−5)
and Binary Cross-Entropy with Logits Loss.
Early stopping with a patience of 3 epochs
and a minimum delta of 0.001 was used to
prevent overfitting, based on validation loss.
An approximate randomization test (1000 rep-
etitions) assessed the statistical significance of
NER’s impact on classification performance
metrics (F1-score, Precision, Recall, Accu-
racy, and Hamming Loss).

This structured methodology aims to clarify the
differential effects of NER on transformer model
performance, providing a foundation for optimiz-
ing dietary classification systems.

https://scrapy.org/
https://www.elastic.co/elasticsearch


188

4 NutriCuisine Index: Tailored Recipes
for Every Diet

We introduce the NutriCuisine Index, a new
database of 23,932 recipes scraped from pub-
lic sources like BBC Good Food4, Heart UK5,
and Delish6. The data, confirmed usable for re-
search per General Data Protection Regulation
(GDPR), includes ingredients, preparation steps,
nutritional content, and diet types. Addressing a
gap in existing resources like RecipeNLG, which
lack detailed dietary categorizations, NutriCui-
sine provides multi-label dietary classifications
across 22 categories, of which 6 are key health-
relevant dietary labels validated by expert dieti-
tians: Healthy, Vegan, Low-Carb, Gluten-Free,
High-Protein, and Low-Sugar. These labels were
initially scraped and then reviewed by two certi-
fied dietitians, who conducted manual annotation
based on ingredient analysis and nutritional as-
sessment. Each expert annotated overlapping sub-
sets of the recipe corpus to allow for consistency
checks. To quantify annotation reliability, inter-
annotator agreement (IAA) was calculated using
Cohen’s kappa (Artstein, 2017) across 1,000 sam-
pled recipes, achieving an agreement score of 0.82.
The experts used a shared labelling guide and re-
solved any disagreements by discussing the recipe
together. The final distribution of the validated
dietary types is shown in Table 2, while other non-
exclusive recipe categories are shown in Table 3.

Dietary Types Count Dietary Types Count

Vegan 20438 Low-Carb 1469
Gluten-Free 11353 Low-Sugar 1556
Healthy 9416 High-Protein 864

Table 2: Distribution of recipes with validated dietary
types.

Other Categories Count Other Categories Count

Freezable 4096 Slow-Cooker 63
Easily-Doubled 597 Whole-30 74
Easily-Halved 447 Soup 60
30-Minute-Meals 129 Lunch 58
Appetizers 115 Kid-Friendly 99
Dinner 158 Salads 61
One-Pot-Meals 86 Pressure-Cooker 45

Table 3: Distribution of recipes across other general
categories. Counts are non-exclusive.

4https://www.bbcgoodfood.com/
5https://www.heartuk.org.uk/
6https://www.delish.com/

The NutriCuisine database schema includes de-
tailed recipe information, including various dietary
requirements. Table 4 outlines the key fields that
provide a complete recipe overview. Listing 1
presents a JSON example of the data format.

Field Description

Title Recipe name
Serve Number of servings
Link URL to original recipe source
Ingredients List of ingredients with quantities
Directions Step by step cooking instructions
Nutrition Nutritional content per serving
Diets Suitable diet types for the recipe

Table 4: NutriCuisine Database Schema

{
" t i t l e " : " Creamy C o u r g e t t e Lasagne " ,
" s e r v e " : " 4 " ,
" l i n k " : " h t t p s : / / www. bbcgoodfood . com

/ . . . " ,
" i n g r e d i e n t s " : [ ’ 9 d r i e d l a s a g n e

s h e e t s ’ , ’ 1 t b s p s u n f l o w e r o i l ’ ,
’ 1 onion , f i n e l y chopped ’ . . ] ,

" d i r e c t i o n s " : [ ’ Heat oven t o 220C / fan ,
B o i l l a s a g n e s h e e t s f o r 5 mins ,
r i n s e i n c o l d water , and d r i z z l e
wi th o i l . ’ , ’ Fry on ion i n a l a r g e
pan . A f t e r 3 mins , add c o u r g e t t e s
. . . . ] ,

" n u t r i t i o n " : { " k c a l " : " 405" ,
" f a t " : " 21g " ,
" c a r b s " : " 38g " ,
" p r o t e i n " : " 18g " } ,

" d i e t s " : [ "Low−Carb " , " V e g e t a r i a n " ] }

Listing 1: NutriCuisine Index Sample

5 Experiments & Results

This section details the experimental setup and out-
comes for two core components of our study: first,
the development and evaluation of our NER model
on the TASTEset dataset (Wróblewska et al., 2022),
and second, the multi-label classification of recipes
from the NutriCuisine Index into dietary categories,
evaluating the impact of NER integration.

5.1 Named Entity Recognition Model
An NER model was developed to identify and
structure culinary entities within ingredient texts,
forming a preparatory step for the dietary clas-
sification task. We trained and evaluated a
bert-base-cased model for token classification
using the TASTEset dataset.

5.1.1 Dataset and Training Protocol
The NER model development followed the pro-
tocol described in Section 3, Stage ii. Briefly,

https://www.bbcgoodfood.com/
https://www.heartuk.org.uk/
https://www.delish.com/
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the TASTEset dataset, with words and their cor-
responding IOB2 labels, was used. A 5-fold cross-
validation approach was employed to train the
bert-base-cased model for 7 epochs per fold,
with a learning rate of 2× 10−5 and a batch size of
16. The NERPredictor component, subsequently
used for annotating ingredients for the multi-label
classification task, is based on the models trained
through this cross-validation process.

5.1.2 Data Preparation
A data preprocessing protocol was implemented
to enhance the quality and consistency of input
data for the NER experiments. This process en-
compassed text normalization, including case uni-
formity and character encoding standardization, as
well as meticulous cleaning procedures. Numeri-
cal data underwent conversion to decimal format,
with careful attention paid to mixed fractions and
multiplicative expressions. These measures aim to
optimize model performance by standardizing and
simplifying the dataset for more accurate dietary
classification.

5.1.3 Training Process
NER task utilized the bert-base-cased (Bidi-
rectional Encoder Representations from Trans-
formers) architecture. Our choice of this model
was motivated by the work of Wróblewska et al.
(2022) (Wróblewska et al., 2022), who showed
good performance with BERT-based models in sim-
ilar culinary NER tasks, providing a relevant bench-
mark for our approach.

As established in Section 3 (Stage ii.) and
recapped in Section 5.1.1, the NER model was
trained using a 5-fold cross-validation strategy.
Within each fold, training was conducted for 7
epochs. This epoch count was determined to ade-
quately balance model learning on the TASTEset
data against computational resources and to prevent
potential overfitting that might occur with more ex-
tended training. The learning rate was set to 2·10−5

to ensure stable convergence during fine-tuning.
Batch sizes for both training and evaluation were
16, a common choice that balances memory con-
straints with effective gradient estimation. For reg-
ularization, a weight decay of 0.01 and a dropout
rate of 0.1 (applied to specified layers) were em-
ployed. The AdamW optimizer (Loshchilov and
Hutter, 2019) was used, and a random seed of 42
was set to ensure the reproducibility of the training
experiments. Furthermore, the tokenizer was con-

figured with a max_length of 128. During training,
labels were aligned with tokenized inputs, and sub-
word tokens were assigned a label of −100 to be
ignored by the loss function. The model was also
configured to output hidden states and attention
weights, which can be valuable for deeper model
analysis, although these were not directly utilized
in the main classification pipeline.

5.1.4 NER Performance
The performance of the NER model, aggregated
across the 5 folds of cross-validation, is presented
in Table 5. The model was tasked with identi-
fying entity types such as FOOD, QUANTITY,
UNIT, and COLOR, each distinguished by IOB2
tags (e.g., B-FOOD for the beginning of a food
entity, I-FOOD for tokens inside a food entity, and
O for tokens outside any entity).

Entity Tag Precision Recall F1-Score Support

B-COLOR 0.901 0.928 0.914 332
B-FOOD 0.939 0.957 0.948 5481
B-QUANTITY 0.954 0.989 0.971 5202
B-UNIT 0.958 0.985 0.972 4334
I-FOOD 0.889 0.915 0.902 2767
I-QUANTITY 0.948 0.882 0.914 618
O 0.962 0.907 0.933 8096

Overall Accuracy 0.946 26830

Macro Avg. 0.936 0.938 0.936 26830
Weighted Avg. 0.947 0.946 0.946 26830

Table 5: Overall NER Model Performance (5-Fold
Cross-Validation on TASTEset)

The average training loss across the 5 folds was
0.360, and the average evaluation loss was 0.172.
The NER model demonstrated strong performance,
particularly in identifying B-UNIT (F1: 0.972),
B-QUANTITY (F1: 0.971), and B-FOOD (F1:
0.948) tags. The I-FOOD and I-QUANTITY tags
also achieved F1-scores of 0.902 and 0.914, respec-
tively. These results confirm the model’s capability
to accurately recognize relevant culinary entities,
providing a reliable basis for feature enrichment in
the subsequent dietary classification experiments.
The entity tags used to generate special tokens for
the multi-label classification task were [B-COLOR],
[B-FOOD], [B-QUANTITY], [B-UNIT], [I-FOOD],
[I-QUANTITY] and [O].

5.1.5 Results and Analysis
In comparison to Wróblewska et al.’s work, we
will compare our results with BERT-based models,
specifically BERT-base-uncased. Table 6 compares
the performance of our BERT-base-uncased imple-
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mentation, incorporating the aforementioned pre-
processing techniques and hyperparameters, with
the F1 scores reported for BERT-base-uncased
models in Wróblewska et al.’s work.

Entity Type Our Model Wróblewska et al. (2022)
(BERT-base-uncased) (BERT-base-uncased)

FOOD 0.933 0.889
QUANTITY 0.965 0.983
UNIT 0.972 0.979
COLOR 0.914 0.873

Table 6: NER Performance Comparison: F1-Scores for
Entity Classes. Our results are weighted averages of B/I
tags from 5-fold CV.

These results show that our NER approach works
well for identifying important parts of food ingre-
dients. Using what we learned from NER, we then
moved on to recipe classification. The next part of
our work involves creating and testing a method
for multi-label classification of recipes.

5.2 Multi-Label Dietary Classification

This subsection details the experiments and results
for classifying recipes from the NutriCuisine Index
into six dietary categories: Healthy, Vegan, Low-
Carb, Gluten-Free, High-Protein, and Low-Sugar.
We evaluate how features extracted through NER
impact the performance of three transformer-based
models. Notably, we excluded Dairy-Free and Nut-
Free from this classification task because they are
allergy-related dietary (Vlieg-Boerstra et al., 2023;
Novak and Leung, 2005; Fälth-Magnusson et al.,
1989).

5.2.1 Experimental Setup and Evaluation
Metrics

The experimental setup followed the protocol
outlined in Section 3, Stage iii. Briefly, three
models BERT-base-uncased, RoBERTa-base and
DistilBERT-base-uncased were trained and eval-
uated in two configurations: (i) with ingredi-
ent texts augmented by NER tags and (ii) using
only preprocessed ingredient texts (without NER
tags). The dataset was split into 70% training,
15% validation, and 15% test sets. Models were
trained for up to 6 epochs with a batch size of
16, using the AdamW optimizer (lr=2 × 10−5),
BCEWithLogitsLoss, and early stopping criteria
(patience=3, min_delta=0.001).

Performance was primarily evaluated on the test
set using F1-score (F1), Precision (P), Recall (R),
exact match Accuracy (Acc.), and Hamming Loss

(HL). An approximate randomization test (1000
repetitions) was used to determine the statistical sig-
nificance of performance differences between the
NER and no-NER configurations for each model.
We report p-values for these key metrics.

5.2.2 Results and Analysis
Table 7 summarizes test set performance with and
without NER, while Table 8 shows the statistical
significance of the differences.

Model F1 P R Acc. HL

With NER
RoBERTa-base 0.788 0.784 0.797 0.922 0.0157
DistilBERT-base-uncased 0.783 0.783 0.786 0.931 0.0133
BERT-base-uncased 0.791 0.790 0.795 0.943 0.0114

Without NER
RoBERTa-base 0.773 0.772 0.778 0.922 0.0154
DistilBERT-base-uncased 0.786 0.786 0.790 0.942 0.0113
BERT-base-uncased 0.794 0.793 0.797 0.951 0.0097

Table 7: Overall Test Set Performance on the NutriCui-
sine Index for multi-label dietary classification.

Model Metric ∆ p-value

RoBERTa-base F1 +0.0147 0.001
RoBERTa-base Precision +0.0116 0.001
RoBERTa-base Recall +0.0196 0.001
RoBERTa-base Accuracy 0.0000 0.001a

RoBERTa-base Hamming Loss +0.0003 0.001

DistilBERT-base-uncased F1 -0.0035 0.522
DistilBERT-base-uncased Precision -0.0030 0.497
DistilBERT-base-uncased Recall -0.0032 0.498
DistilBERT-base-uncased Accuracy -0.0106 0.001
DistilBERT-base-uncased Hamming Loss +0.0019 0.001

BERT-base-uncased F1 -0.0025 0.523
BERT-base-uncased Precision -0.0028 0.504
BERT-base-uncased Recall -0.0014 0.466
BERT-base-uncased Accuracy -0.0084 0.001
BERT-base-uncased Hamming Loss +0.0017 0.001

Table 8: Significance of NER integration on the Nu-
triCuisine Index (NutriIndex), where ∆ = ScoreNER −
ScoreNoNER. Bold p-values indicate statistical signifi-
cance (p < 0.05). For Hamming Loss (HL), positive
∆ indicates worse performance. aRoBERTa accuracy:
rounded ∆ = 0, but p < 0.05 from unrounded values.

As indicated in Table 7 and corroborated by
the statistical analysis in Table 8, RoBERTa-base
demonstrated a statistically significant improve-
ment in F1-score (∆ = +0.0147, p < 0.001), Pre-
cision (∆ = +0.0116, p < 0.001), and Recall
(∆ = +0.0196, p < 0.001) when NER features
were incorporated. In contrast, for DistilBERT-
base-uncased and BERT-base-uncased, the integra-
tion of NER did not yield significant improvements
in these sample-averaged F1, precision, or recall



191

metrics. These models generally performed numer-
ically better without NER, though these differences
were not statistically significant for F1S, PS, and
RS.

Regarding overall label prediction accuracy (ex-
act match) and Hamming Loss, NER integration
showed a different trend. For DistilBERT-base-
uncased and BERT-base-uncased, NER led to a
statistically significant decrease in accuracy (Dis-
tilBERT: ∆ = −0.0106, p < 0.001; BERT:
∆ = −0.0084, p < 0.001) and a significant in-
crease (i.e., worsening) in Hamming Loss (Distil-
BERT: ∆ = +0.0019, p < 0.001; BERT: ∆ =
+0.0017, p < 0.001). RoBERTa-base also exhib-
ited a statistically significant, albeit smaller, in-
crease in Hamming Loss (∆ = +0.0003, p <
0.001) with NER. Its accuracy, while appearing
unchanged after rounding (Table 7), showed a sta-
tistically significant effect in the randomization test
(Table 8), suggesting minor, consistent variations
detrimental to exact match accuracy due to NER.
While RoBERTa-base benefits from NER in terms
of average per-sample F1, precision, and recall,
this advantage does not extend to DistilBERT-base-
uncased or BERT-base-uncased for these metrics.
Furthermore, the introduction of NER tags appears
to have a generally detrimental effect on metrics
sensitive to exact label set predictions (Accuracy)
or cumulative individual label errors (Hamming
Loss).

To further investigate the impact on RoBERTa-
base, Table 9 presents its per-class F1-scores.

Dietary Class With NER Without NER ∆

Healthy 0.964 0.968 -0.004
Vegan 0.959 0.949 +0.010
Low-Carb 0.800 0.884 -0.084
Gluten-Free 1.000 0.997 +0.003
High-Protein 0.182 0.625 -0.443
Low-Sugar 0.987 0.980 +0.007

Macro Avg. F1 0.815 0.900 -0.085

Table 9: RoBERTa-base per class F1-Scores with and
without NER on the Test Set.

The per class analysis for RoBERTa-base (Ta-
ble 9) reveals a mixed impact of NER. F1-scores
improved for ’Vegan’ (+0.010), ’Gluten-Free’
(+0.003), and ’Low-Sugar’ (+0.007). However, per-
formance degraded for ’Healthy’ (-0.004), ’Low-
Carb’ (-0.084), and substantially for ’High-Protein’
(-0.443). This disparate per-class effect explains
why the Macro Average F1-score for RoBERTa-

base decreased with NER (from 0.900 to 0.815),
despite the improvement in F1-score. It suggests
that while NER enhances the signal for certain
classes or on average across samples, it may intro-
duce noise or less effective structural cues for other
classes, particularly those with smaller represen-
tation (like ’High-Protein’) or where the entities
identified by NER are less discriminative for that
specific dietary type.

6 Conclusion and Future Work

We investigated the impact of NER on transformer-
based multi-label dietary recipe classification, in-
troducing the NutriCuisine Index a dataset of
23,932 recipes annotated for six dietary types and
a custom NER model trained on TASTEset. Ex-
periments with BERT-base-uncased, RoBERTa-
base, and DistilBERT-base-uncased showed that
while transformers classify dietary labels effec-
tively (e.g., BERT-base-uncased Macro F1 0.966
without NER), NER’s impact varies by model.
RoBERTa-base benefited significantly in F1-score
(∆ = +0.0147, p < 0.001), Precision, and Recall,
while others showed marginal or no improvement.
NER also slightly increased Hamming Loss and
reduced exact match accuracy in some cases.

These results suggest that NER can enhance spe-
cific architectures like RoBERTa, though its ben-
efits are not universal. Future directions include
refining NER with contextual disambiguation (e.g.,
"egg white" as ingredient vs. color), investigating
RoBERTa-base’s unique gains through attention
analysis, and exploring alternative NER feature
representations (e.g., embeddings or adaptive in-
tegration). Our datasets and code7 8 are publicly
available to support further work in personalized
nutrition and recipe analysis.
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