
Proceedings of Recent Advances in Natural Language Processing,pages 234–239
Varna, Sep 8–10, 2025

https://doi.org/10.26615/978-954-452-098-4-028

234

APIO: Automatic Prompt Induction and Optimization for Grammatical
Error Correction and Text Simplification

Artem Chernodub*ζ Aman Sainiγ Yejin Huhγ Vivek Kulkarniγ Vipul Rahejaγ

ζZendesk γGrammarly

Correspondence: a.chernodub@gmail.com

Abstract

Recent advancements in large language models
(LLMs) have enabled a wide range of natu-
ral language processing (NLP) tasks to be per-
formed through simple prompt-based interac-
tions. Consequently, several approaches have
been proposed to engineer prompts that most ef-
fectively enable LLMs to perform a given task
(e.g., chain-of-thought prompting). In settings
with a well-defined metric to optimize model
performance, automatic prompt optimization
(APO) methods have been developed to re-
fine a seed prompt. Advancing this line of re-
search, we propose APIO, a simple but effective
prompt induction and optimization approach
for the tasks of Grammatical Error Correction
(GEC) and Text Simplification, without rely-
ing on manually specified seed prompts. APIO
achieves a new state-of-the-art performance for
purely LLM-based prompting methods on these
tasks. We make our data, code, prompts, and
outputs publicly available.1

1 Introduction

Prompt engineering has become a popular and cru-
cial technique for steering large language mod-
els (LLMs) toward desired outputs, but finding ef-
fective prompts remains challenging. Prompting
methods like chain-of-thought (CoT) prompting,
best-of-n sampling, etc. are general strategies that
have been shown to be effective. However, even
when these advanced prompting strategies are used,
recent studies show that LLMs are highly sensi-
tive to seemingly minor variations in prompts (e.g.
phrasing (Li et al., 2023), ordering of information
(Liu et al., 2024), or formatting (Sclar et al., 2024),
which can lead to significant performance variation.
Consequently, in practice for many tasks, prompts
are tuned by prompt engineers to maximize gains
in task performance. Since manual prompt tuning

*The work was done while working at Grammarly.
1https://github.com/achernodub/apio

can be tedious, there has been some research on au-
tomatic prompt optimization (APO) methods that
tune a base prompt based on performance on train-
ing and validation sets – the most relevant work
being that of (Pryzant et al., 2023).

However, APO, in general, mainly focuses on
text classification tasks such as Jailbreak Detec-
tion, Math Reasoning, and BIG-bench Hard tasks
(Zhou et al., 2022; Pryzant et al., 2023; Ye et al.,
2024; Ma et al., 2024) and has been underexplored
for text revision tasks such as Grammatical Error
Correction (GEC) and Text Simplification. In this
paper, we address this gap and propose a novel
prompt induction and optimization method called
APIO . In contrast to existing prompt optimization
methods that require a seed prompt, APIO does not
rely on a manually specified prompt. Instead, it
induces a reasonable list of instructions and subse-
quently optimizes them. In short, APIO performs
both automatic prompt induction and optimization.
We evaluate APIO against strong baselines on stan-
dard GEC and Text Simplification benchmarks and
show that APIO sets a state-of-the-art performance
on these benchmarks.

Our main contributions are:

• We introduce a novel method Automatic
Prompt Induction and Optimization (APIO)
for text revision tasks (specifically, GEC and
Text Simplification).

• We set the new state-of-the-art for LLM-based
prompting methods on these tasks. For the
GEC task, we achieve a score of 59.40 on the
BEA-2019 test dataset, ahead of the previous
state-of-the-art (57.41) (Loem et al., 2023).
For the Text Simplification task, we achieve
a SARI score of 49.47 on the ASSET-Test
dataset, ahead of the previous state-of-the-art
(47.94) (Vadlamannati and Şahin, 2023).

mailto:a.chernodub@gmail.com
https://github.com/achernodub/apio

235

2 APIO

APIO has two main steps:

1. Prompt Induction. We first induce a prompt
given gold-standard examples of task-specific
input and output pairs.

2. Prompt Optimization. We then optimize the
induced prompt to maximize training and val-
idation performance.

Prompt Induction Unlike other APO methods
which start from an initial, manually crafted seed
prompt, APIO requires only a few input–output
examples that demonstrate the task — typically
available as training data. Given these examples,
we use a state-of-the-art LLM to infer a prompt
to solve the task. A key feature of our prompt
induction approach is to induce structure to the
inferred prompt. In particular, the LLM generates
a prompt that consists of a markdown-style list of
single-sentence instructions between the prompt’s
header and footer, which are not optimized.

Structuring the prompt as a list of independent
instructions allows for instruction-level tuning, and
enables more fine-grained control as opposed to
tuning a flat text blob. Formally, the output of this
step will be a prompt P , consisting of an ordered
list of instructions L. Each instruction in the list
is derived by the LLM from a single "training"
input-output pair.

Prompt Optimization In this step, we optimize
the induced prompt P that consists of a list of in-
structions L iteratively as follows:

1. We consider the instructions in the current
pool of size M, which is initialized to L—the
set of instructions inferred during the Prompt
Induction step.

2. We then seek to expand the above pool of in-
structions through a beam search with a beam
size B. In particular, we expand the pool
through three prompting operations:

• Improve: Here, we generate beam candi-
dates by prompting an LLM to improve
the given pool of instructions to reduce
the error rate on the given input-output
examples as much as possible. In our
experiments, we use word-level Leven-
shtein edit distance as a metric for opti-
mization for all domains.

• Rephrase: Next, we expand the current
pool by prompting the LLM to rephrase
each instruction without changing the un-
derlying meaning.

• Permute: Finally, we take Npermute in-
structions and randomly change their or-
der in the current list of instructions.

3. After expanding the pool using the above three
operations, we obtain three candidate sets –
each set being a list of instructions. We rank
them by their performance on the validation
set and add the best B to the pool. To control
for divergence from prior iterations, we addi-
tionally introduce a word-level Levenshtein
edit distance penalty on the prompts.

3 Experimental Setup

3.1 Tasks, Datasets and Metrics

We conduct our experiments on two prominent text
revision tasks: GEC and Text Simplification. We
use the current standard evaluation sets and evalua-
tion metrics for each task.

Grammatical Error Correction is the task of
correcting text for spelling and grammatical er-
rors. We report results on the Test split of the
W&I+LOCNESS Corpus from the BEA-2019 GEC
Shared Task (Bryant et al., 2019). We refer to
this dataset as BEA-2019-Test. We evaluate re-
sults using F0.5 score measured using ERRANT
tool2 launched at CodaLab platform3. Train and
dev datasets are sampled from the BEA-2019-Dev
dataset (4384 samples).

Text Simplification is the task of rewriting text in
a simpler form without altering its original meaning
(Saggion, 2017). We report results on the ASSET-
Test dataset (359 samples) (Alva-Manchego et al.,
2020) as the main evaluation set. We evaluate re-
sults using the SARI score (Xu et al., 2016) mea-
sured using the EASSE package4 (Alva-Manchego
et al., 2019). Train and dev datasets are sampled
from the ASSET-Dev dataset (2000 samples).

3.2 Baselines

Copy We consider a simple baseline that copies
the input text to the output.

2https://github.com/chrisjbryant/errant
3https://codalab.lisn.upsaclay.fr/

competitions/4057
4https://github.com/feralvam/easse

https://github.com/chrisjbryant/errant
https://codalab.lisn.upsaclay.fr/competitions/4057
https://codalab.lisn.upsaclay.fr/competitions/4057
https://github.com/feralvam/easse

236

Best reference As a best-case baseline, we pro-
vide the scores obtained by the best-performing
reference if available.

SFT We consider state-of-the-art Supervised
Fine-Tuning (SFT) methods as an alternative to
prompt-based learning.

Zero Shot We consider a simple 0-shot prompt,
which describes the task as an instruction.

Few Shot We augment the prompt used in the 0-
shot setting with a few randomly selected examples
demonstrating the task.

3.3 APIO Setup
In addition to evaluating our full proposed method,
we also perform an ablation where we only perform
the first step of APIO – namely automatic prompt
induction. We denote that in our experiments with
APIO -INDUCTION-ONLY.

Induced prompts: The induced prompts are de-
rived by extracting three instructions from three
randomly selected input-output pairs in the training
dataset. To identify the best induced prompt, we
perform 10 trials on the validation dataset.

Optimized prompts: We optimize the prompts
induced in the previous step by continuously
adding new instructions using the Improve meta-
prompt, rephrasing them using the Rephrase meta-
prompt, and adjusting their order using the Permute
operation. In our experiments, number of epochs
Nepochs = 15, Npermute = 2, beam size B = 32.

The above parameters were an expedient choice
and we did not extensively tune them. With regards
to the choice of LLMs used in prompting based
approaches, we experiment with two very pop-
ular LLMs, namely GPT-4o-mini5 and GPT-4o6.
We use different generation parameter settings for
prompt induction and optimization versus test-time
inference. For prompt induction and optimization,
we set the temperature t = 1.0 and nucleus sam-
pling top-p = 1.0 for better creativity. For infer-
ence, we set temperature t = 0.0 and top-p = 0.1
to decrease randomness in outputs, as instability
in outputs leads to worse convergence during opti-
mization.

4 Results

GEC APIO shows substantial gains over zero-
shot, few-shot, and induction-only approaches on

5gpt-4o-mini-2024-07-18
6gpt-4o-2024-05-13

GEC (Table 1). With GPT-4o, APIO achieves
an F0.5 score of 59.40 (using 10 instructions),
which is comparable to the state-of-the-art perfor-
mance among prompt-based LLMs (which was
57.41 by GPT-3). However, we also note that
APIO performance, still falls significantly short of
non-prompting SFT ensemble techniques (which
scored 72.80), highlighting limitations of solely
prompting-based approaches on this task.

Text Simplification APIO shows significant im-
provements over baseline methods with both LLMs
for the task (Table 1). Notably, APIO using GPT-
4o achieves a SARI score of 49.47, surpassing the
previous state-of-the-art score (47.94) for prompt-
based methods on the ASSET-Test dataset.

Overall, we observe that APIO is a highly ef-
fective method for automating prompt engineering
in text revision tasks. Its strength lies in signifi-
cantly boosting performance over standard prompt-
ing techniques and achieving state-of-the-art for
text revision tasks among prompting-based meth-
ods—without the need for manual prompt design.
The prompt optimization step was shown to be par-
ticularly crucial, yielding substantial performance
gains, especially in GEC (compare APIO with
APIO -INDUCTION-ONLY). While limitations ex-
ist compared to non-prompting methods in GEC,
APIO represents a valuable advancement in making
prompt engineering easier and accessible.

5 Related Work

5.1 LLM Prompting for Text Revision
Fang et al. (2023) was the first work to evaluate
zero-shot performance using LLMs (ChatGPT in
their case) for GEC at both sentence and docu-
ment levels, finding that ChatGPT exhibited high
fluency and produced corrections that enhanced
the original text beyond the provided references.
However, ChatGPT faced challenges in adhering
to specific step-by-step formats when given sim-
ple prompt instructions. More recently, numerous
works (Coyne et al., 2023; Loem et al., 2023; Davis
et al., 2024; Kaneko and Okazaki, 2024; Katinskaia
and Yangarber, 2024) have evaluated both open-
source and commercial LLMs on multiple GEC
benchmarks, finding that LLMs do not consistently
outperform supervised models, especially on min-
imal edit tasks, and often struggle to balance flu-
ency improvements and preservation of the original
meaning. Similarly, many recent works (Kew et al.,
2023; Qiang et al., 2025; Farajidizaji et al., 2024)

237

Task Approach LLM Test Score

GEC *

Copy – 0.00
SFT (Omelianchuk et al., 2024) Multiple 72.80

Zero-shot (Loem et al., 2023) GPT-3 53.07
Few-shot (16 examples) (Loem et al., 2023) GPT-3 57.41
Few-shot (4 examples) (Tang et al., 2024) GPT-3.5-Turbo 53.20

Zero-shot (adapted from (Loem et al., 2023)) GPT-4o-mini 49.90
Few-shot (3 randomly sampled examples) GPT-4o-mini 53.01
APIO-INDUCTION-ONLY (3 instructions) GPT-4o-mini 38.72
APIO (7 instructions) GPT-4o-mini 57.07

Zero-shot (adapted from (Loem et al., 2023)) GPT-4o 54.66
Few-shot (3 examples, randomly sampled) GPT-4o 44.50
APIO-INDUCTION-ONLY (3 instructions) GPT-4o 43.37
APIO (10 instructions) GPT-4o 59.40

Text Simplification

Copy – 20.70
SFT (Sheang and Saggion, 2021) T5-base 45.04
Best reference (ref-0) – 52.62

Few-shot (15 SARI-selected examples, random ordering)
(Vadlamannati and Şahin, 2023)

GPT-3-175B 47.94

Zero-shot (adapted from (Raheja et al., 2023)) GPT-4o-mini 48.03
Few-shot (3 randomly sampled examples) GPT-4o-mini 47.16
APIO -INDUCTION-ONLY (3 instructions) GPT-4o-mini 48.79
APIO (6 instructions) GPT-4o-mini 49.27

Zero-shot (adapted from (Raheja et al., 2023)) GPT-4o 47.73
Few-shot (3 examples, randomly sampled) GPT-4o 47.87
APIO -INDUCTION-ONLY (3 instructions) GPT-4o 48.93
APIO (10 instructions) GPT-4o 49.47

Table 1: GEC (BEA-2019-Test | F0.5) and Text Simplification results (ASSET-Test | SARI). Results are grouped
by baselines (Copy, Best-reference, and SFT), and by other prompt-based methods from different models. *Best
reference baseline is unavailable for the GEC task because the BEA-2019-Test dataset has not been published.

have explored and demonstrated the effectiveness
of prompt-based methods for text simplification.

5.2 LLM-based Automatic Prompt
Optimization (APO)

Prior work show that LLMs are highly sensitive to
seemingly minor prompt variations, such as task
specification, information ordering, or stylistic for-
matting, which can lead to significant performance
differences, making prompt engineering a tedious
trial-and-error process (Li et al., 2025).

Several methods have been proposed to automat-
ically identify better-performing prompts, using
both continuous and discrete prompt optimization
methods (Li and Liang, 2021; Prasad et al., 2023;
Deng et al., 2022; Zhang et al., 2023).

Recent work has focused on incorporating LLMs
into the optimization process, leveraging their abil-
ity to generate natural text. By providing example
data to the LLM, Honovich et al. (2023) gener-
ated task instructions directly without an initial
prompt. LLMs have also been used to conduct
Monte Carlo search (Zhou et al., 2023) generat-
ing additional prompt candidates. Various iterative

workflows have been designed to prompt LLMs to
self-reflect, analyzing errors and improving upon
a previous prompt (Pryzant et al., 2023; Ye et al.,
2024). Evolutionary algorithms (Guo et al., 2024)
suggest systematically refining prompt candidates.

Our work extends this literature by adapting
APO specifically for text revision, combining ad-
vances in APO with the unique requirements of
text editing tasks.

6 Conclusion

We present APIO, a new technique for automatic
prompt induction and optimization for the tasks
of Grammatical Error Correction and Text Sim-
plification. Our method achieves state-of-the-art
performance when compared to other prompting-
based baselines on these tasks. APIO represents a
significant step forward in automating and simpli-
fying the process of advanced prompt engineering
techniques, while making them more accessible
and achieving high quality.

238

References
Fernando Alva-Manchego, Louis Martin, Antoine Bor-

des, Carolina Scarton, Benoît Sagot, and Lucia Spe-
cia. 2020. ASSET: A dataset for tuning and evalua-
tion of sentence simplification models with multiple
rewriting transformations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4668–4679, Online. Association
for Computational Linguistics.

Fernando Alva-Manchego, Louis Martin, Carolina Scar-
ton, and Lucia Specia. 2019. EASSE: Easier auto-
matic sentence simplification evaluation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP): System Demonstrations,
pages 49–54, Hong Kong, China. Association for
Computational Linguistics.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 52–75,
Florence, Italy. Association for Computational Lin-
guistics.

Steven Coyne, Keisuke Sakaguchi, Diana Galvan-Sosa,
Michael Zock, and Kentaro Inui. 2023. Analyzing
the performance of gpt-3.5 and gpt-4 in grammatical
error correction. Preprint, arXiv:2303.14342.

Christopher Davis, Andrew Caines, Øistein E. Ander-
sen, Shiva Taslimipoor, Helen Yannakoudakis, Zheng
Yuan, Christopher Bryant, Marek Rei, and Paula But-
tery. 2024. Prompting open-source and commercial
language models for grammatical error correction
of English learner text. In Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pages
11952–11967, Bangkok, Thailand. Association for
Computational Linguistics.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi-
han Wang, Han Guo, Tianmin Shu, Meng Song, Eric
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing
discrete text prompts with reinforcement learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3369–3391, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Tao Fang, Shu Yang, Kaixin Lan, Derek F Wong, Jin-
peng Hu, Lidia S Chao, and Yue Zhang. 2023. Is
chatgpt a highly fluent grammatical error correction
system? a comprehensive evaluation. arXiv preprint
arXiv:2304.01746.

Asma Farajidizaji, Vatsal Raina, and Mark Gales. 2024.
Is it possible to modify text to a target readability
level? an initial investigation using zero-shot large
language models. Preprint, arXiv:2309.12551.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu

Yang. 2024. Connecting large language models with
evolutionary algorithms yields powerful prompt opti-
mizers. In The Twelfth International Conference on
Learning Representations.

Or Honovich, Uri Shaham, Samuel R. Bowman, and
Omer Levy. 2023. Instruction induction: From few
examples to natural language task descriptions. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1935–1952, Toronto, Canada.
Association for Computational Linguistics.

Masahiro Kaneko and Naoaki Okazaki. 2024. Con-
trolled generation with prompt insertion for natural
language explanations in grammatical error correc-
tion. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 3955–3961, Torino, Italia. ELRA and ICCL.

Anisia Katinskaia and Roman Yangarber. 2024. GPT-
3.5 for grammatical error correction. In Proceedings
of the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 7831–7843,
Torino, Italia. ELRA and ICCL.

Tannon Kew, Alison Chi, Laura Vásquez-Rodríguez,
Sweta Agrawal, Dennis Aumiller, Fernando Alva-
Manchego, and Matthew Shardlow. 2023. BLESS:
Benchmarking large language models on sentence
simplification. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 13291–13309, Singapore. Association
for Computational Linguistics.

Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu,
Wenxin Hou, Jianxun Lian, Fang Luo, Qiang Yang,
and Xing Xie. 2023. Large language models un-
derstand and can be enhanced by emotional stimuli.
arXiv preprint arXiv:2307.11760.

Wenwu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin.
2025. A survey of automatic prompt engineer-
ing: An optimization perspective. Preprint,
arXiv:2502.11560.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Mengsay Loem, Masahiro Kaneko, Sho Takase, and
Naoaki Okazaki. 2023. Exploring effectiveness of
GPT-3 in grammatical error correction: A study

https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.18653/v1/D19-3009
https://doi.org/10.18653/v1/D19-3009
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://arxiv.org/abs/2303.14342
https://arxiv.org/abs/2303.14342
https://arxiv.org/abs/2303.14342
https://doi.org/10.18653/v1/2024.findings-acl.711
https://doi.org/10.18653/v1/2024.findings-acl.711
https://doi.org/10.18653/v1/2024.findings-acl.711
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://arxiv.org/abs/2309.12551
https://arxiv.org/abs/2309.12551
https://arxiv.org/abs/2309.12551
https://openreview.net/forum?id=ZG3RaNIsO8
https://openreview.net/forum?id=ZG3RaNIsO8
https://openreview.net/forum?id=ZG3RaNIsO8
https://doi.org/10.18653/v1/2023.acl-long.108
https://doi.org/10.18653/v1/2023.acl-long.108
https://aclanthology.org/2024.lrec-main.350/
https://aclanthology.org/2024.lrec-main.350/
https://aclanthology.org/2024.lrec-main.350/
https://aclanthology.org/2024.lrec-main.350/
https://aclanthology.org/2024.lrec-main.692/
https://aclanthology.org/2024.lrec-main.692/
https://doi.org/10.18653/v1/2023.emnlp-main.821
https://doi.org/10.18653/v1/2023.emnlp-main.821
https://doi.org/10.18653/v1/2023.emnlp-main.821
https://arxiv.org/abs/2502.11560
https://arxiv.org/abs/2502.11560
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18

239

on performance and controllability in prompt-based
methods. In Proceedings of the 18th Workshop on
Innovative Use of NLP for Building Educational
Applications (BEA 2023), pages 205–219, Toronto,
Canada. Association for Computational Linguistics.

Ruotian Ma, Xiaolei Wang, Xin Zhou, Jian Li, Nan
Du, Tao Gui, Qi Zhang, and Xuanjing Huang. 2024.
Are large language models good prompt optimizers?
arXiv preprint arXiv:2402.02101.

Kostiantyn Omelianchuk, Andrii Liubonko, Oleksandr
Skurzhanskyi, Artem Chernodub, Oleksandr Korni-
ienko, and Igor Samokhin. 2024. Pillars of gram-
matical error correction: Comprehensive inspection
of contemporary approaches in the era of large lan-
guage models. In Proceedings of the 19th Workshop
on Innovative Use of NLP for Building Educational
Applications (BEA 2024), pages 17–33, Mexico City,
Mexico. Association for Computational Linguistics.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2023. GrIPS: Gradient-free, edit-based in-
struction search for prompting large language models.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 3845–3864, Dubrovnik, Croatia.
Association for Computational Linguistics.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957–7968, Singapore. Association for Computa-
tional Linguistics.

Jipeng Qiang, Minjiang Huang, Yi Zhu, Yunhao Yuan,
Chaowei Zhang, and Kui Yu. 2025. Redefining
simplicity: Benchmarking large language models
from lexical to document simplification. Preprint,
arXiv:2502.08281.

Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop
Kang. 2023. CoEdIT: Text editing by task-specific
instruction tuning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
5274–5291, Singapore. Association for Computa-
tional Linguistics.

Horacio Saggion. 2017. Automatic text simplification,
volume 32. Springer.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2024. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting. In
ICLR.

Kim Cheng Sheang and Horacio Saggion. 2021. Con-
trollable sentence simplification with a unified text-
to-text transfer transformer. In Proceedings of the
14th International Conference on Natural Language
Generation, pages 341–352, Aberdeen, Scotland, UK.
Association for Computational Linguistics.

Chenming Tang, Fanyi Qu, and Yunfang Wu. 2024.
Ungrammatical-syntax-based in-context example se-
lection for grammatical error correction. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume
1: Long Papers), pages 1758–1770, Mexico City,
Mexico. Association for Computational Linguistics.

Subhadra Vadlamannati and Gözde Şahin. 2023. Metric-
based in-context learning: A case study in text sim-
plification. In Proceedings of the 16th International
Natural Language Generation Conference, pages
253–268, Prague, Czechia. Association for Computa-
tional Linguistics.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,
and Chris Callison-Burch. 2016. Optimizing sta-
tistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Qinyuan Ye, Mohamed Ahmed, Reid Pryzant, and
Fereshte Khani. 2024. Prompt engineering a prompt
engineer. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 355–385,
Bangkok, Thailand. Association for Computational
Linguistics.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schu-
urmans, and Joseph E. Gonzalez. 2023. TEMPERA:
test-time prompt editing via reinforcement learning.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://doi.org/10.18653/v1/2023.eacl-main.277
https://doi.org/10.18653/v1/2023.eacl-main.277
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://arxiv.org/abs/2502.08281
https://arxiv.org/abs/2502.08281
https://arxiv.org/abs/2502.08281
https://doi.org/10.18653/v1/2023.findings-emnlp.350
https://doi.org/10.18653/v1/2023.findings-emnlp.350
https://openreview.net/forum?id=RIu5lyNXjT
https://openreview.net/forum?id=RIu5lyNXjT
https://openreview.net/forum?id=RIu5lyNXjT
https://doi.org/10.18653/v1/2021.inlg-1.38
https://doi.org/10.18653/v1/2021.inlg-1.38
https://doi.org/10.18653/v1/2021.inlg-1.38
https://doi.org/10.18653/v1/2024.naacl-long.99
https://doi.org/10.18653/v1/2024.naacl-long.99
https://doi.org/10.18653/v1/2023.inlg-main.18
https://doi.org/10.18653/v1/2023.inlg-main.18
https://doi.org/10.18653/v1/2023.inlg-main.18
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.18653/v1/2024.findings-acl.21
https://doi.org/10.18653/v1/2024.findings-acl.21
https://openreview.net/forum?id=gSHyqBijPFO
https://openreview.net/forum?id=gSHyqBijPFO
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

	Introduction
	Apio
	Experimental Setup
	Tasks, Datasets and Metrics
	Baselines
	APIO Setup

	Results
	Related Work
	LLM Prompting for Text Revision
	LLM-based Automatic Prompt Optimization (APO)

	Conclusion

