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Abstract

The efficient identification of previously fact-
checked claims across multiple languages is
a challenging task. It can be time-consuming
for professional fact-checkers even within a
single language. It becomes much more dif-
ficult to perform manually when the claim
and the fact-check may be in different lan-
guages. This paper presents a systematic
approach for the retrieval of top-k relevant
fact-checks for a given post in a monolingual
and cross-lingual setup using two transformer-
based fact-checked claim retrieval frameworks
that share a common preprocessing pipeline
but differ in their underlying encoder imple-
mentations: TIDE, a TensorFlow-based cus-
tom dual encoder applied to english-translated
data, and PTEX, a PyTorch-based encoder op-
erating on both english-translated and original-
language inputs, and introduces a lightweight
post-processing technique based on a textual
feature: Keyword Overlap Count applied
via reranking on top of the transformer-based
frameworks. Training and evaluation on a large
multilingual corpus show that the fine-tuned
E5-Large-v2 model in the PTEX framework
yields the best monolingual track performance,
achieving an average Success@10 score of
0.8846 and the same framework model with
post-processing technique achieves an average
Success@10 score of 0.7393 which is the best
performance in crosslingual track.

1 Introduction

The rise of user-generated content on social me-
dia presents major challenges for fact-checkers,
especially when claims and fact-checks span multi-
ple languages. Automating verified claim retrieval
can streamline verification, reduce manual effort,
and speed up responses to misinformation. This
paper aims to develop and evaluate multilingual
transformer-based claim retrieval frameworks us-
ing dual-encoder architectures, fine-tuning strate-
gies, and lightweight post-processing reranking.

The main contributions of this paper are:
• We developed TIDE, a TensorFlow-based dual

encoder framework that used E5-Large-v2 (Wang
et al., 2022) and GTR-T5-Large (Ni et al., 2021c),
fine-tuned on english-translated data.

• We developed PTEX, a PyTorch-based en-
coder framework integrating English-only en-
coders (GTE-Large (Li et al., 2023), GTR-
T5-Large, MiniLM-L12-v2 (Wang and Liu,
2020), E5-Large-v2) and multilingual encoders
(Multilingual-E5-large (Gao and Callison-Burch,
2023), Multilingual-E5-base (Gao and Callison-
Burch, 2023), paraphrase-xlm-r-multilingual-
v1 (Reimers and Gurevych, 2019), paraphrase-
multilingual-MiniLM-L12-v2 (Reimers and Oth-
ers, 2020), paraphrase-multilingual-mpnet-base-
v2 (Song and Others, 2020)), to process english-
translated and original-language texts.

• We introduced a Keyword Overlap Count tex-
taul feature that compared named entities and
nouns between a post and candidate claims.

• Finally, we applied a lightweight post-
processing reranking step that linearly combined
transformer-based similarity scores with the
Keyword Overlap Count feature, enhancing
retrieval accuracy with minimal computation and
no model retraining due to its lightweight nature.

2 Related Work

Early fact-checking systems used keyword match-
ing and classical IR methods like BM25 and
TF–IDF, which lacked semantic and cross-
lingual understanding. Neural IR models (e.g.,
DSSM (Huang et al., 2013), DRMM (Guo et al.,
2016)) introduced learned interactions but strug-
gled with long texts. Transformer models (e.g.,
BERT (Devlin et al., 2019), SBERT (Reimers and
Gurevych, 2019)) improved contextual understand-
ing, while dual encoders like GTR-T5 (Ni et al.,
2021b) and E5 (Wang et al., 2022) enabled efficient
dense retrieval via ANN. These advances led us to
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adopt E5-Large-v2 and GTR-T5-Large in Tensor-
Flow (TIDE) and PyTorch (PTEX) frameworks.
Language-agnostic models like LaBSE (Feng et al.,
2020) generalize across languages but lag behind
English-specialized encoders on translated data.
Compact multilingual models (e.g., paraphrase-
XLM, multilingual-MiniLM) narrow this gap but
still trail fine-tuned English models. Extending
prior work, we evaluated English-only and mul-
tilingual encoders on both english-translated and
original-language claims, finding English text en-
coders (mainly E5-Large-v2) to be the most effec-
tive for cross-lingual claim retrieval.

3 Dataset

All textual analysis and experiments were based
on the SemEval 2025 Shared Task 7: Multilin-
gual and Crosslingual Fact-Checked Claim Re-
trieval (Peng et al., 2025)1. The training and de-
velopment dataset included 24,431 multilingual
social media posts, 153,743 fact-checked claims,
and 25,743 post-to-fact-check pairs, with each post
linked to at least one claim. Posts were divided into
monolingual (18,907) and cross-lingual (5,524)
evaluation tracks. The monolingual track covered
eight languages: French (fra), Spanish (spa), En-
glish (eng), Portuguese (por), Thai (tha), German
(deu), Modern Standard Arabic (msa), and Arabic
(ara). The test set comprised 272,447 fact checks
in ten languages, the above eight plus Polish (pol)
and Turkish (tur), and 8,276 posts (4,000 used for
cross-lingual and the rest for monolingual evalua-
tion). Figure 1 shows the data distribution: left for
training and development, right for test.

Figure 1: Training, development & test data distribution

4 Methodology

This section discusses the methodologies used. For
a given post P, our main objective is to retrieve top
10 of it’s most relevant fact-checked claims.

1https://disai.eu/semeval-2025/

4.1 Text Preprocessing

Few pre-processing steps were applied such as 1)
Removal of escape characters.(e.g., \n, \t), 2) De-
coding of Unicode characters, 3) OCR and post text
were concatenated, 4) Tokenization of texts into to-
kens etc. 5) Removal of emojis using the emoji
package2. 6) Elimination of special characters, ex-
tra spaces, and brackets via regular expressions.

4.2 Textual Analysis and Feature Extraction

Keyword Overlap Count: We extracted salient
lexical items: proper nouns, common nouns, and
named entities, from each social media post and
fact-check claim using the spaCy toolkit (Honnibal
and Montani, 2017). For example, from the post
“Climate change summit in Paris kicks off today,”
extracted keywords include “climate,” “change”,
“summit”, and “Paris.” The overlap between the
two keyword sets is quantified to measure surface-
level semantic alignment. This integer feature com-
plements dense-vector similarity by highlighting
direct lexical matches. Let Kpost denote the set
of keywords from the post and Kfc the set from a
candidate claim. We define the Keyword Overlap
Count feature, denoted fkw, as the cardinality of
their intersection:

fkw =
∣∣Kpost ∩ Kfc

∣∣.
4.3 Framework Development

The following subsections detail each framework’s
unique models, architecture, and fine-tuning, all
built on a common dual encoder setup and unified
retrieval process but each framework leverages its
respective platform and model nuances.

4.3.1 TIDE: TensorFlow Inference Dual
Encoder

Overview and Models Used: TIDE, built in
TensorFlow, used a dual encoder setup with two
encoders initialized from a shared pre-trained
model to separately represent social media posts
(queries) and fact-check claims (passages). We
implemented the system using pre-trained mod-
els: E5-Large-v2 via TFBertModel and GTR-
T5-Large via TFT5EncoderModel. E5-Large-v2
generates 1024-dimensional embeddings through
weakly-supervised contrastive pre-training, per-
forming well on BEIR(Thakur et al., 2021) and MS-
MARCO(Craswell et al., 2021). GTR-T5-Large,

2https://pypi.org/project/emoji/

https://disai.eu/semeval-2025/
https://pypi.org/project/emoji/
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pre-trained on large-scale QA tasks and fine-tuned
on MS-MARCO, offers strong zero-shot general-
ization across domains (Ni et al., 2021a).

Framework Description: Instead of using an
out-of-the-box wrapper, we implemented a custom
E5DualEncoder class extending tf.keras.Model,
as shown in Figure 2. It contained two encoder in-
stances (for query and passage), both initialized
from a shared base model. During the forward pass
for a query Q and a passage P , it accepted batched
token-ID tensors, generated pooled (CLS) embed-
dings (Devlin et al., 2019) using the shared encoder
ETF and pooler, applied L2 normalization, and
computed cosine similarity via dot product.

q = pooler
(
ETF(Q)

)
, p = pooler

(
ETF(P )

)
.

The Euclidean (L2) norm was used to normalize
vectors (Reimers and Gurevych, 2019):

q′ = q
∥q∥ , p′ = p

∥p∥ .

Cosine similarity S was computed as dot product
of normalized embeddings (Mikolov et al., 2013):

S = q′ · p′.

Figure 2: TIDE framework with GTR-T5-Large model

4.3.2 PTEX: PyTorch Text Encoder
Overview and Models Used: PTEX was imple-
mented in PyTorch using the SentenceTransformer
library (Reimers and Gurevych, 2019) and unified
both English-only and multilingual text encoders
within a single retrieval pipeline. It employed GTE-
Large, pretrained on extensive relevance pairs to
ensure robust semantic matching; GTR-T5-Large,
which combined C4 pretraining with MS-MARCO
fine-tuning for strong zero-shot performance;
MiniLM-L12-v2, a compact, distilled encoder opti-
mized for rapid inference; and E5-Large-v2, deliv-
ering high-quality 1024-dimensional embeddings
via weakly-supervised contrastive pretraining. To
support direct cross-lingual matching without trans-
lation overhead, PTEX integrated Multilingual-E5-
large and Multilingual-E5-base, both trained on the

CCAligned corpus, along with paraphrase-xlm-r-
multilingual-v1, paraphrase-multilingual-MiniLM-
L12-v2, and paraphrase-multilingual-mpnet-base-
v2, chosen for their proven cross-lingual seman-
tic similarity capabilities and efficient model sizes.
Framework Description: For a query Q and a
passage P , each encoder Ei produced raw embed-
dings:

qi = Ei(Q), pi = Ei(P ).

Each vector was then normalized by its Euclidean
norm to unit length (Reimers and Gurevych, 2019):

q′
i =

qi

∥qi∥ , p′
i =

pi

∥pi∥ .

Final ensemble embeddings were computed as
weighted sums of normalized encoder outputs:

qens =
∑N

i=1 αi q
′
i, pens =

∑N
i=1 αi p

′
i.

Finally, the retrieval score was calculated as the
dot product of these unit-length ensemble vectors,
equivalent to cosine similarity:

S(Q,P ) = qens · pens.

4.4 Training
TIDE Framework: The proposed TIDE frame-
work models were fine-tuned using a contrastive
loss function with a fixed margin to maximize simi-
larity for positive pairs and suppress it for negatives
(Hadsell et al., 2006). The models were fine-tuned
using a learning rate of 1× 10−5 with a batch size
of 2 due to resource constraints and optimized us-
ing Adam (Kingma and Ba, 2015). Contrastive loss
encouraged high similarity Si for positives (yi = 1)
and penalized negatives (yi = 0) using margin m:

L = yi(1− Si)
2 + (1− yi) ·max(0, Si −m)2

Contrastive accuracy was measured by thresh-
olding similarity using τ (e.g., τ = 0.5):

ŷi=

1, if Si ≥ τ

0, otherwise

PTEX Framework: The proposed PTEX mod-
els were fine-tuned using MultipleNegativesRank-
ingLoss (Xiong et al., 2021), leveraging in-batch
negatives to maximize positive pair similarity while
minimizing negative ones. The training setup con-
sisted of a batch size of 4 and one epoch, with
warmup steps set to 10% of total steps. The opti-
mizer used was Adam with learning rate scheduling
to ensure stable training. The strategy has been ap-
plied for training on both english-translated and
original-language datasets.
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4.5 Retrieval Process
After obtaining normalized embeddings for a query
and all passages in the corpus, each framework
computed a similarity score vector:

ScoresP = [S1, S2, . . . , Sn].

These scores are sorted in descending order, and
the top-K passages are retrieved:

Top-K = argsort(−ScoresP )[: K].

4.6 Post-processing
Once each post–claim pair has been assigned a
dense-vector similarity score sdl which is the pre-
dicted output from the deep learning frameworks
mentioned in Section 4.3, we incorporate the Key-
word Overlap Count fkw into a final reranking
score. Let α represent the weight on the dense-
vector score and β the weight on the keyword fea-
ture. Based on our experiments, we have set

α = 0.95, β = 0.05.

Then the combined reranking score is computed as

scorefinal = α sdl + β fkw.

Here, sdl denotes the cosine similarity from the
transformer model, and fkw is the Keyword Over-
lap Count defined in Section 4.2. The scorefinal is
the final score that is used to rerank fact checks for
that post, and the top-K fact-checks per post are re-
trieved as mentioned in Section 4.5 for evaluation.
This linear combination allows the reranker to favor
claims that not only are close in semantic embed-
ding space but also share explicit lexical content
with the post. We opted for this feature-based post-
processing technique due to its lightweight nature,
requiring minimal additional computation and no
model retraining. While more advanced retrieval
techniques exist, they often involve higher compu-
tational cost and architectural complexity, making
them less suitable for efficient post-processing in
low-resource or real-time settings.

5 Evaluation

All the proposed frameworks were evaluated on
the test datasets provided by the organizers of
"SemEval-2025 Task 7" using the Success@10 met-
ric by retrieving the top 10 fact-checks from the
corpus. The Success@10 metric can be defined as:

Success@10 =

{
1, at least one fact-check in top 10,
0, otherwise.

For the reranking-based post-processing, the top
100 fact-checks for each post were first retrieved
using the dense similarity scores from the dual
encoder model. These were then reranked using the
final score after reranking defined in Section 4.6,
which combines semantic similarity with keyword
overlap. The top 10 reranked fact-checks per post
were finally used to compute Success@10.

6 Result

We evaluated our retrieval frameworks across four
key dimensions: training platform (TensorFlow vs.
PyTorch), the impact of fine-tuning, encoder type
(English-only vs. multilingual), and data represen-
tation (english-translated vs. original-language).
Table 1 presents the average Success@10 results
of the frameworks without post-processing. Fig-
ure 4 shows salient monolingual and crosslingual
comparisons.

Our TensorFlow-based TIDE framework using
E5-Large-v2 and GTR-T5-Large achieved aver-
age crosslingual Success@10 of 0.525 (0.580 and
0.470, respectively). In contrast, the PyTorch-based
PTEX framework attained an average crosslingual
Success@10 of 0.688, a 31.05% relative improve-
ment, highlighting the benefits of PyTorch’s opti-
mization strategies and model interoperability for
large-scale, crosslingual retrieval tasks. Here, it can
be inferred that the TIDE framework based model’s
performance was unsatisfactory in crosslingual and
monolingual retrieval which is likely due to less
mature optimization and integration of multilingual
embeddings compared to PTEX.

Within the PyTorch-based PTEX framework,
fine-tuning proved to be highly effective. Models
without fine-tuning (GTE-Large, GTR-T5-Large,
MiniLM-L12-v2, and E5-Large-v2) achieved an
average crosslingual Success@10 of 0.662, while
their fine-tuned counterparts achieved 0.706—a
6.65% relative gain. In particular, GTE-Large im-
proved from 0.633 to 0.701 (+10.7%), GTR-T5-
Large from 0.699 to 0.729 (+4.3%), MiniLM-L12-
v2 from 0.602 to 0.664 (+10.3%), and E5-Large-v2
from 0.685 to 0.730 (+6.6%) (see Figure 4). Mono-
lingual tracks exhibited similar trends, with the
fine-tuned E5-Large-v2 attaining a Success@10 of
0.885 versus 0.856 before fine-tuning (Figure 4).

We further explored the impact of data represen-
tation by comparing english-translated and original-
language claims in the PTEX framework. Crosslin-
gual retrieval on the english-translated dataset
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Figure 3: Proposed PTEX framework with GTR-T5-Large model and post-processing

Figure 4: PTEX model performance (Crosslingual &
Monolingual): Not Fine-tuned vs. Fine-tuned

achieved a slightly higher Success@10 (0.712 on
eng vs. 0.702 on og). Thus, English translations
may better leverage models pretrained on English
corpora, despite possible translation noise.

To evaluate PTEX’s multilingual ability, we com-
pared fine-tuned multilingual encoders on english-
translated (eng) vs. original-language (og) data
across crosslingual and monolingual tracks. In the
crosslingual track, performance dropped slightly
for Multilingual-E5-large (0.7123 to 0.702) and
Multilingual-E5-base (0.6625 to 0.6275). Simi-
lar declines were seen for paraphrase-multilingual-
mpnet-base-v2 (7.2%), paraphrase-multilingual-
MiniLM-L12-v2 (11%) and xlm-r-multilingual-v1
(9.4%), indicating challenges in directly handling
non-English inputs. Conversely, in the monolingual
track, some models improved on original-language
data: Multilingual-E5-large (0.8539 to 0.8756) and
Multilingual-E5-base (0.8212 to 0.8238), though
others like paraphrase-multilingual-mpnet-base-v2,
paraphrase-multilingual-MiniLM-L12-v2 and xlm-
r-multilingual-v1 saw slight drops. These results
underscore the generalization strength of multilin-
gual models but also reveal their inconsistencies
across languages, with English-only encoders (e.g.,

E5-Large-v2 at 0.730) still outperforming them in
crosslingual settings.

Results after post-processing reranking: To
enhance crosslingual retrieval, we applied a post-
processing reranking stage using Keyword Overlap
Count feature (Section 4.2). This was selectively
applied to some of the fine-tuned PTEX models
on english-translated data in crosslingual track.
Figure 3 illustrates the PTEX framework using
GTR-T5-large with post-processing reranking tech-
nique, where kw_post and kw_fc denote keywords
from the post and candidate claim respectively, and
dl_score is the predicted deep learning framework
output. Table 2 shows Success@10 scores before
& after reranking on english-translated data.

The incorporation of the Keyword Overlap
Count reranker feature led to consistent gains
across all evaluated models on the crosslingual
track. E5-Large-v2 observed a 0.009 absolute im-
provement (+1.23%), GTR-T5-Large gained 0.003
(+0.41%), GTE-Large achieved a notable 0.013
increase (+1.85%), and Multilingual-E5-Large im-
proved by 0.008 (+1.12%). These results showed
that combining dense embedding similarity with
lexical overlap helped reduce semantic drift, espe-
cially when retrieving from the large, multilingual
corpus of 272K claims. We have applied reranking
to the crosslingual track because its larger, het-
erogeneous candidate set demanded more robust
disambiguation, whereas the relatively constrained,
monolingual corpus already yielded high perfor-
mance without reranking.
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Framework Model used Finetuned Dataset Track

Mono Cross

TIDE English Text Encoders
E5-Large-v2 ✓ eng 0.73 0.580
GTR-T5-Large ✓ eng 0.62 0.470

PTEX

English Text Encoders
GTE-Large ✗ eng 0.820 0.633
GTR-T5-Large ✗ eng 0.860 0.699
MiniLM-L12-v2 ✗ eng 0.802 0.602
E5-Large-v2 ✗ eng 0.856 0.685
GTE-Large ✓ eng 0.872 0.701
GTR-T5-Large ✓ eng 0.882 0.729
MiniLM-L12-v2 ✓ eng 0.831 0.664
E5-Large-v2 ✓ eng 0.885 0.730

PTEX

Multilingual Text Encoders

Multilingual-E5-large ✓ eng 0.8539 0.7123
og 0.8756 0.702

Multilingual-E5-base ✓ eng 0.8212 0.6625
og 0.8238 0.6275

paraphrase-xlm-r-multilingual-v1 ✓ eng 0.7653 0.5738
og 0.7449 0.5010

paraphrase-multilingual-MiniLM-L12-v2 ✓ eng 0.7672 0.5680
og 0.7265 0.4580

paraphrase-multilingual-mpnet-base-v2 ✓ eng 0.7667 0.5573
og 0.7209 0.4630

Table 1: Results for Fact-Checked Claim Retrieval without post-processing (Success@10).
Note: The dataset was split into english-translated (eng) and original-language (og) versions. English Text Encoders (e.g., TIDE,

PTEX) were evaluated on the eng split, while Multilingual Encoders (e.g., PTEX) were evaluated on both eng and og splits.

Model No Reranking After Reranking

E5-Large-v2 0.730 0.739
GTR-T5-Large 0.729 0.732
GTE-Large 0.701 0.714
Multilingual-E5-Large 0.712 0.720

Table 2: Average Success@10 scores Before and After
Post-processing Reranking in crosslingual track

7 Conclusion

In this study, we demonstrated that both the choice
of training platform and the application of targeted
fine-tuning were critical for advancing multilin-
gual fact-checked claim retrieval. The TensorFlow-
based TIDE framework delivered modest crosslin-
gual performance (average Success@10 of 0.525),
whereas our PyTorch-based PTEX implementa-
tion achieved substantially higher accuracy, with
an average crosslingual Success@10 of 0.688,
a 31.05% relative improvement. Within PTEX,
fine-tuning consistently boosted retrieval effective-
ness, and the additional post-processing reranker,
which combined dense embedding similarity with
a lightweight Keyword Overlap Count feature,
further elevated the crosslingual Success@10 of
the leading E5-Large-v2 model from 0.730 to
0.739. Overall, the fine-tuned E5-Large-v2 en-
coder in PTEX emerged as the best monolingual
system (Success@10 of 0.885) and, when aug-
mented by reranking, as the top crosslingual sys-

tem (Success@10 of 0.739). This demonstrates
that a fine-tuned English-only text encoder is opti-
mal for monolingual tasks, while adding a simple
lexical-overlap reranker proves most effective for
crosslingual retrieval. The reranking step also im-
proves multilingual encoders, narrowing their gap
with English-specialized models, and consistently
boosts crosslingual accuracy with minimal cost,
highlighting the value of combining semantic and
lexical signals in a scalable PyTorch pipeline.

8 Limitations

Our analysis had limitations: the English-based
post-processing reranker was inapplicable to non-
English inputs; we fine-tuned selected components
rather than adopting full end-to-end training; and
residual translation noise or OCR errors, especially
in low-resource languages, may have impacted
retrieval. Future work will explore multilingual
reranking using named entities and nouns in non-
English languages to evaluate it’s cross-lingual re-
trieval accuracy, alongside joint embedding-lexical
optimization and lightweight model compression.
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gaard. 2025. Semeval-2025 task 7: Multilingual and
crosslingual fact-checked claim retrieval. In Proceed-
ings of the 19th International Workshop on Semantic
Evaluation, SemEval 2025, Vienna, Austria.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Nils Reimers and Others. 2020. Making monolingual
sentence embeddings multilingual using knowledge
distillation. In ACL.

Kaitao Song and Others. 2020. Mpnet: Masked and
permuted pre-training for language understanding.
NeurIPS.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogenous benchmark for zero-shot evaluation
of information retrieval models.

Wei Wang and Haixun Liu. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. ArXiv.

Zhuyun Wang, Wei Ma, and Others. 2022. Text embed-
ding models (e5): A next step for dense retrieval. In
Proceedings of ...

Faxian Xiong, Mandar Thakur, Jimmy Lin, et al. 2021.
Approximate nearest neighbor negative contrastive
learning for dense text retrieval. In Proceedings of
SIGIR 2021.

https://doi.org/10.1145/3404835.3462804
https://doi.org/10.1145/3404835.3462804
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://aclanthology.org/2022.emnlp-main.669
https://aclanthology.org/2022.emnlp-main.669
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663

