
Proceedings of Recent Advances in Natural Language Processing,pages 247–253
Varna, Sep 8–10, 2025

https://doi.org/10.26615/978-954-452-098-4-030

247

ExPe: Exact Positional Encodings for Generative Transformer Models with
Extrapolating Capabilities

Aleksis Datseris
Graphwise & FMI,

Sofia University St. Kliment Ohridski
datseris@uni-sofia.bg

Sylvia Vassileva
FMI, Sofia University St. Kliment Ohridski
svasileva@fmi.uni-sofia.bg

Ivan Koychev
FMI, Sofia University St. Kliment Ohridski

koychev@fmi.uni-sofia.bg

Svetla Boytcheva
Graphwise & FMI,

Sofia University St. Kliment Ohridski
svetla.boytcheva@graphwise.ai

Abstract

This paper introduces a novel approach to posi-
tion embeddings in transformer models, named
”Exact Positional Embeddings” (ExPE). An ab-
solute positional embedding method that can
extrapolate to sequences of lengths longer than
the ones it was trained on. Traditional trans-
former models rely on absolute or relative po-
sition embeddings to incorporate positional in-
formation into token embeddings, which of-
ten struggle with extrapolation to sequences
longer than those seen during training. Our pro-
posed method utilizes a novel embedding strat-
egy that encodes exact positional information
by overriding specific dimensions of the em-
bedding vectors, thereby enabling a more pre-
cise representation of token positions. The pro-
posed approach not only maintains the integrity
of the original embeddings but also enhances
the model’s ability to generalize to longer se-
quences. In causal language modeling, our
ExPE embeddings significantly reduce perplex-
ity compared to rotary and sinusoidal embed-
dings, when tested on sequences longer than
those used in training. The code and supple-
mentary materials can be found in 1

1 Introduction

The transformer architectures have revolutionized
the field of natural language processing (NLP), en-
abling significant advancements in tasks such as
machine translation, summarization, and question
answering. Central to the success of transform-
ers is the self-attention mechanism, which allows
models to capture complex dependencies between
tokens in a sequence. However, a critical challenge
in leveraging self-attention is the incorporation of
positional information, as the mechanism itself is
inherently permutation invariant.

1https://github.com/Aleksis99/ExPe/blob/
main/Appendices.pdf

Traditional approaches to position embeddings
can be broadly categorized into two main types:
absolute and relative methods. Absolute position
embeddings, such as those introduced by Vaswani
et al. (2017), typically involve adding vectors to
the token embeddings. The vector could be fixed
or learned, allowing the model to understand the
position of each token in the sequence. Although
effective, these methods often struggle with gen-
eralization to sequences longer than those encoun-
tered during training. On the other hand, relative
position embeddings, as explored by Shaw et al.
(2018) and others, focus on encoding the relative
distances between tokens, offering improved flexi-
bility but still facing challenges in capturing precise
positional information.

The main issues with the inability to generalize
to sequences longer than those seen during training
are multi-fold. First, the computational require-
ments to train a neural network are an order of
magnitude larger than the computational resources
required for inference with the same neural net-
work. Second, there is an ever-growing need for
longer context models. Research has led to the de-
velopment of models with context lengths of up to
2 million tokens Ding et al. (2024), and that is still
not enough for the commercial and research needs
we have for those models, since there are many
tasks that require more tokens to be solved. Third,
and most importantly, is the fact that the primary
means by which those models are so effective is
the self-attention mechanism, which has quadratic
complexity in both time and space. This makes it
economically and computationally inefficient for
us to scale the context length of those models. One
would think that there isn’t a fundamental differ-
ence in how language is processed and understood
as the sequences become longer, or at least the un-
derstanding of where the words are in the sequence
shouldn’t be an issue. What we explore in this pa-

https://github.com/Aleksis99/ExPe/blob/main/Appendices.pdf
https://github.com/Aleksis99/ExPe/blob/main/Appendices.pdf

248

per is whether there are ways to give the models
positional information in a way that they can gener-
alize to sequences longer than the ones seen during
training. If achieved, it could reduce the cost, time,
and environmental impact of implementing such
models by an order of magnitude.

2 Background and Proposed Approach

Extensive background and related work can be
found in supplementary material 1. The attention
mechanism Vaswani et al. (2017) is weighted aver-
age defined as:

Attention(qm, kn, vn) = softmax(qmkT
n√

d
)vn, where

qm = Wqxm,kn = Wkxn, and vn = Wvxn.

The attention mechanism is permutation invari-
ant, meaning that it has no positional information
about where the tokens are in the sequence. Tra-
ditional methods for positional encodings either
add/apply the information to each embedding or
add/apply it to the query (qn = fq(xn)) and key
(kn = fk(xn)) embeddings.

2.1 Formulation of ExPE

To address the issue with the inability of current
approaches to extrapolate to sequences longer than
the ones seen during training, we present Exact
Positional Encodings (ExPE). In contrast, other
approaches attempt to incorporate positional infor-
mation by augmenting the embedding vector with
positional information or manipulating the vector
using techniques such as rotations. We propose the
idea to override a limited number of values from
the vector embedding with a vector representation
of the position of the embedding in the sequence.

The main idea we propose is to override l of
the embedding dimensions to represent the exact
position of the tokens. Starting with an initial value
S and increasing by a small constant θ.

qm = fq(xq,m) = fq(φ(xq,m)) =Wq(φ(xq,m))

kn = fk(xk, n) = fq(φ(xk, n)) =Wk(φ(xk, n))
(1)

where Wq and Wk are the Query and Key ma-
trices of the attention mechanism. The positional
encoding ExPE written as φ(x, i) is defined as:

x := (x1, x2, ..., xd)

φ(x, n) := (pn, pn+1, ..., pn+l−1, xl+1, ..., xd),

pn := S + θ ∗ n

(2)

Here S is a defined constant, for example 0, also
θ is a predefined constant, for example 1/2m, d
is the dimensionality of the model, and m is the
max expected length of input during training. The
size of the positional encoding l is also a hyper-
parameter whose size can vary. The reason why
we are overriding the first l values in the vector
instead of concatenating them is that the embed-
dings are applied before each transformer block,
and that way, the size of the embeddings remains
the same. We have to note the fact that we override
the first l values of the vector, and consider them
as a placeholder for the positional information. If
token xn is at position n and token xm is at position
m after applying φ() the first l values in the xn will
be pn, ..., pn+l−1 and xm will be pm, ..., pm+l−1 . The
difference between pn − pm = θ ∗ (n − m), so the
greater the distance between two tokens, the greater
the difference in the positional embedding values
will increase proportionally.

Since the fundamental principle behind this is
that larger values should be interpreted as that the
token is further from the start into the input se-
quence, not only exact and relative information
about the positions of the token can be represented
in this way, but it should allow the model to extrap-
olate for sequences that are longer than the inputs
the model was trained on something other posi-
tional encodings fail to achieve. A visualization to

Figure 1: Flowchart showing when ExPE is applied in self-attention.

249

show better when exactly ExPE is applied to the
query and keys is shown in Figure 1. ExPE gets
applied to the input of the Query Matrix and Key
Matrix since those are the only embeddings that
need positional information between them as the
matrix multiplication between them will represent
the attention between each pair of tokens in the
sequence QKT ∈ Rn×n the application to the input
of the Value matrix is optional. The Query and Key
embedding with encoded positional information,
with the Value embeddings, go through the Scaled-
Dot-Product attention operation, followed by the
residual connection. The application of ExPE be-
fore the Query, Key, and Value matrices relies on
the ability of those matrices to learn how to use
ExPE’s representation of positional information.
Thanks to the residual connection, the information
that ExPE overrides is not entirely lost, as it still
travels through it.

2.2 Rationale Behind ExPE
The application of ExPE before the Query, Key,
and Value matrices in the Attention relies on the
ability of the Attention to learn how to use ExPE’s
representation of positional information. Thanks to
the residual connection, the information that ExPE
overrides is not fully lost as it still travels through
it.

An intuitive way to think about it is to believe
that the model will try to learn to hold the context-
independent information in the first part of the
vector and the context-dependent information in
the second part, which ExPE does not override.
For example if think about the word ”dog” a dog
could mean a German Shepherd an American Pit
Bull Terrier or even a toy. Even though there is a
big difference between the breeds, which are liv-
ing, breathing creatures, and the toy, there is some
context-independent information that unites all of
those concepts, which the word ”dog” could rep-
resent in our mind. This context-independent in-
formation does not need to be contextualized, so
if it gets overridden by ExPE, it will not be lost,
as shown before, and it can still change thanks to
the contextualized information coming from the
attention mechanism.

2.3 ExQPE Quantization Stable Alternative
In fp32 there are about 1e9 numbers between [0, 1],
in fp16 it’s 33e6, in TF32 this drops to about 1e6
and in bf16 there are only around 16e3. Which
could be problematic when needing a longer con-

text and using heavy quantization. To deal with
this, we developed a second version of ExPE called
ExQPE, Exact quantizable positional encodings.
The idea behind ExQPE is to increment only one
of the l dimensions of the positional encodings.

qm = fq(xq,m) = fq(φ(xq,m)) =Wq(φ(xq,m))

kn = fk(xk, n) = fq(φ(xk, n)) =Wk(φ(xk, n))
(3)

where S , θ1, θ2 are hyperparameters and

x := (x1, x2, ..., xd)

φ(x, n) := (pn,0, pn,1, ..., pn,l−1, xl, ..., xd),

p0 := (S + 0 ∗ θ1 + θ2,

S + 1 ∗ θ1, ..., S + (l − 1) ∗ θ1)

p0,i,i,0 := S + i ∗ θ1

pk,i := pk[i]

pi := (pi−1,0, pi−1,1, ..., pi−1,k−1, pi−1,k + θ2,

pi−1,k+1, ..., pi−1,l−1) (where k ≡ i mod l)

(4)

3 Data

For the proper training of a language model, high-
quality text data is necessary. There can’t be spec-
ified an exact amount of data, but based on Hoff-
mann et al. (2022), at least 20 tokens per parameter
offer a good compute-to-performance ratio.

Data for Causal Language Modelling and
Masked Language Modelling The data used for
the initial experiments on causal language model-
ing and masked language is a subset taken from the
Fineweb dataset Penedo et al. (2024). The FineWeb
dataset comprises over 15 trillion tokens of cleaned
and deduplicated English web data from Common-
Crawl. From that dataset, a subset was selected that
contained only text at least 4000 tokens long, un-
til a total of 700 million tokens were accumulated.
The texts are very complex and vary widely in top-
ics. The llama Touvron et al. (2023) tokenizer was
used for tokenization. The total data collected was
700M tokens, of which 100M was equally divided
into the dev/test split. The average length of the in-
dividual texts was 8000 tokens. The train, dev, and
test data split for the experiments are 600, 000, 000
training tokens and 50, 000, 000 val/test, all with
an average length of 8, 000

Data for Bigger Causal Language Models For
developing a bigger GPT model, we decided to
use a more standard pertaining scheme. We used
the Fineweb-edu dataset Lozhkov et al. (2024), a
subset of 1.3T tokens from educational web pages

250

filtered from the FineWeb dataset. A random sub-
set of 10 billion parameters was selected from the
dataset. The average length of the texts was 1000
tokens and the train, dev, and test data split for the
experiments are 600, 000, 000 training tokens and
50, 000, 000 val/test, all with an average length of
8, 000.

4 Experiments and Results

4.1 Causal Language Modeling

For comparison of out method we will focus mostly
on RoPE Su et al. (2023) as they are the state-
of-the-art technique for positional encodings, but
for historic reasons, we will do some evaluation
on the Sinosoidal positional encodings Vaswani
et al. (2017) to reevaluate that RoPE is a superior
technique.

Experimental Setup. The data used is described
in section 3. The hardware used for training was a
single A40 48GB GPU. The models were trained
on sequences of 512 tokens due to resource limita-
tions.

Both models had 35M parameters. The param-
eters were based on the parameters of the GPT
models from Brown et al. (2020). Two models
were compared: one standard decoder transformer
model with Sinusoidal PE, one with rotary embed-
dings, and one that uses the proposed positional
embeddings called ExPE for short.

Results. The experiments with this approach
yielded a good result (Table 3) compared to RoPE,
and the model’s cross-entropy also remained stable
when given inputs that were 2 or 4 times longer
than the training data text, which was 512 tokens in
length. This is something that relative, rotary, and
sinusoidal positional encoding don’t achieve. Our
model showed even a slight improvement when
the input length was increased. Our explanation
for that is that the texts are initially at least 4000
tokens, and the majority of input sequences that
we test the model with are cut from a longer text.
There is a lot of missing context, as our model can
extrapolate positions for more extended sequences.
We not only don’t see the perplexity increase, but
it even decreases slightly.

Ablation Studies on ExPE. We did a series of
ablation studies to verify that all aspects of the
ExPE positional encodings are necessary. The re-
sults can be seen in Table 2. It is clear that all
aspects of ExPE are necessary for performance. In-
creasing the value in the vector we override seems

to give a significant performance improvement.
This could also be to a large extent because ini-
tializing two values in embedding with the same
value makes them learn the same thing due to the
way the gradient flows through (Kumar, 2017).

With l = 1 we achieve significantly worse results.
The most significant factor should be simply the
fact that the positional information is difficult to
distinguish from the other embedding details when
it is in a single dimension.

Similarly to how RoPe needs to be used in each
transformer block, the same applies to ExPE. It
appears that the model struggles to retain the po-
sitional information in the embeddings after they
are passed through the layers. Therefore, for the
model to utilize the position information, it must
be applied in each transformer block.

We tried to set S and θ as learnable parameters.
Here we see that the model fails to learn basic
language modeling. It seems that having only two
learned parameters affects so much of the output,
making the model unstable and making it difficult
for the model to learn.

In (Gu and Dao, 2024) used a specific initializa-
tion was used to initialize their model in a stable
state. We decide to make S and θ learnable, but in-
stead of initializing them randomly, initialize them
with the same values as the ones in the non learned
variant of the model. While achieving better results
compared to the previous method, the training time
was over 60%.

4.2 Large-scale Experiments

The data used is described in section 3. We tok-
enized the dataset using Mistralai’s Mistral-Small-
Instruct-2409 Jiang et al. (2023) tokenizer. The ar-
chitecture used was the Llama 3 architecture with-
out the key-value cache, since it only increases
inference speed. The embedding weights of the
medium models are shared with their linear units.

The model parameters found in the supplemen-
tary material 1 are based on the GPT parameters
from Brown et al. (2020).

The results are shown in Table 1. What we see
here is that ExPE still manages to maintain its
length extrapolation capabilities while achieving
comparable performance to RoPE, even at lengths
seen during training. While also requiring signifi-
cantly fewer computational resources.

We also evaluated the performance of the
models on the HellaSwag Zellers et al. (2019),

251

Model Loss (ev=1) Loss (ev=2) Loss (ev=4) Training time

LLama Small 2.89 3.80 4.95 1.00
ExPE Small 2.87 2.83 3.25 0.93
ExQPE Small 2.86 2.83 3.35 0.93

LLama Medium 2.63 3.45 4.55 1.00
ExPE Medium 2.63 2.59 2.71 0.78
ExQPE Medium 2.63 2.59 2.68 0.78

Table 1: The legend (ev=1) is the evaluation on texts of length the training length; here, for all models, the training
length is 512 tokens. (ev=2) is the evaluation on texts with length double the training length, etc.

Model Loss (ev=1) Loss (ev=2) Loss (ev=4) Epoch time

ExPE 3.93 3.87 4.26 1
ExPE (p is stable) 4.26 4.21 4.24 1
ExPE (l = 1) 4.48 4.83 6.01 1
ExPE (learned initialized) 3.88 3.82 4.89 1.6
ExPE (learned) 7.33 7.34 7.61 1.6
ExPE (once) 4.43 4.82 6.18 1

Table 2: Ablation studies done on ExPE. Where ExPE (p is stable) means we override with pi, pi, .., pi instead of
pi, pi+1, .., pi+l. ExPE (l = 1) uses l = 1 for it’s positional encodings. ExPE (once) has its positional encodings
applied only once before the first transformer block. ExPE (learned initialized) has its positional encodings S and θ
parameters learned but initialized with the same values as the non learned variant. ExPE (learned) has its positional
encodings S and θ parameters learned.

Sinusoidal RoPe ExPE

Loss (ev=1) 4.0 3.88 3.93
Loss (ev=2) 4.75 4.37 3.87
Loss (ev=4) 5.64 5.05 3.88

Table 3: The legend (ev=1) is the evaluation on texts
with length the training length; here, for all models, the
training length is 512 tokens. (ev=2) is the evaluation
on texts with length double the training length, etc.

MMLU(Measuring Massive Multitask Language
Understanding) Hendrycks et al. (2021), ARC and
ARC easy Moskvichev et al. (2023) benchmarks
to test how they perform on standard LLM bench-
marks and we see that their results (found in Ta-
ble 5) are comparable. In terms of training infer-
ence speed and memory requirements, ExPE is
practically equivalent to Sinusoidal, as shown by
Press et al. (2022); they are significantly faster than
RoPE. In general, even if ExPE doesn’t demon-
strate a remarkable ability to extrapolate to se-
quences longer than those seen during training, it
still shows significant improvement compared to
RoPe and Sinusoidal. Also manages to maintain

performance compared to RoPe while requiring
significantly less compute when compared to se-
quence lengths seen during training.

Scaling the Encoding. Chen et al. (2023)
showed that if a model uses RoPe at a certain fre-
quency and a certain context length, that model
context length can be easily extended by scaling
the frequency. If you would like to double the con-
text length, you could scale the frequency of RoPe
by half and do additional training. The method
is effective because it requires a small amount of
training for the model to extrapolate to the new
training length. The issue is that you still need to
do additional training. We decided to check how
well ExPE behaves when scaling the encoding val-
ues without additional training. When we trained
the model with a context length of 512 tokens, the
first positions of ExPE values ranged from 0 to 0.25
while when texting to lengths of 2048 tokens, those
values ranged from 0 to 1, so we decided to scale
them by half to see how the model behaves without
additional training.

The results shown in tables 4 and 5 show that for
the longest extrapolation, the scaling helps, but for
lengths seen during training, it slightly decreases

252

Model Loss (ev=1) Loss (ev=2) Loss (ev=4) Loss (ev=8) Loss (ev=16)

ExPE M 2.63 2.59 2.71 5.19 7.56
ExPE M scaled by 0.5 2.76 2.71 2.68 2.98 5.65

ExQPE M 2.63 2.59 2.68 5.01 7.39
ExQPE M scaled by 0.5 2.74 2.69 2.65 2.76 4.98

Table 4: All results are for ExPE Medium-sized models. The legend (ev=1) is the evaluation on texts of length equal
to the training length. Here, for all models, the training length is 512 tokens. (ev=2) is the evaluation on texts with
length double the training length, etc.

Model HS MMLU ARC A E

LLama S 0.29 0.26 0.24 0.30
ExPE S 0.28 0.26 0.24 0.29
ExQPE S 0.27 0.26 0.24 0.29

LLama M 0.31 0.26 0.26 0.30
ExPE M 0.31 0.26 0.25 0.30
ExPE M (0.5) 0.31 0.26 0.25 0.30
ExQPE M 0.32 0.26 0.25 0.31
ExQPE M (0.5) 0.32 0.26 0.25 0.31

Table 5: Performance of the small (S) and medium (M)
sized models on HellaSwag (HS), MMLU, ARC, ARC
Easy (A E). The notation <Model (x)> means that the
model’s encodings are scaled by a factor of x.

performance, and interestingly, for lengths twice
the training length, we see the same. This suggests
that scaling could be used to enhance performance
for more extended periods without requiring addi-
tional training. For even longer extrapolations, fur-
ther training with scaling on longer context lengths
should also yield good results with minimal extra
training.

5 Limitations

Due to technical limitations, the models trained
in this work are too small and were trained on
a too short context length, making it difficult for
us to reliably state that ExPE and ExQPE are vi-
able state-of-the-art techniques for positional en-
codings in transformers. Additionally, here we
only compare the results of models which have
gone through only the pretraining stage and have
not gone through the instruction tuning phase
with supervised fine-tuning, DPO Rafailov et al.
(2024) or Reinforcement learning from human feed-
back(RLHF) Ouyang et al. (2022). Finally, a gen-
eral issue with longer context is that human lan-

guage is inherently local due to the limitations of
the human brain; a person can only follow a few
sentences at a time. Therefore, many long docu-
ments lack long dependencies Yang et al. (2025).

6 Conclusion

In this work, we introduced Exact Position Em-
beddings (ExPE) and ExQPE, two novel positional
encoding methods designed to improve the extrap-
olation capabilities of transformer models. By ex-
plicitly encoding position information precisely,
ExPE and ExQPE enhance the model’s capabili-
ties for length extrapolation of sequences longer
than those seen during training. Our experiments
demonstrated that ExPE and ExQPE outperform
traditional sinusoidal embeddings and achieve com-
petitive results compared to Rotary Position Em-
beddings (RoPE), while being more efficient.

We demonstrated that ExPE and ExQPE effec-
tively retain position information and adapt to
longer sequences without requiring additional train-
ing for the causal language modeling task. We also
demonstrated that, with fixed scaling of the two
approaches, we can further enhance the length ex-
trapolation capabilities of the model without addi-
tional training. Our results indicate that ExPE and
ExQPE present a promising alternative to existing
positional encoding techniques.

Directions for Future Development For ExPE
and ExQPE to be proven as practical techniques
for positional encodings, larger experiments should
be conducted with more extensive models, greater
data, and longer context lengths. The development
of proper benchmarks and training data tailored
explicitly to long context dependencies is neces-
sary for us to properly test the extended context
capabilities of language models. Comparing the
method to techniques like Dual Chunk Attention
An et al. (2024) and Position Interpolation Chen
et al. (2023) should be done.

253

Acknowledgments

This work is partially supported by the project
UNITe BG16RFPR002-1.014-0004 funded by
PRIDST.

We are extremely grateful to Prof. DSc. Stoyan
Mihov, Institute of Information and Communica-
tion Technologies, Bulgarian Academy of Sciences,
for giving us initial guidance and helping us define
the task at hand when developing this method.

References
Chenxin An, Fei Huang, Jun Zhang, Shansan Gong,

et al. 2024. Training-free long-context scaling of
large language models.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, et al. 2020. Language models are few-shot
learners.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang,
Yuanyuan Xu, et al. 2024. Longrope: Extending
llm context window beyond 2 million tokens.

Albert Gu and Tri Dao. 2024. Mamba: Linear-time
sequence modeling with selective state spaces.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
et al. 2021. Measuring massive multitask language
understanding.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, et al. 2022. Training compute-
optimal large language models.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, et al. 2023. Mistral 7b.

Siddharth Krishna Kumar. 2017. On weight initializa-
tion in deep neural networks.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra,
and Thomas Wolf. 2024. Fineweb-edu: the finest
collection of educational content.

Arseny Moskvichev, Victor Vikram Odouard, and
Melanie Mitchell. 2023. The conceptarc benchmark:
Evaluating understanding and generalization in the
arc domain.

Long Ouyang, JeffWu, Xu Jiang, Diogo Almeida, et al.
2022. Training language models to follow instruc-
tions with human feedback.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal,
Anton Lozhkov, et al. 2024. The fineweb datasets:
Decanting the web for the finest text data at scale.

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, et al. 2024. Direct preference optimization:
Your language model is secretly a reward model.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In NAACL-HLT.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2023. Roformer: En-
hanced transformer with rotary position embedding.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, et al. 2023. Llama: Open and efficient
foundation language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, et al.
2025. Qwen2.5-1m technical report.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence?

http://arxiv.org/abs/2402.17463
http://arxiv.org/abs/2402.17463
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2402.13753
http://arxiv.org/abs/2402.13753
http://arxiv.org/abs/2312.00752
http://arxiv.org/abs/2312.00752
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/1704.08863
http://arxiv.org/abs/1704.08863
https://doi.org/10.57967/hf/2497
https://doi.org/10.57967/hf/2497
http://arxiv.org/abs/2305.07141
http://arxiv.org/abs/2305.07141
http://arxiv.org/abs/2305.07141
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2406.17557
http://arxiv.org/abs/2406.17557
http://arxiv.org/abs/2108.12409
http://arxiv.org/abs/2108.12409
http://arxiv.org/abs/2108.12409
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/2501.15383
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830

