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Abstract
This is a comparative study tackling named en-
tity recognition and relation extraction from
PubMed abstracts with focus on the gut-brain
interplay. The proposed systems for named en-
tity recognition cover a range of models and
techniques from traditional gazetteer-based ap-
proaches, transformer-based approaches, trans-
former domain adaptation, large models pre-
training as well as LLM prompting. The
best performing model among these achieves
82.53% F1-score. The relation extraction task
is addressed with ATLOP and LLMs and their
best results reach F1 up to 63.80% on bi-
nary relation extraction, 89.40% on ternary tag-
based relation extraction and 40.32% on ternary
mention-based relation extraction.

1 Introduction

This paper presents a research on named entity
recognition (NER) and relation extraction (RE) in
the biomedical domain, focusing on gut-brain inter-
play. The results, reported here, are part of the Gut-
BrainIE Task at CLEF 2025 BioASQ Lab (Nentidis
et al., 2025; Martinelli et al., 2025). The challenge
aims to promote automatic extraction of gut-brain
related facts from scientific literature and evaluates
four subtasks: NER across 13 categories, binary
relation extraction, ternary tag-based relation ex-
traction (with 19 predicates), and ternary mention-
based relation extraction (with 19 predicates).

State-of-the-art Natural Language Processing
(NLP) for biomedical literature employs deep learn-
ing (DL) (e.g., BERT, BiLSTM-CRF), classical ma-
chine learning (ML) (CRF, SVM), and rule-based
methods. NER achieves F1-score up to 89.3%
on PubMed articles, while RE performance varies
from 47.7% to 88.5% (Goyal and Singh, 2024; Luo
et al., 2022; Névéol et al., 2011; Sänger and Leser,
2021). Key entities include genes, proteins, dis-
eases, and drugs; typical relations are gene-disease

and drug-treatment. While most approaches tackle
both NER and RE tasks (Luo et al., 2022), there are
also specific techniques tailored for RE exclusively
(Hassan et al., 2023), (Sänger and Leser, 2021).

Recent works leverage Large Language Mod-
els (LLMs), shifting NER from application of se-
quence labeling methods to a natural language gen-
eration task. LLM-based approaches for NER in-
clude zero/few-shot prompt engineering (Lu et al.,
2024; Hu et al., 2024), retrieval augmented genera-
tion (RAG) (Monajatipoor et al., 2024), and hybrid
models combining LLMs with external knowledge
or traditional methods (Bian et al., 2023; Garcı́a-
Barragán et al., 2025; Biana et al., 2024; Rohanian
et al., 2024; Zhou et al., 2023). While LLMs show
strong in category classification tasks, challenges
with span identification persist. They are typically
addressed via post-processing (Lu et al., 2025).
Approaches like INSPIRE (Bian et al., 2023) and
VANER (Biana et al., 2024) use Chain-of-Thought
reasoning and external resources, outperforming
prior BioNER systems, with F1-score up to 94% on
some categories. Instruction-based paradigms (e.g.
BioNER-LLaMA) now surpass GPT-4 in few-shot
learning (Keloth et al., 2024). For RE, LLM-based
methods exhibit similar advances, with external
knowledge and prompt design as critical factors.

This paper proposes an in-depth compari-
son of methods for NER including: (i) trans-
former fine-tuning - GLiNER (Zaratiana et al.,
2024), BiomedNLP ELECTRA (Tinn et al., 2021),
BioBERT PubMed (Gu et al., 2022), XLM-R (Con-
neau et al., 2020); (ii) domain adaptation (DA) on
XLM-R and BiomedBERT; (iii) fine-tuning of large
encoder models flan-t5-xl (Chung et al., 2022), t5-
xxl (Raffel et al., 2023) and Gatortron-medium
(Yang et al., 2022a) and (iv) LLM prompting. For
RE subtasks, ATLOP (Zhou et al., 2020) and LLM-
assisted extraction are compared.
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2 Data

2.1 Annotated Data

The data provided by the challenge organizers1

consists of documents, sourced from PubMed2, fo-
cusing on the gut-brain interplay and its impact on
neurological and mental health. The training data
is divided into four collections (Martinelli et al.,
2025), each of them with annotations for NER and
RE tasks, explained in the introduction. Platinum
collection (P) (111 documents) - expert-curated an-
notations reviewed by biomedical specialists; Gold
collection (G) (208 documents) - expert-curated;
Silver collection (S) (499 documents) - annotated
by trained students; Bronze collection (B) (750
articles) - annotated with distant supervision us-
ing GLiNER for NER and ATLOP for RE task.
In addition to the training data, a separate Valida-
tion/Dev set (D) is provided. The articles in D
are a held out non-overlapping sample of P and G
corpora.

2.2 Augmented Data

PubMed articles from the period 2015-2025 are
added to the training dataset in order to address
the scarcity issue in key entity categories. The
documents are extracted using the PubMed API
with search parameters corresponding to the en-
tity categories e.g. genes or diagnosis, all within
the gut-brain axis topic. GLiNER and BiomedNLP
ELECTRA (both fine-tuned on P+G+S+B) are then
applied for distant supervision of named entities.
The result is a Bronze-Standard entity annotated
corpus (BA) of 6728 articles. The annotations from
both models are used in various combinations dur-
ing the experiments.

2.3 Gazetteers

For some of the underrepresented categories (e.g.,
genes, food) named entity gazetteers are created to
overcome the low recall. For biomedical technique
terms, organizer-provided mappings are used. The
gazetteer includes all children concepts of the pro-
vided mapping concept. The other gazetteers, such
as for gene, drug, disease etc., are generated based
on the UMLS3 semantic network. In total, nine
gazetteers are created, containing between 18 to
2,001,200 alternative biomedical term names.

1https://hereditary.dei.unipd.it/challenges/gutbrainie/2025/
2https://pubmed.ncbi.nlm.nih.gov/
3https://www.nlm.nih.gov/research/umls/index.html

3 Named Entity Recognition

3.1 Deep Learning Approaches

To get a sense of the data, GatorTron-Base (Yang
et al., 2022b), mainly pretrained on clinical notes
with 345M parameters, was trained on P + G
+ S + B concatenated datasets and evaluated on
the D set. Secondly, GLiNER (Zaratiana et al.,
2024), pretrained on the PileNER corpus4 was fine-
tuned on P + G + S + B + BA collections, and
tested on the D set. Next experiments were with
a more specialized model in the PubMed domain -
BiomedNLP ELECTRA (Tinn et al., 2021), pre-
trained on PubMed abstracts. Exactly the same
train/test split as with GLiNER was used. The
BiomedNLP ELECTRA version trained on full-
text articles lead to decrease in performance. The
most successful biomedical model of ScispaCy
turns to be - en core sci md, fine-tuned only on the
P + G + S collections with an internal validation
split. In all experiments, the context window was
512 tokens. Results are presented in Section 4.1.

3.2 Gazetteer Matching

Gazetteer matching with exact match was applied
in combination with the other approaches, using the
resources described in Section 2.3. Unfortunately
the improvements were only in one dimension, e.g.
they increased significantly the recall of genes but
removing the noise, they bring in was too costly.
The results are presented in Section 4.1.

3.3 Domain Adaptation

To help some of the models with their understand-
ing of the underlying dependencies in the texts,
domain adaptation was performed. XLM-R (Con-
neau et al., 2020) and BiomedBERT (Biomed) (Gu
et al., 2020) models and masked language model-
ing (Devlin et al., 2019) pretraining objective were
selected. The results are presented in Section 4.2.

3.4 Large Models

Experiments were performed also with larger en-
coder (Devlin et al., 2019) models and larger
encoder-decoder (Vaswani et al., 2023) models by
taking only the encoder part of the model and using
it as a standard encoder model. The selected mod-
els were flan-t5-xl (Chung et al., 2022), t5-xxl (Raf-
fel et al., 2023) and gatortron-medium (Yang et al.,

4https://huggingface.co/datasets/Universal-NER/Pile-
NER-type
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2022a). Due to computational limitations, the mod-
els were fine-tuned using LoRA (Hu et al., 2021)
adapters with rank 256 applied to the attention ma-
trices. The results are presented in Section 4.2.

3.5 LLM approach
Two individual experiments GPT-4.15 were also
conducted to explore capabilities of LLMs to tackle
the NER task. In the first scenario, the prompt was
instruction-example-based and included 3 exam-
ples (3-shot), manually adapted from the P dataset,
detailed description of all 13 entity types, including
definitions from the task description. In addition
detailed instructions regarding the output format
were provided along with restrictions and limita-
tions on the resolution of some specific cases.

The second approach was designed with
instruction-based prompt only (0-shot). It was sim-
pler that the first one and included the names on the
13 entity types with short explanation only, without
definitions. It included again instructions regarding
the desired output format but no examples of sam-
ple input/output were provided. The differences
with the first prompt were the additional instruc-
tions on the resolution of some border cases and
overlapping concepts, as nested entity resolution is
a major topic in BioNER (Park et al., 2024).

The LLM output was shaped with the help of
post-processing scripts. In both approaches these
were used for calibrating the start and end offsets
of the entities; removing duplicated, overlapping
and corrupted predictions. In the first approach
specifically, consecutive entities with one and the
same type were merged. In the second one - corner
cases were compared with and without merging.

4 NER results

4.1 Deep Learning & Gazetteers Results
The results from all approaches discussed in Sec-
tions 2.3 and 3.1, as well as some hybrid ap-
proaches are shown in Table 1. The largest model
GatorTron-Base gives a stable baseline. This is
a good indicator that the dataset is suitable for
lightweight models like GLiNER, which is the best
in micro-recall. Overall, the best performing model
is BiomedNLP ELECTRA. The worst performing
approach is to use the Gazetteers on their own, not
being able to account for most of the categories.
The most precise system turns out to be the com-
bination of ScispaCy with integrated Gazetteers

5https://openai.com/index/gpt-4-1/

and BiomedNLP ELECTRA. For this hybrid ap-
proach, we have taken the union of the predictions
of ScispaCy + Gazetteers and BiomedNLP ELEC-
TRA. While it does provide competitive results, the
trade-off between precision and recall is too large.
Still, the potential of such hybrid systems should
be further explored. The performance of the same
models on token-level predictions tend to average
84% micro-F1, opposed to the lower entity-level
results shown in Table 1.

Model P R F1

GatorTron-Base 77.37% 82.63% 79.91%
BNLP ELECTRA 82.60% 82.45% 82.53%
GLiNER 81.05% 82.72% 81.88%
ScispaCy 76.65% 71.71% 74.10%
Gazz 16.30% 12.71% 14.29%
ScispaCy + Gazz +
BNLP ELECTRA 91.41% 69.56% 79.00%
ScispaCy + Gazz 56.38% 70.37% 62.60%
GPT (3-shot) 45.88% 67.32% 54.57%
GPT (0-shot) 42.01% 54.79% 46.38%

Table 1: Entity-level micro-scores of DL, hybrid
systems and LLM approach for NER on set D
(BNLP=Biomed NLP, Gazz=Gazetteers)

4.2 Domain Adaptation & Large Models
Results

The results of DA on XLM-R (Conneau et al.,
2020) and BiomedBERT (Gu et al., 2020) are
shown in Table 2. There is consistent improve-
ment of token-level performance by applying DA
on the models. While BiomedBERTs’ token-level
performance is good, the entity-level performance
of the model was only 80.35%.

Token-level performance of gatortron-medium
and flan-t5-xl is shown on Table 1. The models are
significantly larger, however their results are not im-
pressive; their performance is worse than the best
DA model and transformer models, respectively.

4.3 LLM Approach Results

The results of the two LLM-based NER approaches,
GPT (3-shot) and GPT (0-shot), are shown in Ta-
ble 1. They perform significantly worse than su-
pervised and dictionary-based ones, mainly due
to poor identification of entity boundaries, which
lowers precision and missed concepts, which low-
ers recall. The LLMs also tend to confuse entity
categories (chemical, gene and disease) and favor
shorter entities over longer ones. GPT (3-shot)
outperforms GPT (0-shot), as expected.
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Model P R F1

BiomedBERT 82.68% 83.51% 82.36%
BiomedBERT + DA 84.26% 83.42% 83.05%
XLM-R 78.70% 84.76% 81.62%
XLM-R + DA 80.46% 83.06% 81.74%
flan-t5-xl 77.75% 84.22% 81.86%
gatortron-medium 77.59% 83.78% 80.56%

Table 2: Token level micro-scores of DA and large
models for NER on set D.

5 Relation Extraction Approaches

5.1 ATLOP

One of the methods used for the relation extrac-
tion subtask was the Adaptive Thresholding and
Localized Context Pooling (ATLOP). It is a well-
recognised approach for relation extraction that
utilizes as a base model a standard pre-trained
transformer (Vaswani et al., 2023) encoder, such as
BERT (Devlin et al., 2019).

5.2 LLM approach

The LLM-based approaches for RE were organized
in a cascade manner using GPT-4.1. Each of them
used as input the output of the previous step, start-
ing from the NER result, followed by the binary
relations, ternary tag-relation and finally ternary
mention-relation. All methods were based on spe-
cially designed instruction-example-based prompt,
with list of entity types and detailed definition of
relations and their domain/range, according to the
task definition. All prompts contained output for-
mat instructions and one example per relation cate-
gory. In the prompt for binary relation extraction
(1-shot) the input included the PubMed abstract and
title and all extracted named entities from the NER
subtask. In the ternary-tag RE prompt (2-shot), the
input included extracted entitles and relations from
the NER task and binary RE sub-tasks, plus the full
context from the PubMed abstract and title. The
ternary-mention RE prompt (1-shot) includes the
PubMed abstract and title, extracted named entities
from the NER sub-task and the extracted ternary-
tag relations from the previous task.

6 Relation Extraction Results

The base model for ATLOP was BiomedNLP-
KRISSBERT-PubMed-UMLS-EL (Zhang et al.,
2021). It was provided with the extracted entities
by the baseline GLiNER model. The micro-scores
on the D set are shown in Table 3. The model

achieves fairly good results, but with the increasing
difficulty of each task, they degrade.

The input at the first step of for all LLM-based
experiments includes the entities and relations from
dataset D. The results (Table 3) on the binary re-
lation subtask show that the LLM-approach out-
performs the ATLOP model on micro-R and has
negligibly better micro-F1 score and lower micro-
P. The results on the ternary-tag RE significantly
outperform ATLOP. However, this is not the case
for ternary-mention-based extraction.

Model P R F1 Task

KRISSBERT 68.04% 60.00% 63.77% Binary RE
GPT (1-shot) 57.99% 70.91% 63.80% Binary RE

KRISSBERT 67.35% 57.39% 61.97% Tag RE
GPT (2-shot) 95.10% 84.35% 89.40% Tag RE

KRISSBERT 46.60% 35.54% 40.32% Mention RE
GPT (1-shot) 29.01% 44.29% 35.05% Mention RE

Table 3: Micro-scores of RE systems on set D.

7 Discussion, Error Analysis, Conclusions

On the NER task, transformer-based models gave
the best results. One of the most underrepresented
categories in the data was also among the hardest
to learn - gene. GatorTron-Base was the best model
for it. The integration of traditional approaches like
Gazetteers increased the recall only for the gene
category and achieved very good precision (and
low recall) for all 13 categories. From the more
frequent entities, chemical turned out to be a bottle-
neck, while the others like DDF, microbiome and
human all got F1 between 84% and 95%. Although
all of the systems could extract the text mentions,
classifying them correctly was challenging.

On the RE task, ATLOP is still limited by the
fact that the model needs as input the extracted en-
tities in order to classify the relations. It is fairly
good at the first 2 RE subtasks, but once it needs to
classify both the relation type and the exact spans,
its performance starts to drop. It often mistakes
exactly which entities are in a relation. It also often
confuses the relation types ”impact”, ”influence”,
and ”affect”, with ”is linked to”. LLM based ap-
proaches demonstrate very good performance on
some of the RE subtasks. In the same time they
struggle to identify correct mentions, and a com-
mon issue is the mismatch of the relation direction,
because all relations are anti-symmetric and the
order does matter.
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