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Abstract

Bilingual Lexicon Induction (BLI) is a funda-
mental task in cross-lingual word embedding
(CWE) evaluation, aimed at retrieving word
translations from monolingual corpora in two
languages. Despite the task’s central role, exist-
ing evaluation datasets based on lexical data of-
ten contain biases such as a lack of morpholog-
ical diversity, frequency skew, semantic leak-
age, and overrepresentation of proper names,
which undermine the validity of reported per-
formance. In this paper, we propose a novel,
language-agnostic evaluation methodology that
entirely eliminates the dependency on lexical
data. By training two sets of monolingual word
embeddings (MWEs) using identical data and
algorithms but with different weight initialisa-
tions, we enable the assessment on the BLI task
without being affected by the quality of the
evaluation dataset. We evaluate three baseline
CWE models and analyse the impact of key
hyperparameters. Our results provide a more
reliable and bias-free perspective on CWE mod-
els’ performance.

1 Introduction

Bilingual Lexicon Induction (BLI) is an intrinsic
evaluation task designed to identify and extract
translations of individual words. This task has
been a widely adopted method for evaluating cross-
lingual embeddings (CWEs), which aim to align
two (or more) sets of independently trained mono-
lingual word embeddings (MWEs) into a shared
cross-lingual space, where semantically similar
words are represented by closely aligned vectors
(Ruder et al., 2019).

Given this characteristic, they have shown sig-
nificant advantages in numerous NLP applications,
such as machine translation (Duan et al., 2020;
Zhou et al., 2021; Wang et al., 2022), cross-lingual
information retrieval (Vulić and Moens, 2015), lan-
guage acquisition and learning (Yuan et al., 2020).

In the BLI task, the method aims to generate a
list of target words for each source word, ranking
them based on the cosine similarities between their
respective embeddings. Afterwards, top-k target
words for each source word are selected, and the
word pairs are compared to the evaluation dataset
(Ruder et al., 2019).

Over the years, a large dataset of 110 bilingual
dictionaries MUSE (Conneau et al., 2017) pub-
lished along with the strong eponymous baseline
model has become the standard benchmark for the
BLI task in many papers. (Joulin et al., 2018; Sev-
erini et al., 2022; Cao et al., 2023; Ding et al., 2024,
2025) Despite their popularity, the MUSE datasets
have been subject to criticism concerning their reli-
ability in reflecting model performance.

Kementchedjhieva et al. (2019) and Laville et al.
(2022) reported a high proportion of proper names
and graphically identical or similar word pairs,
over 30% and 40% respectively. Czarnowska et al.
(2019) further noted that the datasets are skewed
toward high-frequency words, suffer from semantic
leakage between training and evaluation sets, and
lack morphological diversity.

While prior work has proposed alternative evalu-
ation datasets to address the limitations of MUSE,
many of these efforts still fall short in reliability.
For instance, some include only one-to-one word
pairs (Glavaš et al., 2019), neglecting polysemy.
Others compile their datasets automatically (Glavaš
et al., 2019; Vulić et al., 2019), inheriting many of
the same issues as MUSE.

Evaluation based on lexical data introduces
biases, including missing valid translations, fre-
quency skew, semantic leakage, and limited mor-
phological or lexical diversity. A core issue lies in
the mismatch between evaluation data, typically
base forms or limited variants, and embedding
spaces trained on inflected forms. As a result, valid
translations like German läuft for English run are
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marked incorrect if only laufen appears in the eval-
uation dataset.

These inconsistencies also impact the alignment
process. A single lemma can correspond to multi-
ple inflected word forms, e.g., light may translate to
licht (noun), leicht (adjective), or beleuchten (verb)
in German. Such variation introduces ambiguity
and noise into the learned mappings, particularly in
morphologically rich languages, where the number
of possible word forms per lemma is large. Yet, it
is often unclear whether poor performance stems
from data bias or algorithmic limitations.

Consequently, it hinders our ability to correctly
interpret the results, make accurate comparisons
between the proposed solutions, and monitor the
progress reliably. Moreover, addressing these bi-
ases is both time-consuming and challenging, often
requiring specialised linguistic expertise and care-
ful manual intervention.

Motivated by these insights, we propose a novel
evaluation methodology for assessing the quality
of aligned embeddings on the BLI task without re-
lying on any lexical data. Specifically, we train two
sets of MWEs using the same data and algorithm
while creating different weight initialisations for
each embedding space. The aim is to ensure that
both embedding spaces capture the same underly-
ing distributional patterns, with differences arising
only from stochastic variation. This allows us to
determine the upper bound of CWE models’ per-
formance, evaluating how effectively algorithms
can perform under ideal data conditions.

We apply this framework to evaluate three base-
line CWE models. Additionally, we investigate
the impact of key hyperparameters, such as em-
bedding dimension, number of epochs, size of the
seed lexicon, and word frequency, on the models’
performance.

Our contribution is threefold.

1. We introduce a novel approach for evaluating
aligned embeddings in the BLI task that does
not rely on lexical data and avoids common
biases found in existing datasets.

2. We provide a reliable and accurate evaluation
of three baseline CWE models with different
levels of supervision, independent of known
issues in standard evaluation datasets.

3. We systematically investigate how various hy-
perparameters affect the performance of base-
line CWE models.

2 Background

Advancements in BLI have largely been driven by
progress in CWE methods, where BLI serves as a
key intrinsic evaluation task. The pioneering work
introducing the embedding-based method evalu-
ated on the BLI task was proposed by Mikolov et al.
(2013), spawning an immense number of articles
continuing in the research. These proposed meth-
ods ranged from classical, state-of-the-art base-
line models such as MUSE (Conneau et al., 2017),
VECMAP (Artetxe et al., 2018b,a), RCLS (Joulin
et al., 2018) to current endeavours in integrating
contextual embeddings and Large Language Mod-
els (LLMs). (Vulić et al., 2023; Li et al., 2023; Hu
and Xu, 2024)

Despite the abundance of proposed solutions, the
evaluation has received limited attention (Laville
et al., 2022). One of the first comprehensive evalu-
ations was conducted by Glavaš et al. (2019), who
systematically compared projection-based CWE
models across both intrinsic and extrinsic tasks.
Their findings showed that optimising CWE mod-
els solely for BLI can result in degraded down-
stream performance. Moreover, the authors con-
structed standardised datasets across 28 language
pairs using frequent English words and their trans-
lations via Google Translate.

Later studies shifted focus toward analysing the
standard evaluation datasets MUSE, highlighting
several of its limitations. Kementchedjhieva et al.
(2019) conducted a study revealing that approxi-
mately a quarter of the word pairs consist of proper
names (e.g., Barack Obama, Skype), which are of-
ten graphically identical across languages. As a
result, they advocated for the adoption of more re-
liable evaluation methodologies or for performing
an evaluation with rigorous error analysis.

Another analysis provided by Czarnowska et al.
(2019) showed that all word pairs in the MUSE

datasets are drawn from the 10K most frequent
words in each language. They also discovered that
these datasets suffer from semantic leakage, where
it is common for a word to appear in both the train-
ing and evaluation datasets in different inflected
forms. Finally, they mentioned that the MUSE

datasets lack morphological diversity, where most
words occur in only one inflected form. As a so-
lution, they compiled morphologically complete
datasets for 5 Slavic and 5 Romance languages.

The most recent study conducted by Laville et al.
(2022) pointed out that many MUSE datasets con-
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tain over 30% identical word pairs, such as proper
names (Frederico, Brian), brands (android), ge-
ographical entities (Gelsenkirchen, Nebraska), or
words from other languages, mostly English (free-
dom, musica). Additionally, they revealed that, on
average, over 40% of word pairs in the datasets are
graphically similar.

There have been several efforts to address these
limitations. Izbicki (2022) introduced manually
annotated datasets across 298 languages in combi-
nation with English. They focused on a uniformly
distributed part of speech in each dataset to make
the results as comparable as possible. Other at-
tempts automatically compiled datasets for diverse
language combinations to mitigate English-centric
bias. (Vulić et al., 2019; Anastasopoulos and Neu-
big, 2020)

3 Experimental Setup

In this section, we outline the key components of
the experiments that were conducted.

3.1 Monolingual Embeddings

We train the fastText algorithm (Bojanowski et al.,
2017) with dimensions of 300, 100, 50, and 20,
each trained for 1, 3 and 5 epochs. For every con-
figuration, we generate two embedding spaces, A
and B. In space B, we modify the vocabulary by
prefixing each letter of every word with ”x” (e.g.,
apple becomes xaxpxpxlxe). We trim all vocabular-
ies to the 300K most frequent words.

3.2 Cross-lingual Embeddings

To retrieve aligned MWEs, we utilised three state-
of-the-art CWE frameworks, RCLS in a supervised
mode and MUSE and VECMAP (VM) in a super-
vised (MUSE-S, VM-S), unsupervised (MUSE-U,
VM-U) mode and a mode that relies on identical
strings (MUSE-I, VM-I).

The default settings closely followed the MUSE

training described in Conneau et al. (2017), VM-S
and VM-I in Artetxe et al. (2018a), VM-U settings
in Artetxe et al. (2018b), and RCLS settings in
Joulin et al. (2018).

3.3 Data

We train our MWEs using the fastText algorithm on
a corpus derived from the Czech Wikipedia dump 1,
containing approximately 170 million tokens. We

1https://dumps.wikimedia.org/cswiki/20250301/

Group Max Min
1 80,772,389 19,153
2 19,134 5,840
3 5,836 2,233
4 2,231 715
5 712 6

Table 1: Minimum and maximum frequency values by
group.

preprocess the raw Wikipedia data using Matt Ma-
honey’s normalisation Perl script. 2

To train CWEs in supervised mode, we randomly
sample 5K words from the MWE vocabulary and
create word pairs by pairing each word with a trans-
formed version, in which every letter is prefixed
with ”x”.

To evaluate CWEs, we split the MWE vocabu-
lary into five frequency groups (36.5K words each).
Table 1 shows their frequency ranges. From each
group, we randomly sample 2K words (5.5%), to-
talling 10K evaluation words. For each evaluation
word, we retrieve its top-1 nearest neighbour from
the target space, strip the inserted ”x” characters,
and check whether the retrieved word matches the
original word.

3.4 Metric
We report Precision@k (P@k), which is denoted
by the following formula:

P =
TP

(TP + FP )
(1)

, where TP (true positives) denotes the number
of correctly retrieved target-word candidates that
match the target words from the evaluation dataset,
and FP (false positives) represents the number of
incorrect target-word candidates retrieved by the
system. And, P@k evaluates the proportion of
TPs among the top-k predicted candidates for each
source word. In this paper, k = 1.

4 Evaluation

This section presents the main results, organised
into four parts, each examining the impact of a key
hyperparameter.

4.1 Dimension Impact
Overall results are displayed in Table 2. Most mod-
els achieved a remarkable performance of 100%,

2http://mattmahoney.net/dc/textdata.html

https://dumps.wikimedia.org/cswiki/20250301/
http://mattmahoney.net/dc/textdata.html
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especially when using 100- and 300-dimensional
embeddings across all epochs. An exception is
MUSE-I, which failed to align any embeddings due
to its reliance on identical strings, absent in our
setup. Additionally, performance declined slightly
with 50 and 20-dimensional embeddings, within a
margin of around 0.1% to 2%. In contrast, RCLS
does not consistently benefit from higher embed-
ding dimensions (e.g., 99.4% at DIM 20 vs. 85.6%
at DIM 100), and yields the weakest results among
all models, reaching only 85.6% P@1 when us-
ing 100-dimensional embeddings trained for one
epoch.

In the next phase, we investigated the effect
of systematic dimensionality ablation on models’
performance. For each set of pre-trained MWEs
(20-, 50-, 100-, and 300-dimensional), we gradu-
ally truncated the embeddings by retaining only a
subset of dimensions. Specifically, from the 100-
dimensional embeddings, we aligned versions with
the last 10, 20, 40, 50, 60, 70, 80, and 90 dimen-
sions removed. For the 300-dimensional embed-
dings, we retained the first 150, 100, 80, 60, 50,
and 20 dimensions. In the case of the 50- and 20-
dimensional embeddings, we evaluated a version
preserving the first 20 and 10 dimensions. This
setup allows us to explore how many dimensions
can be removed to still carry meaningful informa-
tion and maintain strong performance. The results
are illustrated in Fig. 1, 2, and 3.

Figure 1: P@1 performance across models after reduc-
ing dimensions from 100-dimensional MWEs trained
for one epoch.

When looking at Fig. 1 and 2, we can observe
that the majority of models maintain a high perfor-
mance of 100% until the dimensions fall to approxi-
mately 40. On the other hand, RCSLS achieves the
worst performance and shows a more pronounced
decline at lower dimensions. VM-I also fails as
dimensionality is reduced, collapsing at 80 dimen-

Figure 2: P@1 performance across models after reduc-
ing dimensions from 300-dimensional MWEs trained
for one epoch.

Figure 3: P@1 comparisons between reduced dimen-
sions from 300, 100, 50, and 20-dimensional MWEs
trained for one epoch and aligned using model VM-S.

sions in the 300-dimensional setting and experienc-
ing a sharp performance drop to 0% at 60 and 50
dimensions in the 100-dimensional setting, indicat-
ing that dimensions are not uniformly informative.

On top of that, Fig. 3 shows that 100-, 50- and 20-
dimensional MWEs retain meaningful information
more effectively under dimensionality constraints
compared to 300-dimensional embeddings. This
suggests that fewer dimensions are sufficient to
achieve high performance in CWE models, while
100-dimensional embeddings provide an efficient
compromise between size and alignment quality.

Due to the significant performance fluctuations
observed with the VM-I model at 50 dimensions,
we further investigated whether alternative dimen-
sionality selection strategies could yield improved
results. Specifically, we evaluated two configura-
tions: one retaining the last 50 dimensions instead
of the first, and a new embedding constructed by
selecting every second dimension from the original
embeddings. Table 3 suggests that alternative selec-
tion strategies can boost the models’ performance
to nearly 100%.
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MUSE-S MUSE-I MUSE-U VM-S VM-I VM-U RCLS
DIM 20 EP 1 98.0 0.0 98.2 98.8 98.8 98.8 92.8
DIM 20 EP 3 99.9 0.0 99.8 99.9 99.9 99.9 99.4
DIM 20 EP 5 97.8 0.0 97.9 99.1 0.0 99.1 97.1
DIM 50 EP 1 99.9 0.0 99.9 100 100 100 99.1
DIM 50 EP 3 99.9 0.0 99.9 100 99.9 99.9 99.8
DIM 50 EP 5 99.9 0.0 99.9 99.9 100 100 99.8
DIM 100 EP 1 100 0.0 100 100 100 100 85.6
DIM 100 EP 3 100 0.0 100 100 100 100 99.9
DIM 100 EP 5 100 0.0 100 100 100 100 99.9
DIM 300 EP 1 100 0.0 100 100 100 100 99.1
DIM 300 EP 3 100 0.0 100 100 100 100 99.9
DIM 300 EP 5 100 0.0 100 100 100 100 99.9

Table 2: P@1 (%) across all the models with different dimension (DIM) and epoch (EP) configurations.

Embedding P@1 (%)
LAST E1 99.71
LAST E5 99.44
SKIP E1 99.63
SKIP E5 99.62

Table 3: P@1 performance of VM-I using alternative
50-dimensional subsets: last 50 dimensions (LAST) and
every second dimension (SKIP) across 1 and 5 training
epochs (E).

4.2 Epoch Impact

Fig. 2 and 5 outline the dimensionality reduction
performance when using 300-dimensional MWEs
trained for one and five epochs, respectively. Fig-
ure 4 shows how training epochs affect the perfor-
mance of the MUSE-S model under dimensionality
reduction from 300 dimensions.

Overall, the three-epoch models achieve consis-
tently the best performance, offering a trade-off be-
tween training duration and alignment quality. On
top of that, the model trained for a single epoch out-
performs the five-epoch version across all reduced
dimensions. The exception is the model RCLS,
which yields better results with a higher number of
epochs involved. These results suggest that while
shorter training helps preserve performance under
dimensionality reduction, more epochs may still
benefit weaker models by enhancing their overall
alignment performance.

4.3 Seed Lexicon Impact

In this set of experiments, we compared supervised
models with their unsupervised counterparts by
progressively reducing the size of the seed lexi-

Figure 4: Comparison of the MUSE-S model’s per-
formance while using MWEs trained for one and five
epochs.

con from 5K seeds to 2.5K, 1K, 500, 100, and 20
seeds. The objective was to determine the mini-
mum number of seeds required for the supervised
models to outperform the unsupervised ones. To
this end, we evaluated MUSE and VM in both su-
pervised and unsupervised modes, training them
using MWEs with 20 dimensions (reduced from
a 100-dimensional space) and 50 dimensions (re-
duced from a 300-dimensional space). The results
are visualised in Fig. 6 and 7.

In both figures, VM-S trained with one epoch
MWEs consistently outperforms most other mod-
els, maintaining relatively high performance until
the seed lexicon size falls below 100, at which
point all models experience a sharp decline. In con-
trast, Fig. 6 shows that MUSE-S maintains more
stable but lower performance, largely unaffected by
seed lexicon size in higher ranges, but falls rapidly
with minimal supervision. Notably, in Fig. 7, we
can observe that VM-U surpasses all its supervised
counterparts.



280

Figure 5: P@1 performance across models after reduc-
ing dimensions from 300-dimensional MWEs trained
for five epochs.

Figure 6: P@1 performance of supervised and unsuper-
vised MUSE and VM models across decreasing seed lex-
icon sizes, using 20-dimensional embeddings reduced
from 100 trained for 1 and 5 epochs (EP).

4.4 Frequency Impact
Finally, we examined how the models perform for
words from different frequency groups. Fig. 8
presents the model VM-S and its P@1 performance
distribution across five frequency groups at various
embedding dimensions.

Overall, the model performs in all frequency
groups nearly identically, especially at higher and
very low dimensions, with P@1 scores varying
within a margin of less than 1%, indicating that
word frequency has little impact on alignment qual-
ity. At 30 and 20 dimensions, modest differences
emerge, with mid-frequency groups slightly outper-
forming the highest and lowest ones by up to 4%
to 6%.

5 Conclusion

In this paper, we introduced a novel evaluation
methodology for assessing CWE models on the
BLI task without relying on lexical data. This ap-
proach enables a bias-free and reliable evaluation,
independent of the limitations found in standard

Figure 7: P@1 performance of supervised and unsuper-
vised MUSE and VM models across decreasing seed lex-
icon sizes, using 50-dimensional embeddings reduced
from 300 trained for 1 and 5 epochs (EP).

Figure 8: P@1 across frequency groups for the VM-S
model trained with different embedding dimensions.

datasets. We evaluated three baseline CWE models
under varying levels of supervision and examined
the effects of key hyperparameters, including em-
bedding dimensionality, number of training epochs,
seed lexicon size, and word frequency.

Our findings reveal that 100-dimensional embed-
dings offer an effective trade-off between compact-
ness and alignment quality. Embeddings trained
with fewer epochs generally yield better perfor-
mance, though additional training can benefit mod-
els with weaker initial results, such as RCLS.
Among all evaluated models, VM-S proved the
most robust, maintaining high precision even under
low supervision. Finally, performance remained
largely consistent across all word frequency groups,
highlighting the general reliability of the models
under controlled evaluation conditions.

References
Antonios Anastasopoulos and Graham Neubig. 2020.

Should all cross-lingual embeddings speak English?
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 8658–

https://doi.org/10.18653/v1/2020.acl-main.766


281

8679, Online. Association for Computational Lin-
guistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018a.
Generalizing and improving bilingual word embed-
ding mappings with a multi-step framework of linear
transformations. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, pages
5012–5019.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018b.
A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 789–798, Melbourne, Australia. As-
sociation for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Hailong Cao, Tiejun Zhao, Weixuan Wang, and Wei
Peng. 2023. Bilingual word embedding fusion for
robust unsupervised bilingual lexicon induction. In-
formation Fusion, 97:101818.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ran-
zato, Ludovic Denoyer, and Herv’e J’egou. 2017.
Word translation without parallel data. ArXiv,
abs/1710.04087.

Paula Czarnowska, Sebastian Ruder, Edouard Grave,
Ryan Cotterell, and Ann Copestake. 2019. Don’t
forget the long tail! a comprehensive analysis of
morphological generalization in bilingual lexicon in-
duction. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
974–983, Hong Kong, China. Association for Com-
putational Linguistics.

Qiuyu Ding, Hailong Cao, Zihao Feng, Muyun Yang,
and Tiejun Zhao. 2025. Enhancing bilingual lexicon
induction via harnessing polysemous words. Neuro-
computing, 611:128682.

Qiuyu Ding, Hailong Cao, and Tiejun Zhao. 2024. En-
hancing bilingual lexicon induction via bi-directional
translation pair retrieving. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(16):17898–
17906.

Xiangyu Duan, Baijun Ji, Hao Jia, Min Tan, Min Zhang,
Boxing Chen, Weihua Luo, and Yue Zhang. 2020.
Bilingual dictionary based neural machine translation
without using parallel sentences. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1570–1579, Online.
Association for Computational Linguistics.
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