Enabling On-Premises Large Language Models for
Space Traffic Management

Enrique De Alba
EO Solutions
enrique.dealbal@e-o.solutions

Abstract

Natural language processing systems leverag-
ing on-premises large language models (LLMs)
can translate natural language into structured
JSON commands for Space Traffic Manage-
ment (STM) systems. While cloud-based
LLMs excel at this task, security constraints
necessitate local deployment, requiring evalua-
tion of smaller on-premises models. We demon-
strate that resource-efficient 7B-parameter mod-
els can achieve high accuracy for STM com-
mand generation through a two-stage pipeline.
Our pipeline first classifies objectives, then
generates schemas. Empirically, we observe
that initial classification accuracy strongly in-
fluences overall performance, with failures cas-
cading to the generation stage. We demonstrate
that quantization disproportionately increases
structural errors compared to semantic errors
across 405 objectives. The best quantized
model (Falcon3-7B-GPTQ) shows a 3.45% ac-
curacy drop, primarily from structural errors.
Our findings highlight limitations in how model
compression affects applications that require
syntactic validity. More broadly, we explore the
feasibility of LLM deployment in air-gapped
environments while uncovering how quantiza-
tion asymmetrically impacts structured output
generation.

Our code is available at:
https://github.com/enrique-dealba/LLM-STM.

1 Introduction

The proliferation of satellites and the global de-
mocratization of launch services have transformed
Earth orbit into a densely populated arena (The
Aerospace Corporation, Space Safety Institute,
2024; United Nations Office for Outer Space Af-
fairs, 2025). Existing Space Traffic Management
(STM) tools require specialized expertise. In par-
ticular, hand-authoring simulator-specific JSON
schemas creates a bottleneck that slows response

260

LLM

Custody

o e

Revisit

'd @ ° ®
L0 ;0 0 -1 1,
Lo T g LIS oy |
(Scheduler

Figure 1: System architecture where the LLM interprets
natural language to generate structured objectives (e.g.,
Custody, Revisit, etc.). Objectives undergo hierarchi-
cal decomposition, potentially via sub-objectives (Oy),
producing sets of atomic intents (i?). These intents col-
lectively form the input specification for the scheduler.

times (Fletcher and Kadan, 2024; De Alba et al.,
2024). Building on natural-language interfaces for
collaborative telescope networks (Fletcher et al.,
2021), we introduce a framework that translates op-
erator intent from everyday language into machine-
interpretable STM commands, potentially lower-
ing entry barriers and enabling delegation to au-
tonomous agents.

We enable natural-language interaction for STM
within secure operational contexts, using on-
premises large language models (LLMs) to trans-
late user objectives into structured commands that
initiate the decomposition and scheduling workflow
in Figure 1. Our contributions can be summarized
as follows: (1) we show that 7B-parameter models
achieve >90% accuracy for STM command gener-
ation through a two-stage pipeline, (2) we identify
cascading failures where initial classification errors
prevent access to strong schema-filling capabilities,
and (3) we find that quantization disproportionately

Proceedings of Recent Advances in Natural Language Processing,pages 260-267
Varna, Sep 8-10, 2025

https://doi.org/10.26615/978-954-452-098-4-032

https://github.com/enrique-dealba/LLM-STM

degrades structural schema comprehension com-
pared to semantic understanding, impacting com-
pressed model deployment in applications. While
smaller open-source models present trade-offs fol-
lowing power-law scaling (Kaplan et al., 2020),
they run on single GPUs, keeping information on-
premises (Omnifact, 2025). We evaluate whether
prompt engineering and multi-step parsing enable
structured output generation.

2 Related Work

Recent work suggests that LLM hidden states en-
code truthfulness signals that can be extracted to
detect errors (Orgad et al., 2025), with correct gen-
erations exhibiting measurably sharper context ac-
tivations than hallucinated outputs (Chen et al.,
2024). The internal layers of models contain more
information than their final outputs suggest. Struc-
tured outputs enhance reliability. By constraining
model responses to predefined formats like JSON
schemas, outputs become interpretable and verifi-
able. OpenAl uses constrained decoding that guar-
antees schema conformity (OpenAl, 2024), while
open-source tools like Instructor leverage Pydan-
tic (Colvin et al., 2024) to validate and correct
LLM-generated JSON (Liu, 2024). Similar struc-
tured generation challenges arise in model-based
systems engineering (Crabb and Jones, 2024).
We implement structured specifications similar to
intent-based approaches for autonomous sensor or-
chestration (Fletcher and Kadan, 2024). This builds
upon established frameworks for situation aware-
ness in autonomous agents (Dahn et al., 2018) and
leverages concepts from observation planning sys-
tems (Morris et al., 2018). We employ structured
generation for interpretability and error mitigation.
On-premises deployment requires addressing mem-
ory constraints. Key-value (KV) caches bottleneck
memory in LLLM inference (Zhang et al., 2024).
PagedAttention (Kwon et al., 2023) addresses this.
We also use GPTQ quantization (Frantar et al.,
2023) to reduce model weights. Our quantized
Falcon3-7B uses 18GB of memory. This enables
on-premises STM deployment of models up to 22B
parameters.

3 STM Objective Specification

We translate natural-language objectives into
machine-interpretable specifications for STM oper-
ations. The architecture comprises an LLM-driven
parser and utilities for output post-processing and

261

Example Prompt

Track RSO target 28884 with the sensors
SENSOR-01 and SENSOR-02 in TEST mode
for a 36 hour plan, schedule four periodic revis-
its per hour, and use U markings. Please use
RATE _TRACK_SIDEREAL tracking, set the prior-
ity to 3, and set patience to 30 mins. Start
at 2025-03-13 15:30:00, end at 2025-03-14
22:30:00.

Figure 2: This prompt is an example of the test cases
used in the evaluation, demonstrating specific field val-
ues (e.g., exact timestamps “2025-03-13 15:30:00”, sen-
sor names “SENSOR-01", etc.). This ensures unam-
biguous one-to-one correspondence between prompts
and expected schemas, eliminating interpretation vari-
ability and enabling precise accuracy measurement. If
the system fails to produce exactly what was requested,
it indicates a clear error.

validation. Figure 2 shows an example input. Each
STM objective in our test set contains 7-32 fields
(mean: 15.9) with prompt lengths ranging from
70-367 tokens. This input is fed to the LLM along
with a designed prompt that instructs the model to
output a structured representation of the objective,
treating prompt engineering as a form of special-
ized programming that transforms natural language
to structured outputs (Beurer-Kellner et al., 2023).
In our implementation, the structured format is a
JSON schema that captures the essential param-
eters of the task (e.g., type of objective, targets,
time window, required outputs, etc.). The LLM
serves as the translation engine from unstructured
language to a structured representation. We vali-
date outputs against the predefined schema. This
end-to-end flow, User NL Objective — LLM —
JSON output — Validation, forms the core data
pipeline. Valid JSON objectives are passed to
the objective decomposition and scheduler mod-
ules depicted in Figure 1; invalid JSON triggers
re-prompting or fixes.

3.1 Model Deployment and Memory
Constraints

Deploying models like Falcon3-7B and Mistral-7B
on local hardware requires optimization for GPU
memory constraints. To enhance efficiency, we
implement GPTQ quantization, reducing model
weights to 4-bit precision with minimal quality
impact (Xiong et al., 2024), enabling our quan-
tized Falcon3-7B to process longer STM objec-

JSON Schema Instructions

The output should be formatted as a JSON
instance that conforms to the JSON schema

below.
As an example, for the schema
{"properties":
{"£oo":
{"title": "Foo",
"description": "a list of strings",
"type": ‘"array",
"items": {"type": "string"}
}
}, "required": ["foo"]
}
the object {"foo": ["bar", "baz"l]} is a

well-formatted instance of the schema.

The object {"properties": {"foo": ["bar",
"baz"]}} is not well-formatted.

Here is the output schema:

Figure 3: This instruction snippet is the default prompt-
ing strategy we use for structured outputs, providing ex-
plicit formatting guidelines that include JSON schema
examples and clarifying valid versus invalid formatting.

tives while occupying only 18GB VRAM. The
PagedAttention algorithm partitions the KV cache
into fixed-size blocks of size B, enabling non-
contiguous memory allocation. For each query
token 7, attention is computed block-wise as:

[i/B]

.

TK;

G S
j=1

SIYB exp(q Ky /Vd

f4ij =

where K; and V; represent blocks of key and value
vectors, and A;; denotes attention scores between
query ¢ and block j.

3.2 Structured Output Pipeline

A distinguishing feature of our system is the struc-
tured output pipeline that ensures the model’s re-
sponse adheres to a specified JSON schema. Rather
than prompting the LLM in an unconstrained way,
we embed instructions in the prompt that explicitly
require a JSON-formatted response with certain
fields. As shown in Figure 3, we provide explicit
instructions for JSON formatting. This improves
format compliance and reasoning quality on di-
verse tasks (Kurt, 2024). However, we do not rely
on the model itself to guarantee validity. After
the LLM generates its output, we pass the result
to a JSON schema validator (implemented via Py-
dantic models in Python) which checks that all
required fields are present and of the correct type.
This is analogous to the OpenAl structured output

approach (OpenAl, 2024) which enforces compli-
ance with a schema at generation time. Since our
models do not natively support constrained decod-
ing, we implement a robust post-generation vali-
dation framework similar to approaches that have
shown high schema compliance in recent bench-
marks (GuidanceAl, 2023). Our approach utilizes a
two-stage parsing mechanism that implements prin-
ciples from grammar-constrained decoding with-
out requiring model fine-tuning (Geng et al., 2023).
First, we extract and normalize the JSON from
the model’s response, employing regex-based tech-
niques to identify JSON blocks within markdown-
formatted text. Second, we validate the extracted
JSON against a predefined schema using Pydantic
models. For handling malformed outputs, we use a
partial JSON parser that can recover from common
structural errors. This parser incrementally pro-
cesses each character in the response, maintaining
a stack of expected closing delimiters, and can han-
dle incomplete JSON objects, unclosed quotes, and
missing brackets, similar to finite-state machine-
based decoding techniques that enforce strict ad-
herence to predefined formats (Willard and Louf,
2023). When validation fails, our system utilizes
a structured exception handling mechanism that
preserves both the original output and the specific
validation error details.

4 Experimental Evaluation

We evaluate our on-premises STM objective parser
focusing on two objectives: (1) measuring the ac-
curacy of on-premises LL.Ms in translating natural-
language STM objectives into structured JSON
outputs, and (2) determining the impact of model
architecture, size, and memory optimizations on
performance and interpretability. Our experiments
use an A100 80GB GPU.

4.1 Experimental Setup

Our two-stage pipeline first identifies the objec-
tive type from natural language, then generates a
detailed JSON output with all required fields popu-
lated based on the identified type. Our benchmark
suite comprises 405 diverse objective prompts, de-
signed to span nine distinct STM objective cate-
gories (e.g., space object tracking, sensor orches-
tration, search). Each prompt in this set defines
specific, unambiguous field values to ensure pre-
cise accuracy measurement. We evaluate nine
large language models selected to cover a wide

262

Mistral-Small-2409 20.0
Falcon3-7B

GPTQ-Int4-Falcon3-7B

4
®

o
N

granite-3.0-2b

o o
LY
A
5
n
Parameters (Billions

Objective Type Accuracy
o
IS

Phi-3.5-mini

o
w

Mistral-7B-v0.2

o
N

w

o

0.14

Falcon3-1B Llama-3-8B

0.0 T T T T T T T T T }
00 01 02 03 04 05 06 07 08 09 10
Field Accuracy

Figure 4: LLMs evaluated on 405 STM tasks from nat-
ural language to JSON. While larger models perform
best overall, 7B-parameter models achieve competitive
accuracies. Notably, Llama-3-8B and Mistral-7B show
high field accuracy despite poor objective classification,
highlighting the importance of accurate initial classifi-
cation in the two-stage pipeline.

range of parameter scales and architectures. The
evaluated models include: Mistral-Small-Instruct-
2409 (22.2B) (Mistral AI Team, 2024); Falcon3-7B
(7.46B) and its 4-bit quantized version Falcon3-7B-
GPTQ; Falcon3-1B (1.67B) (Team, 2024); Phi-3.5-
mini-instruct (3.82B) (Abdin et al., 2024); Llama-
3-8B-Instruct (8.03B) (Al@Meta, 2024); Mistral-
7B-Instruct-v0.2 (7.24B) (Jiang et al., 2023); and
Granite-2B (2.63B) (Granite Team, 2024).! The
quantized Falcon3-7B-GPTQ has a memory foot-
print comparable to a 1.7B-parameter model. We
also tested an additional smaller model, Qwen-2.5-
0.5B (0.494B) (Yang et al., 2024), which achieved
0% on both objective type and field accuracy met-
rics with our current prompting strategy. This result
establishes a practical lower bound for model capa-
bility on this complex task, and we have omitted
Qwen-2.5-0.5B from comparative plots. All eval-
uations for the nine primary models utilize identi-
cal, carefully constructed prompts (see Figure 3),
a consistent temperature setting of 0.2 to encour-
age deterministic outputs, and uniform validation
criteria to ensure fair and rigorous comparison.

4.2 Evaluation Metrics and Processing

We employ two primary quantitative metrics to
assess performance across the 405 test cases: (1)
Objective Type Accuracy: This measures the effi-

"For brevity, “Instruct” suffixes are often omitted. Thus,
“Mistral-Small-2409” refers to “Mistral-Small-Instruct-2409”.

263

Model Obj Type Acc. (%) Field Acc. (%)

Mistral-Small-2409 100.00 98.81
Falcon3-7B 94.32 94.34
Falcon3-7B-GPTQ 89.38 90.89
Granite-2B 70.12 88.95
Llama-3-8B 0.74 98.63
Mistral-7B-v0.2 16.54 74.52
Phi-3.5-mini 30.12 90.06
Falcon3-1B 0.99 29.82
Qwen-2.5-0.5B" 0.00 0.00

Table 1: Objective Type Accuracy and Field Accuracy
(%) across 405 STM objectives for on-premises LLMs
(see Fig. 4). Field Accuracy is computed conditional on
correct objective type and schema-valid JSON. TQwen-
2.5-0.5B yielded negligible accuracy and was omitted
from comparative plots.

cacy of the first pipeline stage. It is defined as the
percentage of test cases where the LLM correctly
identifies the true STM objective type from a set
of nine predefined objective types. (2) Field Ac-
curacy: This evaluates the second pipeline stage.
It is calculated as the percentage of correctly pop-
ulated fields within the generated JSON objects,
contingent upon the JSON being validated against
the ground truth or correctly identified objective
schema. Correct population considers both the
field’s value and its data type. To ensure a fair
assessment of Field Accuracy, we implement cus-
tom normalizers for common variations that do not
alter semantic meaning. These include normaliza-
tion for datetime string formats (e.g., ISO 8601 vs.
other representations), numerical comparisons with
a defined tolerance, and order-invariant compari-
son for lists of items. Furthermore, we report slot
presence F1 scores, derived from precision and re-
call of expected fields, to offer a nuanced view of
schema population completeness. When JSON re-
sponses fail Pydantic validation, our system either
re-prompts or applies rule-based fixes for common
structural errors (mismatched brackets, unclosed
quotes). A partial JSON parser recovers data from
malformed outputs by maintaining a stack of ex-
pected closing delimiters, enabling extraction from
partially correct responses.

4.3 Results and Analysis

Table 1 summarizes performance across 405 STM
objectives (see also Fig. 4). Mistral-Small-2409
attains 100.00% Objective Type Accuracy and
98.81% Field Accuracy. Falcon3-7B reaches
94.32% Objective Type Accuracy and 94.34%
Field Accuracy, approaching Mistral-Small-2409

with approximately one-third of the parameters.
The GPTQ version of Falcon3-7B yields 89.38%
Objective Type Accuracy and 90.89% Field Accu-
racy, a 3.45 percentage-point reduction in Field Ac-
curacy relative to the full-precision model. Granite-
2B obtains 70.12% Objective Type Accuracy and
88.95% Field Accuracy, indicating that model ar-
chitecture and training methodology may outweigh
raw parameter count. Llama-3-8B exhibits 98.63%
Field Accuracy but 0.74% Objective Type Accu-
racy, highlighting the Stage 1 classification bottle-
neck. Mistral-7B-Instruct-v0.2 achieved 16.54%
Objective Type Accuracy and 74.52% Field Accu-
racy. In comparison, Phi-3.5-mini achieved scores
of 30.12% and 90.06%, respectively. At the lower
bound, Falcon3-1B achieves 0.99% Objective Type
Accuracy and 29.82% Field Accuracy. Since Qwen-
2.5-0.5B yields negligible accuracy, we omitted
it from the figures for clarity. Overall, accurate
Stage 1 objective classification remains the primary
bottleneck: strong schema-filling performance is
inaccessible when the target schema is misidenti-
fied.

4.4 Field-Level Error Analysis

We conduct an error analysis categorizing fail-
ures into three classes: structural/omission er-
rors (missing fields, null values), semantic/con-
tent errors (incorrect values, type mismatches), and
complex/interaction errors (field swapping, cross-
dependencies). Figure 5 shows how our two-stage
pipeline creates cascading failures: when models
misidentify the objective type in Stage 1, they pop-
ulate fields for the wrong schema in Stage 2, re-
sulting in low field coverage (recall). To isolate
field-filling performance from objective classifica-
tion accuracy, we introduce a coverage-scaled error
metric:

Raw Error Count _ FEraw

Scaled Error Count = =
caled Error Coun Recall R

where R represents the field-coverage recall (the
fraction of expected fields the model attempts un-
der the correct schema). This normalization esti-
mates field-filling error rates independent of ob-
jective classification performance. Phi-3.5-mini
exhibits low field-coverage recall (R = 0.37), indi-
cating it attempts only 37% of the expected fields
under the correct schema. (For reference, its Objec-
tive Type Accuracy is 30.12%.) At this coverage
level, the scaled analysis projects approximately
770 total errors if all fields were attempted across

Error Category Groups
Bl Structural/Omission
= Semantic/Content

3 Complex/Interaction

800

g
g

Coverage-Scaled Error Count

Falcon3-7B
(R=0.94)

Granite-2B
(R=0.70)

Phi-3.5-mini
(R=0.37)

Falcon3-7B (GPTQ)
(R=0.89)

Figure 5: Coverage-scaled error analysis across four
model architectures, showing the distribution of struc-
tural/omission, semantic/content, and complex/interac-
tion errors normalized by field coverage (recall). Models
with lower recall values (shown in parentheses) fill out
fewer fields, and error counts are scaled by 1/R to esti-
mate total errors if all fields were filled.

the 405 objectives. This projection reveals similar
field-filling error rates between Phi-3.5-mini and
Granite-2B (860 scaled errors), despite Granite-
2B’s higher field-coverage recall (R = 0.67). (Its
Objective Type Accuracy is 70.12%.) The error
distribution reveals architectural limitations in field
population. Smaller models predominantly fail
through structural omissions (582 scaled errors
for Falcon3-7B-GPTQ), indicating schema com-
prehension deficits. Semantic errors remain rela-
tively constant across model scales, suggesting that
value-level understanding proves more robust than
structural comprehension. Notably, quantized mod-
els show disproportionate increases in structural
errors compared to their full-precision counterparts,
indicating that compression techniques particularly
impact schema understanding while preserving se-
mantic capabilities. Figure 6 presents a detailed
analysis across grouped objective fields, revealing
distinct error profiles among models. Falcon3-1B
demonstrates widespread structural failures with
OMIT errors dominating all field categories. Mid-
tier models like Granite-2B and Phi-3.5-mini ex-
hibit more nuanced error patterns. While both
struggle with structural errors in complex groups
like “ID Lists” and “Timing Config,” they increas-
ingly show semantic errors for the fields they at-
tempt to fill. Granite-2B encounters numerical er-
rors in “Position & ROI” and arbitrary semantic
errors in “Search Config,” while Phi-3.5-mini ex-
hibits semantic errors in “Request & Command.”

264

Start Times HALL omMIT omIT HALL

End Times HALL omIT oM omIT

ID Lists omIT omIT oM omIT

Search Config omIT SEM-A oM oM omIT

Timing Config omIT oM oMmIT oMmIT

Accuracy

Request & NUM SEM-R oM oM
Command

Position & NUM oM oM
ROI
Classification oM oMIT oMIT omIT omIT

Data Processing omIT HALL omIT omIT omIT

Autonomy SEM-A omIT omIT omIT

Falcon3-1B Granite-2B Phi-3.5-mini Falcon3-7B Falcon3-7B
(GPTQ)

Figure 6: Average accuracy across grouped STM objec-
tive fields for LLMs evaluated on 405 test cases. Cell
color indicates average accuracy (green=high, red=low)
for the field group. Annotations specify the dominant
error archetype (e.g., OMIT for omission, SEM-A for ar-
bitrary semantic errors, HALL for hallucination, NUM
for numerical errors) observed among the fields within
each group that showed mistakes.

A notable pattern emerges in temporal field han-
dling. Both Granite-2B and Falcon3-7B generate
hallucinations in “Start Times,” producing plausi-
ble but contextually incorrect values rather than
omissions. This suggests systematic challenges in
distinguishing hierarchically related temporal fields
(objective-level versus intent-level times), repre-
senting a failure mode distinct from simple extrac-
tion errors. The more capable Falcon3-7B variants
achieve higher accuracies across most field groups,
yet quantization effects are evident. The GPTQ
version shows increased OMIT errors compared to
its unquantized counterpart, indicating that quan-
tization degrades both structural comprehension
and field population rates. These findings high-
light the critical importance of accurate objective
classification in our two-stage pipeline. Models
like Falcon3-7B succeed by correctly identifying
objective types 94% of the time, enabling their
strong field-filling capabilities. In contrast, mod-
els with poor objective classification cascade these
failures through the entire pipeline, making their
field-filling abilities largely inaccessible. For STM
deployment where complete and correct JSON ob-
jects are mandatory, the initial classification stage
represents the primary bottleneck, as even models
with strong field-filling capabilities cannot recover
from objective misidentification.

5 Limitations

Our evaluation examines single generations per ob-
jective without analyzing consistency across multi-
ple runs, which limits insights into output stability
for deployment. The two-stage pipeline architec-
ture creates cascading failure points where classi-
fication errors completely prevent schema gener-
ation, regardless of downstream capabilities. Fur-
thermore, we evaluate only English prompts on
our test cases with unambiguous specifications,
whereas real operational scenarios often involve
ambiguous or underspecified objectives requiring
clarification. Our findings specifically address
STM domain structured generation, and generaliza-
tion to other safety-critical domains with different
schema complexities remains unexplored. Addi-
tionally, we focus exclusively on accuracy met-
rics without examining latency variance or mem-
ory usage patterns under varying workloads, both
of which are critical for operational deployment
decisions.

6 Conclusion and Future Work

We find that 7B-parameter models can effectively
generate structured STM commands on-premises,
achieving over 90% accuracy through a two-stage
pipeline. However, limitations emerge: cascading
failures where classification errors prevent access
to strong schema-filling capabilities, and quanti-
zation’s disproportionate degradation of structural
comprehension. Future research will explore meth-
ods to decouple these failure modes and preserve
structural understanding under resource constraints.
Collectively, these results provide the first system-
atic evaluation of on-premises LLMs for STM com-
mand generation, suggesting a path toward deploy-
ment in air-gapped environments.

References

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad
Awan, Jyoti Aneja, Ahmed Awadallah, et al. 2024.
Phi-3 Technical Report: A Highly Capable Lan-
guage Model Locally on Your Phone. ArXiv,
abs/2404.14219.

Al@Meta. 2024. Llama 3 Model Card.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.
2023. Prompting Is Programming: A Query Lan-
guage for Large Language Models. Proc. ACM Pro-
gram. Lang., T(PLDI).

265

https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591300

Shiqi Chen, Miao Xiong, Junteng Liu, Zhengxuan Wu,
Teng Xiao, Siyang Gao, and Junxian He. 2024. In-
Context Sharpness as Alerts: An Inner Representa-
tion Perspective for Hallucination Mitigation. ArXiv,
abs/2403.01548.

Samuel Colvin, Eric Jolibois, Hasan Ramezani, Adrian
Garcia Badaracco, Terrence Dorsey, David Mon-
tague, Serge Matveenko, Marcelo Trylesinski, Syd-
ney Runkle, David Hewitt, and Alex Hall. 2024. Py-
dantic.

Erin Smith Crabb and Matthew T. Jones. 2024. Accel-
erating Model-Based Systems Engineering by Har-
nessing Generative Al. In 2024 19th Annual System
of Systems Engineering Conference (SoSE), pages
110-115.

Nikolas Dahn, Stefan Fuchs, and Horst-Michael Gross.
2018. Situation Awareness for Autonomous Agents.
In 2018 27th IEEE International Symposium on
Robot and Human Interactive Communication (RO-
MAN), pages 666—671.

Enrique De Alba, Marco de Lannoy Kobayashi, and
Alexander Cabello. 2024. Integrating LLMs With
SatSim for Enhanced Satellite Tracking and Identifi-
cation. In Proceedings of the Advanced Maui Opti-
cal and Space Surveillance Technologies Conference
(AMOS).

Justin Fletcher, D Archambeault, J Schmidt, R Peterson,
P Sydney, and S Hunt. 2021. The dynamic optical
telescope system: Collaborative autonomous sensing
for space domain awareness. JDR&E, 4:10-18.

Justin R. Fletcher and Jonathan E. Kadan. 2024. Au-
tonomous interactive agents for global telescope net-
work orchestration. In Software and Cyberinfras-
tructure for Astronomy VIII, volume 13101, page
131012U. International Society for Optics and Pho-
tonics, SPIE.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2023. OPTQ: Accurate Quantization
for Generative Pre-trained Transformers. In The
Eleventh International Conference on Learning Rep-
resentations.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and
Robert West. 2023. Grammar-Constrained Decod-
ing for Structured NLP Tasks without Finetuning.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10932-10952, Singapore. Association for Computa-
tional Linguistics.

IBM Granite Team. 2024. Granite 3.0 Language Mod-
els.

GuidanceAl 2023. Guidance: A language model pro-
gramming framework.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gi-
anna Lengyel, Guillaume Lample, Lucile Saulnier,

L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2023. Mis-
tral 7B. ArXiv, abs/2310.06825.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeff Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. ArXiv,
abs/2001.08361.

Will Kurt. 2024. Coalescence: Making LLM Inference
5x Faster. Blog post on .TXT.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient Memory Management for Large Language
Model Serving with PagedAttention. In Proceedings
of the ACM SIGOPS 29th Symposium on Operating
Systems Principles.

Jason Liu. 2024. Welcome to instructor - instructor.
https://python.useinstructor.com/.

Mistral AI Team. 2024. Mistral-Small-Instruct-2409:
A 22B Parameter Large Language Model. Hugging
Face Model Repository. Accessed: 2025-02-25.

Brett M. Morris, Erik Tollerud, Brigitta Sipdcz,
Christoph Deil, Stephanie T. Douglas,
Jazmin Berlanga Medina, Karl Vyhmeister,
Toby R. Smith, Stuart Littlefair, Adrian M. Price-
Whelan, Wilfred T. Gee, and Eric Jeschke. 2018.
astroplan: An Open Source Observation Planning
Package in Python. The Astronomical Journal,
155(3):128.

Omnifact. 2025. The Case for Self-Hosting Large Lan-
guage Models in Enterprise Al

OpenAl. 2024.
in the APL

Introducing Structured Outputs
https://openai.com/index/

introducing-structured-outputs—in-the-api/.

Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Re-
ichart, Idan Szpektor, Hadas Kotek, and Yonatan Be-
linkov. 2025. LLMs Know More Than They Show:
On the Intrinsic Representation of LLM Hallucina-
tions. In The Thirteenth International Conference on
Learning Representations.

Falcon-LLM Team. 2024. The Falcon 3 Family of Open
Models.

The Aerospace Corporation, Space Safety Institute.
2024. 2024 Space Safety Compendium: Collaborat-
ing for Sustainable Space Futures. Technical report,
The Aerospace Corporation.

United Nations Office for Outer Space Affairs. 2025.
Annual number of objects launched into space. Data
processed by Our World in Data.

Brandon T. Willard and Rémi Louf. 2023. Efficient
Guided Generation for Large Language Models.
ArXiv, abs/2307.09702.

266

https://api.semanticscholar.org/CorpusID:268248195
https://api.semanticscholar.org/CorpusID:268248195
https://api.semanticscholar.org/CorpusID:268248195
https://docs.pydantic.dev/latest/
https://docs.pydantic.dev/latest/
https://doi.org/10.1109/SOSE62659.2024.10620975
https://doi.org/10.1109/SOSE62659.2024.10620975
https://doi.org/10.1109/SOSE62659.2024.10620975
https://doi.org/10.1109/ROMAN.2018.8525511
https://amostech.com/TechnicalPapers/2024/Machine-Learning-for-SDA/DeAlba.pdf
https://amostech.com/TechnicalPapers/2024/Machine-Learning-for-SDA/DeAlba.pdf
https://amostech.com/TechnicalPapers/2024/Machine-Learning-for-SDA/DeAlba.pdf
https://doi.org/10.1117/12.3018554
https://doi.org/10.1117/12.3018554
https://doi.org/10.1117/12.3018554
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://github.com/ibm-granite/granite-3.0-language-models/
https://github.com/ibm-granite/granite-3.0-language-models/
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:210861095
https://blog.dottxt.co/coalescence.html
https://blog.dottxt.co/coalescence.html
https://python.useinstructor.com/
https://huggingface.co/mistralai/Mistral-Small-Instruct-2409
https://huggingface.co/mistralai/Mistral-Small-Instruct-2409
https://doi.org/10.3847/1538-3881/aaa47e
https://doi.org/10.3847/1538-3881/aaa47e
https://omnifact.ai/whitepapers/self-hosting-llms-on-premise-enterprise-ai
https://omnifact.ai/whitepapers/self-hosting-llms-on-premise-enterprise-ai
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openreview.net/forum?id=KRnsX5Em3W
https://openreview.net/forum?id=KRnsX5Em3W
https://openreview.net/forum?id=KRnsX5Em3W
https://huggingface.co/blog/falcon3
https://huggingface.co/blog/falcon3
https://aerospace.org/sites/default/files/2024-12/SSICompendiumBook_2024-12_FINAL.pdf
https://aerospace.org/sites/default/files/2024-12/SSICompendiumBook_2024-12_FINAL.pdf
https://ourworldindata.org/grapher/yearly-number-of-objects-launched-into-outer-space
https://api.semanticscholar.org/CorpusID:260278488
https://api.semanticscholar.org/CorpusID:260278488

Yi Xiong, Hao Wu, Changxu Shao, Ziqing Wang, Rui
Zhang, Yuhong Guo, Junping Zhao, Ke Zhang, and
Zhenxuan Pan. 2024. LayerKV: Optimizing Large
Language Model Serving with Layer-wise KV Cache
Management.

Qwen An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Jun-
yang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin
Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yi-Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu
Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan,
and Zekun Wang. 2024. Qwen2.5 Technical Report.
ArXiv, abs/2412.15115.

Tianyi Zhang, Jonah Wonkyu Yi, Zhaozhuo Xu, and
Anshumali Shrivastava. 2024. KV Cache is 1 Bit Per
Channel: Efficient Large Language Model Inference
with Coupled Quantization. In The Thirty-eighth An-
nual Conference on Neural Information Processing
Systems.

267

https://doi.org/10.48550/arXiv.2410.00428
https://doi.org/10.48550/arXiv.2410.00428
https://doi.org/10.48550/arXiv.2410.00428
https://api.semanticscholar.org/CorpusID:274859421
https://openreview.net/forum?id=pNnvzQsS4P
https://openreview.net/forum?id=pNnvzQsS4P
https://openreview.net/forum?id=pNnvzQsS4P

